Added boost header

This commit is contained in:
Christophe Riccio
2012-01-08 01:26:07 +00:00
parent 9c3faaca40
commit c7d752cdf8
8946 changed files with 1732316 additions and 0 deletions

View File

@@ -0,0 +1,84 @@
// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_PARALLEL_ALGORITHM_HPP
#define BOOST_PARALLEL_ALGORITHM_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/optional.hpp>
#include <boost/config.hpp> // for BOOST_STATIC_CONSTANT
#include <vector>
#include <functional>
namespace boost { namespace parallel {
template<typename BinaryOp>
struct is_commutative
{
BOOST_STATIC_CONSTANT(bool, value = false);
};
template<typename T>
struct minimum : std::binary_function<T, T, T>
{
const T& operator()(const T& x, const T& y) const { return x < y? x : y; }
};
template<typename T>
struct maximum : std::binary_function<T, T, T>
{
const T& operator()(const T& x, const T& y) const { return x < y? y : x; }
};
template<typename T>
struct sum : std::binary_function<T, T, T>
{
const T operator()(const T& x, const T& y) const { return x + y; }
};
template<typename ProcessGroup, typename InputIterator,
typename OutputIterator, typename BinaryOperation>
OutputIterator
reduce(ProcessGroup pg, typename ProcessGroup::process_id_type root,
InputIterator first, InputIterator last, OutputIterator out,
BinaryOperation bin_op);
template<typename ProcessGroup, typename T, typename BinaryOperation>
inline T
all_reduce(ProcessGroup pg, const T& value, BinaryOperation bin_op)
{
T result;
all_reduce(pg,
const_cast<T*>(&value), const_cast<T*>(&value+1),
&result, bin_op);
return result;
}
template<typename ProcessGroup, typename T, typename BinaryOperation>
inline T
scan(ProcessGroup pg, const T& value, BinaryOperation bin_op)
{
T result;
scan(pg,
const_cast<T*>(&value), const_cast<T*>(&value+1),
&result, bin_op);
return result;
}
template<typename ProcessGroup, typename InputIterator, typename T>
void
all_gather(ProcessGroup pg, InputIterator first, InputIterator last,
std::vector<T>& out);
} } // end namespace boost::parallel
#include <boost/graph/parallel/detail/inplace_all_to_all.hpp>
#endif // BOOST_PARALLEL_ALGORITHM_HPP

View File

@@ -0,0 +1,42 @@
// Copyright 2005 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_PARALLEL_BASIC_REDUCE_HPP
#define BOOST_PARALLEL_BASIC_REDUCE_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
namespace boost { namespace parallel {
/** Reduction operation used to reconcile differences between local
* and remote values for a particular key in a property map. The
* type @c T is typically the @c value_type of the property
* map. This basic reduction returns a default-constructed @c T as
* the default value and always resolves to the remote value.
*/
template<typename T>
struct basic_reduce
{
BOOST_STATIC_CONSTANT(bool, non_default_resolver = false);
/// Returns a default-constructed T object
template<typename Key>
T operator()(const Key&) const { return T(); }
/// Returns the remote value
template<typename Key>
const T& operator()(const Key&, const T&, const T& remote) const
{ return remote; }
};
} } // end namespace boost::parallel
#endif // BOOST_PARALLEL_BASIC_REDUCE_HPP

View File

@@ -0,0 +1,45 @@
// Copyright (C) 2004-2006 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
//
// This file contains traits that describe
//
#ifndef BOOST_GRAPH_PARALLEL_CONTAINER_TRAITS_HPP
#define BOOST_GRAPH_PARALLEL_CONTAINER_TRAITS_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
namespace boost { namespace graph { namespace parallel {
template<typename T>
struct process_group_type
{
typedef typename T::process_group_type type;
};
template<typename T>
inline typename process_group_type<T>::type
process_group(const T& x)
{ return x.process_group(); }
// Helper function that algorithms should use to get the process group
// out of a container.
template<typename Container>
inline typename process_group_type<Container>::type
process_group_adl(const Container& container)
{
return process_group(container);
}
} } } // end namespace boost::graph::parallel
#endif // BOOST_GRAPH_PARALLEL_CONTAINER_TRAITS_HPP

