More comments
Fix RQ test Slight optimisation in QR
This commit is contained in:
@@ -27,7 +27,6 @@
|
||||
/*
|
||||
Suggestions:
|
||||
- Move helper functions flipud and flip lr to another file: They may be helpful in more general circumstances.
|
||||
- When rq_decompose is fed a matrix that has more rows than columns, the resulting r matrix is NOT upper triangular. Is that a bug?
|
||||
- Implement other types of matrix factorisation, such as: QL and LQ, L(D)U, eigendecompositions, etc...
|
||||
*/
|
||||
|
||||
@@ -46,15 +45,16 @@ namespace glm{
|
||||
GLM_FUNC_DECL matType<C, R, T, P> fliplr(const matType<C, R, T, P>& in);
|
||||
|
||||
/// Performs QR factorisation of a matrix.
|
||||
/// Returns 2 matrices, q and r, such that q columns are orthonormal, r is an upper triangular matrix, and q*r=in.
|
||||
/// r is a square matrix whose dimensions are the same than the width of the input matrix, and q has the same dimensions than the input matrix.
|
||||
/// Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in.
|
||||
/// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
|
||||
/// From GLM_GTX_matrix_factorisation extension.
|
||||
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
||||
GLM_FUNC_DECL void qr_decompose(matType<std::min(C, R), R, T, P>& q, matType<C, std::min(C, R), T, P>& r, const matType<C, R, T, P>& in);
|
||||
|
||||
/// Performs RQ factorisation of a matrix.
|
||||
/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, q rows are orthonormal, and r*q=in.
|
||||
/// q has the same dimensions than the input matrix, and r is a square matrix whose dimensions are the same than the height of the input matrix.
|
||||
/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
|
||||
/// Note that in the context of RQ factorisation, the diagonal is seen as starting in the lower-right corner of the matrix, instead of the usual upper-left.
|
||||
/// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
|
||||
/// From GLM_GTX_matrix_factorisation extension.
|
||||
template <length_t C, length_t R, typename T, precision P, template<length_t, length_t, typename, precision> class matType>
|
||||
GLM_FUNC_DECL void rq_decompose(matType<std::min(C, R), R, T, P>& r, matType<C, std::min(C, R), T, P>& q, const matType<C, R, T, P>& in);
|
||||
|
||||
@@ -29,21 +29,25 @@ namespace glm {
|
||||
// Source: https://en.wikipedia.org/wiki/Gram<61>Schmidt_process
|
||||
// And https://en.wikipedia.org/wiki/QR_decomposition
|
||||
|
||||
//For all the linearly independs columns of the input...
|
||||
// (there can be no more linearly independents columns than there are rows.)
|
||||
for (length_t i = 0; i < std::min(R, C); i++) {
|
||||
//Copy in Q the input's i-th column.
|
||||
q[i] = in[i];
|
||||
|
||||
//j = [0,i[
|
||||
// Make that column orthogonal to all the previous ones by substracting to it the non-orthogonal projection of all the previous columns.
|
||||
// Also: Fill the zero elements of R
|
||||
for (length_t j = 0; j < i; j++) {
|
||||
q[i] -= dot(q[i], q[j])*q[j];
|
||||
}
|
||||
|
||||
q[i] = normalize(q[i]);
|
||||
}
|
||||
|
||||
for (length_t i = 0; i < std::min(R, C); i++) {
|
||||
for (length_t j = 0; j < i; j++) {
|
||||
r[j][i] = 0;
|
||||
}
|
||||
|
||||
//Now, Q i-th column is orthogonal to all the previous columns. Normalize it.
|
||||
q[i] = normalize(q[i]);
|
||||
|
||||
//j = [i,C[
|
||||
//Finally, compute the corresponding coefficients of R by computing the projection of the resulting column on the other columns of the input.
|
||||
for (length_t j = i; j < C; j++) {
|
||||
r[j][i] = dot(in[j], q[i]);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user