Initial drop of cppdap

This commit is contained in:
Ben Clayton
2019-10-31 17:06:38 +00:00
committed by Ben Clayton
commit 2dfd15462f
51 changed files with 9924 additions and 0 deletions

182
include/dap/any.h Normal file
View File

@@ -0,0 +1,182 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_any_h
#define dap_any_h
#include "typeinfo.h"
#include <assert.h>
namespace dap {
template <typename T>
struct TypeOf;
// any provides a type-safe container for values of any of dap type (boolean,
// integer, number, array, variant, any, null, dap-structs).
class any {
public:
// constructors
inline any() = default;
inline any(const any& other) noexcept;
inline any(any&& other) noexcept;
template <typename T>
inline any(const T& val);
// destructors
inline ~any();
// replaces the contained value with a null.
inline void reset();
// assignment
inline any& operator=(const any& rhs);
inline any& operator=(any&& rhs) noexcept;
template <typename T>
inline any& operator=(const T& val);
// get() returns the contained value of the type T.
// If the any does not contain a value of type T, then get() will assert.
template <typename T>
inline T& get() const;
// is() returns true iff the contained value is of type T.
template <typename T>
inline bool is() const;
private:
static inline void* alignUp(void* val, size_t alignment);
inline void alloc(size_t size, size_t align);
inline void free();
inline bool isInBuffer(void* ptr) const;
void* value = nullptr;
const TypeInfo* type = nullptr;
void* heap = nullptr; // heap allocation
uint8_t buffer[32]; // or internal allocation
};
inline any::~any() {
reset();
}
template <typename T>
inline any::any(const T& val) {
*this = val;
}
any::any(const any& other) noexcept : type(other.type) {
if (other.value != nullptr) {
alloc(type->size(), type->alignment());
type->copyConstruct(value, other.value);
}
}
any::any(any&& other) noexcept : value(other.value), type(other.type) {
other.value = nullptr;
other.type = nullptr;
}
void any::reset() {
if (value != nullptr) {
type->destruct(value);
free();
}
value = nullptr;
type = nullptr;
}
any& any::operator=(const any& rhs) {
reset();
type = rhs.type;
if (rhs.value != nullptr) {
alloc(type->size(), type->alignment());
type->copyConstruct(value, rhs.value);
}
return *this;
}
any& any::operator=(any&& rhs) noexcept {
value = rhs.value;
type = rhs.type;
rhs.value = nullptr;
rhs.type = nullptr;
return *this;
}
template <typename T>
any& any::operator=(const T& val) {
if (!is<T>()) {
reset();
type = TypeOf<T>::type();
alloc(type->size(), type->alignment());
type->copyConstruct(value, &val);
} else {
*reinterpret_cast<T*>(value) = val;
}
return *this;
}
template <typename T>
T& any::get() const {
assert(is<T>());
return *reinterpret_cast<T*>(value);
}
template <typename T>
bool any::is() const {
return type == TypeOf<T>::type();
}
template <>
inline bool any::is<std::nullptr_t>() const {
return value == nullptr;
}
void* any::alignUp(void* val, size_t alignment) {
auto ptr = reinterpret_cast<uintptr_t>(val);
return reinterpret_cast<void*>(alignment *
((ptr + alignment - 1) / alignment));
}
void any::alloc(size_t size, size_t align) {
assert(value == nullptr);
value = alignUp(buffer, align);
if (isInBuffer(reinterpret_cast<uint8_t*>(value) + size - 1)) {
return;
}
heap = new uint8_t[size + align];
value = alignUp(heap, align);
}
void any::free() {
assert(value != nullptr);
if (heap != nullptr) {
delete[] reinterpret_cast<uint8_t*>(heap);
heap = nullptr;
}
value = nullptr;
}
bool any::isInBuffer(void* ptr) const {
auto addr = reinterpret_cast<uintptr_t>(ptr);
return addr >= reinterpret_cast<uintptr_t>(buffer) &&
addr < reinterpret_cast<uintptr_t>(buffer + sizeof(buffer));
}
} // namespace dap
#endif // dap_any_h

