Added boost header

This commit is contained in:
Christophe Riccio
2012-01-08 01:26:07 +00:00
parent 9c3faaca40
commit c7d752cdf8
8946 changed files with 1732316 additions and 0 deletions

View File

@@ -0,0 +1,185 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DE9IM_HPP
#define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DE9IM_HPP
#include <boost/geometry/strategies/intersection_result.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_coordinate_type.hpp>
namespace boost { namespace geometry
{
namespace policies { namespace relate
{
template <typename S1, typename S2>
struct segments_de9im
{
typedef de9im_segment return_type;
typedef S1 segment_type1;
typedef S2 segment_type2;
typedef typename select_coordinate_type<S1, S2>::type coordinate_type;
static inline return_type rays_intersect(bool on_segment,
double ra, double rb,
coordinate_type const& dx1, coordinate_type const& dy1,
coordinate_type const& dx2, coordinate_type const& dy2,
coordinate_type const& wx, coordinate_type const& wy,
S1 const& s1, S2 const& s2)
{
if(on_segment)
{
// 0 <= ra <= 1 and 0 <= rb <= 1
// Now check if one of them is 0 or 1, these are "touch" cases
bool a = math::equals(ra, 0.0) || math::equals(ra, 1.0);
bool b = math::equals(rb, 0.0) || math::equals(rb, 1.0);
if (a && b)
{
// Touch boundary/boundary: i-i == -1, i-b == -1, b-b == 0
// Opposite: if both are equal they touch in opposite direction
return de9im_segment(ra,rb,
-1, -1, 1,
-1, 0, 0,
1, 0, 2, false, math::equals(ra,rb));
}
else if (a || b)
{
// Touch boundary/interior: i-i == -1, i-b == -1 or 0, b-b == -1
int A = a ? 0 : -1;
int B = b ? 0 : -1;
return de9im_segment(ra,rb,
-1, B, 1,
A, -1, 0,
1, 0, 2);
}
// Intersects: i-i == 0, i-b == -1, i-e == 1
return de9im_segment(ra,rb,
0, -1, 1,
-1, -1, 0,
1, 0, 2);
}
// Not on segment, disjoint
return de9im_segment(ra,rb,
-1, -1, 1,
-1, -1, 0,
1, 0, 2);
}
static inline return_type collinear_touch(coordinate_type const& x,
coordinate_type const& y, bool opposite, char)
{
return de9im_segment(0,0,
-1, -1, 1,
-1, 0, 0,
1, 0, 2,
true, opposite);
}
template <typename S>
static inline return_type collinear_interior_boundary_intersect(S const& s,
bool a_within_b, bool opposite)
{
return a_within_b
? de9im_segment(0,0,
1, -1, -1,
0, 0, -1,
1, 0, 2,
true, opposite)
: de9im_segment(0,0,
1, 0, 1,
-1, 0, 0,
-1, -1, 2,
true, opposite);
}
static inline return_type collinear_a_in_b(S1 const& s, bool opposite)
{
return de9im_segment(0,0,
1, -1, -1,
0, -1, -1,
1, 0, 2,
true, opposite);
}
static inline return_type collinear_b_in_a(S2 const& s, bool opposite)
{
return de9im_segment(0,0,
1, 0, 1,
-1, -1, 0,
-1, -1, 2,
true, opposite);
}
static inline return_type collinear_overlaps(
coordinate_type const& x1, coordinate_type const& y1,
coordinate_type const& x2, coordinate_type const& y2, bool opposite)
{
return de9im_segment(0,0,
1, 0, 1,
0, -1, 0,
1, 0, 2,
true, opposite);
}
static inline return_type segment_equal(S1 const& s, bool opposite)
{
return de9im_segment(0,0,
1, -1, -1,
-1, 0, -1,
-1, -1, 2,
true, opposite);
}
static inline return_type degenerate(S1 const& segment, bool a_degenerate)
{
return a_degenerate
? de9im_segment(0,0,
0, -1, -1,
-1, -1, -1,
1, 0, 2,
false, false, false, true)
: de9im_segment(0,0,
0, -1, 1,
-1, -1, 0,
-1, -1, 2,
false, false, false, true);
}
static inline return_type collinear_disjoint()
{
return de9im_segment(0,0,
-1, -1, 1,
-1, -1, 0,
1, 0, 2,
true);
}
static inline return_type parallel()
{
return de9im_segment(0,0,
-1, -1, 1,
-1, -1, 0,
1, 0, 2, false, false, true);
}
};
}} // namespace policies::relate
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DE9IM_HPP

View File

@@ -0,0 +1,348 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP
#define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP
