SquidTasks/include/Private/TaskPrivate.h
2023-02-09 09:57:23 +01:00

886 lines
25 KiB
C++

// WARNING: This is an internal implementation header, which must be included from a specific location/namespace
// That is the reason that this header does not contain a #pragma once, nor namespace guards
enum class eTaskRef;
template <typename tRet> class TaskPromise;
class TaskInternalBase;
template <typename tRet> class TaskInternal;
//--- tTaskReadyFn ---//
using tTaskReadyFn = std::function<bool()>;
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
auto CancelTaskIf(Task<tRet, RefType, Resumable>&& in_task, tTaskCancelFn in_cancelFn);
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
auto StopTaskIf(Task<tRet, RefType, Resumable>&& in_task, tTaskCancelFn in_cancelFn);
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable, typename tTimeFn>
auto StopTaskIf(Task<tRet, RefType, Resumable>&& in_task, tTaskCancelFn in_cancelFn, tTaskTime in_timeout, tTimeFn in_timeFn);
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable, typename T>
auto StopTaskIf(Task<tRet, RefType, Resumable>&& in_task, tTaskCancelFn in_cancelFn, tTaskTime in_timeout);
//--- Suspend-If Awaiter ---//
struct SuspendIf
{
SuspendIf(bool in_suspend)
: m_suspend(in_suspend)
{
}
bool await_ready() noexcept { return !m_suspend; }
void await_suspend(std::coroutine_handle<>) noexcept {}
void await_resume() noexcept {}
private:
bool m_suspend;
};
//--- Task Debug Stack Formatter ---//
struct TaskDebugStackFormatter
{
// Format function (formats a debug output string) [virtual]
virtual std::string Format(const std::string& in_str)
{
std::string result = Indent(0);
int32_t indent = 0;
size_t start = 0;
size_t found = 0;
while((found = in_str.find('\n', start)) != std::string::npos)
{
size_t end = found + 1;
if((found < in_str.size() - 1) && (in_str[found + 1] == '`')) // indent
{
++indent;
++end;
}
else if((found >= 1) && (in_str[found - 1] == '`')) // dedent
{
--indent;
--found;
}
result += in_str.substr(start, found - start) + '\n' + Indent(indent);
start = end;
}
result += in_str.substr(start);
return result;
}
virtual std::string Indent(int32_t in_indent)
{
return std::string((long long)in_indent * 2, ' ');
}
};
#if SQUID_ENABLE_TASK_DEBUG
static std::string FormatDebugString(std::string in_str)
{
std::replace(in_str.begin(), in_str.end(), '\n', ' ');
return in_str.substr(0, 32);
}
//--- SetDebugName Awaiter ---//
struct SetDebugName
{
// Sets a Task's debug name field
SetDebugName(const char* in_name)
: m_name(in_name)
{
}
SetDebugName(const char* in_name, std::function<std::string()> in_dataFn)
: m_name(in_name)
, m_dataFn(in_dataFn)
{
}
private:
template <typename tRet> friend class TaskPromiseBase;
const char* m_name = nullptr;
std::function<std::string()> m_dataFn;
};
#endif //SQUID_ENABLE_TASK_DEBUG
//--- AddStopTask Awaiter ---//
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
struct AddStopTaskAwaiter
{
AddStopTaskAwaiter(Task<tRet, RefType, Resumable>& in_taskToStop)
: m_taskToStop(&in_taskToStop)
{
}
private:
template <typename tOtherRet> friend class TaskPromiseBase;
Task<tRet, RefType, Resumable>* m_taskToStop = nullptr;
};
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
auto AddStopTask(Task<tRet, RefType, Resumable>& in_taskToStop)
{
return AddStopTaskAwaiter<tRet, RefType, Resumable>(in_taskToStop);
};
//--- RemoveStopTask Awaiter ---//
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
