Added boost header

This commit is contained in:
Christophe Riccio
2012-01-08 01:26:07 +00:00
parent 9c3faaca40
commit c7d752cdf8
8946 changed files with 1732316 additions and 0 deletions

View File

@@ -0,0 +1,62 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007-2009.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_DELETER_HPP
#define BOOST_INTERPROCESS_DELETER_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/interprocess_fwd.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/pointer_to_other.hpp>
//!\file
//!Describes the functor to delete objects from the segment.
namespace boost {
namespace interprocess {
//!A deleter that uses the segment manager's destroy_ptr
//!function to destroy the passed pointer resource.
//!
//!This deleter is used
template<class T, class SegmentManager>
class deleter
{
public:
typedef typename boost::pointer_to_other
<typename SegmentManager::void_pointer, T>::type pointer;
private:
typedef typename boost::pointer_to_other
<pointer, SegmentManager>::type segment_manager_pointer;
segment_manager_pointer mp_mngr;
public:
deleter(segment_manager_pointer pmngr)
: mp_mngr(pmngr)
{}
void operator()(const pointer &p)
{ mp_mngr->destroy_ptr(ipcdetail::get_pointer(p)); }
};
} //namespace interprocess {
} //namespace boost {
#include <boost/interprocess/detail/config_end.hpp>
#endif //#ifndef BOOST_INTERPROCESS_DELETER_HPP

View File

@@ -0,0 +1,44 @@
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of boost/detail/bad_weak_ptr.hpp
//
// (C) Copyright Peter Dimov and Multi Media Ltd. 2001, 2002, 2003
// (C) Copyright Ion Gaztanaga 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_BAD_WEAK_PTR_HPP_INCLUDED
#define BOOST_INTERPROCESS_BAD_WEAK_PTR_HPP_INCLUDED
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#ifndef BOOST_NO_EXCEPTIONS
#include <exception>
#endif
namespace boost{
namespace interprocess{
class bad_weak_ptr
: public std::exception
{
public:
virtual char const * what() const throw()
{ return "boost::interprocess::bad_weak_ptr"; }
};
} // namespace interprocess
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_BAD_WEAK_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,321 @@
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of boost/detail/shared_count.hpp
//
// (C) Copyright Peter Dimov and Multi Media Ltd. 2001, 2002, 2003
// (C) Copyright Peter Dimov 2004-2005
// (C) Copyright Ion Gaztanaga 2006-2009. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_DETAIL_SHARED_COUNT_HPP_INCLUDED
#define BOOST_INTERPROCESS_DETAIL_SHARED_COUNT_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/checked_delete.hpp>
#include <boost/pointer_to_other.hpp>
#include <boost/interprocess/smart_ptr/detail/bad_weak_ptr.hpp>
#include <boost/interprocess/smart_ptr/detail/sp_counted_impl.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <functional> // std::less
namespace boost {
namespace interprocess {
namespace ipcdetail{
template<class T, class VoidAllocator, class Deleter>
class weak_count;
template<class T, class VoidAllocator, class Deleter>
class shared_count
{
public:
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, T>::type pointer;
private:
typedef sp_counted_impl_pd<VoidAllocator, Deleter> counted_impl;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, counted_impl>::type counted_impl_ptr;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, sp_counted_base>::type counted_base_ptr;
typedef typename VoidAllocator::template rebind
<counted_impl>::other counted_impl_allocator;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, const Deleter>::type const_deleter_pointer;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, const VoidAllocator>::type const_allocator_pointer;
pointer m_px;
counted_impl_ptr m_pi;
template <class T2, class VoidAllocator2, class Deleter2>
friend class weak_count;
template <class T2, class VoidAllocator2, class Deleter2>
friend class shared_count;
public:
shared_count()
: m_px(0), m_pi(0) // nothrow
{}
template <class Ptr>
shared_count(const shared_count &other_shared_count, const Ptr &p)
: m_px(p), m_pi(other_shared_count.m_pi)
{}
template <class Ptr>
shared_count(const Ptr &p, const VoidAllocator &a, Deleter d)
: m_px(p), m_pi(0)
{
BOOST_TRY{
if(p){
counted_impl_allocator alloc(a);
m_pi = alloc.allocate(1);
//Anti-exception deallocator
scoped_ptr<counted_impl,
scoped_ptr_dealloc_functor<counted_impl_allocator> >
deallocator(m_pi, alloc);
//It's more correct to use VoidAllocator::construct but
//this needs copy constructor and we don't like it
new(ipcdetail::get_pointer(m_pi))counted_impl(p, a, d);
deallocator.release();