#include <cstddef>
#include <string>
#include <boost/concept_check.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/select_most_precise.hpp>
namespace boost { namespace geometry
{
namespace policies { namespace relate
{
struct direction_type
{
inline direction_type(side_info const& s, char h,
int ha, int hb,
int da = 0, int db = 0,
bool op = false)
: how(h)
, opposite(op)
, how_a(ha)
, how_b(hb)
, dir_a(da)
, dir_b(db)
, sides(s)
{
arrival[0] = ha;
arrival[1] = hb;
}
inline direction_type(char h, bool op, int ha = 0, int hb = 0)
: how(h)
, opposite(op)
, how_a(ha)
, how_b(hb)
, dir_a(0)
, dir_b(0)
{
arrival[0] = ha;
arrival[1] = hb;
}
// "How" is the intersection formed?
char how;
// Is it opposite (for collinear/equal cases)
bool opposite;
// Information on how A arrives at intersection, how B arrives at intersection
// 1: arrives at intersection
// -1: starts from intersection
int how_a;
int how_b;
// Direction: how is A positioned from B
// 1: points left, seen from IP
// -1: points right, seen from IP
// In case of intersection: B's TO direction
// In case that B's TO direction is at A: B's from direction
// In collinear cases: it is 0
int dir_a; // Direction of A-s TO from IP
int dir_b; // Direction of B-s TO from IP
// New information
side_info sides;
int arrival[2]; // 1=arrival, -1departure, 0=neutral; == how_a//how_b
// About arrival[0] (== arrival of a2 w.r.t. b) for COLLINEAR cases
// Arrival 1: a1--------->a2 (a arrives within b)
// b1----->b2
// Arrival 1: (a in b)
//
// Arrival -1: a1--------->a2 (a does not arrive within b)
// b1----->b2
// Arrival -1: (b in a) a_1-------------a_2
// b_1---b_2
// Arrival 0: a1------->a2 (a arrives at TO-border of b)
// b1--->b2
};
template <typename S1, typename S2, typename CalculationType = void>
struct segments_direction
{
typedef direction_type return_type;
typedef S1 segment_type1;
typedef S2 segment_type2;
typedef typename select_calculation_type
<
S1, S2, CalculationType
>::type coordinate_type;
// Get the same type, but at least a double
typedef typename select_most_precise<coordinate_type, double>::type rtype;
static inline return_type segments_intersect(side_info const& sides,
coordinate_type const& dx1, coordinate_type const& dy1,
coordinate_type const& dx2, coordinate_type const& dy2,
S1 const& s1, S2 const& s2)
{
bool const ra0 = sides.get<0,0>() == 0;
bool const ra1 = sides.get<0,1>() == 0;
bool const rb0 = sides.get<1,0>() == 0;
bool const rb1 = sides.get<1,1>() == 0;
return
// opposite and same starting point (FROM)
ra0 && rb0 ? calculate_side<1>(sides, dx1, dy1, s1, s2, 'f', -1, -1)
// opposite and point to each other (TO)
: ra1 && rb1 ? calculate_side<0>(sides, dx1, dy1, s1, s2, 't', 1, 1)
// not opposite, forming an angle, first a then b,
// directed either both left, or both right
// Check side of B2 from A. This is not calculated before
: ra1 && rb0 ? angle<1>(sides, dx1, dy1, s1, s2, 'a', 1, -1)
// not opposite, forming a angle, first b then a,
// directed either both left, or both right
: ra0 && rb1 ? angle<0>(sides, dx1, dy1, s1, s2, 'a', -1, 1)
// b starts from interior of a
: rb0 ? starts_from_middle(sides, dx1, dy1, s1, s2, 'B', 0, -1)
// a starts from interior of b (#39)
: ra0 ? starts_from_middle(sides, dx1, dy1, s1, s2, 'A', -1, 0)
// b ends at interior of a, calculate direction of A from IP
: rb1 ? b_ends_at_middle(sides, dx2, dy2, s1, s2)
// a ends at interior of b
: ra1 ? a_ends_at_middle(sides, dx1, dy1, s1, s2)
// normal intersection
: calculate_side<1>(sides, dx1, dy1, s1, s2, 'i', -1, -1)
;
}
static inline return_type collinear_touch(
coordinate_type const& ,
coordinate_type const& , int arrival_a, int arrival_b)
{
// Though this is 'collinear', we handle it as To/From/Angle because it is the same.
