Added boost header
This commit is contained in:
622
test/external/boost/graph/kamada_kawai_spring_layout.hpp
vendored
Normal file
622
test/external/boost/graph/kamada_kawai_spring_layout.hpp
vendored
Normal file
@@ -0,0 +1,622 @@
|
||||
// Copyright 2004 The Trustees of Indiana University.
|
||||
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
// Authors: Douglas Gregor
|
||||
// Andrew Lumsdaine
|
||||
#ifndef BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
|
||||
#define BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
|
||||
|
||||
#include <boost/graph/graph_traits.hpp>
|
||||
#include <boost/graph/topology.hpp>
|
||||
#include <boost/graph/iteration_macros.hpp>
|
||||
#include <boost/graph/johnson_all_pairs_shortest.hpp>
|
||||
#include <boost/type_traits/is_convertible.hpp>
|
||||
#include <utility>
|
||||
#include <iterator>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <boost/limits.hpp>
|
||||
#include <boost/config/no_tr1/cmath.hpp>
|
||||
|
||||
namespace boost {
|
||||
namespace detail { namespace graph {
|
||||
/**
|
||||
* Denotes an edge or display area side length used to scale a
|
||||
* Kamada-Kawai drawing.
|
||||
*/
|
||||
template<bool Edge, typename T>
|
||||
struct edge_or_side
|
||||
{
|
||||
explicit edge_or_side(T value) : value(value) {}
|
||||
|
||||
T value;
|
||||
};
|
||||
|
||||
/**
|
||||
* Compute the edge length from an edge length. This is trivial.
|
||||
*/
|
||||
template<typename Graph, typename DistanceMap, typename IndexMap,
|
||||
typename T>
|
||||
T compute_edge_length(const Graph&, DistanceMap, IndexMap,
|
||||
edge_or_side<true, T> length)
|
||||
{ return length.value; }
|
||||
|
||||
/**
|
||||
* Compute the edge length based on the display area side
|
||||
length. We do this by dividing the side length by the largest
|
||||
shortest distance between any two vertices in the graph.
|
||||
*/
|
||||
template<typename Graph, typename DistanceMap, typename IndexMap,
|
||||
typename T>
|
||||
T
|
||||
compute_edge_length(const Graph& g, DistanceMap distance, IndexMap index,
|
||||
edge_or_side<false, T> length)
|
||||
{
|
||||
T result(0);
|
||||
|
||||
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
||||
|
||||
for (vertex_iterator ui = vertices(g).first, end = vertices(g).second;
|
||||
ui != end; ++ui) {
|
||||
vertex_iterator vi = ui;
|
||||
for (++vi; vi != end; ++vi) {
|
||||
T dij = distance[get(index, *ui)][get(index, *vi)];
|
||||
if (dij > result) result = dij;
|
||||
}
|
||||
}
|
||||
return length.value / result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Dense linear solver for fixed-size matrices.
