Added boost header

This commit is contained in:
Christophe Riccio
2012-01-08 01:26:07 +00:00
parent 9c3faaca40
commit c7d752cdf8
8946 changed files with 1732316 additions and 0 deletions

View File

@@ -0,0 +1,426 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_CONVEX_GRAHAM_ANDREW_HPP
#define BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_CONVEX_GRAHAM_ANDREW_HPP
#include <cstddef>
#include <algorithm>
#include <vector>
#include <boost/range.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/strategies/convex_hull.hpp>
#include <boost/geometry/views/detail/range_type.hpp>
#include <boost/geometry/policies/compare.hpp>
#include <boost/geometry/algorithms/detail/for_each_range.hpp>
#include <boost/geometry/views/reversible_view.hpp>
// Temporary, comparing sorting, this can be removed in the end
//#define BOOST_GEOMETRY_USE_FLEX_SORT
//#define BOOST_GEOMETRY_USE_FLEX_SORT2
#if defined(BOOST_GEOMETRY_USE_FLEX_SORT)
# include <boost/algorithm/sorting/flex_sort.hpp>
#endif
namespace boost { namespace geometry
{
namespace strategy { namespace convex_hull
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
template
<
typename InputRange,
typename RangeIterator,
typename StrategyLess,
typename StrategyGreater
>
struct get_extremes
{
typedef typename point_type<InputRange>::type point_type;
point_type left, right;
bool first;
StrategyLess less;
StrategyGreater greater;
get_extremes()
: first(true)
{}
inline void apply(InputRange const& range)
{
// First iterate through this range
// (this two-stage approach avoids many point copies,
// because iterators are kept in memory. Because iterators are
// not persistent (in MSVC) this approach is not applicable
// for more ranges together)
RangeIterator left_it = boost::begin(range);
RangeIterator right_it = boost::begin(range);
for (RangeIterator it = boost::begin(range) + 1;
it != boost::end(range);
++it)
{
if (less(*it, *left_it))
{
left_it = it;
}
if (greater(*it, *right_it))
{
right_it = it;
}
}
// Then compare with earlier
if (first && boost::size(range) > 0)
{
// First time, assign left/right
left = *left_it;
right = *right_it;
first = false;
}
else
{
// Next time, check if this range was left/right from
// the extremes already collected
if (less(*left_it, left))
{
left = *left_it;
}
if (greater(*right_it, right))
{
right = *right_it;
}
}
}
};
template
<
typename InputRange,
typename RangeIterator,
typename Container,
typename SideStrategy
>
struct assign_range
{
Container lower_points, upper_points;
typedef typename point_type<InputRange>::type point_type;
point_type const& most_left;
point_type const& most_right;
inline assign_range(point_type const& left, point_type const& right)
: most_left(left)
, most_right(right)
{}
inline void apply(InputRange const& range)
{
typedef SideStrategy side;
// Put points in one of the two output sequences
for (RangeIterator it = boost::begin(range);
it != boost::end(range);
++it)
{
// check if it is lying most_left or most_right from the line
int dir = side::apply(most_left, most_right, *it);
switch(dir)
{
case 1 : // left side
upper_points.push_back(*it);
break;
case -1 : // right side
lower_points.push_back(*it);
break;
// 0: on line most_left-most_right,
// or most_left, or most_right,
// -> all never part of hull
}
}
}
};
template <typename Range>
static inline void sort(Range& range)
{
typedef typename boost::range_value<Range>::type point_type;
typedef geometry::less<point_type> comparator;
#if defined(GGL_USE_FLEX_SORT)
#if defined(GGL_USE_FLEX_SORT1)
typedef boost::detail::default_predicate
<
boost::sort_filter_cutoff
<
18,
boost::detail::insert_sort_core,
boost::sort_filter_ground
<
30,
boost::detail::heap_sort_core,
boost::detail::quick_sort_core
<
boost::pivot_median_of_three,
boost::default_partitionner
>
>
>,
comparator> my_sort;
my_sort sort;
#elif defined(GGL_USE_FLEX_SORT2)
// 1, 5, 9, 18, 25: 0.75
// 50: 0.81
typedef boost::detail::default_predicate<boost::sort_filter_cutoff
<
35,
boost::detail::insert_sort_core,
boost::detail::quick_sort_core<boost::pivot_middle, boost::default_partitionner>
>, comparator
> barend_sort;
barend_sort sort;
#else
#error Define sub-flex-sort
#endif
sort(boost::begin(range), boost::end(range));
#else
std::sort
(boost::begin(range), boost::end(range), comparator());
#endif
}
} // namespace detail
#endif // DOXYGEN_NO_DETAIL
/*!