// It only does NOT have a direction.
side_info sides;
//int const arrive = how == 'T' ? 1 : -1;
bool opposite = arrival_a == arrival_b;
return
! opposite
? return_type(sides, 'a', arrival_a, arrival_b)
: return_type(sides, arrival_a == 0 ? 't' : 'f', arrival_a, arrival_b, 0, 0, true);
}
template <typename S>
static inline return_type collinear_interior_boundary_intersect(S const& , bool,
int arrival_a, int arrival_b, bool opposite)
{
return_type r('c', opposite);
r.arrival[0] = arrival_a;
r.arrival[1] = arrival_b;
return r;
}
static inline return_type collinear_a_in_b(S1 const& , bool opposite)
{
return_type r('c', opposite);
r.arrival[0] = 1;
r.arrival[1] = -1;
return r;
}
static inline return_type collinear_b_in_a(S2 const& , bool opposite)
{
return_type r('c', opposite);
r.arrival[0] = -1;
r.arrival[1] = 1;
return r;
}
static inline return_type collinear_overlaps(
coordinate_type const& , coordinate_type const& ,
coordinate_type const& , coordinate_type const& ,
int arrival_a, int arrival_b, bool opposite)
{
return_type r('c', opposite);
r.arrival[0] = arrival_a;
r.arrival[1] = arrival_b;
return r;
}
static inline return_type segment_equal(S1 const& , bool opposite)
{
return return_type('e', opposite);
}
static inline return_type degenerate(S1 const& , bool)
{
return return_type('0', false);
}
static inline return_type disjoint()
{
return return_type('d', false);
}
static inline return_type collinear_disjoint()
{
return return_type('d', false);
}
static inline return_type parallel()
{
return return_type('p', false);
}
static inline return_type error(std::string const& msg)
{
// msg
return return_type('d', false);
}
private :
template <std::size_t I>
static inline return_type calculate_side(side_info const& sides,
coordinate_type const& dx1, coordinate_type const& dy1,
S1 const& s1, S2 const& s2,
char how, int how_a, int how_b)
{
coordinate_type dpx = get<I, 0>(s2) - get<0, 0>(s1);
coordinate_type dpy = get<I, 1>(s2) - get<0, 1>(s1);
// This is a "side calculation" as in the strategies, but here two terms are precalculated
// We might merge this with side, offering a pre-calculated term
// Waiting for implementing spherical...