|
||||
*/
|
||||
template <std::size_t Size>
|
||||
struct linear_solver {
|
||||
// Indices in mat are (row, column)
|
||||
// template <typename Vec>
|
||||
// static Vec solve(double mat[Size][Size], Vec rhs);
|
||||
};
|
||||
|
||||
template <>
|
||||
struct linear_solver<1> {
|
||||
template <typename Vec>
|
||||
static Vec solve(double mat[1][1], Vec rhs) {
|
||||
return rhs / mat[0][0];
|
||||
}
|
||||
};
|
||||
|
||||
// These are from http://en.wikipedia.org/wiki/Cramer%27s_rule
|
||||
template <>
|
||||
struct linear_solver<2> {
|
||||
template <typename Vec>
|
||||
static Vec solve(double mat[2][2], Vec rhs) {
|
||||
double denom = mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
|
||||
double x_num = rhs[0] * mat[1][1] - rhs[1] * mat[0][1];
|
||||
double y_num = mat[0][0] * rhs[1] - mat[1][0] * rhs[0] ;
|
||||
Vec result;
|
||||
result[0] = x_num / denom;
|
||||
result[1] = y_num / denom;
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct linear_solver<3> {
|
||||
template <typename Vec>
|
||||
static Vec solve(double mat[2][2], Vec rhs) {
|
||||
double denom = mat[0][0] * (mat[1][1] * mat[2][2] - mat[2][1] * mat[1][2])
|
||||
- mat[1][0] * (mat[0][1] * mat[2][2] - mat[2][1] * mat[0][2])
|
||||
+ mat[2][0] * (mat[0][1] * mat[1][2] - mat[1][1] * mat[0][2]);
|
||||
double x_num = rhs[0] * (mat[1][1] * mat[2][2] - mat[2][1] * mat[1][2])
|
||||
- rhs[1] * (mat[0][1] * mat[2][2] - mat[2][1] * mat[0][2])
|
||||
+ rhs[2] * (mat[0][1] * mat[1][2] - mat[1][1] * mat[0][2]);
|
||||
double y_num = mat[0][0] * (rhs[1] * mat[2][2] - rhs[2] * mat[1][2])
|
||||
- mat[1][0] * (rhs[0] * mat[2][2] - rhs[2] * mat[0][2])
|
||||
+ mat[2][0] * (rhs[0] * mat[1][2] - rhs[1] * mat[0][2]);
|
||||
double z_num = mat[0][0] * (mat[1][1] * rhs[2] - mat[2][1] * rhs[1] )
|
||||
- mat[1][0] * (mat[0][1] * rhs[2] - mat[2][1] * rhs[0] )
|
||||
+ mat[2][0] * (mat[0][1] * rhs[1] - mat[1][1] * rhs[0] );
|
||||
Vec result;
|
||||
result[0] = x_num / denom;
|
||||
result[1] = y_num / denom;
|
||||
result[2] = z_num / denom;
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Implementation of the Kamada-Kawai spring layout algorithm.
|
||||
*/
|
||||
template<typename Topology, typename Graph, typename PositionMap, typename WeightMap,
|
||||
typename EdgeOrSideLength, typename Done,
|
||||
typename VertexIndexMap, typename DistanceMatrix,
|
||||
typename SpringStrengthMatrix, typename PartialDerivativeMap>
|
||||
struct kamada_kawai_spring_layout_impl
|
||||
{
|
||||
typedef typename property_traits<WeightMap>::value_type weight_type;
|
||||
typedef typename Topology::point_type Point;
|
||||
typedef typename Topology::point_difference_type point_difference_type;
|
||||
typedef point_difference_type deriv_type;
|
||||
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
||||
typedef typename graph_traits<Graph>::vertex_descriptor
|
||||
vertex_descriptor;
|
||||
|
||||
kamada_kawai_spring_layout_impl(
|
||||
const Topology& topology,
|
||||
const Graph& g,
|
||||
PositionMap position,
|
||||
WeightMap weight,
|
||||
EdgeOrSideLength edge_or_side_length,
|
||||
Done done,
|
||||
weight_type spring_constant,
|
||||
VertexIndexMap index,
|
||||
DistanceMatrix distance,
|
||||
SpringStrengthMatrix spring_strength,
|
||||
PartialDerivativeMap partial_derivatives)
|
||||
: topology(topology), g(g), position(position), weight(weight),
|
||||
edge_or_side_length(edge_or_side_length), done(done),
|
||||
spring_constant(spring_constant), index(index), distance(distance),