\brief Graham scan strategy to calculate convex hull
\ingroup strategies
\note Completely reworked version inspired on the sources listed below
\see http://www.ddj.com/architect/201806315
\see http://marknelson.us/2007/08/22/convex
*/
template <typename InputGeometry, typename OutputPoint>
class graham_andrew
{
public :
typedef OutputPoint point_type;
typedef InputGeometry geometry_type;
private:
typedef typename cs_tag<point_type>::type cs_tag;
typedef typename std::vector<point_type> container_type;
typedef typename std::vector<point_type>::const_iterator iterator;
typedef typename std::vector<point_type>::const_reverse_iterator rev_iterator;
class partitions
{
friend class graham_andrew;
container_type m_lower_hull;
container_type m_upper_hull;
container_type m_copied_input;
};
public:
typedef partitions state_type;
inline void apply(InputGeometry const& geometry, partitions& state) const
{
// First pass.
// Get min/max (in most cases left / right) points
// This makes use of the geometry::less/greater predicates with the optional
// direction template parameter to indicate x direction
typedef typename geometry::detail::range_type<InputGeometry>::type range_type;
typedef typename boost::range_iterator
<
range_type const
>::type range_iterator;
detail::get_extremes
<
range_type,
range_iterator,
geometry::less<point_type, 0>,
geometry::greater<point_type, 0>
> extremes;
geometry::detail::for_each_range(geometry, extremes);
// Bounding left/right points
// Second pass, now that extremes are found, assign all points
// in either lower, either upper
detail::assign_range
<
range_type,
range_iterator,
container_type,
typename strategy::side::services::default_strategy<cs_tag>::type
> assigner(extremes.left, extremes.right);
geometry::detail::for_each_range(geometry, assigner);
// Sort both collections, first on x(, then on y)
detail::sort(assigner.lower_points);
detail::sort(assigner.upper_points);
//std::cout << boost::size(assigner.lower_points) << std::endl;
//std::cout << boost::size(assigner.upper_points) << std::endl;
// And decide which point should be in the final hull
build_half_hull<-1>(assigner.lower_points, state.m_lower_hull,
extremes.left, extremes.right);
build_half_hull<1>(assigner.upper_points, state.m_upper_hull,
extremes.left, extremes.right);
}
template <typename OutputIterator>
inline void result(partitions const& state,
OutputIterator out, bool clockwise) const
{
if (clockwise)
{
output_range<iterate_forward>(state.m_upper_hull, out, false);
output_range<iterate_reverse>(state.m_lower_hull, out, true);
}
else
{
output_range<iterate_forward>(state.m_lower_hull, out, false);
output_range<iterate_reverse>(state.m_upper_hull, out, true);
}
}
private:
template <int Factor>
static inline void build_half_hull(container_type const& input,
container_type& output,
point_type const& left, point_type const& right)
{
output.push_back(left);
for(iterator it = input.begin(); it != input.end(); ++it)
{
add_to_hull<Factor>(*it, output);
}
add_to_hull<Factor>(right, output);
}
template <int Factor>
static inline void add_to_hull(point_type const& p, container_type& output)
{
typedef typename strategy::side::services::default_strategy<cs_tag>::type side;
output.push_back(p);
register std::size_t output_size = output.size();
while (output_size >= 3)
{
rev_iterator rit = output.rbegin();
point_type const& last = *rit++;
point_type const& last2 = *rit++;
if (Factor * side::apply(*rit, last, last2) <= 0)
{
// Remove last two points from stack, and add last again
// This is much faster then erasing the one but last.