return dx1 * dpy - dy1 * dpx > 0
? return_type(sides, how, how_a, how_b, -1, 1)
: return_type(sides, how, how_a, how_b, 1, -1);
}
template <std::size_t I>
static inline return_type angle(side_info const& sides,
coordinate_type const& dx1, coordinate_type const& dy1,
S1 const& s1, S2 const& s2,
char how, int how_a, int how_b)
{
coordinate_type dpx = get<I, 0>(s2) - get<0, 0>(s1);
coordinate_type dpy = get<I, 1>(s2) - get<0, 1>(s1);
return dx1 * dpy - dy1 * dpx > 0
? return_type(sides, how, how_a, how_b, 1, 1)
: return_type(sides, how, how_a, how_b, -1, -1);
}
static inline return_type starts_from_middle(side_info const& sides,
coordinate_type const& dx1, coordinate_type const& dy1,
S1 const& s1, S2 const& s2,
char which,
int how_a, int how_b)
{
// Calculate ARROW of b segment w.r.t. s1
coordinate_type dpx = get<1, 0>(s2) - get<0, 0>(s1);
coordinate_type dpy = get<1, 1>(s2) - get<0, 1>(s1);
int dir = dx1 * dpy - dy1 * dpx > 0 ? 1 : -1;
// From other perspective, then reverse
bool const is_a = which == 'A';
if (is_a)
{
dir = -dir;
}
return return_type(sides, 's',
how_a,
how_b,
is_a ? dir : -dir,
! is_a ? dir : -dir);
}
// To be harmonized
static inline return_type a_ends_at_middle(side_info const& sides,
coordinate_type const& dx, coordinate_type const& dy,
S1 const& s1, S2 const& s2)
{
coordinate_type dpx = get<1, 0>(s2) - get<0, 0>(s1);
coordinate_type dpy = get<1, 1>(s2) - get<0, 1>(s1);
// Ending at the middle, one ARRIVES, the other one is NEUTRAL
// (because it both "arrives" and "departs" there
return dx * dpy - dy * dpx > 0
? return_type(sides, 'm', 1, 0, 1, 1)
: return_type(sides, 'm', 1, 0, -1, -1);
}
static inline return_type b_ends_at_middle(side_info const& sides,
coordinate_type const& dx, coordinate_type const& dy,
S1 const& s1, S2 const& s2)
{
coordinate_type dpx = get<1, 0>(s1) - get<0, 0>(s2);
coordinate_type dpy = get<1, 1>(s1) - get<0, 1>(s2);
return dx * dpy - dy * dpx > 0
? return_type(sides, 'm', 0, 1, 1, 1)
: return_type(sides, 'm', 0, 1, -1, -1);
}
};
}} // namespace policies::relate
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP

View File

@@ -0,0 +1,191 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP
#define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP
#include <algorithm>
#include <string>
#include <boost/concept_check.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/select_most_precise.hpp>
namespace boost { namespace geometry
{
namespace policies { namespace relate
{
template <typename S1, typename S2, typename ReturnType, typename CalculationType = void>
struct segments_intersection_points
{
typedef ReturnType return_type;
typedef S1 segment_type1;
typedef S2 segment_type2;
typedef typename select_calculation_type
<
S1, S2, CalculationType
>::type coordinate_type;
// Get the same type, but at least a double
typedef typename select_most_precise<coordinate_type, double>::type rtype;
static inline return_type segments_intersect(side_info const&,
coordinate_type const& dx1, coordinate_type const& dy1,
coordinate_type const& dx2, coordinate_type const& dy2,
S1 const& s1, S2 const& s2)
{
return_type result;
typedef typename geometry::coordinate_type
<
typename return_type::point_type
>::type coordinate_type;
// Get the same type, but at least a double (also used for divisions
typedef typename select_most_precise
<
coordinate_type, double
>::type promoted_type;
promoted_type const s1x = get<0, 0>(s1);
promoted_type const s1y = get<0, 1>(s1);
// Calculate other determinants - Cramers rule
promoted_type const wx = get<0, 0>(s1) - get<0, 0>(s2);
promoted_type const wy = get<0, 1>(s1) - get<0, 1>(s2);
promoted_type const d = (dy2 * dx1) - (dx2 * dy1);
promoted_type const da = (promoted_type(dx2) * wy) - (promoted_type(dy2) * wx);
// r: ratio 0-1 where intersection divides A/B
promoted_type r = da / d;
// Handle robustness issues
if (r < 0)
{
r = 0;