|
||||
spring_strength(spring_strength),
|
||||
partial_derivatives(partial_derivatives) {}
|
||||
|
||||
// Compute contribution of vertex i to the first partial
|
||||
// derivatives (dE/dx_m, dE/dy_m) (for vertex m)
|
||||
deriv_type
|
||||
compute_partial_derivative(vertex_descriptor m, vertex_descriptor i)
|
||||
{
|
||||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||||
using std::sqrt;
|
||||
#endif // BOOST_NO_STDC_NAMESPACE
|
||||
|
||||
deriv_type result;
|
||||
if (i != m) {
|
||||
point_difference_type diff = topology.difference(position[m], position[i]);
|
||||
weight_type dist = topology.norm(diff);
|
||||
result = spring_strength[get(index, m)][get(index, i)]
|
||||
* (diff - distance[get(index, m)][get(index, i)]/dist*diff);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Compute partial derivatives dE/dx_m and dE/dy_m
|
||||
deriv_type
|
||||
compute_partial_derivatives(vertex_descriptor m)
|
||||
{
|
||||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||||
using std::sqrt;
|
||||
#endif // BOOST_NO_STDC_NAMESPACE
|
||||
|
||||
deriv_type result;
|
||||
|
||||
// TBD: looks like an accumulate to me
|
||||
BGL_FORALL_VERTICES_T(i, g, Graph) {
|
||||
deriv_type deriv = compute_partial_derivative(m, i);
|
||||
result += deriv;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// The actual Kamada-Kawai spring layout algorithm implementation
|
||||
bool run()
|
||||
{
|
||||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||||
using std::sqrt;
|
||||
#endif // BOOST_NO_STDC_NAMESPACE
|
||||
|
||||
// Compute d_{ij} and place it in the distance matrix
|
||||
if (!johnson_all_pairs_shortest_paths(g, distance, index, weight,
|
||||
weight_type(0)))
|
||||
return false;
|
||||
|
||||
// Compute L based on side length (if needed), or retrieve L
|
||||
weight_type edge_length =
|
||||
detail::graph::compute_edge_length(g, distance, index,
|
||||
edge_or_side_length);
|
||||
|
||||
std::cerr << "edge_length = " << edge_length << std::endl;
|
||||
|
||||
// Compute l_{ij} and k_{ij}
|
||||
const weight_type K = spring_constant;
|
||||
vertex_iterator ui, end;
|
||||
for (ui = vertices(g).first, end = vertices(g).second; ui != end; ++ui) {
|
||||
vertex_iterator vi = ui;
|
||||
for (++vi; vi != end; ++vi) {
|
||||
weight_type dij = distance[get(index, *ui)][get(index, *vi)];
|
||||
if (dij == (std::numeric_limits<weight_type>::max)())
|
||||
return false;
|
||||
distance[get(index, *ui)][get(index, *vi)] = edge_length * dij;
|
||||
distance[get(index, *vi)][get(index, *ui)] = edge_length * dij;
|
||||
spring_strength[get(index, *ui)][get(index, *vi)] = K/(dij*dij);
|
||||
spring_strength[get(index, *vi)][get(index, *ui)] = K/(dij*dij);
|
||||
}
|
||||
}
|
||||
|
||||
// Compute Delta_i and find max
|
||||
vertex_descriptor p = *vertices(g).first;
|
||||
weight_type delta_p(0);
|
||||
|
||||
for (ui = vertices(g).first, end = vertices(g).second; ui != end; ++ui) {
|
||||
deriv_type deriv = compute_partial_derivatives(*ui);
|
||||
put(partial_derivatives, *ui, deriv);
|
||||
|
||||
weight_type delta = topology.norm(deriv);
|
||||
|
||||
if (delta > delta_p) {
|
||||
p = *ui;
|
||||
delta_p = delta;
|
||||
}
|
||||
}
|
||||
|
||||
while (!done(delta_p, p, g, true)) {
|
||||
// The contribution p makes to the partial derivatives of
|
||||
// each vertex. Computing this (at O(n) cost) allows us to
|
||||
// update the delta_i values in O(n) time instead of O(n^2)
|
||||
// time.