View File

@@ -0,0 +1,78 @@
// Copyright 2005 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_PARALLEL_INPLACE_ALL_TO_ALL_HPP
#define BOOST_GRAPH_PARALLEL_INPLACE_ALL_TO_ALL_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
//
// Implements the inplace all-to-all communication algorithm.
//
#include <vector>
#include <iterator>
namespace boost { namespace parallel {
template<typename ProcessGroup, typename T>
// where {LinearProcessGroup<ProcessGroup>, MessagingProcessGroup<ProcessGroup>}
void
inplace_all_to_all(ProcessGroup pg,
const std::vector<std::vector<T> >& outgoing,
std::vector<std::vector<T> >& incoming)
{
typedef typename std::vector<T>::size_type size_type;
typedef typename ProcessGroup::process_size_type process_size_type;
typedef typename ProcessGroup::process_id_type process_id_type;
process_size_type p = num_processes(pg);
// Make sure there are no straggling messages
synchronize(pg);
// Send along the count (always) and the data (if count > 0)
for (process_id_type dest = 0; dest < p; ++dest) {
if (dest != process_id(pg)) {
send(pg, dest, 0, outgoing[dest].size());
if (!outgoing[dest].empty())
send(pg, dest, 1, &outgoing[dest].front(), outgoing[dest].size());
}
}
// Make sure all of the data gets transferred
synchronize(pg);
// Receive the sizes and data
for (process_id_type source = 0; source < p; ++source) {
if (source != process_id(pg)) {
size_type size;
receive(pg, source, 0, size);
incoming[source].resize(size);
if (size > 0)
receive(pg, source, 1, &incoming[source].front(), size);
} else if (&incoming != &outgoing) {
incoming[source] = outgoing[source];
}
}
}
template<typename ProcessGroup, typename T>
// where {LinearProcessGroup<ProcessGroup>, MessagingProcessGroup<ProcessGroup>}
void
inplace_all_to_all(ProcessGroup pg, std::vector<std::vector<T> >& data)
{
inplace_all_to_all(pg, data, data);
}
} } // end namespace boost::parallel
#endif // BOOST_GRAPH_PARALLEL_INPLACE_ALL_TO_ALL_HPP

View File

@@ -0,0 +1,152 @@
// Copyright (C) 2007 Douglas Gregor and Matthias Troyer
//
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
//
// This file contains helper data structures for use in transmitting
// properties. The basic idea is to optimize away any storage for the
// properties when no properties are specified.
#ifndef BOOST_PARALLEL_DETAIL_PROPERTY_HOLDERS_HPP
#define BOOST_PARALLEL_DETAIL_PROPERTY_HOLDERS_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/mpi/datatype.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/serialization/base_object.hpp>
#include <boost/mpl/and.hpp>
#include <boost/graph/parallel/detail/untracked_pair.hpp>
namespace boost { namespace detail { namespace parallel {
/**
* This structure contains an instance of @c Property, unless @c
* Property is a placeholder for "no property". Always access the
* property through @c get_property. Typically used as a base class.
*/
template<typename Property>
struct maybe_store_property
{
maybe_store_property() {}
maybe_store_property(const Property& p) : p(p) {}
Property& get_property() { return p; }
const Property& get_property() const { return p; }
private:
Property p;
friend class boost::serialization::access;
template<typename Archiver>
void serialize(Archiver& ar, const unsigned int /*version*/)
{
ar & p;
}
};
template<>
struct maybe_store_property<no_property>
{
maybe_store_property() {}
maybe_store_property(no_property) {}
no_property get_property() const { return no_property(); }
private:
friend class boost::serialization::access;
template<typename Archiver>
void serialize(Archiver&, const unsigned int /*version*/) { }
};
/**
* This structure is a simple pair that also contains a property.
*/
template<typename T, typename U, typename Property>
class pair_with_property
: public boost::parallel::detail::untracked_pair<T, U>
, public maybe_store_property<Property>
{
public:
typedef boost::parallel::detail::untracked_pair<T, U> pair_base;
typedef maybe_store_property<Property> property_base;
pair_with_property() { }
pair_with_property(const T& t, const U& u, const Property& property)
: pair_base(t, u), property_base(property) { }
private:
friend class boost::serialization::access;
template<typename Archiver>
void serialize(Archiver& ar, const unsigned int /*version*/)
{
ar & boost::serialization::base_object<pair_base>(*this)
& boost::serialization::base_object<property_base>(*this);
}
};
template<typename T, typename U, typename Property>
inline pair_with_property<T, U, Property>
make_pair_with_property(const T& t, const U& u, const Property& property)
{
return pair_with_property<T, U, Property>(t, u, property);
}
} } } // end namespace boost::parallel::detail
namespace boost { namespace mpi {
template<>
struct is_mpi_datatype<boost::detail::parallel::maybe_store_property<no_property> > : mpl::true_ { };
template<typename Property>
struct is_mpi_datatype<boost::detail::parallel::maybe_store_property<Property> >
: is_mpi_datatype<Property> { };
template<typename T, typename U, typename Property>
struct is_mpi_datatype<boost::detail::parallel::pair_with_property<T, U, Property> >
: boost::mpl::and_<is_mpi_datatype<boost::parallel::detail::untracked_pair<T, U> >,
is_mpi_datatype<Property> > { };
} } // end namespace boost::mpi
BOOST_IS_BITWISE_SERIALIZABLE(boost::detail::parallel::maybe_store_property<no_property>)
namespace boost { namespace serialization {
template<typename Property>
struct is_bitwise_serializable<boost::detail::parallel::maybe_store_property<Property> >
: is_bitwise_serializable<Property> { };
template<typename Property>
struct implementation_level<boost::detail::parallel::maybe_store_property<Property> >
: mpl::int_<object_serializable> {} ;
template<typename Property>
struct tracking_level<boost::detail::parallel::maybe_store_property<Property> >
: mpl::int_<track_never> {} ;
template<typename T, typename U, typename Property>
struct is_bitwise_serializable<
boost::detail::parallel::pair_with_property<T, U, Property> >
: boost::mpl::and_<is_bitwise_serializable<boost::parallel::detail::untracked_pair<T, U> >,
is_bitwise_serializable<Property> > { };
template<typename T, typename U, typename Property>
struct implementation_level<
boost::detail::parallel::pair_with_property<T, U, Property> >
: mpl::int_<object_serializable> {} ;
template<typename T, typename U, typename Property>
struct tracking_level<
boost::detail::parallel::pair_with_property<T, U, Property> >
: mpl::int_<track_never> {} ;
} } // end namespace boost::serialization
#endif // BOOST_PARALLEL_DETAIL_PROPERTY_HOLDERS_HPP