}
else if (r > 1)
{
r = 1;
}
result.count = 1;
set<0>(result.intersections[0],
boost::numeric_cast<coordinate_type>(s1x + r * promoted_type(dx1)));
set<1>(result.intersections[0],
boost::numeric_cast<coordinate_type>(s1y + r * promoted_type(dy1)));
return result;
}
static inline return_type collinear_touch(coordinate_type const& x,
coordinate_type const& y, int, int)
{
return_type result;
result.count = 1;
set<0>(result.intersections[0], x);
set<1>(result.intersections[0], y);
return result;
}
template <typename S>
static inline return_type collinear_inside(S const& s, int index1 = 0, int index2 = 1)
{
return_type result;
result.count = 2;
set<0>(result.intersections[index1], get<0, 0>(s));
set<1>(result.intersections[index1], get<0, 1>(s));
set<0>(result.intersections[index2], get<1, 0>(s));
set<1>(result.intersections[index2], get<1, 1>(s));
return result;
}
template <typename S>
static inline return_type collinear_interior_boundary_intersect(S const& s, bool a_in_b,
int, int, bool opposite)
{
int index1 = opposite && ! a_in_b ? 1 : 0;
return collinear_inside(s, index1, 1 - index1);
}
static inline return_type collinear_a_in_b(S1 const& s, bool opposite)
{
return collinear_inside(s);
}
static inline return_type collinear_b_in_a(S2 const& s, bool opposite)
{
int index1 = opposite ? 1 : 0;
return collinear_inside(s, index1, 1 - index1);
}
static inline return_type collinear_overlaps(
coordinate_type const& x1, coordinate_type const& y1,
coordinate_type const& x2, coordinate_type const& y2,
int, int, bool)
{
return_type result;
result.count = 2;
set<0>(result.intersections[0], x1);
set<1>(result.intersections[0], y1);
set<0>(result.intersections[1], x2);
set<1>(result.intersections[1], y2);
return result;
}
static inline return_type segment_equal(S1 const& s, bool opposite)
{
return_type result;
result.count = 2;
// TODO: order of IP's
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
set<0>(result.intersections[1], get<1, 0>(s));
set<1>(result.intersections[1], get<1, 1>(s));
return result;
}
static inline return_type disjoint()
{
return return_type();
}
static inline return_type error(std::string const& msg)
{
return return_type();
}
static inline return_type collinear_disjoint()
{
return return_type();
}
static inline return_type parallel()
{
return return_type();
}
static inline return_type degenerate(S1 const& s, bool)
{
return_type result;
result.count = 1;
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
return result;
}
};
}} // namespace policies::relate
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP

View File

@@ -0,0 +1,176 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP
#define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP
#include <string>
#include <boost/concept_check.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/select_most_precise.hpp>
namespace boost { namespace geometry
{
namespace policies { namespace relate
{
template <typename S1, typename S2, typename ReturnType, typename CalculationType = void>
struct segments_intersection_points
{
typedef ReturnType return_type;
typedef S1 segment_type1;
typedef S2 segment_type2;
typedef typename select_calculation_type
<
S1, S2, CalculationType
>::type coordinate_type;
// Get the same type, but at least a double
typedef typename select_most_precise<coordinate_type, double>::type rtype;
static inline return_type segments_intersect(side_info const&,
coordinate_type const& dx1, coordinate_type const& dy1,
coordinate_type const& dx2, coordinate_type const& dy2,
S1 const& s1, S2 const& s2)
{
return_type result;
typedef typename geometry::coordinate_type
<
typename return_type::point_type
>::type coordinate_type;
// Get the same type, but at least a double (also used for divisions
typedef typename select_most_precise
<
coordinate_type, double
>::type promoted_type;
coordinate_type const s1x = get<0, 0>(s1);