}
}
BOOST_CATCH (...){
d(p); // delete p
BOOST_RETHROW
}
BOOST_CATCH_END
}
~shared_count() // nothrow
{
if( m_pi != 0 )
m_pi->release();
}
shared_count(shared_count const & r)
: m_px(r.m_px), m_pi(r.m_pi) // nothrow
{ if( m_pi != 0 ) m_pi->add_ref_copy(); }
//this is a test
template<class Y>
explicit shared_count(shared_count<Y, VoidAllocator, Deleter> const & r)
: m_px(r.m_px), m_pi(r.m_pi) // nothrow
{ if( m_pi != 0 ) m_pi->add_ref_copy(); }
//this is a test
template<class Y>
explicit shared_count(const pointer & ptr, shared_count<Y, VoidAllocator, Deleter> const & r)
: m_px(ptr), m_pi(r.m_pi) // nothrow
{ if( m_pi != 0 ) m_pi->add_ref_copy(); }
/*
explicit shared_count(weak_count<Y, VoidAllocator, Deleter> const & r)
// throws bad_weak_ptr when r.use_count() == 0
: m_pi( r.m_pi )
{
if( m_pi == 0 || !m_pi->add_ref_lock() ){
boost::throw_exception( boost::interprocess::bad_weak_ptr() );
}
}
*/
template<class Y>
explicit shared_count(weak_count<Y, VoidAllocator, Deleter> const & r)
// throws bad_weak_ptr when r.use_count() == 0
: m_px(r.m_px), m_pi( r.m_pi )
{
if( m_pi == 0 || !m_pi->add_ref_lock() ){
throw( boost::interprocess::bad_weak_ptr() );
}
}
const pointer &get_pointer() const
{ return m_px; }
pointer &get_pointer()
{ return m_px; }
shared_count & operator= (shared_count const & r) // nothrow
{
m_px = r.m_px;
counted_impl_ptr tmp = r.m_pi;
if( tmp != m_pi ){
if(tmp != 0) tmp->add_ref_copy();
if(m_pi != 0) m_pi->release();
m_pi = tmp;
}
return *this;
}
template<class Y>
shared_count & operator= (shared_count<Y, VoidAllocator, Deleter> const & r) // nothrow
{
m_px = r.m_px;
counted_impl_ptr tmp = r.m_pi;
if( tmp != m_pi ){
if(tmp != 0) tmp->add_ref_copy();
if(m_pi != 0) m_pi->release();
m_pi = tmp;
}
return *this;
}
void swap(shared_count & r) // nothrow
{ ipcdetail::do_swap(m_px, r.m_px); ipcdetail::do_swap(m_pi, r.m_pi); }
long use_count() const // nothrow
{ return m_pi != 0? m_pi->use_count(): 0; }
bool unique() const // nothrow
{ return use_count() == 1; }
const_deleter_pointer get_deleter() const
{ return m_pi ? m_pi->get_deleter() : 0; }
// const_allocator_pointer get_allocator() const
// { return m_pi ? m_pi->get_allocator() : 0; }
template<class T2, class VoidAllocator2, class Deleter2>
bool internal_equal (shared_count<T2, VoidAllocator2, Deleter2> const & other) const
{ return this->m_pi == other.m_pi; }
template<class T2, class VoidAllocator2, class Deleter2>
bool internal_less (shared_count<T2, VoidAllocator2, Deleter2> const & other) const
{ return std::less<counted_base_ptr>()(this->m_pi, other.m_pi); }
};
template<class T, class VoidAllocator, class Deleter, class T2, class VoidAllocator2, class Deleter2> inline
bool operator==(shared_count<T, VoidAllocator, Deleter> const & a, shared_count<T2, VoidAllocator2, Deleter2> const & b)
{ return a.internal_equal(b); }
template<class T, class VoidAllocator, class Deleter, class T2, class VoidAllocator2, class Deleter2> inline
bool operator<(shared_count<T, VoidAllocator, Deleter> const & a, shared_count<T2, VoidAllocator2, Deleter2> const & b)
{ return a.internal_less(b); }
template<class T, class VoidAllocator, class Deleter>
class weak_count
{
public:
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, T>::type pointer;
private:
typedef sp_counted_impl_pd<VoidAllocator, Deleter> counted_impl;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, counted_impl>::type counted_impl_ptr;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, sp_counted_base>::type counted_base_ptr;
pointer m_px;
counted_impl_ptr m_pi;
template <class T2, class VoidAllocator2, class Deleter2>
friend class weak_count;
template <class T2, class VoidAllocator2, class Deleter2>
friend class shared_count;
public:
weak_count(): m_px(0), m_pi(0) // nothrow
{}
template <class Y>
explicit weak_count(shared_count<Y, VoidAllocator, Deleter> const & r)
: m_px(r.m_px), m_pi(r.m_pi) // nothrow
{ if(m_pi != 0) m_pi->weak_add_ref(); }
weak_count(weak_count const & r)
: m_px(r.m_px), m_pi(r.m_pi) // nothrow
{ if(m_pi != 0) m_pi->weak_add_ref(); }
template<class Y>
weak_count(weak_count<Y, VoidAllocator, Deleter> const & r)
: m_px(r.m_px), m_pi(r.m_pi) // nothrow
{ if(m_pi != 0) m_pi->weak_add_ref(); }
~weak_count() // nothrow
{ if(m_pi != 0) m_pi->weak_release(); }
template<class Y>
weak_count & operator= (shared_count<Y, VoidAllocator, Deleter> const & r) // nothrow
{
m_px = r.m_px;
counted_impl_ptr tmp = r.m_pi;
if(tmp != 0) tmp->weak_add_ref();
if(m_pi != 0) m_pi->weak_release();
m_pi = tmp;
return *this;
}
weak_count & operator= (weak_count const & r) // nothrow
{
counted_impl_ptr tmp = r.m_pi;