95
include/dap/io.h Normal file
View File

@@ -0,0 +1,95 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_io_h
#define dap_io_h
#include <stddef.h> // size_t
#include <memory> // std::unique_ptr
#include <utility> // std::pair
namespace dap {
class Closable {
public:
virtual ~Closable() = default;
// isOpen() returns true if the stream has not been closed.
virtual bool isOpen() = 0;
// close() closes the stream.
virtual void close() = 0;
};
// Reader is an interface for reading from a byte stream.
class Reader : virtual public Closable {
public:
// read() attempts to read at most n bytes into buffer, returning the number
// of bytes read.
// read() will block until the stream is closed or at least one byte is read.
virtual size_t read(void* buffer, size_t n) = 0;
};
// Writer is an interface for writing to a byte stream.
class Writer : virtual public Closable {
public:
// write() writes n bytes from buffer into the stream.
// Returns true on success, or false if there was an error or the stream was
// closed.
virtual bool write(const void* buffer, size_t n) = 0;
};
// ReaderWriter is an interface that combines the Reader and Writer interfaces.
class ReaderWriter : public Reader, public Writer {
// create() returns a ReaderWriter that delegates the interface methods on to
// the provided Reader and Writer.
// isOpen() returns true if the Reader and Writer both return true for
// isOpen().
// close() closes both the Reader and Writer.
static std::shared_ptr<ReaderWriter> create(const std::shared_ptr<Reader>&,
const std::shared_ptr<Writer>&);
};
// pipe() returns a ReaderWriter where the Writer streams to the Reader.
// Writes are internally buffered.
// Calling close() on either the Reader or Writer will close both ends of the
// stream.
std::shared_ptr<ReaderWriter> pipe();
// file() wraps file with a ReaderWriter.
// If closable is false, then a call to ReaderWriter::close() will not close the
// underlying file.
std::shared_ptr<ReaderWriter> file(FILE* file, bool closable = true);
// file() opens (or creates) the file with the given path.
std::shared_ptr<ReaderWriter> file(const char* path);
// spy() returns a Reader that copies all reads from the Reader r to the Writer
// s, using the given optional prefix.
std::shared_ptr<Reader> spy(const std::shared_ptr<Reader>& r,
const std::shared_ptr<Writer>& s,
const char* prefix = "\n->");
// spy() returns a Writer that copies all writes to the Writer w to the Writer
// s, using the given optional prefix.
std::shared_ptr<Writer> spy(const std::shared_ptr<Writer>& w,
const std::shared_ptr<Writer>& s,
const char* prefix = "\n<-");
// writef writes the printf style string to the writer w.
bool writef(const std::shared_ptr<Writer>& w, const char* msg, ...);
} // namespace dap
#endif // dap_io_h

55
include/dap/network.h Normal file
View File

@@ -0,0 +1,55 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_network_h
#define dap_network_h
#include <functional>
#include <memory>
namespace dap {
class ReaderWriter;
namespace net {
// connect() connects to the given TCP address and port.
std::shared_ptr<ReaderWriter> connect(const char* addr, int port);
// Server implements a basic TCP server.
class Server {
public:
using OnError = std::function<void(const char*)>;
using OnConnect = std::function<void(const std::shared_ptr<ReaderWriter>&)>;
virtual ~Server() = default;
// create() constructs and returns a new Server.
static std::unique_ptr<Server> create();
// start() begins listening for connections on the given port.
// callback will be called for each connection.
// onError will be called for any connection errors.
virtual bool start(int port,
const OnConnect& callback,
const OnError& onError = OnError()) = 0;
// stop() stops listening for connections.
// stop() is implicitly called on destruction.
virtual void stop() = 0;
};
} // namespace net
} // namespace dap
#endif // dap_network_h