View File

@@ -0,0 +1,85 @@
// Copyright (C) 2007 Matthias Troyer
//
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
//
// This file contains helper data structures for use in transmitting
// properties. The basic idea is to optimize away any storage for the
// properties when no properties are specified.
#ifndef BOOST_PARALLEL_DETAIL_UNTRACKED_PAIR_HPP
#define BOOST_PARALLEL_DETAIL_UNTRACKED_PAIR_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/mpi/datatype.hpp>
#include <utility> // for std::pair
#include <boost/serialization/utility.hpp>
namespace boost { namespace parallel { namespace detail {
/**
* This structure is like std::pair, with the only difference
* that tracking in the serialization library is turned off.
*/
template<typename T, typename U>
struct untracked_pair : public std::pair<T,U>
{
untracked_pair() {}
untracked_pair(const T& t, const U& u)
: std::pair<T,U>(t,u) {}
template<class T1, class U1>
untracked_pair(std::pair<T1,U1> const& p)
: std::pair<T,U>(p) {}
};
template<typename T, typename U>
inline untracked_pair<T, U>
make_untracked_pair(const T& t, const U& u)
{
return untracked_pair<T,U>(t,u);
}
} } } // end namespace boost::parallel::detail
namespace boost { namespace mpi {
template<typename T, typename U>
struct is_mpi_datatype<boost::parallel::detail::untracked_pair<T, U> >
: is_mpi_datatype<std::pair<T,U> > {};
} } // end namespace boost::mpi
namespace boost { namespace serialization {
// pair
template<class Archive, class F, class S>
inline void serialize(
Archive & ar,
boost::parallel::detail::untracked_pair<F, S> & p,
const unsigned int /* file_version */
){
ar & boost::serialization::make_nvp("first", p.first);
ar & boost::serialization::make_nvp("second", p.second);
}
template<typename T, typename U>
struct is_bitwise_serializable<
boost::parallel::detail::untracked_pair<T, U> >
: is_bitwise_serializable<std::pair<T, U> > {};
template<typename T, typename U>
struct implementation_level<boost::parallel::detail::untracked_pair<T, U> >
: mpl::int_<object_serializable> {} ;
template<typename T, typename U>
struct tracking_level<boost::parallel::detail::untracked_pair<T, U> >
: mpl::int_<track_never> {} ;
} } // end namespace boost::serialization
#endif // BOOST_PARALLEL_DETAIL_UNTRACKED_PAIR_HPP