struct RemoveStopTaskAwaiter
{
RemoveStopTaskAwaiter(Task<tRet, RefType, Resumable>& in_taskToStop)
: m_taskToStop(&in_taskToStop)
{
}
private:
template <typename tOtherRet> friend class TaskPromiseBase;
Task<tRet, RefType, Resumable>* m_taskToStop = nullptr;
};
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
auto RemoveStopTask(Task<tRet, RefType, Resumable>& in_taskToStop)
{
return RemoveStopTaskAwaiter<tRet, RefType, Resumable>(in_taskToStop);
};
//--- Task Awaiter ---//
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable, typename promise_type>
struct TaskAwaiterBase
{
TaskAwaiterBase(const Task<tRet, RefType, Resumable>& /* in_task */)
{
// This constructor exists to minimize downstream compile-error spam when co_awaiting a non-copyable Task by copy
}
TaskAwaiterBase(Task<tRet, RefType, Resumable>&& in_task)
: m_task(std::move(in_task))
{
SQUID_RUNTIME_CHECK(m_task.IsValid(), "Tried to await an invalid task");
}
TaskAwaiterBase(TaskAwaiterBase&& in_taskAwaiter) noexcept
{
m_task = std::move(in_taskAwaiter.m_task);
}
bool await_ready() noexcept
{
if(m_task.IsDone())
{
return true;
}
return false;
}
template <eTaskResumable UResumable = Resumable, typename std::enable_if_t<UResumable == eTaskResumable::Yes>* = nullptr>
bool await_suspend(std::coroutine_handle<promise_type> in_coroHandle) noexcept
{
// Set the sub-task on the suspending task
auto& promise = in_coroHandle.promise();
auto taskInternal = promise.GetInternalTask();
auto subTaskInternal = m_task.GetInternalTask();
if(taskInternal->IsStopRequested())
{
subTaskInternal->RequestStop(); // Propagate any stop request to new sub-tasks
}
taskInternal->SetSubTask(std::static_pointer_cast<TaskInternalBase>(subTaskInternal));
// Resume the task
if(m_task.Resume() == eTaskStatus::Done)
{
taskInternal->SetSubTask(nullptr);
return false; // Do not suspend, because the task is done
}
return true; // Suspend, because the task is not done
}
template <eTaskResumable UResumable = Resumable, typename std::enable_if_t<UResumable == eTaskResumable::No>* = nullptr>
bool await_suspend(std::coroutine_handle<promise_type> in_coroHandle) noexcept
{
auto& promise = in_coroHandle.promise();
if(!m_task.IsDone())
{
promise.SetReadyFunction([this] { return m_task.IsDone(); });
return true; // Suspend, because the task is not done
}
return false; // Do not suspend, because the task is done
}
protected:
auto GetInternalTask() const
{
return m_task.GetInternalTask();
}
Task<tRet, RefType, Resumable> m_task;
};
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable, typename promise_type>
struct TaskAwaiter : public TaskAwaiterBase<tRet, RefType, Resumable, promise_type>
{
using TaskAwaiterBase<tRet, RefType, Resumable, promise_type>::TaskAwaiterBase;
template <typename U = tRet, typename std::enable_if_t<!std::is_void<U>::value>* = nullptr>
auto await_resume()
{
this->m_task.RethrowUnhandledException(); // Re-throw any exceptions
auto retVal = this->m_task.TakeReturnValue();
SQUID_RUNTIME_CHECK(retVal.has_value(), "Awaited task return value is unset");
return std::move(retVal.value());
}
template <typename U = tRet, typename std::enable_if_t<std::is_void<U>::value>* = nullptr>
void await_resume()
{
this->m_task.RethrowUnhandledException(); // Re-throw any exceptions
}
};
//--- Future Awaiter ---//
template <typename tRet, typename promise_type>
struct FutureAwaiter
{
FutureAwaiter(std::future<tRet>&& in_future)