if(tmp != 0) tmp->weak_add_ref();
if(m_pi != 0) m_pi->weak_release();
m_pi = tmp;
return *this;
}
void set_pointer(const pointer &ptr)
{ m_px = ptr; }
template<class Y>
weak_count & operator= (weak_count<Y, VoidAllocator, Deleter> const& r) // nothrow
{
counted_impl_ptr tmp = r.m_pi;
if(tmp != 0) tmp->weak_add_ref();
if(m_pi != 0) m_pi->weak_release();
m_pi = tmp;
return *this;
}
void swap(weak_count & r) // nothrow
{ ipcdetail::do_swap(m_px, r.m_px); ipcdetail::do_swap(m_pi, r.m_pi); }
long use_count() const // nothrow
{ return m_pi != 0? m_pi->use_count() : 0; }
template<class T2, class VoidAllocator2, class Deleter2>
bool internal_equal (weak_count<T2, VoidAllocator2, Deleter2> const & other) const
{ return this->m_pi == other.m_pi; }
template<class T2, class VoidAllocator2, class Deleter2>
bool internal_less (weak_count<T2, VoidAllocator2, Deleter2> const & other) const
{ return std::less<counted_base_ptr>()(this->m_pi, other.m_pi); }
};
template<class T, class VoidAllocator, class Deleter, class T2, class VoidAllocator2, class Deleter2> inline
bool operator==(weak_count<T, VoidAllocator, Deleter> const & a, weak_count<T2, VoidAllocator2, Deleter2> const & b)
{ return a.internal_equal(b); }
template<class T, class VoidAllocator, class Deleter, class T2, class VoidAllocator2, class Deleter2> inline
bool operator<(weak_count<T, VoidAllocator, Deleter> const & a, weak_count<T2, VoidAllocator2, Deleter2> const & b)
{ return a.internal_less(b); }
} // namespace ipcdetail
} // namespace interprocess
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_DETAIL_SHARED_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,18 @@
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007-2009.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_DETAIL_SP_COUNTED_BASE_HPP_INCLUDED
#define BOOST_INTERPROCESS_DETAIL_SP_COUNTED_BASE_HPP_INCLUDED
# include <boost/interprocess/smart_ptr/detail/sp_counted_base_atomic.hpp>
#endif // #ifndef BOOST_INTERPROCESS_DETAIL_SP_COUNTED_BASE_HPP_INCLUDED

View File

@@ -0,0 +1,92 @@
#ifndef BOOST_INTERPROCESS_DETAIL_SP_COUNTED_BASE_ATOMIC_HPP_INCLUDED
#define BOOST_INTERPROCESS_DETAIL_SP_COUNTED_BASE_ATOMIC_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
// Copyright 2004-2005 Peter Dimov
// Copyright 2007-2009 Ion Gaztanaga
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// Lock-free algorithm by Alexander Terekhov
//
// Thanks to Ben Hitchings for the #weak + (#shared != 0)
// formulation
//
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/detail/atomic.hpp>
#include <typeinfo>
namespace boost {
namespace interprocess {
namespace ipcdetail {
class sp_counted_base
{
private:
sp_counted_base( sp_counted_base const & );
sp_counted_base & operator= ( sp_counted_base const & );
boost::uint32_t use_count_; // #shared
boost::uint32_t weak_count_; // #weak + (#shared != 0)
public:
sp_counted_base(): use_count_( 1 ), weak_count_( 1 )
{}
~sp_counted_base() // nothrow
{}
void add_ref_copy()
{
ipcdetail::atomic_inc32( &use_count_ );
}
bool add_ref_lock() // true on success
{
for( ;; )
{
boost::uint32_t tmp = static_cast< boost::uint32_t const volatile& >( use_count_ );
if( tmp == 0 ) return false;
if( ipcdetail::atomic_cas32( &use_count_, tmp + 1, tmp ) == tmp )
return true;
}
}
bool ref_release() // nothrow
{ return 1 == ipcdetail::atomic_dec32( &use_count_ ); }
void weak_add_ref() // nothrow
{ ipcdetail::atomic_inc32( &weak_count_ ); }
bool weak_release() // nothrow
{ return 1 == ipcdetail::atomic_dec32( &weak_count_ ); }
long use_count() const // nothrow
{ return (long)static_cast<boost::uint32_t const volatile &>( use_count_ ); }
};
} // namespace ipcdetail
} // namespace interprocess
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_DETAIL_SP_COUNTED_BASE_ATOMIC_HPP_INCLUDED

View File

@@ -0,0 +1,146 @@
#ifndef BOOST_INTERPROCESS_DETAIL_SP_COUNTED_IMPL_HPP_INCLUDED
#define BOOST_INTERPROCESS_DETAIL_SP_COUNTED_IMPL_HPP_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
//
// This file is the adaptation for shared memory memory mapped
// files of boost/detail/sp_counted_impl.hpp
//
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
// Copyright 2004-2005 Peter Dimov
// Copyright 2006 Ion Gaztanaga
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/smart_ptr/detail/sp_counted_base.hpp>
#include <boost/interprocess/smart_ptr/scoped_ptr.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/pointer_to_other.hpp>
namespace boost {
namespace interprocess {
namespace ipcdetail {
//!A deleter for scoped_ptr that deallocates the memory
//!allocated for an object using a STL allocator.
