remove template alias for more compiler support and simplified swizzle expression implementation #584
This commit is contained in:
@@ -39,34 +39,34 @@ namespace glm
|
||||
/// @{
|
||||
|
||||
template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<2, T, P> lerp(const vec<2, T, P>& x, const vec<2, T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> lerp(const tvec2<T, P>& x, const tvec2<T, P>& y, const tvec2<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> lerp(const tvec3<T, P>& x, const tvec3<T, P>& y, const tvec3<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> lerp(const tvec4<T, P>& x, const tvec4<T, P>& y, const tvec4<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<3, T, P> lerp(const vec<3, T, P>& x, const vec<3, T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<4, T, P> lerp(const vec<4, T, P>& x, const vec<4, T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<2, T, P> lerp(const vec<2, T, P>& x, const vec<2, T, P>& y, const vec<2, T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<3, T, P> lerp(const vec<3, T, P>& x, const vec<3, T, P>& y, const vec<3, T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<4, T, P> lerp(const vec<4, T, P>& x, const vec<4, T, P>& y, const vec<4, T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
|
||||
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> saturate(const tvec2<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> saturate(const tvec3<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> saturate(const tvec4<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<2, T, P> saturate(const vec<2, T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<3, T, P> saturate(const vec<3, T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<4, T, P> saturate(const vec<4, T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
|
||||
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec2<T, P> atan2(const tvec2<T, P>& x, const tvec2<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> atan2(const tvec3<T, P>& x, const tvec3<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> atan2(const tvec4<T, P>& x, const tvec4<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<2, T, P> atan2(const vec<2, T, P>& x, const vec<2, T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<3, T, P> atan2(const vec<3, T, P>& x, const vec<3, T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_QUALIFIER vec<4, T, P> atan2(const vec<4, T, P>& x, const vec<4, T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
|
||||
|
||||
template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL tvec1<bool, P> isfinite(const tvec1<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL tvec2<bool, P> isfinite(const tvec2<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL tvec3<bool, P> isfinite(const tvec3<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL tvec4<bool, P> isfinite(const tvec4<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL vec<1, bool, P> isfinite(const vec<1, T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL vec<2, bool, P> isfinite(const vec<2, T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL vec<3, bool, P> isfinite(const vec<3, T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
template <typename T, precision P> GLM_FUNC_DECL vec<4, bool, P> isfinite(const vec<4, T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
|
||||
|
||||
typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec2<bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec3<bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec4<bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<2, bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<3, bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<4, bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tmat2x2<bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
|
||||
@@ -80,9 +80,9 @@ namespace glm
|
||||
typedef tmat4x4<bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec2<int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec3<int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec4<int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<2, int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<3, int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<4, int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tmat2x2<int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
|
||||
@@ -96,9 +96,9 @@ namespace glm
|
||||
typedef tmat4x4<int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec2<float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec3<float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec4<float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<2, float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<3, float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<4, float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tmat2x2<float, highp> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
|
||||
@@ -112,9 +112,9 @@ namespace glm
|
||||
typedef tmat4x4<float, highp> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec2<double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec3<double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef tvec4<double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<2, double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<3, double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
|
||||
typedef vec<4, double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
|
||||
typedef tmat2x2<double, highp> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
|
||||
|
||||
Reference in New Issue
Block a user