: m_future(std::move(in_future))
{
}
~FutureAwaiter()
{
}
FutureAwaiter(FutureAwaiter&& in_futureAwaiter) noexcept
{
m_future = std::move(in_futureAwaiter.m_future);
}
bool await_ready() noexcept
{
bool isReady = m_future.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
return isReady;
}
bool await_suspend(std::coroutine_handle<promise_type> in_coroHandle) noexcept
{
// Set the ready function
auto& promise = in_coroHandle.promise();
auto IsFutureReady = [this] {
return m_future.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
};
// Suspend if future is not ready
bool isReady = m_future.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
if(!isReady)
{
promise.SetReadyFunction(IsFutureReady);
}
return !isReady;
}
template <typename U = tRet, typename std::enable_if_t<!std::is_void<U>::value>* = nullptr>
auto await_resume()
{
return m_future.get(); // Re-throws any exceptions
}
template <typename U = tRet, typename std::enable_if_t<std::is_void<U>::value>* = nullptr>
void await_resume()
{
m_future.get(); // Re-throws any exceptions
}
private:
std::future<tRet> m_future;
};
//--- Shared Future Awaiter ---//
template <typename tRet, typename promise_type>
struct SharedFutureAwaiter
{
SharedFutureAwaiter(const std::shared_future<tRet>& in_sharedFuture)
: m_sharedFuture(in_sharedFuture)
{
}
bool await_ready() noexcept
{
bool isReady = m_sharedFuture.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
return isReady;
}
bool await_suspend(std::coroutine_handle<promise_type> in_coroHandle) noexcept
{
// Set the ready function
auto& promise = in_coroHandle.promise();
auto IsFutureReady = [this] {
return m_sharedFuture.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
};
// Suspend if future is not ready
bool isReady = m_sharedFuture.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
if(!isReady)
{
promise.SetReadyFunction(IsFutureReady);
}
return !isReady;
}
template <typename U = tRet, typename std::enable_if_t<!std::is_void<U>::value>* = nullptr>
auto await_resume()
{
return m_sharedFuture.get(); // Re-throws any exceptions
}
template <typename U = tRet, typename std::enable_if_t<std::is_void<U>::value>* = nullptr>
void await_resume()
{
m_sharedFuture.get(); // Re-throws any exceptions
}
private:
std::shared_future<tRet> m_sharedFuture;
};
//--- TaskPromiseBase ---//
template <typename tRet>
class TaskPromiseBase
{
public:
// Type aliases
using promise_type = TaskPromise<tRet>;
using tTaskInternal = TaskInternal<tRet>;
// Destructor
~TaskPromiseBase()
{
// NOTE: Destructor is non-virtual, because it is always handled + destroyed as its concrete type
m_taskInternal->OnTaskPromiseDestroyed();
}
// Coroutine interface functions
auto initial_suspend() noexcept
{
return std::suspend_always();
}
auto final_suspend() noexcept
{
return std::suspend_always();
}
auto get_return_object()
{
return std::coroutine_handle<promise_type>::from_promise(*static_cast<promise_type*>(this));
}
static std::shared_ptr<tTaskInternal> get_return_object_on_allocation_failure()
{
SQUID_THROW(std::bad_alloc(), "Failed to allocate memory for Task");
return {};
}
void unhandled_exception() noexcept
{
#if SQUID_USE_EXCEPTIONS
// Propagate exceptions for handling
m_taskInternal->SetUnhandledException(std::current_exception());
#endif //SQUID_USE_EXCEPTIONS
}
// Internal Task
void SetInternalTask(tTaskInternal* in_taskInternal)
{
m_taskInternal = in_taskInternal;
}