template <class Allocator>
struct scoped_ptr_dealloc_functor
{
typedef typename Allocator::pointer pointer;
typedef ipcdetail::integral_constant<unsigned,
boost::interprocess::version<Allocator>::value> alloc_version;
typedef ipcdetail::integral_constant<unsigned, 1> allocator_v1;
typedef ipcdetail::integral_constant<unsigned, 2> allocator_v2;
private:
void priv_deallocate(const typename Allocator::pointer &p, allocator_v1)
{ m_alloc.deallocate(p, 1); }
void priv_deallocate(const typename Allocator::pointer &p, allocator_v2)
{ m_alloc.deallocate_one(p); }
public:
Allocator& m_alloc;
scoped_ptr_dealloc_functor(Allocator& a)
: m_alloc(a) {}
void operator()(pointer ptr)
{ if (ptr) priv_deallocate(ptr, alloc_version()); }
};
template<class A, class D>
class sp_counted_impl_pd
: public sp_counted_base
, A::template rebind< sp_counted_impl_pd<A, D> >::other
, D // copy constructor must not throw
{
private:
typedef sp_counted_impl_pd<A, D> this_type;
typedef typename A::template rebind
<this_type>::other this_allocator;
typedef typename A::template rebind
<const this_type>::other const_this_allocator;
typedef typename this_allocator::pointer this_pointer;
sp_counted_impl_pd( sp_counted_impl_pd const & );
sp_counted_impl_pd & operator= ( sp_counted_impl_pd const & );
typedef typename boost::pointer_to_other
<typename A::pointer, const D>::type const_deleter_pointer;
typedef typename boost::pointer_to_other
<typename A::pointer, const A>::type const_allocator_pointer;
typedef typename D::pointer pointer;
pointer m_ptr;
public:
// pre: d(p) must not throw
template<class Ptr>
sp_counted_impl_pd(const Ptr & p, const A &a, const D &d )
: this_allocator(a), D(d), m_ptr(p)
{}
const_deleter_pointer get_deleter() const
{ return const_deleter_pointer(&static_cast<const D&>(*this)); }
const_allocator_pointer get_allocator() const
{ return const_allocator_pointer(&static_cast<const A&>(*this)); }
void dispose() // nothrow
{ static_cast<D&>(*this)(m_ptr); }
void destroy() // nothrow
{
//Self destruction, so get a copy of the allocator
//(in the future we could move it)
this_allocator a_copy(*this);
BOOST_ASSERT(a_copy == *this);
this_pointer this_ptr (this);
//Do it now!
scoped_ptr< this_type, scoped_ptr_dealloc_functor<this_allocator> >
deleter(this_ptr, a_copy);
typedef typename this_allocator::value_type value_type;
ipcdetail::get_pointer(this_ptr)->~value_type();
}
void release() // nothrow
{
if(this->ref_release()){
this->dispose();
this->weak_release();
}
}
void weak_release() // nothrow
{
if(sp_counted_base::weak_release()){
this->destroy();
}
}
};
} // namespace ipcdetail
} // namespace interprocess
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_DETAIL_SP_COUNTED_IMPL_HPP_INCLUDED

View File

@@ -0,0 +1,79 @@
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of boost/enable_shared_from_this.hpp
//
// (C) Copyright Peter Dimov 2002
// (C) Copyright Ion Gaztanaga 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED
#define BOOST_INTERPROCESS_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/assert.hpp>
#include <boost/interprocess/smart_ptr/weak_ptr.hpp>
#include <boost/interprocess/smart_ptr/shared_ptr.hpp>
//!\file
//!Describes an utility to form a shared pointer from this
namespace boost{
namespace interprocess{
//!This class is used as a base class that allows a shared_ptr to the current
//!object to be obtained from within a member function.
//!enable_shared_from_this defines two member functions called shared_from_this
//!that return a shared_ptr<T> and shared_ptr<T const>, depending on constness, to this.
template<class T, class A, class D>
class enable_shared_from_this
{
/// @cond
protected:
enable_shared_from_this()
{}
enable_shared_from_this(enable_shared_from_this const &)
{}
enable_shared_from_this & operator=(enable_shared_from_this const &)
{ return *this; }
~enable_shared_from_this()
{}
/// @endcond
public:
shared_ptr<T, A, D> shared_from_this()
{
shared_ptr<T, A, D> p(_internal_weak_this);
BOOST_ASSERT(ipcdetail::get_pointer(p.get()) == this);
return p;
}
shared_ptr<T const, A, D> shared_from_this() const
{
shared_ptr<T const, A, D> p(_internal_weak_this);
BOOST_ASSERT(ipcdetail::get_pointer(p.get()) == this);
return p;
}
/// @cond
typedef T element_type;
mutable weak_ptr<element_type, A, D> _internal_weak_this;
/// @endcond
};
} // namespace interprocess
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_ENABLE_SHARED_FROM_THIS_HPP_INCLUDED

View File

@@ -0,0 +1,294 @@
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of boost/intrusive_ptr.hpp
//
// (C) Copyright Peter Dimov 2001, 2002
// (C) Copyright Ion Gaztanaga 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_INTRUSIVE_PTR_HPP_INCLUDED
#define BOOST_INTERPROCESS_INTRUSIVE_PTR_HPP_INCLUDED
//!\file
//!Describes an intrusive ownership pointer.
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/assert.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/pointer_to_other.hpp>
#include <functional> // for std::less
#include <iosfwd> // for std::basic_ostream
namespace boost {
namespace interprocess {
//!The intrusive_ptr class template stores a pointer to an object
//!with an embedded reference count. intrusive_ptr is parameterized on
//!T (the type of the object pointed to) and VoidPointer(a void pointer type
//!that defines the type of pointer that intrusive_ptr will store).