|
||||
std::vector<deriv_type> p_partials(num_vertices(g));
|
||||
for (ui = vertices(g).first, end = vertices(g).second; ui != end; ++ui) {
|
||||
vertex_descriptor i = *ui;
|
||||
p_partials[get(index, i)] = compute_partial_derivative(i, p);
|
||||
}
|
||||
|
||||
do {
|
||||
// For debugging, compute the energy value E
|
||||
double E = 0.;
|
||||
for (ui = vertices(g).first, end = vertices(g).second; ui != end; ++ui) {
|
||||
vertex_iterator vi = ui;
|
||||
for (++vi; vi != end; ++vi) {
|
||||
double dist = topology.distance(position[*ui], position[*vi]);
|
||||
weight_type k_ij = spring_strength[get(index,*ui)][get(index,*vi)];
|
||||
weight_type l_ij = distance[get(index, *ui)][get(index, *vi)];
|
||||
E += .5 * k_ij * (dist - l_ij) * (dist - l_ij);
|
||||
}
|
||||
}
|
||||
std::cerr << "E = " << E << std::endl;
|
||||
|
||||
// Compute the elements of the Jacobian
|
||||
// From
|
||||
// http://www.cs.panam.edu/~rfowler/papers/1994_kumar_fowler_A_Spring_UTPACSTR.pdf
|
||||
// with the bugs fixed in the off-diagonal case
|
||||
weight_type dE_d_d[Point::dimensions][Point::dimensions];
|
||||
for (std::size_t i = 0; i < Point::dimensions; ++i)
|
||||
for (std::size_t j = 0; j < Point::dimensions; ++j)
|
||||
dE_d_d[i][j] = 0.;
|
||||
for (ui = vertices(g).first, end = vertices(g).second; ui != end; ++ui) {
|
||||
vertex_descriptor i = *ui;
|
||||
if (i != p) {
|
||||
point_difference_type diff = topology.difference(position[p], position[i]);
|
||||
weight_type dist = topology.norm(diff);
|
||||
weight_type dist_squared = dist * dist;
|
||||
weight_type inv_dist_cubed = 1. / (dist_squared * dist);
|
||||
weight_type k_mi = spring_strength[get(index,p)][get(index,i)];
|
||||
weight_type l_mi = distance[get(index, p)][get(index, i)];
|
||||
for (std::size_t i = 0; i < Point::dimensions; ++i) {
|
||||
for (std::size_t j = 0; j < Point::dimensions; ++j) {
|
||||
if (i == j) {
|
||||
dE_d_d[i][i] += k_mi * (1 + (l_mi * (diff[i] * diff[i] - dist_squared) * inv_dist_cubed));
|
||||
} else {
|
||||
dE_d_d[i][j] += k_mi * l_mi * diff[i] * diff[j] * inv_dist_cubed;
|
||||
// dE_d_d[i][j] += k_mi * l_mi * sqrt(hypot(diff[i], diff[j])) * inv_dist_cubed;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
deriv_type dE_d = get(partial_derivatives, p);
|
||||
|
||||
// Solve dE_d_d * delta = -dE_d to get delta
|
||||
point_difference_type delta = -linear_solver<Point::dimensions>::solve(dE_d_d, dE_d);
|
||||
|
||||
// Move p by delta
|
||||
position[p] = topology.adjust(position[p], delta);
|
||||
|
||||
// Recompute partial derivatives and delta_p
|
||||
deriv_type deriv = compute_partial_derivatives(p);
|
||||
put(partial_derivatives, p, deriv);
|
||||
|
||||
delta_p = topology.norm(deriv);
|
||||
} while (!done(delta_p, p, g, false));
|
||||
|
||||
// Select new p by updating each partial derivative and delta
|
||||
vertex_descriptor old_p = p;
|
||||
for (ui = vertices(g).first, end = vertices(g).second; ui != end; ++ui) {
|
||||
deriv_type old_deriv_p = p_partials[get(index, *ui)];
|
||||
deriv_type old_p_partial =
|
||||
compute_partial_derivative(*ui, old_p);
|
||||
deriv_type deriv = get(partial_derivatives, *ui);
|
||||
|
||||
deriv += old_p_partial - old_deriv_p;
|
||||
|
||||
put(partial_derivatives, *ui, deriv);
|
||||
weight_type delta = topology.norm(deriv);
|
||||
|
||||
if (delta > delta_p) {
|
||||
p = *ui;
|
||||
delta_p = delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
const Topology& topology;
|
||||
const Graph& g;
|
||||
PositionMap position;
|
||||
WeightMap weight;
|
||||
EdgeOrSideLength edge_or_side_length;
|
||||
Done done;
|
||||
weight_type spring_constant;
|
||||
VertexIndexMap index;
|
||||
DistanceMatrix distance;
|
||||
SpringStrengthMatrix spring_strength;
|
||||
PartialDerivativeMap partial_derivatives;
|
||||
};
|
||||
} } // end namespace detail::graph
|
||||
|
||||
/// States that the given quantity is an edge length.