tTaskInternal* GetInternalTask()
{
return m_taskInternal;
}
const tTaskInternal* GetInternalTask() const
{
return m_taskInternal;
}
// Ready Function
void SetReadyFunction(const tTaskReadyFn& in_taskReadyFn)
{
m_taskInternal->SetReadyFunction(in_taskReadyFn);
}
// Await-Transforms
auto await_transform(Suspend in_awaiter)
{
return in_awaiter;
}
auto await_transform(std::suspend_never in_awaiter)
{
return in_awaiter;
}
#if SQUID_ENABLE_TASK_DEBUG
auto await_transform(SetDebugName in_awaiter)
{
m_taskInternal->SetDebugName(in_awaiter.m_name);
m_taskInternal->SetDebugDataFn(in_awaiter.m_dataFn);
return std::suspend_never();
}
#endif //SQUID_ENABLE_TASK_DEBUG
template <typename tInnerRet, eTaskRef RefType, eTaskResumable Resumable>
auto await_transform(AddStopTaskAwaiter<tInnerRet, RefType, Resumable> in_awaiter)
{
m_taskInternal->AddStopTask(*in_awaiter.m_taskToStop);
return std::suspend_never();
}
template <typename tInnerRet, eTaskRef RefType, eTaskResumable Resumable>
auto await_transform(RemoveStopTaskAwaiter<tInnerRet, RefType, Resumable> in_awaiter)
{
m_taskInternal->RemoveStopTask(*in_awaiter.m_taskToStop);
return std::suspend_never();
}
auto await_transform(GetStopContext /* in_awaiter */)
{
struct GetStopContextAwaiter : public std::suspend_never
{
GetStopContextAwaiter(StopContext in_stopCtx)
: stopCtx(in_stopCtx)
{
}
auto await_resume() noexcept
{
return stopCtx;
}
StopContext stopCtx;
};
GetStopContextAwaiter stopCtxAwaiter{ m_taskInternal->GetStopContext() };
return stopCtxAwaiter;
}
auto await_transform(const tTaskReadyFn& in_taskReadyFn)
{
// Check if we are already ready, and suspend if we are not
bool isReady = in_taskReadyFn();
if(!isReady)
{
m_taskInternal->SetReadyFunction(in_taskReadyFn);
}
return SuspendIf(!isReady); // Suspend if the function isn't already ready
}
template <typename tFutureRet>
auto await_transform(std::future<tFutureRet>&& in_future)
{
return FutureAwaiter<tFutureRet, promise_type>(std::move(in_future));
}
template <typename tFutureRet>
auto await_transform(const std::shared_future<tFutureRet>& in_sharedFuture)
{
return SharedFutureAwaiter<tFutureRet, promise_type>(in_sharedFuture);
}
// Task Await-Transforms
template <typename tTaskRet, eTaskRef RefType, eTaskResumable Resumable,
typename std::enable_if_t<Resumable == eTaskResumable::Yes>* = nullptr>
auto await_transform(Task<tTaskRet, RefType, Resumable>&& in_task) // Move version
{
return TaskAwaiter<tTaskRet, RefType, Resumable, promise_type>(std::move(in_task));
}
template <typename tTaskRet, eTaskRef RefType, eTaskResumable Resumable,
typename std::enable_if_t<Resumable == eTaskResumable::No>* = nullptr>
auto await_transform(Task<tTaskRet, RefType, Resumable> in_task) // Copy version (Non-Resumable)
{
return TaskAwaiter<tTaskRet, RefType, Resumable, promise_type>(std::move(in_task));
}
template <typename tTaskRet, eTaskRef RefType, eTaskResumable Resumable,
typename std::enable_if_t<Resumable == eTaskResumable::Yes>* = nullptr>
auto await_transform(const Task<tTaskRet, RefType, Resumable>& in_task) // Invalid copy version (Resumable)
{
static_assert(static_false<tTaskRet>::value, "Cannot await a non-copyable (resumable) Task by copy (try co_await std::move(task), co_await WeakTaskHandle(task), or co_await task.WaitUntilDone()");
return TaskAwaiter<tTaskRet, RefType, Resumable, promise_type>(std::move(in_task));
}
protected:
tTaskInternal* m_taskInternal = nullptr;
};