//!intrusive_ptr<T, void *> defines a class with a T* member whereas
//!intrusive_ptr<T, offset_ptr<void> > defines a class with a offset_ptr<T> member.
//!Relies on unqualified calls to:
//!
//! void intrusive_ptr_add_ref(T * p);
//! void intrusive_ptr_release(T * p);
//!
//! with (p != 0)
//!
//!The object is responsible for destroying itself.
template<class T, class VoidPointer>
class intrusive_ptr
{
public:
//!Provides the type of the internal stored pointer.
typedef typename boost::pointer_to_other<VoidPointer, T>::type pointer;
//!Provides the type of the stored pointer.
typedef T element_type;
/// @cond
private:
typedef VoidPointer VP;
typedef intrusive_ptr this_type;
typedef pointer this_type::*unspecified_bool_type;
/// @endcond
public:
//!Constructor. Initializes internal pointer to 0.
//!Does not throw
intrusive_ptr(): m_ptr(0)
{}
//!Constructor. Copies pointer and if "p" is not zero and
//!"add_ref" is true calls intrusive_ptr_add_ref(get_pointer(p)).
//!Does not throw
intrusive_ptr(const pointer &p, bool add_ref = true): m_ptr(p)
{
if(m_ptr != 0 && add_ref) intrusive_ptr_add_ref(ipcdetail::get_pointer(m_ptr));
}
//!Copy constructor. Copies the internal pointer and if "p" is not
//!zero calls intrusive_ptr_add_ref(get_pointer(p)). Does not throw
intrusive_ptr(intrusive_ptr const & rhs)
: m_ptr(rhs.m_ptr)
{
if(m_ptr != 0) intrusive_ptr_add_ref(ipcdetail::get_pointer(m_ptr));
}
//!Constructor from related. Copies the internal pointer and if "p" is not
//!zero calls intrusive_ptr_add_ref(get_pointer(p)). Does not throw
template<class U> intrusive_ptr
(intrusive_ptr<U, VP> const & rhs)
: m_ptr(rhs.get())
{
if(m_ptr != 0) intrusive_ptr_add_ref(ipcdetail::get_pointer(m_ptr));
}
//!Destructor. If internal pointer is not 0, calls
//!intrusive_ptr_release(get_pointer(m_ptr)). Does not throw
~intrusive_ptr()
{
if(m_ptr != 0) intrusive_ptr_release(ipcdetail::get_pointer(m_ptr));
}
//!Assignment operator. Equivalent to intrusive_ptr(r).swap(*this).
//!Does not throw
intrusive_ptr & operator=(intrusive_ptr const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
//!Assignment from related. Equivalent to intrusive_ptr(r).swap(*this).
//!Does not throw
template<class U> intrusive_ptr & operator=
(intrusive_ptr<U, VP> const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
//!Assignment from pointer. Equivalent to intrusive_ptr(r).swap(*this).
//!Does not throw
intrusive_ptr & operator=(pointer rhs)
{
this_type(rhs).swap(*this);
return *this;
}
//!Returns a reference to the internal pointer.
//!Does not throw
pointer &get()
{ return m_ptr; }
//!Returns a reference to the internal pointer.
//!Does not throw
const pointer &get() const
{ return m_ptr; }
//!Returns *get().
//!Does not throw
T & operator*() const
{ return *m_ptr; }
//!Returns *get().
//!Does not throw
const pointer &operator->() const
{ return m_ptr; }
//!Returns get().
//!Does not throw
pointer &operator->()
{ return m_ptr; }
//!Conversion to boolean.
//!Does not throw
operator unspecified_bool_type () const
{ return m_ptr == 0? 0: &this_type::m_ptr; }
//!Not operator.
//!Does not throw
bool operator! () const
{ return m_ptr == 0; }
//!Exchanges the contents of the two smart pointers.
//!Does not throw
void swap(intrusive_ptr & rhs)
{ ipcdetail::do_swap(m_ptr, rhs.m_ptr); }
/// @cond
private:
pointer m_ptr;
/// @endcond
};
//!Returns a.get() == b.get().
//!Does not throw
template<class T, class U, class VP> inline
bool operator==(intrusive_ptr<T, VP> const & a,
intrusive_ptr<U, VP> const & b)
{ return a.get() == b.get(); }
//!Returns a.get() != b.get().
//!Does not throw
template<class T, class U, class VP> inline
bool operator!=(intrusive_ptr<T, VP> const & a,
intrusive_ptr<U, VP> const & b)
{ return a.get() != b.get(); }
//!Returns a.get() == b.
//!Does not throw
template<class T, class VP> inline
bool operator==(intrusive_ptr<T, VP> const & a,
const typename intrusive_ptr<T, VP>::pointer &b)
{ return a.get() == b; }
//!Returns a.get() != b.
//!Does not throw
template<class T, class VP> inline
bool operator!=(intrusive_ptr<T, VP> const & a,
const typename intrusive_ptr<T, VP>::pointer &b)
{ return a.get() != b; }
//!Returns a == b.get().
//!Does not throw
template<class T, class VP> inline
bool operator==(const typename intrusive_ptr<T, VP>::pointer &a,
intrusive_ptr<T, VP> const & b)
{ return a == b.get(); }
//!Returns a != b.get().