View File

@@ -0,0 +1,615 @@
// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Peter Gottschling
// Andrew Lumsdaine
#ifndef BOOST_PARALLEL_DISTRIBUTION_HPP
#define BOOST_PARALLEL_DISTRIBUTION_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <cstddef>
#include <vector>
#include <algorithm>
#include <numeric>
#include <boost/assert.hpp>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/random/uniform_int.hpp>
#include <boost/shared_ptr.hpp>
#include <typeinfo>
namespace boost { namespace parallel {
template<typename ProcessGroup, typename SizeType = std::size_t>
class variant_distribution
{
public:
typedef typename ProcessGroup::process_id_type process_id_type;
typedef typename ProcessGroup::process_size_type process_size_type;
typedef SizeType size_type;
private:
struct basic_distribution
{
virtual ~basic_distribution() {}
virtual size_type block_size(process_id_type, size_type) const = 0;
virtual process_id_type in_process(size_type) const = 0;
virtual size_type local(size_type) const = 0;
virtual size_type global(size_type) const = 0;
virtual size_type global(process_id_type, size_type) const = 0;
virtual void* address() = 0;
virtual const void* address() const = 0;
virtual const std::type_info& type() const = 0;
};
template<typename Distribution>
struct poly_distribution : public basic_distribution
{
explicit poly_distribution(const Distribution& distribution)
: distribution_(distribution) { }
virtual size_type block_size(process_id_type id, size_type n) const
{ return distribution_.block_size(id, n); }
virtual process_id_type in_process(size_type i) const
{ return distribution_(i); }
virtual size_type local(size_type i) const
{ return distribution_.local(i); }
virtual size_type global(size_type n) const
{ return distribution_.global(n); }
virtual size_type global(process_id_type id, size_type n) const
{ return distribution_.global(id, n); }
virtual void* address() { return &distribution_; }
virtual const void* address() const { return &distribution_; }
virtual const std::type_info& type() const { return typeid(Distribution); }
private:
Distribution distribution_;
};
public:
variant_distribution() { }
template<typename Distribution>
variant_distribution(const Distribution& distribution)
: distribution_(new poly_distribution<Distribution>(distribution)) { }
size_type block_size(process_id_type id, size_type n) const
{ return distribution_->block_size(id, n); }
process_id_type operator()(size_type i) const
{ return distribution_->in_process(i); }
size_type local(size_type i) const
{ return distribution_->local(i); }
size_type global(size_type n) const
{ return distribution_->global(n); }
size_type global(process_id_type id, size_type n) const
{ return distribution_->global(id, n); }
operator bool() const { return distribution_; }
void clear() { distribution_.reset(); }
template<typename T>
T* as()
{
if (distribution_->type() == typeid(T))
return static_cast<T*>(distribution_->address());
else
return 0;
}
template<typename T>
const T* as() const
{
if (distribution_->type() == typeid(T))
return static_cast<T*>(distribution_->address());
else
return 0;
}
private:
shared_ptr<basic_distribution> distribution_;
};
struct block
{
template<typename LinearProcessGroup>
explicit block(const LinearProcessGroup& pg, std::size_t n)
: id(process_id(pg)), p(num_processes(pg)), n(n) { }
// If there are n elements in the distributed data structure, returns the number of elements stored locally.
template<typename SizeType>
SizeType block_size(SizeType n) const
{ return (n / p) + ((std::size_t)(n % p) > id? 1 : 0); }
// If there are n elements in the distributed data structure, returns the number of elements stored on processor ID
template<typename SizeType, typename ProcessID>
SizeType block_size(ProcessID id, SizeType n) const
{ return (n / p) + ((ProcessID)(n % p) > id? 1 : 0); }
// Returns the processor on which element with global index i is stored
template<typename SizeType>
SizeType operator()(SizeType i) const
{
SizeType cutoff_processor = n % p;
SizeType cutoff = cutoff_processor * (n / p + 1);
if (i < cutoff) return i / (n / p + 1);
else return cutoff_processor + (i - cutoff) / (n / p);
}
// Find the starting index for processor with the given id
template<typename ID>
std::size_t start(ID id) const
{
std::size_t estimate = id * (n / p + 1);
ID cutoff_processor = n % p;
if (id < cutoff_processor) return estimate;
else return estimate - (id - cutoff_processor);
}
// Find the local index for the ith global element
template<typename SizeType>
SizeType local(SizeType i) const
{
SizeType owner = (*this)(i);
return i - start(owner);
}
// Returns the global index of local element i
template<typename SizeType>
SizeType global(SizeType i) const
{ return global(id, i); }
// Returns the global index of the ith local element on processor id
template<typename ProcessID, typename SizeType>
SizeType global(ProcessID id, SizeType i) const
{ return i + start(id); }
private:
std::size_t id; //< The ID number of this processor
std::size_t p; //< The number of processors
std::size_t n; //< The size of the problem space
};
// Block distribution with arbitrary block sizes
struct uneven_block
{
typedef std::vector<std::size_t> size_vector;
template<typename LinearProcessGroup>
explicit uneven_block(const LinearProcessGroup& pg, const std::vector<std::size_t>& local_sizes)
: id(process_id(pg)), p(num_processes(pg)), local_sizes(local_sizes)
{
BOOST_ASSERT(local_sizes.size() == p);
local_starts.resize(p + 1);
local_starts[0] = 0;
std::partial_sum(local_sizes.begin(), local_sizes.end(), &local_starts[1]);
n = local_starts[p];
}
// To do maybe: enter local size in each process and gather in constructor (much handier)
// template<typename LinearProcessGroup>