271
include/dap/optional.h Normal file
View File

@@ -0,0 +1,271 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_optional_h
#define dap_optional_h
#include <assert.h>
#include <type_traits>
namespace dap {
// optional holds an 'optional' contained value.
// This is similar to C++17's std::optional.
template <typename T>
class optional {
template <typename U>
using IsConvertibleToT =
typename std::enable_if<std::is_convertible<U, T>::value>::type;
public:
using value_type = T;
// constructors
inline optional() = default;
inline optional(const optional& other);
inline optional(optional&& other);
template <typename U>
inline optional(const optional<U>& other);
template <typename U>
inline optional(optional<U>&& other);
template <typename U = value_type, typename = IsConvertibleToT<U>>
inline optional(U&& value);
// value() returns the contained value.
// If the optional does not contain a value, then value() will assert.
inline T& value();
inline const T& value() const;
// value() returns the contained value, or defaultValue if the optional does
// not contain a value.
inline T& value(const T& defaultValue);
inline const T& value(const T& defaultValue) const;
// operator bool() returns true if the optional contains a value.
inline explicit operator bool() const noexcept;
// has_value() returns true if the optional contains a value.
inline bool has_value() const;
// assignment
inline optional& operator=(const optional& other);
inline optional& operator=(optional&& other) noexcept;
template <typename U = T, typename = IsConvertibleToT<U>>
inline optional& operator=(U&& value);
template <typename U>
inline optional& operator=(const optional<U>& other);
template <typename U>
inline optional& operator=(optional<U>&& other);
// value access
inline const T* operator->() const;
inline T* operator->();
inline const T& operator*() const;
inline T& operator*();
private:
T val = {};
bool set = false;
};
template <typename T>
optional<T>::optional(const optional& other) : val(other.val), set(other.set) {}
template <typename T>
optional<T>::optional(optional&& other)
: val(std::move(other.val)), set(other.set) {}
template <typename T>
template <typename U>
optional<T>::optional(const optional<U>& other) : set(other.has_value()) {
if (set) {
val = static_cast<T>(other.value());
}
}
template <typename T>
template <typename U>
optional<T>::optional(optional<U>&& other) : set(other.has_value()) {
if (set) {
val = static_cast<T>(std::move(other.value()));
}
}
template <typename T>
template <typename U /*= T*/, typename>
optional<T>::optional(U&& value) : val(std::move(value)), set(true) {}
template <typename T>
T& optional<T>::value() {
assert(set);
return val;
}
template <typename T>
const T& optional<T>::value() const {
assert(set);
return val;
}
template <typename T>
T& optional<T>::value(const T& defaultValue) {
if (!has_value()) {
return defaultValue;
}
return val;
}
template <typename T>
const T& optional<T>::value(const T& defaultValue) const {
if (!has_value()) {
return defaultValue;
}
return val;
}
template <typename T>
optional<T>::operator bool() const noexcept {
return set;
}
template <typename T>
bool optional<T>::has_value() const {
return set;
}
template <typename T>
optional<T>& optional<T>::operator=(const optional& other) {
val = other.val;
set = other.set;
return *this;
}
template <typename T>
optional<T>& optional<T>::operator=(optional&& other) noexcept {
val = std::move(other.val);
set = other.set;
return *this;
}
template <typename T>
template <typename U /* = T */, typename>
optional<T>& optional<T>::operator=(U&& value) {
val = std::move(value);
set = true;
return *this;
}
template <typename T>
template <typename U>
optional<T>& optional<T>::operator=(const optional<U>& other) {
val = other.val;
set = other.set;
return *this;
}
template <typename T>
template <typename U>
optional<T>& optional<T>::operator=(optional<U>&& other) {
val = std::move(other.val);
set = other.set;
return *this;
}
template <typename T>
const T* optional<T>::operator->() const {
assert(set);
return &val;
}
template <typename T>
T* optional<T>::operator->() {
assert(set);
return &val;
}
template <typename T>
const T& optional<T>::operator*() const {
assert(set);
return val;
}
template <typename T>
T& optional<T>::operator*() {
assert(set);
return val;
}
template <class T, class U>
inline bool operator==(const optional<T>& lhs, const optional<U>& rhs) {
if (!lhs.has_value() && !rhs.has_value()) {
return true;
}
if (!lhs.has_value() || !rhs.has_value()) {
return false;
}
return lhs.value() == rhs.value();
}
template <class T, class U>
inline bool operator!=(const optional<T>& lhs, const optional<U>& rhs) {
return !(lhs == rhs);
}
template <class T, class U>
inline bool operator<(const optional<T>& lhs, const optional<U>& rhs) {
if (!rhs.has_value()) {
return false;
}
if (!lhs.has_value()) {
return true;
}
return lhs.value() < rhs.value();
}
template <class T, class U>
inline bool operator<=(const optional<T>& lhs, const optional<U>& rhs) {
if (!lhs.has_value()) {
return true;
}
if (!rhs.has_value()) {
return false;
}
return lhs.value() <= rhs.value();
}
template <class T, class U>
inline bool operator>(const optional<T>& lhs, const optional<U>& rhs) {
if (!lhs.has_value()) {
return false;
}
if (!rhs.has_value()) {
return true;
}
return lhs.value() > rhs.value();
}
template <class T, class U>
inline bool operator>=(const optional<T>& lhs, const optional<U>& rhs) {
if (!rhs.has_value()) {
return true;
}
if (!lhs.has_value()) {
return false;
}
return lhs.value() >= rhs.value();
}
} // namespace dap
#endif // dap_optional_h