coordinate_type const s1y = get<0, 1>(s1);
// Calculate other determinants - Cramers rule
promoted_type const wx = get<0, 0>(s1) - get<0, 0>(s2);
promoted_type const wy = get<0, 1>(s1) - get<0, 1>(s2);
promoted_type const d = (dy2 * dx1) - (dx2 * dy1);
promoted_type const da = (dx2 * wy) - (dy2 * wx);
// r: ratio 0-1 where intersection divides A/B
promoted_type const r = da / d;
result.count = 1;
set<0>(result.intersections[0],
boost::numeric_cast<coordinate_type>(s1x + r * dx1));
set<1>(result.intersections[0],
boost::numeric_cast<coordinate_type>(s1y + r * dy1));
return result;
}
static inline return_type collinear_touch(coordinate_type const& x,
coordinate_type const& y, bool, char)
{
return_type result;
result.count = 1;
set<0>(result.intersections[0], x);
set<1>(result.intersections[0], y);
return result;
}
template <typename S>
static inline return_type collinear_inside(S const& s)
{
return_type result;
result.count = 2;
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
set<0>(result.intersections[1], get<1, 0>(s));
set<1>(result.intersections[1], get<1, 1>(s));
return result;
}
template <typename S>
static inline return_type collinear_interior_boundary_intersect(S const& s, bool, bool)
{
return collinear_inside(s);
}
static inline return_type collinear_a_in_b(S1 const& s, bool)
{
return collinear_inside(s);
}
static inline return_type collinear_b_in_a(S2 const& s, bool)
{
return collinear_inside(s);
}
static inline return_type collinear_overlaps(
coordinate_type const& x1, coordinate_type const& y1,
coordinate_type const& x2, coordinate_type const& y2, bool)
{
return_type result;
result.count = 2;
set<0>(result.intersections[0], x1);
set<1>(result.intersections[0], y1);
set<0>(result.intersections[1], x2);
set<1>(result.intersections[1], y2);
return result;
}
static inline return_type segment_equal(S1 const& s, bool)
{
return_type result;
result.count = 2;
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
set<0>(result.intersections[1], get<1, 0>(s));
set<1>(result.intersections[1], get<1, 1>(s));
return result;
}
static inline return_type disjoint()
{
return return_type();
}
static inline return_type error(std::string const& msg)
{
return return_type();
}
static inline return_type collinear_disjoint()
{
return return_type();
}
static inline return_type parallel()
{
return return_type();
}
static inline return_type degenerate(S1 const& s, bool)
{
return_type result;
result.count = 1;
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
return result;
}
};
}} // namespace policies::relate
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP

View File

@@ -0,0 +1,213 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP
#define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP
#include <string>
#include <boost/concept_check.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/select_most_precise.hpp>
namespace boost { namespace geometry
{
namespace policies { namespace relate
{
template <typename S1, typename S2, typename ReturnType, typename CalculationType = void>
struct segments_intersection_points
{
typedef ReturnType return_type;
typedef S1 segment_type1;
typedef S2 segment_type2;
typedef typename select_calculation_type
<
S1, S2, CalculationType
>::type coordinate_type;
// Get the same type, but at least a double (also used for divisions
typedef typename select_most_precise
<
coordinate_type, double
>::type promoted_type;
template <int Dimension>
static inline return_type rico(
coordinate_type const& dm1, coordinate_type const& dn1,
coordinate_type const& dm2, coordinate_type const& dn2,
S1 const& s1, S2 const& s2)
{
promoted_type const a1 = dn1 / dm1;
promoted_type const a2 = dn2 / dm2;
promoted_type const da = a1 - a2;
if (math::equals(da, 0))
{
return rico<1 - Dimension>(dn1, dm1, dn2, dm2, s1, s2);
}
promoted_type const b1 = get<0, Dimension>(s1) - a1 * get<0, 1 - Dimension>(s1);
