Fixed merge

This commit is contained in:
Christophe Riccio
2011-09-21 21:34:13 +01:00
4 changed files with 423 additions and 71 deletions

View File

@@ -103,30 +103,20 @@ int test_vec3_swizzle3_3()
glm::vec3 v(1, 2, 3);
glm::vec3 u;
u.xyz = v.xyz;
Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.xyz;
Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.zyx;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.zyx = v;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.xyz; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.zyx; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.zyx = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.rgb;
Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.bgr;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.bgr = v;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.rgb; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.bgr; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.bgr = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.stp;
Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.pts;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.pts = v;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u = v.stp; Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.pts; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
u.pts = v; Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
return Error;
}
@@ -140,38 +130,205 @@ int test_vec3_swizzle_half()
glm::hvec3 v(a1, b1, c1);
glm::hvec3 u;
float c = v.x;
float d = v.y;
u = v;
float a = u.x;
float b = u.y;
Error += (u.x == glm::half(1.0f) && u.y == glm::half(2.0f) && u.z == glm::half(3.0f)) ? 0 : 1;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
/*u = v.xyz;
Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
u = v.xyz;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.zyx;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.zyx = v;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u = v.rgb;
Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.bgr;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.bgr = v;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u = v.stp;
Error += (u.x == 1.0f && u.y == 2.0f && u.z == 3.0f) ? 0 : 1;
Error += (u.x.toFloat() == 1.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 3.0f) ? 0 : 1;
u = v.pts;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
u.pts = v;
Error += (u.x == 3.0f && u.y == 2.0f && u.z == 1.0f) ? 0 : 1;*/
Error += (u.x.toFloat() == 3.0f && u.y.toFloat() == 2.0f && u.z.toFloat() == 1.0f) ? 0 : 1;
return Error;
}
int test_vec3_swizzle_operators()
{
int Error = 0;
glm::vec3 q, u, v;
u = glm::vec3(1, 2, 3);
v = glm::vec3(10, 20, 30);
// Swizzle, swizzle binary operators
q = u.xyz + v.xyz; Error += (q == (u + v)) ? 0 : 1;
q = (u.zyx + v.zyx).zyx; Error += (q == (u + v)) ? 0 : 1;
q = (u.xyz - v.xyz); Error += (q == (u - v)) ? 0 : 1;
q = (u.xyz * v.xyz); Error += (q == (u * v)) ? 0 : 1;
q = (u.xxx * v.xxx); Error += (q == glm::vec3(u.x * v.x)) ? 0 : 1;
q = (u.xyz / v.xyz); Error += (q == (u / v)) ? 0 : 1;
// vec, swizzle binary operators
q = u + v.xyz; Error += (q == (u + v)) ? 0 : 1;
q = (u - v.xyz); Error += (q == (u - v)) ? 0 : 1;
q = (u * v.xyz); Error += (q == (u * v)) ? 0 : 1;
q = (u * v.xxx); Error += (q == v.x * u) ? 0 : 1;
q = (u / v.xyz); Error += (q == (u / v)) ? 0 : 1;
// swizzle,vec binary operators
q = u.xyz + v; Error += (q == (u + v)) ? 0 : 1;
q = (u.xyz - v); Error += (q == (u - v)) ? 0 : 1;
q = (u.xyz * v); Error += (q == (u * v)) ? 0 : 1;
q = (u.xxx * v); Error += (q == u.x * v) ? 0 : 1;
q = (u.xyz / v); Error += (q == (u / v)) ? 0 : 1;
// Compile errors
//q = (u.yz * v.xyz);
//q = (u * v.xy);
return Error;
}
#if 0
using namespace glm;
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
float mod289(float x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
float permute(float x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
float taylorInvSqrt(float r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 grad4(float j, vec4 ip)
{
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
return p;
}
float snoise(vec4 v)
{
const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451
// First corner
vec4 i = floor(v + dot(v, vec4(F4)) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 1.0 * C.xxxx
// x2 = x0 - i2 + 2.0 * C.xxxx
// x3 = x0 - i3 + 3.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
// Permutations
i = mod289(i);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
#endif
int main()
{
int Error = 0;
@@ -181,6 +338,7 @@ int main()
Error += test_vec3_swizzle3_2();
Error += test_vec3_swizzle3_3();
Error += test_vec3_swizzle_half();
Error += test_vec3_swizzle_operators();
return Error;
}