2441
include/dap/protocol.h Normal file

File diff suppressed because it is too large Load Diff

256
include/dap/serialization.h Normal file
View File

@@ -0,0 +1,256 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_serialization_h
#define dap_serialization_h
#include "typeof.h"
#include "types.h"
#include <type_traits>
namespace dap {
// Field describes a single field of a struct.
struct Field {
std::string name; // name of the field
ptrdiff_t offset; // offset of the field to the base of the struct
const TypeInfo* type; // type of the field
};
////////////////////////////////////////////////////////////////////////////////
// Deserializer
////////////////////////////////////////////////////////////////////////////////
// Deserializer is the interface used to decode data from structured storage.
// Methods that return a bool use this to indicate success.
class Deserializer {
public:
// deserialization methods for simple data types.
// If the stored object is not of the correct type, then these function will
// return false.
virtual bool deserialize(boolean*) const = 0;
virtual bool deserialize(integer*) const = 0;
virtual bool deserialize(number*) const = 0;
virtual bool deserialize(string*) const = 0;
virtual bool deserialize(object*) const = 0;
virtual bool deserialize(any*) const = 0;
// count() returns the number of elements in the array object referenced by
// this Deserializer.
virtual size_t count() const = 0;
// array() calls the provided std::function for deserializing each array
// element in the array object referenced by this Deserializer.
virtual bool array(const std::function<bool(Deserializer*)>&) const = 0;
// field() calls the provided std::function for deserializing the field with
// the given name from the struct object referenced by this Deserializer.
virtual bool field(const std::string& name,
const std::function<bool(Deserializer*)>&) const = 0;
// deserialize() delegates to TypeOf<T>::type()->deserialize().
template <typename T,
typename = std::enable_if<TypeOf<T>::has_custom_serialization>>
inline bool deserialize(T*) const;
// deserialize() decodes an array.
template <typename T>
inline bool deserialize(dap::array<T>*) const;
// deserialize() decodes an optional.
template <typename T>
inline bool deserialize(dap::optional<T>*) const;
// deserialize() decodes an variant.
template <typename T0, typename... Types>
inline bool deserialize(dap::variant<T0, Types...>*) const;
// deserialize() decodes a list of fields and stores them into the object.
inline bool deserialize(void* object,
const std::initializer_list<Field>&) const;
// deserialize() decodes the struct field f with the given name.
template <typename T>
inline bool field(const std::string& name, T* f) const;
};
template <typename T, typename>
bool Deserializer::deserialize(T* ptr) const {
return TypeOf<T>::type()->deserialize(this, ptr);
}
template <typename T>
bool Deserializer::deserialize(dap::array<T>* vec) const {
auto n = count();
vec->resize(n);
size_t i = 0;
if (!array([&](Deserializer* d) { return d->deserialize(&(*vec)[i++]); })) {
return false;
}
return true;
}
template <typename T>
bool Deserializer::deserialize(dap::optional<T>* opt) const {
T v;
if (deserialize(&v)) {
*opt = v;
};
return true;
}
template <typename T0, typename... Types>
bool Deserializer::deserialize(dap::variant<T0, Types...>* var) const {
return deserialize(&var->value);
}
bool Deserializer::deserialize(
void* object,
const std::initializer_list<Field>& fields) const {
for (auto const& f : fields) {
if (!field(f.name, [&](Deserializer* d) {
auto ptr = reinterpret_cast<uint8_t*>(object) + f.offset;
return f.type->deserialize(d, ptr);
})) {
return false;
}
}
return true;
}
template <typename T>
bool Deserializer::field(const std::string& name, T* v) const {
return this->field(name,
[&](const Deserializer* d) { return d->deserialize(v); });
}
////////////////////////////////////////////////////////////////////////////////
// Serializer
////////////////////////////////////////////////////////////////////////////////
// Serializer is the interface used to encode data to structured storage.
// A Serializer is associated with a single storage object, whos type and value
// is assigned by a call to serialize().
// If serialize() is called multiple times on the same Serializer instance,
// the last type and value is stored.
// Methods that return a bool use this to indicate success.
class Serializer {
public:
using FieldSerializer = std::function<bool(Serializer*)>;
template <typename T>
using IsFieldSerializer = std::is_convertible<T, FieldSerializer>;
// serialization methods for simple data types.
virtual bool serialize(boolean) = 0;
virtual bool serialize(integer) = 0;
virtual bool serialize(number) = 0;
virtual bool serialize(const string&) = 0;
virtual bool serialize(const object&) = 0;
virtual bool serialize(const any&) = 0;
// array() encodes count array elements to the array object referenced by this
// Serializer. The std::function will be called count times, each time with a
// Serializer that should be used to encode the n'th array element's data.
virtual bool array(size_t count, const std::function<bool(Serializer*)>&) = 0;
// field() encodes a field to the struct object referenced by this Serializer.
// The FieldSerializer will be called with a Serializer used to encode the
// field's data.
virtual bool field(const std::string& name, const FieldSerializer&) = 0;
// remove() deletes the object referenced by this Serializer.
// remove() can be used to serialize optionals with no value assigned.
virtual void remove() = 0;
// serialize() delegates to TypeOf<T>::type()->serialize().
template <typename T,
typename = std::enable_if<TypeOf<T>::has_custom_serialization>>
inline bool serialize(const T&);
// serialize() encodes the given array.
template <typename T>
inline bool serialize(const dap::array<T>&);
// serialize() encodes the given optional.
template <typename T>
inline bool serialize(const dap::optional<T>& v);
// serialize() encodes the given variant.
template <typename T0, typename... Types>
inline bool serialize(const dap::variant<T0, Types...>&);
// serialize() encodes all the provided fields of the given object.
inline bool serialize(const void* object,
const std::initializer_list<Field>&);
// deserialize() encodes the given string.
inline bool serialize(const char* v);
// field() encodes the field with the given name and value.
template <
typename T,
typename = typename std::enable_if<!IsFieldSerializer<T>::value>::type>
inline bool field(const std::string& name, const T& v);
};
template <typename T, typename>
bool Serializer::serialize(const T& object) {
return TypeOf<T>::type()->serialize(this, &object);
}
template <typename T>
bool Serializer::serialize(const dap::array<T>& vec) {
auto it = vec.begin();
return array(vec.size(), [&](Serializer* s) { return s->serialize(*it++); });
}
template <typename T>
bool Serializer::serialize(const dap::optional<T>& opt) {
if (!opt.has_value()) {
remove();
return true;
}
return serialize(opt.value());
}
template <typename T0, typename... Types>
bool Serializer::serialize(const dap::variant<T0, Types...>& var) {
return serialize(var.value);
}
bool Serializer::serialize(const void* object,
const std::initializer_list<Field>& fields) {
for (auto const& f : fields) {
if (!field(f.name, [&](Serializer* d) {
auto ptr = reinterpret_cast<const uint8_t*>(object) + f.offset;
return f.type->serialize(d, ptr);
}))
return false;
}
return true;
}
bool Serializer::serialize(const char* v) {
return serialize(std::string(v));
}
template <typename T, typename>
bool Serializer::field(const std::string& name, const T& v) {
return this->field(name, [&](Serializer* s) { return s->serialize(v); });
}
} // namespace dap
#endif // dap_serialization_h