output.pop_back();
output.pop_back();
output.push_back(last);
output_size--;
}
else
{
return;
}
}
}
template <iterate_direction Direction, typename OutputIterator>
static inline void output_range(container_type const& range,
OutputIterator out, bool skip_first)
{
typedef typename reversible_view<container_type const, Direction>::type view_type;
view_type view(range);
bool first = true;
for (typename boost::range_iterator<view_type const>::type it = boost::begin(view);
it != boost::end(view); ++it)
{
if (first && skip_first)
{
first = false;
}
else
{
*out = *it;
++out;
}
}
}
};
}} // namespace strategy::convex_hull
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
template <typename InputGeometry, typename OutputPoint>
struct strategy_convex_hull<cartesian_tag, InputGeometry, OutputPoint>
{
typedef strategy::convex_hull::graham_andrew<InputGeometry, OutputPoint> type;
};
#endif
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_CONVEX_GRAHAM_ANDREW_HPP

View File

@@ -0,0 +1,151 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2011 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2011 Mateusz Loskot, London, UK.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_POINT_IN_BOX_BY_SIDE_HPP
#define BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_POINT_IN_BOX_BY_SIDE_HPP
#include <boost/array.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/coordinate_dimension.hpp>
#include <boost/geometry/algorithms/assign.hpp>
#include <boost/geometry/strategies/covered_by.hpp>
#include <boost/geometry/strategies/within.hpp>
namespace boost { namespace geometry { namespace strategy
{
namespace within
{
struct decide_within
{
static inline bool apply(int side, bool& result)
{
if (side != 1)
{
result = false;
return false;
}
return true; // continue
}
};
struct decide_covered_by
{
static inline bool apply(int side, bool& result)
{
if (side != 1)
{
result = side >= 0;
return false;
}
return true; // continue
}
};
template <typename Point, typename Box, typename Decide = decide_within>
struct point_in_box_by_side
{
typedef typename strategy::side::services::default_strategy
<
typename cs_tag<Box>::type
>::type side_strategy_type;
static inline bool apply(Point const& point, Box const& box)
{
// Create (counterclockwise) array of points, the fifth one closes it
// Every point should be on the LEFT side (=1), or ON the border (=0),
// So >= 1 or >= 0
boost::array<typename point_type<Box>::type, 5> bp;
geometry::detail::assign_box_corners_oriented<true>(box, bp);
bp[4] = bp[0];
bool result = true;
side_strategy_type strategy;
boost::ignore_unused_variable_warning(strategy);
for (int i = 1; i < 5; i++)
{
int const side = strategy.apply(point, bp[i - 1], bp[i]);
if (! Decide::apply(side, result))
{
return result;
}
}
return result;
}
};
} // namespace within
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace within { namespace services
{
template <typename Point, typename Box>
struct default_strategy
<
point_tag, box_tag,
point_tag, areal_tag,
spherical_tag, spherical_tag,
Point, Box
>
{
typedef within::point_in_box_by_side
<
Point, Box, within::decide_within
> type;
};
}} // namespace within::services
namespace covered_by { namespace services
{
template <typename Point, typename Box>
struct default_strategy
<
point_tag, box_tag,
point_tag, areal_tag,
spherical_tag, spherical_tag,
Point, Box
>
{
typedef within::point_in_box_by_side
<
Point, Box, within::decide_covered_by
> type;
};
}} // namespace covered_by::services
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
}}} // namespace boost::geometry::strategy
#endif // BOOST_GEOMETRY_STRATEGIES_AGNOSTIC_POINT_IN_BOX_BY_SIDE_HPP

View File

@@ -0,0 +1,208 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2011 Barend Gehrels, Amsterdam, the Netherlands.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP
#define BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP
#include <boost/geometry/core/point_order.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/within.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace within
{
/*!