// explicit uneven_block(const LinearProcessGroup& pg, std::size_t my_local_size)
// If there are n elements in the distributed data structure, returns the number of elements stored locally.
template<typename SizeType>
SizeType block_size(SizeType) const
{ return local_sizes[id]; }
// If there are n elements in the distributed data structure, returns the number of elements stored on processor ID
template<typename SizeType, typename ProcessID>
SizeType block_size(ProcessID id, SizeType) const
{ return local_sizes[id]; }
// Returns the processor on which element with global index i is stored
template<typename SizeType>
SizeType operator()(SizeType i) const
{
BOOST_ASSERT (i >= (SizeType) 0 && i < (SizeType) n); // check for valid range
size_vector::const_iterator lb = std::lower_bound(local_starts.begin(), local_starts.end(), (std::size_t) i);
return ((SizeType)(*lb) == i ? lb : --lb) - local_starts.begin();
}
// Find the starting index for processor with the given id
template<typename ID>
std::size_t start(ID id) const
{
return local_starts[id];
}
// Find the local index for the ith global element
template<typename SizeType>
SizeType local(SizeType i) const
{
SizeType owner = (*this)(i);
return i - start(owner);
}
// Returns the global index of local element i
template<typename SizeType>
SizeType global(SizeType i) const
{ return global(id, i); }
// Returns the global index of the ith local element on processor id
template<typename ProcessID, typename SizeType>
SizeType global(ProcessID id, SizeType i) const
{ return i + start(id); }
private:
std::size_t id; //< The ID number of this processor
std::size_t p; //< The number of processors
std::size_t n; //< The size of the problem space
std::vector<std::size_t> local_sizes; //< The sizes of all blocks
std::vector<std::size_t> local_starts; //< Lowest global index of each block
};
struct oned_block_cyclic
{
template<typename LinearProcessGroup>
explicit oned_block_cyclic(const LinearProcessGroup& pg, std::size_t size)
: id(process_id(pg)), p(num_processes(pg)), size(size) { }
template<typename SizeType>
SizeType block_size(SizeType n) const
{
return block_size(id, n);
}
template<typename SizeType, typename ProcessID>
SizeType block_size(ProcessID id, SizeType n) const
{
SizeType all_blocks = n / size;
SizeType extra_elements = n % size;
SizeType everyone_gets = all_blocks / p;
SizeType extra_blocks = all_blocks % p;
SizeType my_blocks = everyone_gets + (p < extra_blocks? 1 : 0);
SizeType my_elements = my_blocks * size
+ (p == extra_blocks? extra_elements : 0);
return my_elements;
}
template<typename SizeType>
SizeType operator()(SizeType i) const
{
return (i / size) % p;
}
template<typename SizeType>
SizeType local(SizeType i) const
{
return ((i / size) / p) * size + i % size;
}
template<typename SizeType>
SizeType global(SizeType i) const
{ return global(id, i); }
template<typename ProcessID, typename SizeType>
SizeType global(ProcessID id, SizeType i) const
{
return ((i / size) * p + id) * size + i % size;
}
private:
std::size_t id; //< The ID number of this processor
std::size_t p; //< The number of processors
std::size_t size; //< Block size
};
struct twod_block_cyclic
{
template<typename LinearProcessGroup>
explicit twod_block_cyclic(const LinearProcessGroup& pg,
std::size_t block_rows, std::size_t block_columns,
std::size_t data_columns_per_row)
: id(process_id(pg)), p(num_processes(pg)),
block_rows(block_rows), block_columns(block_columns),
data_columns_per_row(data_columns_per_row)
{ }
template<typename SizeType>
SizeType block_size(SizeType n) const
{
return block_size(id, n);
}
template<typename SizeType, typename ProcessID>
SizeType block_size(ProcessID id, SizeType n) const
{
// TBD: This is really lame :)
int result = -1;
while (n > 0) {
--n;
if ((*this)(n) == id && (int)local(n) > result) result = local(n);
}
++result;
// std::cerr << "Block size of id " << id << " is " << result << std::endl;
return result;
}
template<typename SizeType>
SizeType operator()(SizeType i) const
{
SizeType result = get_block_num(i) % p;
// std::cerr << "Item " << i << " goes on processor " << result << std::endl;
return result;
}
template<typename SizeType>
SizeType local(SizeType i) const
{
// Compute the start of the block
std::size_t block_num = get_block_num(i);
// std::cerr << "Item " << i << " is in block #" << block_num << std::endl;
std::size_t local_block_num = block_num / p;
std::size_t block_start = local_block_num * block_rows * block_columns;
// Compute the offset into the block
std::size_t data_row = i / data_columns_per_row;
std::size_t data_col = i % data_columns_per_row;
std::size_t block_offset = (data_row % block_rows) * block_columns
+ (data_col % block_columns);
// std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl;
return block_start + block_offset;
}
template<typename SizeType>
SizeType global(SizeType i) const
{
// Compute the (global) block in which this element resides
SizeType local_block_num = i / (block_rows * block_columns);
SizeType block_offset = i % (block_rows * block_columns);
SizeType block_num = local_block_num * p + id;
// Compute the position of the start of the block (globally)
SizeType block_start = block_num * block_rows * block_columns;
std::cerr << "Block " << block_num << " starts at index " << block_start
<< std::endl;
// Compute the row and column of this block
SizeType block_row = block_num / (data_columns_per_row / block_columns);
SizeType block_col = block_num % (data_columns_per_row / block_columns);
SizeType row_in_block = block_offset / block_columns;
SizeType col_in_block = block_offset % block_columns;
std::cerr << "Local index " << i << " is in block at row " << block_row
<< ", column " << block_col << ", in-block row " << row_in_block