283
include/dap/session.h Normal file
View File

@@ -0,0 +1,283 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_session_h
#define dap_session_h
#include "io.h"
#include "typeinfo.h"
#include "typeof.h"
#include <functional>
#include <future>
namespace dap {
// Forward declarations
struct Request;
struct Response;
struct Event;
// internal functionality
namespace detail {
template <typename T>
struct traits {
static constexpr bool isRequest = std::is_base_of<dap::Request, T>::value;
static constexpr bool isResponse = std::is_base_of<dap::Response, T>::value;
static constexpr bool isEvent = std::is_base_of<dap::Event, T>::value;
};
// ArgTy<F>::type resolves to the first argument type of the function F.
// F can be a function, static member function, or lambda.
template <typename F>
struct ArgTy {
using type = typename ArgTy<decltype(&F::operator())>::type;
};
template <typename R, typename Arg>
struct ArgTy<R (*)(Arg)> {
using type = typename std::decay<Arg>::type;
};
template <typename R, typename C, typename Arg>
struct ArgTy<R (C::*)(Arg) const> {
using type = typename std::decay<Arg>::type;
};
} // namespace detail
////////////////////////////////////////////////////////////////////////////////
// Error
////////////////////////////////////////////////////////////////////////////////
// Error represents an error message in response to a DAP request.
struct Error {
Error() = default;
Error(const std::string& error);
Error(const char* msg, ...);
// operator bool() returns true if there is an error.
inline operator bool() const { return message.size() > 0; }
std::string message; // empty represents success.
};
////////////////////////////////////////////////////////////////////////////////
// ResponseOrError<T>
////////////////////////////////////////////////////////////////////////////////
// ResponseOrError holds either the response to a DAP request or an error
// message.
template <typename T>
struct ResponseOrError {
using Request = T;
inline ResponseOrError() = default;
inline ResponseOrError(const T& response);
inline ResponseOrError(const Error& error);
inline ResponseOrError(const ResponseOrError& other);
T response;
Error error; // empty represents success.
};
template <typename T>
ResponseOrError<T>::ResponseOrError(const T& response) : response(response) {}
template <typename T>
ResponseOrError<T>::ResponseOrError(const Error& error) : error(error) {}
template <typename T>
ResponseOrError<T>::ResponseOrError(const ResponseOrError& other)
: response(other.response), error(other.error) {}
////////////////////////////////////////////////////////////////////////////////
// Session
////////////////////////////////////////////////////////////////////////////////
// Session implements a DAP client or server endpoint.
// The general usage is as follows:
// (1) Create a session with Session::create().
// (2) Register request and event handlers with registerHandler().
// (3) Optionally register a protocol error handler with onError().
// (3) Bind the session to the remote endpoint with bind().
// (4) Send requests or events with send().
class Session {
template <typename T>
using IsRequest = typename std::enable_if<detail::traits<T>::isRequest>::type;
template <typename T>
using IsEvent = typename std::enable_if<detail::traits<T>::isEvent>::type;
template <typename F>
using ArgTy = typename detail::ArgTy<F>::type;
public:
virtual ~Session() = default;
// ErrorHandler is the type of callback function used for reporting protocol
// errors.
using ErrorHandler = std::function<void(const char*)>;
// create() constructs and returns a new Session.
static std::unique_ptr<Session> create();
// onError() registers a error handler that will be called whenever a protocol
// error is encountered.
// Only one error handler can be bound at any given time, and later calls
// will replace the existing error handler.
virtual void onError(const ErrorHandler&) = 0;
// registerHandler() registers a request handler for a specific request type.
// The function F must have one of the following signatures:
// ResponseOrError<ResponseType>(const RequestType&)
// ResponseType(const RequestType&)
// Error(const RequestType&)
template <typename F, typename RequestType = ArgTy<F>>
inline IsRequest<RequestType> registerHandler(F&& handler);
// registerHandler() registers a event handler for a specific event type.
// The function F must have the following signature:
// void(const EventType&)
template <typename F, typename EventType = ArgTy<F>>
inline IsEvent<EventType> registerHandler(F&& handler);
// registerSentHandler() registers the function F to be called when a response
// of the specific type has been sent.
// The function F must have the following signature:
// void(const ResponseOrError<ResponseType>&)