promoted_type const b2 = get<0, Dimension>(s2) - a2 * get<0, 1 - Dimension>(s2);
promoted_type const v = (b2 - b1) / da;
return_type result;
result.count = 1;
set<1 - Dimension>(result.intersections[0],
boost::numeric_cast<coordinate_type>(v));
set<Dimension>(result.intersections[0],
boost::numeric_cast<coordinate_type>(a1 * v + b1));
return result;
}
static inline return_type cross(S1 const& s1, S2 const& s2)
{
// Take one of first segment, and one of second segment
return_type result;
result.count = 1;
set<0>(result.intersections[0], get<0, 0>(s1));
set<1>(result.intersections[0], get<0, 1>(s2));
return result;
}
static inline return_type segments_intersect(side_info const& sides,
coordinate_type const& dx1, coordinate_type const& dy1,
coordinate_type const& dx2, coordinate_type const& dy2,
S1 const& s1, S2 const& s2)
{
bool vertical1 = math::equals(dx1, 0);
bool horizontal2 = math::equals(dy2, 0);
if (vertical1 && horizontal2)
{
return cross(s1, s2);
}
bool vertical2 = math::equals(dx2, 0);
bool horizontal1 = math::equals(dy1, 0);
if (horizontal1 && vertical2)
{
return cross(s2, s1);
}
if (vertical1 || vertical2)
{
return rico<0>(dy1, dx1, dy2, dx2, s1, s2);
}
else
{
// Not crossing, take the most reasonable choice.
// We want to divide by the largest one.
//if (
return rico<1>(dx1, dy1, dx2, dy2, s1, s2);
}
}
static inline return_type collinear_touch(coordinate_type const& x,
coordinate_type const& y, bool, char)
{
return_type result;
result.count = 1;
set<0>(result.intersections[0], x);
set<1>(result.intersections[0], y);
return result;
}
template <typename S>
static inline return_type collinear_inside(S const& s)
{
return_type result;
result.count = 2;
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
set<0>(result.intersections[1], get<1, 0>(s));
set<1>(result.intersections[1], get<1, 1>(s));
return result;
}
template <typename S>
static inline return_type collinear_interior_boundary_intersect(S const& s, bool, bool)
{
return collinear_inside(s);
}
static inline return_type collinear_a_in_b(S1 const& s, bool)
{
return collinear_inside(s);
}
static inline return_type collinear_b_in_a(S2 const& s, bool)
{
return collinear_inside(s);
}
static inline return_type collinear_overlaps(
coordinate_type const& x1, coordinate_type const& y1,
coordinate_type const& x2, coordinate_type const& y2, bool)
{
return_type result;
result.count = 2;
set<0>(result.intersections[0], x1);
set<1>(result.intersections[0], y1);
set<0>(result.intersections[1], x2);
set<1>(result.intersections[1], y2);
return result;
}
static inline return_type segment_equal(S1 const& s, bool)
{
return_type result;
result.count = 2;
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
set<0>(result.intersections[1], get<1, 0>(s));
set<1>(result.intersections[1], get<1, 1>(s));
return result;
}
static inline return_type disjoint()
{
return return_type();
}
static inline return_type error(std::string const& msg)
{
return return_type();
}
static inline return_type collinear_disjoint()
{
return return_type();
}
static inline return_type parallel()
{
return return_type();
}
static inline return_type degenerate(S1 const& s, bool)
{
return_type result;
result.count = 1;
set<0>(result.intersections[0], get<0, 0>(s));
set<1>(result.intersections[0], get<0, 1>(s));
return result;
}
};
}} // namespace policies::relate
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_INTERSECTION_POINTS_HPP

View File

@@ -0,0 +1,182 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_TUPLED_HPP
#define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_TUPLED_HPP
#include <string>
#include <boost/tuple/tuple.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/select_most_precise.hpp>
namespace boost { namespace geometry
{
namespace policies { namespace relate
{
// "tupled" to return intersection results together.