<< ", in-block col " << col_in_block << std::endl;
SizeType result = block_row * block_rows + block_col * block_columns
+ row_in_block * block_rows + col_in_block;
std::cerr << "global(" << i << "@" << id << ") = " << result
<< " =? " << local(result) << std::endl;
BOOST_ASSERT(i == local(result));
return result;
}
private:
template<typename SizeType>
std::size_t get_block_num(SizeType i) const
{
std::size_t data_row = i / data_columns_per_row;
std::size_t data_col = i % data_columns_per_row;
std::size_t block_row = data_row / block_rows;
std::size_t block_col = data_col / block_columns;
std::size_t blocks_in_row = data_columns_per_row / block_columns;
std::size_t block_num = block_col * blocks_in_row + block_row;
return block_num;
}
std::size_t id; //< The ID number of this processor
std::size_t p; //< The number of processors
std::size_t block_rows; //< The # of rows in each block
std::size_t block_columns; //< The # of columns in each block
std::size_t data_columns_per_row; //< The # of columns per row of data
};
class twod_random
{
template<typename RandomNumberGen>
struct random_int
{
explicit random_int(RandomNumberGen& gen) : gen(gen) { }
template<typename T>
T operator()(T n) const
{
uniform_int<T> distrib(0, n-1);
return distrib(gen);
}
private:
RandomNumberGen& gen;
};
public:
template<typename LinearProcessGroup, typename RandomNumberGen>
explicit twod_random(const LinearProcessGroup& pg,
std::size_t block_rows, std::size_t block_columns,
std::size_t data_columns_per_row,
std::size_t n,
RandomNumberGen& gen)
: id(process_id(pg)), p(num_processes(pg)),
block_rows(block_rows), block_columns(block_columns),
data_columns_per_row(data_columns_per_row),
global_to_local(n / (block_rows * block_columns))
{
std::copy(make_counting_iterator(std::size_t(0)),
make_counting_iterator(global_to_local.size()),
global_to_local.begin());
random_int<RandomNumberGen> rand(gen);
std::random_shuffle(global_to_local.begin(), global_to_local.end(), rand);
}
template<typename SizeType>
SizeType block_size(SizeType n) const
{
return block_size(id, n);
}
template<typename SizeType, typename ProcessID>
SizeType block_size(ProcessID id, SizeType n) const
{
// TBD: This is really lame :)
int result = -1;
while (n > 0) {
--n;
if ((*this)(n) == id && (int)local(n) > result) result = local(n);
}
++result;
// std::cerr << "Block size of id " << id << " is " << result << std::endl;
return result;
}
template<typename SizeType>
SizeType operator()(SizeType i) const
{
SizeType result = get_block_num(i) % p;
// std::cerr << "Item " << i << " goes on processor " << result << std::endl;
return result;
}
template<typename SizeType>
SizeType local(SizeType i) const
{
// Compute the start of the block
std::size_t block_num = get_block_num(i);
// std::cerr << "Item " << i << " is in block #" << block_num << std::endl;
std::size_t local_block_num = block_num / p;
std::size_t block_start = local_block_num * block_rows * block_columns;
// Compute the offset into the block
std::size_t data_row = i / data_columns_per_row;
std::size_t data_col = i % data_columns_per_row;
std::size_t block_offset = (data_row % block_rows) * block_columns
+ (data_col % block_columns);
// std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl;
return block_start + block_offset;
}
private:
template<typename SizeType>
std::size_t get_block_num(SizeType i) const
{
std::size_t data_row = i / data_columns_per_row;
std::size_t data_col = i % data_columns_per_row;
std::size_t block_row = data_row / block_rows;
std::size_t block_col = data_col / block_columns;
std::size_t blocks_in_row = data_columns_per_row / block_columns;
std::size_t block_num = block_col * blocks_in_row + block_row;
return global_to_local[block_num];
}
std::size_t id; //< The ID number of this processor
std::size_t p; //< The number of processors
std::size_t block_rows; //< The # of rows in each block
std::size_t block_columns; //< The # of columns in each block
std::size_t data_columns_per_row; //< The # of columns per row of data
std::vector<std::size_t> global_to_local;
};
class random_distribution
{
template<typename RandomNumberGen>
struct random_int
{
explicit random_int(RandomNumberGen& gen) : gen(gen) { }
template<typename T>
T operator()(T n) const
{
uniform_int<T> distrib(0, n-1);
return distrib(gen);
}
private:
RandomNumberGen& gen;
};
public:
template<typename LinearProcessGroup, typename RandomNumberGen>
random_distribution(const LinearProcessGroup& pg, RandomNumberGen& gen,
std::size_t n)
: base(pg, n), local_to_global(n), global_to_local(n)
{
std::copy(make_counting_iterator(std::size_t(0)),
make_counting_iterator(n),
local_to_global.begin());
random_int<RandomNumberGen> rand(gen);
std::random_shuffle(local_to_global.begin(), local_to_global.end(), rand);
for (std::vector<std::size_t>::size_type i = 0; i < n; ++i)
global_to_local[local_to_global[i]] = i;
}
template<typename SizeType>
SizeType block_size(SizeType n) const
{ return base.block_size(n); }
template<typename SizeType, typename ProcessID>
SizeType block_size(ProcessID id, SizeType n) const
{ return base.block_size(id, n); }
template<typename SizeType>
SizeType operator()(SizeType i) const
{
return base(global_to_local[i]);
}
template<typename SizeType>
SizeType local(SizeType i) const
{
return base.local(global_to_local[i]);
}
template<typename ProcessID, typename SizeType>
SizeType global(ProcessID p, SizeType i) const
{
return local_to_global[base.global(p, i)];
}
template<typename SizeType>
SizeType global(SizeType i) const
{
return local_to_global[base.global(i)];
}
private:
block base;
std::vector<std::size_t> local_to_global;
std::vector<std::size_t> global_to_local;
};
} } // end namespace boost::parallel
#endif // BOOST_PARALLEL_DISTRIBUTION_HPP