//--- TaskPromise ---//
template <typename tRet>
class TaskPromise : public TaskPromiseBase<tRet>
{
public:
// Return value access
void return_value(const tRet& in_retVal) // Copy return value
{
this->m_taskInternal->SetReturnValue(in_retVal);
}
void return_value(tRet&& in_retVal) // Move return value
{
this->m_taskInternal->SetReturnValue(std::move(in_retVal));
}
};
template <>
class TaskPromise<void> : public TaskPromiseBase<void>
{
public:
void return_void()
{
}
};
//--- TaskInternalBase ---//
class TaskInternalBase
{
public:
TaskInternalBase(std::coroutine_handle<> in_coroHandle)
: m_coroHandle(in_coroHandle)
{
SQUID_RUNTIME_CHECK(m_coroHandle, "Invalid coroutine handle passed into Task");
}
~TaskInternalBase() // NOTE: Destructor is intentionally non-virtual (shared_ptr preserves concrete type via deleter)
{
Kill(); // Used for killing subtasks
}
StopContext GetStopContext() const
{
return { &m_isStopRequested };
}
bool IsStopRequested() const
{
return m_isStopRequested;
}
void RequestStop() // Propagates a request for the task to come to a 'graceful' stop
{
m_isStopRequested = true;
for(auto& stopTask : m_stopTasks)
{
if(auto locked = stopTask.lock())
{
locked->RequestStop();
}
}
m_stopTasks.clear();
}
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
void AddStopTask(Task<tRet, RefType, Resumable>& in_taskToStop) // Adds a task to the list of tasks to which we propagate stop requests
{
if(m_isStopRequested)
{
in_taskToStop.RequestStop();
}
else if(in_taskToStop.IsValid())
{
m_stopTasks.push_back(in_taskToStop.GetInternalTask());
}
}
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable>
void RemoveStopTask(Task<tRet, RefType, Resumable>& in_taskToStop) // Removes a task to the list of tasks to which we propagate stop requests
{
if(in_taskToStop.IsValid())
{
for(size_t i = 0; i < m_stopTasks.size(); ++i)
{
if(m_stopTasks[i].lock() == in_taskToStop.GetInternalTask())
{
m_stopTasks[i] = m_stopTasks.back();
m_stopTasks.pop_back();
return;
}
}
}
}
eTaskStatus Resume() // Returns whether the task is still running
{
// Make sure this task is not already mid-resume
SQUID_RUNTIME_CHECK(m_internalState != eInternalState::Resuming, "Attempted to resume Task while already resumed");
// Task is destroyed, therefore task is done
if(m_internalState == eInternalState::Destroyed)
{
return eTaskStatus::Done;
}
// Mark task as resuming
m_internalState = eInternalState::Resuming;
// Resume any active sub-task
if(m_subTaskInternal)
{
// Propagate any stop requests to sub-task prior to resuming
if(m_isStopRequested)
{
m_subTaskInternal->m_isStopRequested = true;
}
// Resume the sub-task
if(m_subTaskInternal->Resume() != eTaskStatus::Done)
{
m_internalState = eInternalState::Idle;
return eTaskStatus::Suspended; // Sub-task not done, therefore task is not done
}
// Clear the sub-task
m_subTaskInternal = nullptr;
}
// Resume task, if necessary
if(CanResume())
{
m_taskReadyFn = nullptr; // Clear any ready function we were waiting on
m_coroHandle.resume(); // Resume the underlying std::coroutine_handle
}
// Return to idle state and return current task status
auto taskStatus = m_coroHandle.done() ? eTaskStatus::Done : eTaskStatus::Suspended;
if(taskStatus == eTaskStatus::Done)
{
m_isDone = true; // Mark task done
}
m_internalState = eInternalState::Idle;
return taskStatus;
}
// Sub-task
void SetSubTask(std::shared_ptr<TaskInternalBase> in_subTaskInternal)
{
m_subTaskInternal = in_subTaskInternal;