\brief Within detection using winding rule, but checking if enclosing ring is
counter clockwise and, if so, reverses the result
\ingroup strategies
\tparam Point \tparam_point
\tparam Reverse True if parameter should be reversed
\tparam PointOfSegment \tparam_segment_point
\tparam CalculationType \tparam_calculation
\author Barend Gehrels
\note The implementation is inspired by terralib http://www.terralib.org (LGPL)
\note but totally revised afterwards, especially for cases on segments
\note Only dependant on "side", -> agnostic, suitable for spherical/latlong
\qbk{
[heading See also]
[link geometry.reference.algorithms.within.within_3_with_strategy within (with strategy)]
}
*/
template
<
bool Reverse,
typename Point,
typename PointOfSegment = Point,
typename CalculationType = void
>
class oriented_winding
{
typedef typename select_calculation_type
<
Point,
PointOfSegment,
CalculationType
>::type calculation_type;
typedef typename strategy::side::services::default_strategy
<
typename cs_tag<Point>::type
>::type strategy_side_type;
/*! subclass to keep state */
class counter
{
int m_count;
bool m_touches;
calculation_type m_sum_area;
inline int code() const
{
return m_touches ? 0 : m_count == 0 ? -1 : 1;
}
inline int clockwise_oriented_code() const
{
return (m_sum_area > 0) ? code() : -code();
}
inline int oriented_code() const
{
return Reverse
? -clockwise_oriented_code()
: clockwise_oriented_code();
}
public :
friend class oriented_winding;
inline counter()
: m_count(0)
, m_touches(false)
, m_sum_area(0)
{}
inline void add_to_area(calculation_type triangle)
{
m_sum_area += triangle;
}
};
template <size_t D>
static inline int check_touch(Point const& point,
PointOfSegment const& seg1, PointOfSegment const& seg2,
counter& state)
{
calculation_type const p = get<D>(point);
calculation_type const s1 = get<D>(seg1);
calculation_type const s2 = get<D>(seg2);
if ((s1 <= p && s2 >= p) || (s2 <= p && s1 >= p))
{
state.m_touches = true;
}
return 0;
}
template <size_t D>
static inline int check_segment(Point const& point,
PointOfSegment const& seg1, PointOfSegment const& seg2,
counter& state)
{
calculation_type const p = get<D>(point);
calculation_type const s1 = get<D>(seg1);
calculation_type const s2 = get<D>(seg2);
// Check if one of segment endpoints is at same level of point
bool eq1 = math::equals(s1, p);
bool eq2 = math::equals(s2, p);
if (eq1 && eq2)
{
// Both equal p -> segment is horizontal (or vertical for D=0)
// The only thing which has to be done is check if point is ON segment
return check_touch<1 - D>(point, seg1, seg2, state);
}
return
eq1 ? (s2 > p ? 1 : -1) // Point on level s1, UP/DOWN depending on s2
: eq2 ? (s1 > p ? -1 : 1) // idem
: s1 < p && s2 > p ? 2 // Point between s1 -> s2 --> UP
: s2 < p && s1 > p ? -2 // Point between s2 -> s1 --> DOWN
: 0;
}
public :
// Typedefs and static methods to fulfill the concept
typedef Point point_type;
typedef PointOfSegment segment_point_type;
typedef counter state_type;
static inline bool apply(Point const& point,
PointOfSegment const& s1, PointOfSegment const& s2,
counter& state)
{
state.add_to_area(get<0>(s2) * get<1>(s1) - get<0>(s1) * get<1>(s2));
int count = check_segment<1>(point, s1, s2, state);
if (count != 0)
{
int side = strategy_side_type::apply(s1, s2, point);
if (side == 0)
{
// Point is lying on segment
state.m_touches = true;
state.m_count = 0;
return false;
}
// Side is NEG for right, POS for left.