|
||||
template<typename T>
|
||||
inline detail::graph::edge_or_side<true, T>
|
||||
edge_length(T x)
|
||||
{ return detail::graph::edge_or_side<true, T>(x); }
|
||||
|
||||
/// States that the given quantity is a display area side length.
|
||||
template<typename T>
|
||||
inline detail::graph::edge_or_side<false, T>
|
||||
side_length(T x)
|
||||
{ return detail::graph::edge_or_side<false, T>(x); }
|
||||
|
||||
/**
|
||||
* \brief Determines when to terminate layout of a particular graph based
|
||||
* on a given relative tolerance.
|
||||
*/
|
||||
template<typename T = double>
|
||||
struct layout_tolerance
|
||||
{
|
||||
layout_tolerance(const T& tolerance = T(0.001))
|
||||
: tolerance(tolerance), last_energy((std::numeric_limits<T>::max)()),
|
||||
last_local_energy((std::numeric_limits<T>::max)()) { }
|
||||
|
||||
template<typename Graph>
|
||||
bool
|
||||
operator()(T delta_p,
|
||||
typename boost::graph_traits<Graph>::vertex_descriptor p,
|
||||
const Graph& g,
|
||||
bool global)
|
||||
{
|
||||
if (global) {
|
||||
if (last_energy == (std::numeric_limits<T>::max)()) {
|
||||
last_energy = delta_p;
|
||||
return false;
|
||||
}
|
||||
|
||||
T diff = last_energy - delta_p;
|
||||
if (diff < T(0)) diff = -diff;
|
||||
bool done = (delta_p == T(0) || diff / last_energy < tolerance);
|
||||
last_energy = delta_p;
|
||||
return done;
|
||||
} else {
|
||||
if (last_local_energy == (std::numeric_limits<T>::max)()) {
|
||||
last_local_energy = delta_p;
|
||||
return delta_p == T(0);
|
||||
}
|
||||
|
||||
T diff = last_local_energy - delta_p;
|
||||
bool done = (delta_p == T(0) || (diff / last_local_energy) < tolerance);
|
||||
last_local_energy = delta_p;
|
||||
return done;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
T tolerance;
|
||||
T last_energy;
|
||||
T last_local_energy;
|
||||
};
|
||||
|
||||
/** \brief Kamada-Kawai spring layout for undirected graphs.
|
||||
*
|
||||
* This algorithm performs graph layout (in two dimensions) for
|
||||
* connected, undirected graphs. It operates by relating the layout
|
||||
* of graphs to a dynamic spring system and minimizing the energy
|
||||
* within that system. The strength of a spring between two vertices
|
||||
* is inversely proportional to the square of the shortest distance
|
||||
* (in graph terms) between those two vertices. Essentially,
|
||||
* vertices that are closer in the graph-theoretic sense (i.e., by
|
||||
* following edges) will have stronger springs and will therefore be
|
||||
* placed closer together.
|
||||
*
|
||||
* Prior to invoking this algorithm, it is recommended that the
|
||||
* vertices be placed along the vertices of a regular n-sided
|
||||
* polygon.
|
||||
*
|
||||
* \param g (IN) must be a model of Vertex List Graph, Edge List
|
||||
* Graph, and Incidence Graph and must be undirected.
|
||||
*
|
||||
* \param position (OUT) must be a model of Lvalue Property Map,
|
||||
* where the value type is a class containing fields @c x and @c y
|
||||
* that will be set to the @c x and @c y coordinates of each vertex.
|
||||
*
|
||||
* \param weight (IN) must be a model of Readable Property Map,
|
||||
* which provides the weight of each edge in the graph @p g.