}
#if SQUID_ENABLE_TASK_DEBUG
// Debug task name + stack
std::string GetDebugName() const
{
return (!IsDone() && m_debugDataFn) ? (std::string(m_debugName) + " [" + m_debugDataFn() + "]") : m_debugName;
}
std::string GetDebugStack() const
{
std::string result = m_subTaskInternal ? (GetDebugName() + " -> " + m_subTaskInternal->GetDebugStack()) : GetDebugName();
return result;
}
void SetDebugName(const char* in_debugName)
{
if(in_debugName)
{
m_debugName = in_debugName;
}
}
void SetDebugDataFn(std::function<std::string()> in_debugDataFn)
{
m_debugDataFn = in_debugDataFn;
}
#endif //SQUID_ENABLE_TASK_DEBUG
// Exceptions
#if SQUID_USE_EXCEPTIONS
std::exception_ptr GetUnhandledException() const
{
if(m_isExceptionSet)
{
return m_exception;
}
return nullptr;
}
#endif //SQUID_USE_EXCEPTIONS
protected:
#if SQUID_USE_EXCEPTIONS
// Internal implementation of exception-setting (called by TaskInternal<> child classes)
void InternalSetUnhandledException(std::exception_ptr in_exception)
{
// NOTE: This must never be called more than once in the lifetime of an internal task
SQUID_RUNTIME_CHECK(!m_isExceptionSet, "Exception was set for a task after it had already been set");
if(!m_isExceptionSet)
{
m_exception = in_exception;
m_isExceptionSet = true;
}
}
#endif //SQUID_USE_EXCEPTIONS
private:
template <typename tRet> friend class TaskPromiseBase;
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable, typename promise_type> friend struct TaskAwaiterBase;
template <typename tRet, eTaskRef RefType, eTaskResumable Resumable> friend class Task;
// Kill this task
void Kill() // Kill() can safely be called multiple times
{
SQUID_RUNTIME_CHECK(m_internalState != eInternalState::Resuming, "Attempted to kill Task while resumed");
if(m_internalState == eInternalState::Idle)
{
// Mark task done
m_isDone = true;
// First destroy any sub-tasks
if(m_subTaskInternal)
{
m_subTaskInternal->Kill();
}
// Destroy the underlying std::coroutine_handle
m_coroHandle.destroy(); // This should only ever be called directly from this one place
m_coroHandle = nullptr;
m_taskReadyFn = nullptr; // Clear out the ready function
m_internalState = eInternalState::Destroyed;
}
}
// Done + can-resume status
void SetReadyFunction(const tTaskReadyFn& in_taskReadyFn)
{
m_taskReadyFn = in_taskReadyFn;
}
bool CanResume() const
{
if(IsDone())
{
return false;
}
if(m_subTaskInternal)
{
bool canResume = m_subTaskInternal->CanResume();
return canResume;
}
bool isReady = !m_taskReadyFn || m_taskReadyFn();
return isReady;
}
bool IsDone() const
{
return m_isDone;
}
bool m_isDone = false;
// Internal state
enum class eInternalState
{
Idle,
Resuming,
Destroyed,
};
eInternalState m_internalState = eInternalState::Idle;
// Task ready condition (when awaiting a std::function<bool>)
tTaskReadyFn m_taskReadyFn;
#if SQUID_USE_EXCEPTIONS
// Exceptions
std::exception_ptr m_exception = nullptr;
bool m_isExceptionSet = false;
#endif //SQUID_USE_EXCEPTIONS
// Sub-task
std::shared_ptr<TaskInternalBase> m_subTaskInternal;
// Reference-counting (determines underlying std::coroutine_handle lifetime, not lifetime of this internal task)
void AddLogicalRef()
{
++m_refCount;
}
void RemoveLogicalRef()
{
--m_refCount;
if(m_refCount == 0)
{
Kill();
}
}
int32_t m_refCount = 0; // Number of (strong) non-weak tasks referencing the internal task
// C++ std::coroutine_handle
std::coroutine_handle<> m_coroHandle;
// Stop request