// The count is -2 for down, 2 for up (or -1/1)
// Side positive thus means UP and LEFTSIDE or DOWN and RIGHTSIDE
// See accompagnying figure (TODO)
if (side * count > 0)
{
state.m_count += count;
}
}
return ! state.m_touches;
}
static inline int result(counter const& state)
{
return state.oriented_code();
}
};
}} // namespace strategy::within
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP

View File

@@ -0,0 +1,232 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_WINDING_HPP
#define BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_WINDING_HPP
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/covered_by.hpp>
#include <boost/geometry/strategies/within.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace within
{
/*!
\brief Within detection using winding rule
\ingroup strategies
\tparam Point \tparam_point
\tparam PointOfSegment \tparam_segment_point
\tparam CalculationType \tparam_calculation
\author Barend Gehrels
\note The implementation is inspired by terralib http://www.terralib.org (LGPL)
\note but totally revised afterwards, especially for cases on segments
\note Only dependant on "side", -> agnostic, suitable for spherical/latlong
\qbk{
[heading See also]
[link geometry.reference.algorithms.within.within_3_with_strategy within (with strategy)]
}
*/
template
<
typename Point,
typename PointOfSegment = Point,
typename CalculationType = void
>
class winding
{
typedef typename select_calculation_type
<
Point,
PointOfSegment,
CalculationType
>::type calculation_type;
typedef typename strategy::side::services::default_strategy
<
typename cs_tag<Point>::type
>::type strategy_side_type;
/*! subclass to keep state */
class counter
{
int m_count;
bool m_touches;
inline int code() const
{
return m_touches ? 0 : m_count == 0 ? -1 : 1;
}
public :
friend class winding;
inline counter()
: m_count(0)
, m_touches(false)
{}
};
template <size_t D>
static inline int check_touch(Point const& point,
PointOfSegment const& seg1, PointOfSegment const& seg2,
counter& state)
{
calculation_type const p = get<D>(point);
calculation_type const s1 = get<D>(seg1);
calculation_type const s2 = get<D>(seg2);
if ((s1 <= p && s2 >= p) || (s2 <= p && s1 >= p))
{
state.m_touches = true;
}
return 0;
}
template <size_t D>
static inline int check_segment(Point const& point,
PointOfSegment const& seg1, PointOfSegment const& seg2,
counter& state)
{
calculation_type const p = get<D>(point);
calculation_type const s1 = get<D>(seg1);
calculation_type const s2 = get<D>(seg2);
// Check if one of segment endpoints is at same level of point
bool eq1 = math::equals(s1, p);
bool eq2 = math::equals(s2, p);
if (eq1 && eq2)
{
// Both equal p -> segment is horizontal (or vertical for D=0)
// The only thing which has to be done is check if point is ON segment
return check_touch<1 - D>(point, seg1, seg2,state);
}
return
eq1 ? (s2 > p ? 1 : -1) // Point on level s1, UP/DOWN depending on s2
: eq2 ? (s1 > p ? -1 : 1) // idem
: s1 < p && s2 > p ? 2 // Point between s1 -> s2 --> UP
: s2 < p && s1 > p ? -2 // Point between s2 -> s1 --> DOWN
: 0;
}
public :
// Typedefs and static methods to fulfill the concept
typedef Point point_type;
typedef PointOfSegment segment_point_type;
typedef counter state_type;
static inline bool apply(Point const& point,
PointOfSegment const& s1, PointOfSegment const& s2,
counter& state)
{
int count = check_segment<1>(point, s1, s2, state);
if (count != 0)
{
int side = strategy_side_type::apply(s1, s2, point);
if (side == 0)
{
// Point is lying on segment
state.m_touches = true;
state.m_count = 0;
return false;
}
// Side is NEG for right, POS for left.