|
||||
*
|
||||
* \param topology (IN) must be a topology object (see topology.hpp),
|
||||
* which provides operations on points and differences between them.
|
||||
*
|
||||
* \param edge_or_side_length (IN) provides either the unit length
|
||||
* @c e of an edge in the layout or the length of a side @c s of the
|
||||
* display area, and must be either @c boost::edge_length(e) or @c
|
||||
* boost::side_length(s), respectively.
|
||||
*
|
||||
* \param done (IN) is a 4-argument function object that is passed
|
||||
* the current value of delta_p (i.e., the energy of vertex @p p),
|
||||
* the vertex @p p, the graph @p g, and a boolean flag indicating
|
||||
* whether @p delta_p is the maximum energy in the system (when @c
|
||||
* true) or the energy of the vertex being moved. Defaults to @c
|
||||
* layout_tolerance instantiated over the value type of the weight
|
||||
* map.
|
||||
*
|
||||
* \param spring_constant (IN) is the constant multiplied by each
|
||||
* spring's strength. Larger values create systems with more energy
|
||||
* that can take longer to stabilize; smaller values create systems
|
||||
* with less energy that stabilize quickly but do not necessarily
|
||||
* result in pleasing layouts. The default value is 1.
|
||||
*
|
||||
* \param index (IN) is a mapping from vertices to index values
|
||||
* between 0 and @c num_vertices(g). The default is @c
|
||||
* get(vertex_index,g).
|
||||
*
|
||||
* \param distance (UTIL/OUT) will be used to store the distance
|
||||
* from every vertex to every other vertex, which is computed in the
|
||||
* first stages of the algorithm. This value's type must be a model
|
||||
* of BasicMatrix with value type equal to the value type of the
|
||||
* weight map. The default is a a vector of vectors.
|
||||
*
|
||||
* \param spring_strength (UTIL/OUT) will be used to store the
|
||||
* strength of the spring between every pair of vertices. This
|
||||
* value's type must be a model of BasicMatrix with value type equal
|
||||
* to the value type of the weight map. The default is a a vector of
|
||||
* vectors.
|
||||
*
|
||||
* \param partial_derivatives (UTIL) will be used to store the
|
||||
* partial derivates of each vertex with respect to the @c x and @c
|
||||
* y coordinates. This must be a Read/Write Property Map whose value
|
||||
* type is a pair with both types equivalent to the value type of
|
||||
* the weight map. The default is an iterator property map.
|
||||
*
|
||||
* \returns @c true if layout was successful or @c false if a
|
||||
* negative weight cycle was detected.
|
||||
*/
|
||||
template<typename Topology, typename Graph, typename PositionMap, typename WeightMap,
|
||||
typename T, bool EdgeOrSideLength, typename Done,
|
||||
typename VertexIndexMap, typename DistanceMatrix,
|
||||
typename SpringStrengthMatrix, typename PartialDerivativeMap>
|
||||
bool
|
||||
kamada_kawai_spring_layout(
|
||||
const Graph& g,
|
||||
PositionMap position,
|
||||
WeightMap weight,
|
||||
const Topology& topology,
|
||||
detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
||||
Done done,
|
||||
typename property_traits<WeightMap>::value_type spring_constant,
|
||||
VertexIndexMap index,
|
||||
DistanceMatrix distance,
|
||||
SpringStrengthMatrix spring_strength,
|
||||
PartialDerivativeMap partial_derivatives)
|
||||
{
|
||||
BOOST_STATIC_ASSERT((is_convertible<
|
||||
typename graph_traits<Graph>::directed_category*,
|
||||
undirected_tag*
|
||||
>::value));
|
||||
|
||||
detail::graph::kamada_kawai_spring_layout_impl<
|
||||
Topology, Graph, PositionMap, WeightMap,
|
||||
detail::graph::edge_or_side<EdgeOrSideLength, T>, Done, VertexIndexMap,
|
||||
DistanceMatrix, SpringStrengthMatrix, PartialDerivativeMap>