//!Does not throw
template<class T, class VP> inline
bool operator!=(const typename intrusive_ptr<T, VP>::pointer &a,
intrusive_ptr<T, VP> const & b)
{ return a != b.get(); }
//!Returns a.get() < b.get().
//!Does not throw
template<class T, class VP> inline
bool operator<(intrusive_ptr<T, VP> const & a,
intrusive_ptr<T, VP> const & b)
{
return std::less<typename intrusive_ptr<T, VP>::pointer>()
(a.get(), b.get());
}
//!Exchanges the contents of the two intrusive_ptrs.
//!Does not throw
template<class T, class VP> inline
void swap(intrusive_ptr<T, VP> & lhs,
intrusive_ptr<T, VP> & rhs)
{ lhs.swap(rhs); }
// operator<<
template<class E, class T, class Y, class VP>
inline std::basic_ostream<E, T> & operator<<
(std::basic_ostream<E, T> & os, intrusive_ptr<Y, VP> const & p)
{ os << p.get(); return os; }
//!Returns p.get().
//!Does not throw
template<class T, class VP>
inline typename boost::interprocess::intrusive_ptr<T, VP>::pointer
get_pointer(intrusive_ptr<T, VP> p)
{ return p.get(); }
/*Emulates static cast operator. Does not throw*/
/*
template<class T, class U, class VP>
inline boost::interprocess::intrusive_ptr<T, VP> static_pointer_cast
(boost::interprocess::intrusive_ptr<U, VP> const & p)
{ return do_static_cast<U>(p.get()); }
*/
/*Emulates const cast operator. Does not throw*/
/*
template<class T, class U, class VP>
inline boost::interprocess::intrusive_ptr<T, VP> const_pointer_cast
(boost::interprocess::intrusive_ptr<U, VP> const & p)
{ return do_const_cast<U>(p.get()); }
*/
/*Emulates dynamic cast operator. Does not throw*/
/*
template<class T, class U, class VP>
inline boost::interprocess::intrusive_ptr<T, VP> dynamic_pointer_cast
(boost::interprocess::intrusive_ptr<U, VP> const & p)
{ return do_dynamic_cast<U>(p.get()); }
*/
/*Emulates reinterpret cast operator. Does not throw*/
/*
template<class T, class U, class VP>
inline boost::interprocess::intrusive_ptr<T, VP>reinterpret_pointer_cast
(boost::interprocess::intrusive_ptr<U, VP> const & p)
{ return do_reinterpret_cast<U>(p.get()); }
*/
} // namespace interprocess
/// @cond
#if defined(_MSC_VER) && (_MSC_VER < 1400)
//!Returns p.get().
//!Does not throw
template<class T, class VP>
inline T *get_pointer(boost::interprocess::intrusive_ptr<T, VP> p)
{ return p.get(); }
#endif
/// @endcond
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_INTRUSIVE_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,168 @@
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of boost/scoped_ptr.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// (C) Copyright Peter Dimov 2001, 2002
// (C) Copyright Ion Gaztanaga 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_SCOPED_PTR_HPP_INCLUDED
#define BOOST_INTERPROCESS_SCOPED_PTR_HPP_INCLUDED
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/detail/pointer_type.hpp>
#include <boost/assert.hpp>
#include <boost/pointer_to_other.hpp>
//!\file
//!Describes the smart pointer scoped_ptr
namespace boost {
namespace interprocess {
//!scoped_ptr stores a pointer to a dynamically allocated object.
//!The object pointed to is guaranteed to be deleted, either on destruction
//!of the scoped_ptr, or via an explicit reset. The user can avoid this
//!deletion using release().
//!scoped_ptr is parameterized on T (the type of the object pointed to) and
//!Deleter (the functor to be executed to delete the internal pointer).
//!The internal pointer will be of the same pointer type as typename
//!Deleter::pointer type (that is, if typename Deleter::pointer is
//!offset_ptr<void>, the internal pointer will be offset_ptr<T>).
template<class T, class Deleter>
class scoped_ptr
: private Deleter
{
/// @cond
scoped_ptr(scoped_ptr const &);
scoped_ptr & operator=(scoped_ptr const &);
typedef scoped_ptr<T, Deleter> this_type;
typedef typename ipcdetail::add_reference<T>::type reference;
/// @endcond
public:
typedef T element_type;
typedef Deleter deleter_type;
typedef typename ipcdetail::pointer_type<T, Deleter>::type pointer;
//!Provides the type of the internal stored pointer
// typedef typename boost::pointer_to_other
// <typename Deleter::pointer, T>::type pointer;
//!Constructs a scoped_ptr, storing a copy of p(which can be 0) and d.
//!Does not throw.
explicit scoped_ptr(const pointer &p = 0, const Deleter &d = Deleter())
: Deleter(d), m_ptr(p) // throws if pointer/Deleter copy ctor throws
{}
//!If the stored pointer is not 0, destroys the object pointed to by the stored pointer.
//!calling the operator() of the stored deleter. Never throws
~scoped_ptr()
{
if(m_ptr){
Deleter &del = static_cast<Deleter&>(*this);
del(m_ptr);
}
}
//!Deletes the object pointed to by the stored pointer and then
//!stores a copy of p. Never throws
void reset(const pointer &p = 0) // never throws
{ BOOST_ASSERT(p == 0 || p != m_ptr); this_type(p).swap(*this); }
//!Deletes the object pointed to by the stored pointer and then
//!stores a copy of p and a copy of d.
void reset(const pointer &p, const Deleter &d) // never throws
{ BOOST_ASSERT(p == 0 || p != m_ptr); this_type(p).swap(*this); }
//!Assigns internal pointer as 0 and returns previous pointer. This will
//!avoid deletion on destructor
pointer release()
{ pointer tmp(m_ptr); m_ptr = 0; return tmp; }
//!Returns a reference to the object pointed to by the stored pointer.