// Now with two, with some meta-programming and derivations it can also be three (or more)
template <typename Policy1, typename Policy2, typename CalculationType = void>
struct segments_tupled
{
typedef boost::tuple
<
typename Policy1::return_type,
typename Policy2::return_type
> return_type;
// Take segments of first policy, they should be equal
typedef typename Policy1::segment_type1 segment_type1;
typedef typename Policy1::segment_type2 segment_type2;
typedef typename select_calculation_type
<
segment_type1,
segment_type2,
CalculationType
>::type coordinate_type;
// Get the same type, but at least a double
typedef typename select_most_precise<coordinate_type, double>::type rtype;
static inline return_type segments_intersect(side_info const& sides,
coordinate_type const& dx1, coordinate_type const& dy1,
coordinate_type const& dx2, coordinate_type const& dy2,
segment_type1 const& s1, segment_type2 const& s2)
{
return boost::make_tuple
(
Policy1::segments_intersect(sides,
dx1, dy1, dx2, dy2, s1, s2),
Policy2::segments_intersect(sides,
dx1, dy1, dx2, dy2, s1, s2)
);
}
static inline return_type collinear_touch(coordinate_type const& x,
coordinate_type const& y, int arrival_a, int arrival_b)
{
return boost::make_tuple
(
Policy1::collinear_touch(x, y, arrival_a, arrival_b),
Policy2::collinear_touch(x, y, arrival_a, arrival_b)
);
}
template <typename S>
static inline return_type collinear_interior_boundary_intersect(S const& segment,
bool a_within_b,
int arrival_a, int arrival_b, bool opposite)
{
return boost::make_tuple
(
Policy1::collinear_interior_boundary_intersect(segment, a_within_b, arrival_a, arrival_b, opposite),
Policy2::collinear_interior_boundary_intersect(segment, a_within_b, arrival_a, arrival_b, opposite)
);
}
static inline return_type collinear_a_in_b(segment_type1 const& segment,
bool opposite)
{
return boost::make_tuple
(
Policy1::collinear_a_in_b(segment, opposite),
Policy2::collinear_a_in_b(segment, opposite)
);
}
static inline return_type collinear_b_in_a(segment_type2 const& segment,
bool opposite)
{
return boost::make_tuple
(
Policy1::collinear_b_in_a(segment, opposite),
Policy2::collinear_b_in_a(segment, opposite)
);
}
static inline return_type collinear_overlaps(
coordinate_type const& x1, coordinate_type const& y1,
coordinate_type const& x2, coordinate_type const& y2,
int arrival_a, int arrival_b, bool opposite)
{
return boost::make_tuple
(
Policy1::collinear_overlaps(x1, y1, x2, y2, arrival_a, arrival_b, opposite),
Policy2::collinear_overlaps(x1, y1, x2, y2, arrival_a, arrival_b, opposite)
);
}
static inline return_type segment_equal(segment_type1 const& s,
bool opposite)
{
return boost::make_tuple
(
Policy1::segment_equal(s, opposite),
Policy2::segment_equal(s, opposite)
);
}
static inline return_type degenerate(segment_type1 const& segment,
bool a_degenerate)
{
return boost::make_tuple
(
Policy1::degenerate(segment, a_degenerate),
Policy2::degenerate(segment, a_degenerate)
);
}
static inline return_type disjoint()
{
return boost::make_tuple
(
Policy1::disjoint(),
Policy2::disjoint()
);
}
static inline return_type error(std::string const& msg)
{
return boost::make_tuple
(
Policy1::error(msg),
Policy2::error(msg)
);
}
static inline return_type collinear_disjoint()
{
return boost::make_tuple
(
Policy1::collinear_disjoint(),
Policy2::collinear_disjoint()
);
}
static inline return_type parallel()
{
return boost::make_tuple
(
Policy1::parallel(),
Policy2::parallel()
);
}
};
}} // namespace policies::relate
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_TUPLED_HPP