template <typename F, typename ResponseType = typename ArgTy<F>::Request>
inline void registerSentHandler(F&& handler);
// send() sends the request to the connected endpoint and returns a
// std::future that is assigned the request response or error.
template <typename T, typename = IsRequest<T>>
std::future<ResponseOrError<typename T::Response>> send(const T& request);
// send() sends the event to the connected endpoint.
template <typename T, typename = IsEvent<T>>
void send(const T& event);
// bind() connects this Session to an endpoint.
// bind() can only be called once. Repeated calls will raise an error, but
// otherwise will do nothing.
virtual void bind(const std::shared_ptr<Reader>&,
const std::shared_ptr<Writer>&) = 0;
inline void bind(const std::shared_ptr<ReaderWriter>&);
protected:
using RequestSuccessCallback =
std::function<void(const TypeInfo*, const void*)>;
using RequestErrorCallback =
std::function<void(const TypeInfo*, const Error& message)>;
using GenericResponseHandler = std::function<void(const void*, const Error*)>;
using GenericRequestHandler =
std::function<void(const void* args,
const RequestSuccessCallback& onSuccess,
const RequestErrorCallback& onError)>;
using GenericEventHandler = std::function<void(const void* args)>;
using GenericResponseSentHandler =
std::function<void(const void* response, const Error* error)>;
virtual void registerHandler(const TypeInfo* typeinfo,
const GenericRequestHandler& handler) = 0;
virtual void registerHandler(const TypeInfo* typeinfo,
const GenericEventHandler& handler) = 0;
virtual void registerHandler(const TypeInfo* typeinfo,
const GenericResponseSentHandler& handler) = 0;
virtual bool send(const dap::TypeInfo* typeinfo,
const void* request,
const GenericResponseHandler& responseHandler) = 0;
virtual bool send(const TypeInfo*, const void* event) = 0;
};
template <typename F, typename T>
Session::IsRequest<T> Session::registerHandler(F&& handler) {
using ResponseType = typename T::Response;
auto cb = [handler](const void* args, const RequestSuccessCallback& onSuccess,
const RequestErrorCallback& onError) {
ResponseOrError<ResponseType> res =
handler(*reinterpret_cast<const T*>(args));
if (res.error) {
onError(TypeOf<ResponseType>::type(), res.error);
} else {
onSuccess(TypeOf<ResponseType>::type(), &res.response);
}
};
const TypeInfo* typeinfo = TypeOf<T>::type();
registerHandler(typeinfo, cb);
}
template <typename F, typename T>
Session::IsEvent<T> Session::registerHandler(F&& handler) {
auto cb = [handler](const void* args) {
handler(*reinterpret_cast<const T*>(args));
};
const TypeInfo* typeinfo = TypeOf<T>::type();
registerHandler(typeinfo, cb);
}
template <typename F, typename T>
void Session::registerSentHandler(F&& handler) {
auto cb = [handler](const void* response, const Error* error) {
if (error != nullptr) {
handler(ResponseOrError<T>(*error));
} else {
handler(ResponseOrError<T>(*reinterpret_cast<const T*>(response)));
}
};
const TypeInfo* typeinfo = TypeOf<T>::type();
registerHandler(typeinfo, cb);
}
template <typename T, typename>
std::future<ResponseOrError<typename T::Response>> Session::send(
const T& request) {
using Response = typename T::Response;
auto promise = std::make_shared<std::promise<ResponseOrError<Response>>>();
const TypeInfo* typeinfo = TypeOf<T>::type();
auto sent =
send(typeinfo, &request, [=](const void* result, const Error* error) {
if (error != nullptr) {
promise->set_value(ResponseOrError<Response>(*error));
} else {
promise->set_value(ResponseOrError<Response>(
*reinterpret_cast<const Response*>(result)));
}
});
if (!sent) {
promise->set_value(Error("Failed to send request"));
}
return promise->get_future();
}
template <typename T, typename>
void Session::send(const T& event) {
const TypeInfo* typeinfo = TypeOf<T>::type();
send(typeinfo, &event);
}
void Session::bind(const std::shared_ptr<ReaderWriter>& rw) {
bind(rw, rw);
}
} // namespace dap
#endif // dap_session_h

43
include/dap/typeinfo.h Normal file
View File

@@ -0,0 +1,43 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_typeinfo_h
#define dap_typeinfo_h
#include <functional>
#include <string>
namespace dap {
class any;
class Deserializer;
class Serializer;
// The TypeInfo interface provides basic runtime type information about DAP
// types. TypeInfo is used by the serialization system to encode and decode DAP
// requests, responses, events and structs.
struct TypeInfo {
virtual std::string name() const = 0;
virtual size_t size() const = 0;
virtual size_t alignment() const = 0;
virtual void construct(void*) const = 0;
virtual void copyConstruct(void* dst, const void* src) const = 0;
virtual void destruct(void*) const = 0;
virtual bool deserialize(const Deserializer*, void*) const = 0;
virtual bool serialize(Serializer*, const void*) const = 0;
};
} // namespace dap
#endif // dap_typeinfo_h