//!Never throws.
reference operator*() const
{ BOOST_ASSERT(m_ptr != 0); return *m_ptr; }
//!Returns the internal stored pointer.
//!Never throws.
pointer &operator->()
{ BOOST_ASSERT(m_ptr != 0); return m_ptr; }
//!Returns the internal stored pointer.
//!Never throws.
const pointer &operator->() const
{ BOOST_ASSERT(m_ptr != 0); return m_ptr; }
//!Returns the stored pointer.
//!Never throws.
pointer & get()
{ return m_ptr; }
//!Returns the stored pointer.
//!Never throws.
const pointer & get() const
{ return m_ptr; }
typedef pointer this_type::*unspecified_bool_type;
//!Conversion to bool
//!Never throws
operator unspecified_bool_type() const
{ return m_ptr == 0? 0: &this_type::m_ptr; }
//!Returns true if the stored pointer is 0.
//!Never throws.
bool operator! () const // never throws
{ return m_ptr == 0; }
//!Exchanges the internal pointer and deleter with other scoped_ptr
//!Never throws.
void swap(scoped_ptr & b) // never throws
{ ipcdetail::do_swap<Deleter>(*this, b); ipcdetail::do_swap(m_ptr, b.m_ptr); }
/// @cond
private:
pointer m_ptr;
/// @endcond
};
//!Exchanges the internal pointer and deleter with other scoped_ptr
//!Never throws.
template<class T, class D> inline
void swap(scoped_ptr<T, D> & a, scoped_ptr<T, D> & b)
{ a.swap(b); }
//!Returns a copy of the stored pointer
//!Never throws
template<class T, class D> inline
typename scoped_ptr<T, D>::pointer get_pointer(scoped_ptr<T, D> const & p)
{ return p.get(); }
} // namespace interprocess
/// @cond
#if defined(_MSC_VER) && (_MSC_VER < 1400)
template<class T, class D> inline
T *get_pointer(boost::interprocess::scoped_ptr<T, D> const & p)
{ return p.get(); }
#endif
/// @endcond
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_SCOPED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,409 @@
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of boost/shared_ptr.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// (C) Copyright Peter Dimov 2001, 2002, 2003
// (C) Copyright Ion Gaztanaga 2006-2009.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_SHARED_PTR_HPP_INCLUDED
#define BOOST_INTERPROCESS_SHARED_PTR_HPP_INCLUDED
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/cast_tags.hpp>
#include <boost/assert.hpp>
#include <boost/interprocess/smart_ptr/detail/shared_count.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/move.hpp>
#include <boost/interprocess/detail/type_traits.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/smart_ptr/deleter.hpp>
#include <boost/static_assert.hpp>
#include <boost/pointer_to_other.hpp>
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <typeinfo> // for std::bad_cast
#include <iosfwd> // for std::basic_ostream
//!\file
//!Describes the smart pointer shared_ptr
namespace boost{
namespace interprocess{
template<class T, class VoidAllocator, class Deleter> class weak_ptr;
template<class T, class VoidAllocator, class Deleter> class enable_shared_from_this;
namespace ipcdetail{
template<class T, class VoidAllocator, class Deleter>
inline void sp_enable_shared_from_this
(shared_count<T, VoidAllocator, Deleter> const & pn
,enable_shared_from_this<T, VoidAllocator, Deleter> *pe
,T *ptr)
{
(void)ptr;
if(pe != 0){
pe->_internal_weak_this._internal_assign(pn);
}
}
template<class T, class VoidAllocator, class Deleter>
inline void sp_enable_shared_from_this(shared_count<T, VoidAllocator, Deleter> const &, ...)
{}
} // namespace ipcdetail
//!shared_ptr stores a pointer to a dynamically allocated object.
//!The object pointed to is guaranteed to be deleted when the last shared_ptr pointing to
//!it is destroyed or reset.
//!
//!shared_ptr is parameterized on
//!T (the type of the object pointed to), VoidAllocator (the void allocator to be used
//!to allocate the auxiliary data) and Deleter (the deleter whose
//!operator() will be used to delete the object.
//!
//!The internal pointer will be of the same pointer type as typename
//!VoidAllocator::pointer type (that is, if typename VoidAllocator::pointer is
//!offset_ptr<void>, the internal pointer will be offset_ptr<T>).
//!
//!Because the implementation uses reference counting, cycles of shared_ptr
//!instances will not be reclaimed. For example, if main() holds a
//!shared_ptr to A, which directly or indirectly holds a shared_ptr back
//!to A, A's use count will be 2. Destruction of the original shared_ptr
//!will leave A dangling with a use count of 1.
//!Use weak_ptr to "break cycles."
template<class T, class VoidAllocator, class Deleter>
class shared_ptr
{
/// @cond
private:
typedef shared_ptr<T, VoidAllocator, Deleter> this_type;
/// @endcond
public:
typedef T element_type;
typedef T value_type;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, T>::type pointer;
typedef typename ipcdetail::add_reference
<value_type>::type reference;
typedef typename ipcdetail::add_reference
<const value_type>::type const_reference;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, const Deleter>::type const_deleter_pointer;
typedef typename boost::pointer_to_other
<typename VoidAllocator::pointer, const VoidAllocator>::type const_allocator_pointer;
BOOST_COPYABLE_AND_MOVABLE(shared_ptr)
public:
//!Constructs an empty shared_ptr.