bool m_isStopRequested = false;
std::vector<std::weak_ptr<TaskInternalBase>> m_stopTasks;
#if SQUID_ENABLE_TASK_DEBUG
// Debug Data
const char* m_debugName = "[unnamed task]";
std::function<std::string()> m_debugDataFn;
#endif //SQUID_ENABLE_TASK_DEBUG
};
//--- TaskInternal ---//
template <typename tRet>
class TaskInternal : public TaskInternalBase
{
public:
using promise_type = TaskPromise<tRet>;
TaskInternal(std::coroutine_handle<promise_type> in_handle)
: TaskInternalBase(in_handle)
{
auto& promisePtr = in_handle.promise();
promisePtr.SetInternalTask(this);
}
#if SQUID_USE_EXCEPTIONS
void SetUnhandledException(std::exception_ptr in_exception)
{
m_retValState = eTaskRetValState::Orphaned; // Return value can never be set if there was an unhandled exception
InternalSetUnhandledException(in_exception);
}
#endif //SQUID_USE_EXCEPTIONS
void SetReturnValue(const tRet& in_retVal)
{
tRet retVal = in_retVal;
SetReturnValue(std::move(retVal));
}
void SetReturnValue(tRet&& in_retVal)
{
if(m_retValState == eTaskRetValState::Unset)
{
m_retVal = std::move(in_retVal);
m_retValState = eTaskRetValState::Set;
return;
}
// These conditions should (logically) never be met, but they are included in case future changes violate that constraint
SQUID_RUNTIME_CHECK(m_retValState != eTaskRetValState::Set, "Attempted to set a task's return value when it was already set");
SQUID_RUNTIME_CHECK(m_retValState != eTaskRetValState::Taken, "Attempted to set a task's return value after it was already taken");
SQUID_RUNTIME_CHECK(m_retValState != eTaskRetValState::Orphaned, "Attempted to set a task's return value after it was orphaned");
}
std::optional<tRet> TakeReturnValue()
{
// If the value has been set, mark it as taken and move-return the value
if(m_retValState == eTaskRetValState::Set)
{
m_retValState = eTaskRetValState::Taken;
return std::move(m_retVal);
}
// If the value was not set, return an unset optional (checking that it was neither taken nor orphaned)
SQUID_RUNTIME_CHECK(m_retValState != eTaskRetValState::Taken, "Attempted to take a task's return value after it was already successfully taken");
SQUID_RUNTIME_CHECK(m_retValState != eTaskRetValState::Orphaned, "Attempted to take a task's return value that will never be set (task ended prematurely)");
return {};
}
void OnTaskPromiseDestroyed()
{
// Mark the return value as orphaned if it was never set
if (m_retValState == eTaskRetValState::Unset)
{
m_retValState = eTaskRetValState::Orphaned;
}
}
private:
// Internal state
enum class eTaskRetValState
{
Unset, // Has not yet been set
Set, // Has been set and can be taken
Taken, // Has been taken and can no longer be taken
Orphaned, // Will never be set because the TaskPromise has been destroyed
};
eTaskRetValState m_retValState = eTaskRetValState::Unset; // Initially unset
std::optional<tRet> m_retVal;
};
template <>
class TaskInternal<void> : public TaskInternalBase
{
public:
using promise_type = TaskPromise<void>;
TaskInternal(std::coroutine_handle<promise_type> in_handle)
: TaskInternalBase(in_handle)
{
auto& promisePtr = in_handle.promise();
promisePtr.SetInternalTask(this);
}
#if SQUID_USE_EXCEPTIONS
void SetUnhandledException(std::exception_ptr in_exception)
{
InternalSetUnhandledException(in_exception);
}
#endif //SQUID_USE_EXCEPTIONS
void TakeReturnValue() // This function is an intentional no-op, to simplify certain templated function implementations
{
}
void OnTaskPromiseDestroyed()
{
}
};