182
include/dap/typeof.h Normal file
View File

@@ -0,0 +1,182 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_typeof_h
#define dap_typeof_h
#include "typeinfo.h"
#include "types.h"
#include "serialization.h"
namespace dap {
// BasicTypeInfo is an implementation of the TypeInfo interface for the simple
// template type T.
template <typename T>
struct BasicTypeInfo : public TypeInfo {
BasicTypeInfo(const std::string& name) : name_(name) {}
// TypeInfo compliance
inline std::string name() const { return name_; }
inline size_t size() const { return sizeof(T); }
inline size_t alignment() const { return alignof(T); }
inline void construct(void* ptr) const { new (ptr) T(); }
inline void copyConstruct(void* dst, const void* src) const {
new (dst) T(*reinterpret_cast<const T*>(src));
}
inline void destruct(void* ptr) const { reinterpret_cast<T*>(ptr)->~T(); }
inline bool deserialize(const Deserializer* d, void* ptr) const {
return d->deserialize(reinterpret_cast<T*>(ptr));
}
inline bool serialize(Serializer* s, const void* ptr) const {
return s->serialize(*reinterpret_cast<const T*>(ptr));
}
private:
std::string name_;
};
// TypeOf has a template specialization for each DAP type, each declaring a
// const TypeInfo* type() static member function that describes type T.
template <typename T>
struct TypeOf {};
template <>
struct TypeOf<boolean> {
static const TypeInfo* type();
};
template <>
struct TypeOf<string> {
static const TypeInfo* type();
};
template <>
struct TypeOf<integer> {
static const TypeInfo* type();
};
template <>
struct TypeOf<number> {
static const TypeInfo* type();
};
template <>
struct TypeOf<object> {
static const TypeInfo* type();
};
template <>
struct TypeOf<any> {
static const TypeInfo* type();
};
template <>
struct TypeOf<null> {
static const TypeInfo* type();
};
template <typename T>
struct TypeOf<array<T>> {
static inline const TypeInfo* type() {
static BasicTypeInfo<array<T>> typeinfo("array<" +
TypeOf<T>::type()->name() + ">");
return &typeinfo;
}
};
template <typename T0, typename... Types>
struct TypeOf<variant<T0, Types...>> {
static inline const TypeInfo* type() {
static BasicTypeInfo<variant<T0, Types...>> typeinfo("variant");
return &typeinfo;
}
};
template <typename T>
struct TypeOf<optional<T>> {
static inline const TypeInfo* type() {
static BasicTypeInfo<optional<T>> typeinfo("optional<" +
TypeOf<T>::type()->name() + ">");
return &typeinfo;
}
};
// DAP_OFFSETOF() macro is a generalization of the offsetof() macro defined in
// <cstddef>. It evaluates to the offset of the given field, with fewer
// restrictions than offsetof(). We cast the address '32' and subtract it again,
// because null-dereference is undefined behavior.
#define DAP_OFFSETOF(s, m) \
((int)(size_t) & reinterpret_cast<const volatile char&>((((s*)32)->m)) - 32)
// internal functionality
namespace detail {
template <class T, class M>
M member_type(M T::*);
} // namespace detail
// DAP_TYPEOF() returns the type of the struct (s) member (m).
#define DAP_TYPEOF(s, m) decltype(detail::member_type(&s::m))
// DAP_FIELD() declares a structure field for the DAP_IMPLEMENT_STRUCT_TYPEINFO
// macro.
// FIELD is the name of the struct field.
// NAME is the serialized name of the field, as described by the DAP
// specification.
#define DAP_FIELD(FIELD, NAME) \
dap::Field { \
NAME, DAP_OFFSETOF(StructTy, FIELD), \
TypeOf<DAP_TYPEOF(StructTy, FIELD)>::type(), \
}
// DAP_DECLARE_STRUCT_TYPEINFO() declares a TypeOf<> specialization for STRUCT.
#define DAP_DECLARE_STRUCT_TYPEINFO(STRUCT) \
template <> \
struct TypeOf<STRUCT> { \
static constexpr bool has_custom_serialization = true; \
static const TypeInfo* type(); \
}
// DAP_DECLARE_STRUCT_TYPEINFO() implements the type() member function for the
// TypeOf<> specialization for STRUCT.
// STRUCT is the structure typename.
// NAME is the serialized name of the structure, as described by the DAP
// specification. The variadic (...) parameters should be a repeated list of
// DAP_FIELD()s, one for each field of the struct.
#define DAP_IMPLEMENT_STRUCT_TYPEINFO(STRUCT, NAME, ...) \
const TypeInfo* TypeOf<STRUCT>::type() { \
using StructTy = STRUCT; \
struct TI : BasicTypeInfo<StructTy> { \
TI() : BasicTypeInfo<StructTy>(NAME) {} \
bool deserialize(const Deserializer* d, void* ptr) const override { \
return d->deserialize(ptr, {__VA_ARGS__}); \
} \
bool serialize(Serializer* s, const void* ptr) const override { \
return s->serialize(ptr, {__VA_ARGS__}); \
} \
}; \
static TI typeinfo; \
return &typeinfo; \
}
// DAP_STRUCT_TYPEINFO() is a helper for declaring and implementing a TypeOf<>
// specialization for STRUCT in a single statement.
#define DAP_STRUCT_TYPEINFO(STRUCT, NAME, ...) \
DAP_DECLARE_STRUCT_TYPEINFO(STRUCT); \
DAP_IMPLEMENT_STRUCT_TYPEINFO(STRUCT, NAME, __VA_ARGS__)
} // namespace dap
#endif // dap_typeof_h

