Added initial work for integer vector and scalar functions

This commit is contained in:
Christophe Riccio
2019-04-26 18:32:06 +02:00
parent fce2abd01c
commit 07c6d56b5f
9 changed files with 1386 additions and 3 deletions

View File

@@ -12,6 +12,7 @@ glmCreateTestGTC(ext_scalar_common)
glmCreateTestGTC(ext_scalar_constants)
glmCreateTestGTC(ext_scalar_int_sized)
glmCreateTestGTC(ext_scalar_uint_sized)
glmCreateTestGTC(ext_scalar_integer)
glmCreateTestGTC(ext_scalar_ulp)
glmCreateTestGTC(ext_scalar_relational)
glmCreateTestGTC(ext_vec1)
@@ -19,6 +20,7 @@ glmCreateTestGTC(ext_vector_bool1)
glmCreateTestGTC(ext_vector_common)
glmCreateTestGTC(ext_vector_iec559)
glmCreateTestGTC(ext_vector_integer)
glmCreateTestGTC(ext_vector_integer_sized)
glmCreateTestGTC(ext_vector_relational)
glmCreateTestGTC(ext_vector_ulp)

View File

@@ -0,0 +1,435 @@
#include <glm/ext/scalar_integer.hpp>
#include <glm/ext/scalar_int_sized.hpp>
#include <glm/ext/scalar_uint_sized.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
namespace isPowerOfTwo
{
template<typename genType>
struct type
{
genType Value;
bool Return;
};
int test_int16()
{
type<glm::int16> const Data[] =
{
{0x0001, true},
{0x0002, true},
{0x0004, true},
{0x0080, true},
{0x0000, true},
{0x0003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint16()
{
type<glm::uint16> const Data[] =
{
{0x0001, true},
{0x0002, true},
{0x0004, true},
{0x0000, true},
{0x0000, true},
{0x0003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_int32()
{
type<int> const Data[] =
{
{0x00000001, true},
{0x00000002, true},
{0x00000004, true},
{0x0000000f, false},
{0x00000000, true},
{0x00000003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint32()
{
type<glm::uint> const Data[] =
{
{0x00000001, true},
{0x00000002, true},
{0x00000004, true},
{0x80000000, true},
{0x00000000, true},
{0x00000003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += test_int16();
Error += test_uint16();
Error += test_int32();
Error += test_uint32();
return Error;
}
}//isPowerOfTwo
namespace nextPowerOfTwo_advanced
{
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value)
{
genIUType tmp = Value;
genIUType result = genIUType(0);
while(tmp)
{
result = (tmp & (~tmp + 1)); // grab lowest bit
tmp &= ~result; // clear lowest bit
}
return result;
}
template<typename genType>
GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value)
{
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
}
template<typename genType>
struct type
{
genType Value;
genType Return;
};
int test_int32()
{
type<glm::int32> const Data[] =
{
{0x0000ffff, 0x00010000},
{-3, -4},
{-8, -8},
{0x00000001, 0x00000001},
{0x00000002, 0x00000002},
{0x00000004, 0x00000004},
{0x00000007, 0x00000008},
{0x0000fff0, 0x00010000},
{0x0000f000, 0x00010000},
{0x08000000, 0x08000000},
{0x00000000, 0x00000000},
{0x00000003, 0x00000004}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
{
glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint32()
{
type<glm::uint32> const Data[] =
{
{0x00000001, 0x00000001},
{0x00000002, 0x00000002},
{0x00000004, 0x00000004},
{0x00000007, 0x00000008},
{0x0000ffff, 0x00010000},
{0x0000fff0, 0x00010000},
{0x0000f000, 0x00010000},
{0x80000000, 0x80000000},
{0x00000000, 0x00000000},
{0x00000003, 0x00000004}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
{
glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int perf()
{
int Error(0);
std::vector<glm::uint> v;
v.resize(100000000);
std::clock_t Timestramp0 = std::clock();
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
v[i] = nextPowerOfTwo_loop(i);
std::clock_t Timestramp1 = std::clock();
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
v[i] = glm::nextPowerOfTwo(i);
std::clock_t Timestramp2 = std::clock();
std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0));
std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1));
return Error;
}
int test()
{
int Error(0);
Error += test_int32();
Error += test_uint32();
return Error;
}
}//namespace nextPowerOfTwo_advanced
namespace prevPowerOfTwo
{
template <typename T>
int run()
{
int Error = 0;
T const A = glm::prevPowerOfTwo(static_cast<T>(7));
Error += A == static_cast<T>(4) ? 0 : 1;
T const B = glm::prevPowerOfTwo(static_cast<T>(15));
Error += B == static_cast<T>(8) ? 0 : 1;
T const C = glm::prevPowerOfTwo(static_cast<T>(31));
Error += C == static_cast<T>(16) ? 0 : 1;
T const D = glm::prevPowerOfTwo(static_cast<T>(32));
Error += D == static_cast<T>(32) ? 0 : 1;
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace prevPowerOfTwo
namespace nextPowerOfTwo
{
template <typename T>
int run()
{
int Error = 0;
T const A = glm::nextPowerOfTwo(static_cast<T>(7));
Error += A == static_cast<T>(8) ? 0 : 1;
T const B = glm::nextPowerOfTwo(static_cast<T>(15));
Error += B == static_cast<T>(16) ? 0 : 1;
T const C = glm::nextPowerOfTwo(static_cast<T>(31));
Error += C == static_cast<T>(32) ? 0 : 1;
T const D = glm::nextPowerOfTwo(static_cast<T>(32));
Error += D == static_cast<T>(32) ? 0 : 1;
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace nextPowerOfTwo
namespace prevMultiple
{
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
template <typename T>
int run()
{
type<T> const Data[] =
{
{8, 3, 6},
{7, 7, 7}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace prevMultiple
namespace nextMultiple
{
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
template <typename T>
int run()
{
type<T> const Data[] =
{
{ 8, 3, 6 },
{ 7, 7, 7 }
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
T const Result = glm::nextMultiple(Data[i].Source, Data[i].Multiple);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace nextMultiple
int main()
{
int Error(0);
Error += isPowerOfTwo::test();
Error += prevPowerOfTwo::test();
Error += nextPowerOfTwo::test();
Error += nextPowerOfTwo_advanced::test();
# ifdef NDEBUG
Error += nextPowerOfTwo_advanced::perf();
# endif//NDEBUG
Error += prevMultiple::test();
Error += nextMultiple::test();
return Error;
}