View File

@@ -0,0 +1,101 @@
// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_PARALLEL_PROCESS_GROUP_HPP
#define BOOST_GRAPH_PARALLEL_PROCESS_GROUP_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <cstdlib>
#include <utility>
namespace boost { namespace graph { namespace parallel {
/**
* A special type used as a flag to a process group constructor that
* indicates that the copy of a process group will represent a new
* distributed data structure.
*/
struct attach_distributed_object { };
/**
* Describes the context in which a trigger is being invoked to
* receive a message.
*/
enum trigger_receive_context {
/// No trigger is active at this time.
trc_none,
/// The trigger is being invoked during synchronization, at the end
/// of a superstep.
trc_in_synchronization,
/// The trigger is being invoked as an "early" receive of a message
/// that was sent through the normal "send" operations to be
/// received by the end of the superstep, but the process group sent
/// the message earlier to clear its buffers.
trc_early_receive,
/// The trigger is being invoked for an out-of-band message, which
/// must be handled immediately.
trc_out_of_band,
/// The trigger is being invoked for an out-of-band message, which
/// must be handled immediately and has alredy been received by
/// an MPI_IRecv call.
trc_irecv_out_of_band
};
// Process group tags
struct process_group_tag {};
struct linear_process_group_tag : virtual process_group_tag {};
struct messaging_process_group_tag : virtual process_group_tag {};
struct immediate_process_group_tag : virtual messaging_process_group_tag {};
struct bsp_process_group_tag : virtual messaging_process_group_tag {};
struct batch_process_group_tag : virtual messaging_process_group_tag {};
struct locking_process_group_tag : virtual process_group_tag {};
struct spawning_process_group_tag : virtual process_group_tag {};
struct process_group_archetype
{
typedef int process_id_type;
};
void wait(process_group_archetype&);
void synchronize(process_group_archetype&);
int process_id(const process_group_archetype&);
int num_processes(const process_group_archetype&);
template<typename T> void send(process_group_archetype&, int, int, const T&);
template<typename T>
process_group_archetype::process_id_type
receive(const process_group_archetype& pg,
process_group_archetype::process_id_type source, int tag, T& value);
template<typename T>
std::pair<process_group_archetype::process_id_type, std::size_t>
receive(const process_group_archetype& pg, int tag, T values[], std::size_t n);
template<typename T>
std::pair<process_group_archetype::process_id_type, std::size_t>
receive(const process_group_archetype& pg,
process_group_archetype::process_id_type source, int tag, T values[],
std::size_t n);
} } } // end namespace boost::graph::parallel
namespace boost { namespace graph { namespace distributed {
using parallel::trigger_receive_context;
using parallel::trc_early_receive;
using parallel::trc_out_of_band;
using parallel::trc_irecv_out_of_band;
using parallel::trc_in_synchronization;
using parallel::trc_none;
using parallel::attach_distributed_object;
} } } // end namespace boost::graph::distributed
#endif // BOOST_GRAPH_PARALLEL_PROCESS_GROUP_HPP