102
include/dap/types.h Normal file
View File

@@ -0,0 +1,102 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file holds the basic serializable types used by the debug adapter
// protocol.
#ifndef dap_types_h
#define dap_types_h
#include "any.h"
#include "optional.h"
#include "variant.h"
#include <unordered_map>
#include <vector>
namespace dap {
// string is a sequence of characters.
// string defaults to an empty string.
using string = std::string;
// boolean holds a true or false value.
// boolean defaults to false.
class boolean {
public:
inline boolean() : val(false) {}
inline boolean(bool i) : val(i) {}
inline operator bool() const { return val; }
inline boolean& operator=(bool i) {
val = i;
return *this;
}
private:
bool val;
};
// integer holds a whole signed number.
// integer defaults to 0.
class integer {
public:
inline integer() : val(0) {}
inline integer(int i) : val(i) {}
inline operator int() const { return val; }
inline integer& operator=(int i) {
val = i;
return *this;
}
inline integer operator++(int) {
auto copy = *this;
val++;
return copy;
}
private:
int val;
};
// number holds a 64-bit floating point number.
// number defaults to 0.
class number {
public:
inline number() : val(0.0) {}
inline number(double i) : val(i) {}
inline operator double() const { return val; }
inline number& operator=(double i) {
val = i;
return *this;
}
private:
double val;
};
// array is a list of items of type T.
// array defaults to an empty list.
template <typename T>
using array = std::vector<T>;
// object is a map of string to any.
// object defaults to an empty map.
using object = std::unordered_map<string, any>;
// null represents no value.
// null is used by any to check for no-value.
using null = std::nullptr_t;
} // namespace dap
#endif // dap_types_h

108
include/dap/variant.h Normal file
View File

@@ -0,0 +1,108 @@
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef dap_variant_h
#define dap_variant_h
#include "any.h"
namespace dap {
// internal functionality
namespace detail {
template <typename T, typename...>
struct TypeIsIn {
static constexpr bool value = false;
};
template <typename T, typename List0, typename... ListN>
struct TypeIsIn<T, List0, ListN...> {
static constexpr bool value =
std::is_same<T, List0>::value || TypeIsIn<T, ListN...>::value;
};
} // namespace detail
// variant represents a type-safe union of DAP types.
// variant can hold a value of any of the template argument types.
// variant defaults to a default-constructed T0.
template <typename T0, typename... Types>
class variant {
public:
// constructors
inline variant();
template <typename T>
inline variant(const T& val);
// assignment
template <typename T>
inline variant& operator=(const T& val);
// get() returns the contained value of the type T.
// If the any does not contain a value of type T, then get() will assert.
template <typename T>
inline T& get() const;
// is() returns true iff the contained value is of type T.
template <typename T>
inline bool is() const;
// accepts() returns true iff the variant accepts values of type T.
template <typename T>
static constexpr bool accepts();
private:
friend class Serializer;
friend class Deserializer;
any value;
};
template <typename T0, typename... Types>
variant<T0, Types...>::variant() : value(T0()) {}
template <typename T0, typename... Types>
template <typename T>
variant<T0, Types...>::variant(const T& value) : value(value) {
static_assert(accepts<T>(), "variant does not accept template type T");
}
template <typename T0, typename... Types>
template <typename T>
variant<T0, Types...>& variant<T0, Types...>::operator=(const T& v) {
static_assert(accepts<T>(), "variant does not accept template type T");
value = v;
return *this;
}
template <typename T0, typename... Types>
template <typename T>
T& variant<T0, Types...>::get() const {
static_assert(accepts<T>(), "variant does not accept template type T");
return value.get<T>();
}
template <typename T0, typename... Types>
template <typename T>
bool variant<T0, Types...>::is() const {
return value.is<T>();
}
template <typename T0, typename... Types>
template <typename T>
constexpr bool variant<T0, Types...>::accepts() {
return detail::TypeIsIn<T, T0, Types...>::value;
}
} // namespace dap
#endif // dap_variant_h