// The count is -2 for down, 2 for up (or -1/1)
// Side positive thus means UP and LEFTSIDE or DOWN and RIGHTSIDE
// See accompagnying figure (TODO)
if (side * count > 0)
{
state.m_count += count;
}
}
return ! state.m_touches;
}
static inline int result(counter const& state)
{
return state.code();
}
};
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
// Register using "areal_tag" for ring, polygon, multi-polygon
template <typename AnyTag, typename Point, typename Geometry>
struct default_strategy<point_tag, AnyTag, point_tag, areal_tag, cartesian_tag, cartesian_tag, Point, Geometry>
{
typedef winding<Point, typename geometry::point_type<Geometry>::type> type;
};
template <typename AnyTag, typename Point, typename Geometry>
struct default_strategy<point_tag, AnyTag, point_tag, areal_tag, spherical_tag, spherical_tag, Point, Geometry>
{
typedef winding<Point, typename geometry::point_type<Geometry>::type> type;
};
} // namespace services
#endif
}} // namespace strategy::within
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace strategy { namespace covered_by { namespace services
{
// Register using "areal_tag" for ring, polygon, multi-polygon
template <typename AnyTag, typename Point, typename Geometry>
struct default_strategy<point_tag, AnyTag, point_tag, areal_tag, cartesian_tag, cartesian_tag, Point, Geometry>
{
typedef strategy::within::winding<Point, typename geometry::point_type<Geometry>::type> type;
};
template <typename AnyTag, typename Point, typename Geometry>
struct default_strategy<point_tag, AnyTag, point_tag, areal_tag, spherical_tag, spherical_tag, Point, Geometry>
{
typedef strategy::within::winding<Point, typename geometry::point_type<Geometry>::type> type;
};
}}} // namespace strategy::covered_by::services
#endif
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_WINDING_HPP

View File

@@ -0,0 +1,230 @@
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 1995, 2007-2011 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 1995 Maarten Hilferink, Amsterdam, the Netherlands
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGY_AGNOSTIC_SIMPLIFY_DOUGLAS_PEUCKER_HPP
#define BOOST_GEOMETRY_STRATEGY_AGNOSTIC_SIMPLIFY_DOUGLAS_PEUCKER_HPP
#include <cstddef>
#include <vector>
#include <boost/range.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/strategies/distance.hpp>
//#define GL_DEBUG_DOUGLAS_PEUCKER
#ifdef GL_DEBUG_DOUGLAS_PEUCKER
#include <boost/geometry/util/write_dsv.hpp>
#endif
namespace boost { namespace geometry
{
namespace strategy { namespace simplify
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail
{
/*!
\brief Small wrapper around a point, with an extra member "included"
\details
It has a const-reference to the original point (so no copy here)
\tparam the enclosed point type
*/
template<typename Point>
struct douglas_peucker_point
{
Point const& p;
bool included;
inline douglas_peucker_point(Point const& ap)
: p(ap)
, included(false)
{}
// Necessary for proper compilation
inline douglas_peucker_point<Point> operator=(
douglas_peucker_point<Point> const& other)
{
return douglas_peucker_point<Point>(*this);
}
};
}
#endif // DOXYGEN_NO_DETAIL
/*!
\brief Implements the simplify algorithm.
\ingroup strategies
\details The douglas_peucker strategy simplifies a linestring, ring or
vector of points using the well-known Douglas-Peucker algorithm.