View File

@@ -1,10 +1,9 @@
#include <glm/ext/vector_integer.hpp>
#include <glm/ext/vector_int1.hpp>
#include <glm/ext/vector_int1_precision.hpp>
#include <glm/ext/vector_int2.hpp>
#include <glm/ext/vector_int3.hpp>
#include <glm/ext/vector_int4.hpp>
#include <glm/ext/vector_uint1.hpp>
#include <glm/ext/vector_uint1_precision.hpp>
#include <glm/ext/vector_uint2.hpp>
#include <glm/ext/vector_uint3.hpp>
#include <glm/ext/vector_uint4.hpp>

View File

@@ -0,0 +1,212 @@
#include <glm/ext/vector_int1.hpp>
#include <glm/ext/vector_int1_precision.hpp>
#include <glm/ext/vector_int2.hpp>
#include <glm/ext/vector_int3.hpp>
#include <glm/ext/vector_int4.hpp>
#include <glm/ext/vector_uint1.hpp>
#include <glm/ext/vector_uint1_precision.hpp>
#include <glm/ext/vector_uint2.hpp>
#include <glm/ext/vector_uint3.hpp>
#include <glm/ext/vector_uint4.hpp>
#include <glm/vector_relational.hpp>
template <typename genType>
static int test_operators()
{
int Error = 0;
{
genType const A(1);
genType const B(1);
bool const R = A != B;
bool const S = A == B;
Error += (S && !R) ? 0 : 1;
}
{
genType const A(1);
genType const B(1);
genType const C = A + B;
Error += C == genType(2) ? 0 : 1;
genType const D = A - B;
Error += D == genType(0) ? 0 : 1;
genType const E = A * B;
Error += E == genType(1) ? 0 : 1;
genType const F = A / B;
Error += F == genType(1) ? 0 : 1;
}
{
genType const A(3);
genType const B(2);
genType const C = A % B;
Error += C == genType(1) ? 0 : 1;
}
{
genType const A(1);
genType const B(1);
genType const C(0);
genType const I = A & B;
Error += I == genType(1) ? 0 : 1;
genType const D = A & C;
Error += D == genType(0) ? 0 : 1;
genType const E = A | B;
Error += E == genType(1) ? 0 : 1;
genType const F = A | C;
Error += F == genType(1) ? 0 : 1;
genType const G = A ^ B;
Error += G == genType(0) ? 0 : 1;
genType const H = A ^ C;
Error += H == genType(1) ? 0 : 1;
}
{
genType const A(0);
genType const B(1);
genType const C(2);
genType const D = B << B;
Error += D == genType(2) ? 0 : 1;
genType const E = C >> B;
Error += E == genType(1) ? 0 : 1;
}
return Error;
}
template <typename genType>
static int test_ctor()
{
typedef typename genType::value_type T;
int Error = 0;
genType const A = genType(1);
genType const E(genType(1));
Error += A == E ? 0 : 1;
genType const F(E);
Error += A == F ? 0 : 1;
genType const B = genType(1);
genType const G(glm::vec<2, T>(1));
Error += B == G ? 0 : 1;
genType const H(glm::vec<3, T>(1));
Error += B == H ? 0 : 1;
genType const I(glm::vec<4, T>(1));
Error += B == I ? 0 : 1;
return Error;
}
template <typename genType>