View File

@@ -0,0 +1,111 @@
// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_PARALLEL_PROPERTIES_HPP
#define BOOST_GRAPH_PARALLEL_PROPERTIES_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/graph/properties.hpp>
#include <boost/property_map/parallel/distributed_property_map.hpp>
namespace boost {
/***************************************************************************
* Property map reduction operations
***************************************************************************/
/**
* Metafunction that produces a reduction operation for the given
* property. The default behavior merely forwards to @ref
* basic_reduce, but it is expected that this class template will be
* specified for important properties.
*/
template<typename Property>
struct property_reduce
{
template<typename Value>
class apply : public parallel::basic_reduce<Value> {};
};
/**
* Reduction of vertex colors can only darken, not lighten, the
* color. Black cannot turn black, grey can only turn black, and
* white can be changed to either color. The default color is white.
*/
template<>
struct property_reduce<vertex_color_t>
{
template<typename Color>
class apply
{
typedef color_traits<Color> traits;
public:
BOOST_STATIC_CONSTANT(bool, non_default_resolver = true);
template<typename Key>
Color operator()(const Key&) const { return traits::white(); }
template<typename Key>
Color operator()(const Key&, Color local, Color remote) const {
if (local == traits::white()) return remote;
else if (remote == traits::black()) return remote;
else return local;
}
};
};
/**
* Reduction of a distance always takes the shorter distance. The
* default distance value is the maximum value for the data type.
*/
template<>
struct property_reduce<vertex_distance_t>
{
template<typename T>
class apply
{
public:
BOOST_STATIC_CONSTANT(bool, non_default_resolver = true);
template<typename Key>
T operator()(const Key&) const { return (std::numeric_limits<T>::max)(); }
template<typename Key>
T operator()(const Key&, T x, T y) const { return x < y? x : y; }
};
};
template<>
struct property_reduce<vertex_predecessor_t>
{
template<typename T>
class apply
{
public:
BOOST_STATIC_CONSTANT(bool, non_default_resolver = true);
T operator()(T key) const { return key; }
T operator()(T key, T, T y) const { return y; }
};
};
template<typename Property, typename PropertyMap>
inline void set_property_map_role(Property p, PropertyMap pm)
{
typedef typename property_traits<PropertyMap>::value_type value_type;
typedef property_reduce<Property> property_red;
typedef typename property_red::template apply<value_type> reduce;
pm.set_reduce(reduce());
}
} // end namespace boost
#endif // BOOST_GRAPH_PARALLEL_PROPERTIES_HPP

View File

@@ -0,0 +1,108 @@
// Copyright (C) 2007 Douglas Gregor
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// This file contains a simplification of the "trigger" method for
// process groups. The simple trigger handles the common case where
// the handler associated with a trigger is a member function bound to
// a particular pointer.
#ifndef BOOST_GRAPH_PARALLEL_SIMPLE_TRIGGER_HPP
#define BOOST_GRAPH_PARALLEL_SIMPLE_TRIGGER_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/graph/parallel/process_group.hpp>
namespace boost { namespace graph { namespace parallel {
namespace detail {
/**
* INTERNAL ONLY
*
* The actual function object that bridges from the normal trigger
* interface to the simplified interface. This is the equivalent of
* bind(pmf, self, _1, _2, _3, _4), but without the compile-time
* overhead of bind.
*/
template<typename Class, typename T, typename Result>
class simple_trigger_t
{
public:
simple_trigger_t(Class* self,
Result (Class::*pmf)(int, int, const T&,
trigger_receive_context))
: self(self), pmf(pmf) { }
Result
operator()(int source, int tag, const T& data,
trigger_receive_context context) const
{
return (self->*pmf)(source, tag, data, context);
}
private:
Class* self;
Result (Class::*pmf)(int, int, const T&, trigger_receive_context);
};
} // end namespace detail
/**
* Simplified trigger interface that reduces the amount of code
* required to connect a process group trigger to a handler that is
* just a bound member function.
*
* INTERNAL ONLY
*/
template<typename ProcessGroup, typename Class, typename T>
inline void
simple_trigger(ProcessGroup& pg, int tag, Class* self,
void (Class::*pmf)(int source, int tag, const T& data,
trigger_receive_context context), int)
{
pg.template trigger<T>(tag,
detail::simple_trigger_t<Class, T, void>(self, pmf));
}
/**
* Simplified trigger interface that reduces the amount of code
* required to connect a process group trigger with a reply to a
* handler that is just a bound member function.
*
* INTERNAL ONLY
*/
template<typename ProcessGroup, typename Class, typename T, typename Result>
inline void
simple_trigger(ProcessGroup& pg, int tag, Class* self,
Result (Class::*pmf)(int source, int tag, const T& data,
trigger_receive_context context), long)
{
pg.template trigger_with_reply<T>
(tag, detail::simple_trigger_t<Class, T, Result>(self, pmf));
}
/**
* Simplified trigger interface that reduces the amount of code
* required to connect a process group trigger to a handler that is
* just a bound member function.
*/
template<typename ProcessGroup, typename Class, typename T, typename Result>
inline void
simple_trigger(ProcessGroup& pg, int tag, Class* self,
Result (Class::*pmf)(int source, int tag, const T& data,
trigger_receive_context context))
{
// We pass 0 (an int) to help VC++ disambiguate calls to simple_trigger
// with Result=void.
simple_trigger(pg, tag, self, pmf, 0);
}
} } } // end namespace boost::graph::parallel
#endif // BOOST_GRAPH_PARALLEL_SIMPLE_TRIGGER_HPP