For the algorithm, see for example:
\see http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
\see http://www2.dcs.hull.ac.uk/CISRG/projects/Royal-Inst/demos/dp.html
\tparam Point the point type
\tparam PointDistanceStrategy point-segment distance strategy to be used
\note This strategy uses itself a point-segment-distance strategy which
can be specified
\author Barend and Maarten, 1995/1996
\author Barend, revised for Generic Geometry Library, 2008
*/
template
<
typename Point,
typename PointDistanceStrategy
>
class douglas_peucker
{
public :
// See also ticket 5954 https://svn.boost.org/trac/boost/ticket/5954
// Comparable is currently not possible here because it has to be compared to the squared of max_distance, and more.
// For now we have to take the real distance.
typedef PointDistanceStrategy distance_strategy_type;
// typedef typename strategy::distance::services::comparable_type<PointDistanceStrategy>::type distance_strategy_type;
typedef typename strategy::distance::services::return_type<distance_strategy_type>::type return_type;
private :
typedef detail::douglas_peucker_point<Point> dp_point_type;
typedef typename std::vector<dp_point_type>::iterator iterator_type;
static inline void consider(iterator_type begin,
iterator_type end,
return_type const& max_dist, int& n,
distance_strategy_type const& ps_distance_strategy)
{
std::size_t size = end - begin;
// size must be at least 3
// because we want to consider a candidate point in between
if (size <= 2)
{
#ifdef GL_DEBUG_DOUGLAS_PEUCKER
if (begin != end)
{
std::cout << "ignore between " << dsv(begin->p)
<< " and " << dsv((end - 1)->p)
<< " size=" << size << std::endl;
}
std::cout << "return because size=" << size << std::endl;
#endif
return;
}
iterator_type last = end - 1;
#ifdef GL_DEBUG_DOUGLAS_PEUCKER
std::cout << "find between " << dsv(begin->p)
<< " and " << dsv(last->p)
<< " size=" << size << std::endl;
#endif
// Find most far point, compare to the current segment
//geometry::segment<Point const> s(begin->p, last->p);
return_type md(-1.0); // any value < 0
iterator_type candidate;
for(iterator_type it = begin + 1; it != last; ++it)
{
return_type dist = ps_distance_strategy.apply(it->p, begin->p, last->p);
#ifdef GL_DEBUG_DOUGLAS_PEUCKER
std::cout << "consider " << dsv(it->p)
<< " at " << double(dist)
<< ((dist > max_dist) ? " maybe" : " no")
<< std::endl;
#endif
if (dist > md)
{
md = dist;
candidate = it;
}
}
// If a point is found, set the include flag
// and handle segments in between recursively
if (md > max_dist)
{
#ifdef GL_DEBUG_DOUGLAS_PEUCKER
std::cout << "use " << dsv(candidate->p) << std::endl;
#endif
candidate->included = true;
n++;
consider(begin, candidate + 1, max_dist, n, ps_distance_strategy);
consider(candidate, end, max_dist, n, ps_distance_strategy);
}
}
public :
template <typename Range, typename OutputIterator>
static inline OutputIterator apply(Range const& range,
OutputIterator out, double max_distance)
{
distance_strategy_type strategy;
// Copy coordinates, a vector of references to all points
std::vector<dp_point_type> ref_candidates(boost::begin(range),
boost::end(range));
// Include first and last point of line,
// they are always part of the line
int n = 2;
ref_candidates.front().included = true;
ref_candidates.back().included = true;
// Get points, recursively, including them if they are further away
// than the specified distance
typedef typename strategy::distance::services::return_type<distance_strategy_type>::type return_type;
consider(boost::begin(ref_candidates), boost::end(ref_candidates), max_distance, n, strategy);
// Copy included elements to the output
for(typename std::vector<dp_point_type>::const_iterator it
= boost::begin(ref_candidates);
it != boost::end(ref_candidates);
++it)
{
if (it->included)
{
// copy-coordinates does not work because OutputIterator
// does not model Point (??)
//geometry::convert(it->p, *out);
*out = it->p;
out++;
}
}
return out;
}
};
}} // namespace strategy::simplify
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGY_AGNOSTIC_SIMPLIFY_DOUGLAS_PEUCKER_HPP