|
||||
alg(topology, g, position, weight, edge_or_side_length, done, spring_constant,
|
||||
index, distance, spring_strength, partial_derivatives);
|
||||
return alg.run();
|
||||
}
|
||||
|
||||
/**
|
||||
* \overload
|
||||
*/
|
||||
template<typename Topology, typename Graph, typename PositionMap, typename WeightMap,
|
||||
typename T, bool EdgeOrSideLength, typename Done,
|
||||
typename VertexIndexMap>
|
||||
bool
|
||||
kamada_kawai_spring_layout(
|
||||
const Graph& g,
|
||||
PositionMap position,
|
||||
WeightMap weight,
|
||||
const Topology& topology,
|
||||
detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
||||
Done done,
|
||||
typename property_traits<WeightMap>::value_type spring_constant,
|
||||
VertexIndexMap index)
|
||||
{
|
||||
typedef typename property_traits<WeightMap>::value_type weight_type;
|
||||
|
||||
typename graph_traits<Graph>::vertices_size_type n = num_vertices(g);
|
||||
typedef std::vector<weight_type> weight_vec;
|
||||
|
||||
std::vector<weight_vec> distance(n, weight_vec(n));
|
||||
std::vector<weight_vec> spring_strength(n, weight_vec(n));
|
||||
std::vector<typename Topology::point_difference_type> partial_derivatives(n);
|
||||
|
||||
return
|
||||
kamada_kawai_spring_layout(
|
||||
g, position, weight, topology, edge_or_side_length, done, spring_constant, index,
|
||||
distance.begin(),
|
||||
spring_strength.begin(),
|
||||
make_iterator_property_map(partial_derivatives.begin(), index,
|
||||
typename Topology::point_difference_type()));
|
||||
}
|
||||
|
||||
/**
|
||||
* \overload
|
||||
*/
|
||||
template<typename Topology, typename Graph, typename PositionMap, typename WeightMap,
|
||||
typename T, bool EdgeOrSideLength, typename Done>
|
||||
bool
|
||||
kamada_kawai_spring_layout(
|
||||
const Graph& g,
|
||||
PositionMap position,
|
||||
WeightMap weight,
|
||||
const Topology& topology,
|
||||
detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
||||
Done done,
|
||||
typename property_traits<WeightMap>::value_type spring_constant)
|
||||
{
|
||||
return kamada_kawai_spring_layout(g, position, weight, topology, edge_or_side_length,
|
||||
done, spring_constant,
|
||||
get(vertex_index, g));
|
||||
}
|
||||
|
||||
/**
|
||||
* \overload
|
||||
*/
|
||||
template<typename Topology, typename Graph, typename PositionMap, typename WeightMap,
|
||||
typename T, bool EdgeOrSideLength, typename Done>
|
||||
bool
|
||||
kamada_kawai_spring_layout(
|
||||
const Graph& g,
|
||||
PositionMap position,
|
||||
WeightMap weight,
|
||||
const Topology& topology,
|
||||
detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length,
|
||||
Done done)
|
||||
{
|
||||
typedef typename property_traits<WeightMap>::value_type weight_type;
|
||||
return kamada_kawai_spring_layout(g, position, weight, topology, edge_or_side_length,
|
||||
done, weight_type(1));
|
||||
}
|
||||
|
||||
/**
|
||||
* \overload
|
||||
*/
|
||||
template<typename Topology, typename Graph, typename PositionMap, typename WeightMap,
|
||||
typename T, bool EdgeOrSideLength>
|
||||
bool
|
||||
kamada_kawai_spring_layout(
|
||||
const Graph& g,
|
||||
PositionMap position,
|
||||
WeightMap weight,
|
||||
const Topology& topology,
|
||||
detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length)
|
||||
{
|
||||
typedef typename property_traits<WeightMap>::value_type weight_type;
|
||||
return kamada_kawai_spring_layout(g, position, weight, topology, edge_or_side_length,
|
||||
layout_tolerance<weight_type>(),
|
||||
weight_type(1.0),
|
||||
get(vertex_index, g));
|
||||
}
|
||||
} // end namespace boost
|
||||
|
||||
#endif // BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
|
||||
Reference in New Issue
Block a user