static int test_size()
{
int Error = 0;
Error += sizeof(typename genType::value_type) == sizeof(genType) ? 0 : 1;
Error += genType().length() == 1 ? 0 : 1;
Error += genType::length() == 1 ? 0 : 1;
return Error;
}
template <typename genType>
static int test_relational()
{
int Error = 0;
genType const A(1);
genType const B(1);
genType const C(0);
Error += A == B ? 0 : 1;
Error += A != C ? 0 : 1;
Error += all(equal(A, B)) ? 0 : 1;
Error += any(notEqual(A, C)) ? 0 : 1;
return Error;
}
template <typename genType>
static int test_constexpr()
{
# if GLM_CONFIG_CONSTEXP == GLM_ENABLE
static_assert(genType::length() == 1, "GLM: Failed constexpr");
static_assert(genType(1)[0] == 1, "GLM: Failed constexpr");
static_assert(genType(1) == genType(1), "GLM: Failed constexpr");
static_assert(genType(1) != genType(0), "GLM: Failed constexpr");
# endif
return 0;
}
int main()
{
int Error = 0;
Error += test_operators<glm::ivec1>();
Error += test_operators<glm::lowp_ivec1>();
Error += test_operators<glm::mediump_ivec1>();
Error += test_operators<glm::highp_ivec1>();
Error += test_ctor<glm::ivec1>();
Error += test_ctor<glm::lowp_ivec1>();
Error += test_ctor<glm::mediump_ivec1>();
Error += test_ctor<glm::highp_ivec1>();
Error += test_size<glm::ivec1>();
Error += test_size<glm::lowp_ivec1>();
Error += test_size<glm::mediump_ivec1>();
Error += test_size<glm::highp_ivec1>();
Error += test_relational<glm::ivec1>();
Error += test_relational<glm::lowp_ivec1>();
Error += test_relational<glm::mediump_ivec1>();
Error += test_relational<glm::highp_ivec1>();
Error += test_constexpr<glm::ivec1>();
Error += test_constexpr<glm::lowp_ivec1>();
Error += test_constexpr<glm::mediump_ivec1>();
Error += test_constexpr<glm::highp_ivec1>();
Error += test_operators<glm::uvec1>();
Error += test_operators<glm::lowp_uvec1>();
Error += test_operators<glm::mediump_uvec1>();
Error += test_operators<glm::highp_uvec1>();
Error += test_ctor<glm::uvec1>();
Error += test_ctor<glm::lowp_uvec1>();
Error += test_ctor<glm::mediump_uvec1>();
Error += test_ctor<glm::highp_uvec1>();
Error += test_size<glm::uvec1>();
Error += test_size<glm::lowp_uvec1>();
Error += test_size<glm::mediump_uvec1>();
Error += test_size<glm::highp_uvec1>();
Error += test_relational<glm::uvec1>();
Error += test_relational<glm::lowp_uvec1>();
Error += test_relational<glm::mediump_uvec1>();
Error += test_relational<glm::highp_uvec1>();
Error += test_constexpr<glm::uvec1>();
Error += test_constexpr<glm::lowp_uvec1>();
Error += test_constexpr<glm::mediump_uvec1>();
Error += test_constexpr<glm::highp_uvec1>();
return Error;
}