//!Use_count() == 0 && get()== 0.
shared_ptr()
: m_pn() // never throws
{}
//!Constructs a shared_ptr that owns the pointer p. Auxiliary data will be allocated
//!with a copy of a and the object will be deleted with a copy of d.
//!Requirements: Deleter and A's copy constructor must not throw.
explicit shared_ptr(const pointer&p, const VoidAllocator &a = VoidAllocator(), const Deleter &d = Deleter())
: m_pn(p, a, d)
{
//Check that the pointer passed is of the same type that
//the pointer the allocator defines or it's a raw pointer
typedef typename boost::pointer_to_other<pointer, T>::type ParameterPointer;
BOOST_STATIC_ASSERT((ipcdetail::is_same<pointer, ParameterPointer>::value) ||
(ipcdetail::is_pointer<pointer>::value));
ipcdetail::sp_enable_shared_from_this<T, VoidAllocator, Deleter>( m_pn, ipcdetail::get_pointer(p), ipcdetail::get_pointer(p) );
}
//!Constructs a shared_ptr that shares ownership with r and stores p.
//!Postconditions: get() == p && use_count() == r.use_count().
//!Throws: nothing.
shared_ptr(const shared_ptr &other, const pointer &p)
: m_pn(other.m_pn, p)
{}
//!If r is empty, constructs an empty shared_ptr. Otherwise, constructs
//!a shared_ptr that shares ownership with r. Never throws.
template<class Y>
shared_ptr(shared_ptr<Y, VoidAllocator, Deleter> const & r)
: m_pn(r.m_pn) // never throws
{}
//!Constructs a shared_ptr that shares ownership with r and stores
//!a copy of the pointer stored in r.
template<class Y>
explicit shared_ptr(weak_ptr<Y, VoidAllocator, Deleter> const & r)
: m_pn(r.m_pn) // may throw
{}
//!Move-Constructs a shared_ptr that takes ownership of other resource and
//!other is put in default-constructed state.
//!Throws: nothing.
explicit shared_ptr(BOOST_RV_REF(shared_ptr) other)
: m_pn()
{ this->swap(other); }
/// @cond
template<class Y>
shared_ptr(shared_ptr<Y, VoidAllocator, Deleter> const & r, ipcdetail::static_cast_tag)
: m_pn( pointer(static_cast<T*>(ipcdetail::get_pointer(r.m_pn.get_pointer())))
, r.m_pn)
{}
template<class Y>
shared_ptr(shared_ptr<Y, VoidAllocator, Deleter> const & r, ipcdetail::const_cast_tag)
: m_pn( pointer(const_cast<T*>(ipcdetail::get_pointer(r.m_pn.get_pointer())))
, r.m_pn)
{}
template<class Y>
shared_ptr(shared_ptr<Y, VoidAllocator, Deleter> const & r, ipcdetail::dynamic_cast_tag)
: m_pn( pointer(dynamic_cast<T*>(ipcdetail::get_pointer(r.m_pn.get_pointer())))
, r.m_pn)
{
if(!m_pn.get_pointer()){ // need to allocate new counter -- the cast failed
m_pn = ipcdetail::shared_count<T, VoidAllocator, Deleter>();
}
}
/// @endcond
//!Equivalent to shared_ptr(r).swap(*this).
//!Never throws
template<class Y>
shared_ptr & operator=(shared_ptr<Y, VoidAllocator, Deleter> const & r)
{
m_pn = r.m_pn; // shared_count::op= doesn't throw
return *this;
}
//!Equivalent to shared_ptr(r).swap(*this).
//!Never throws
shared_ptr & operator=(BOOST_COPY_ASSIGN_REF(shared_ptr) r)
{
m_pn = r.m_pn; // shared_count::op= doesn't throw
return *this;
}
//!Move-assignment. Equivalent to shared_ptr(other).swap(*this).
//!Never throws
shared_ptr & operator=(BOOST_RV_REF(shared_ptr) other) // never throws
{
this_type(other).swap(*this);
return *this;
}
//!This is equivalent to:
//!this_type().swap(*this);
void reset()
{
this_type().swap(*this);
}
//!This is equivalent to:
//!this_type(p, a, d).swap(*this);
template<class Pointer>
void reset(const Pointer &p, const VoidAllocator &a = VoidAllocator(), const Deleter &d = Deleter())
{
//Check that the pointer passed is of the same type that
//the pointer the allocator defines or it's a raw pointer
typedef typename boost::pointer_to_other<Pointer, T>::type ParameterPointer;
BOOST_STATIC_ASSERT((ipcdetail::is_same<pointer, ParameterPointer>::value) ||
(ipcdetail::is_pointer<Pointer>::value));
this_type(p, a, d).swap(*this);
}
template<class Y>
void reset(shared_ptr<Y, VoidAllocator, Deleter> const & r, const pointer &p)
{
this_type(r, p).swap(*this);
}
//!Returns a reference to the
//!pointed type
reference operator* () const // never throws
{ BOOST_ASSERT(m_pn.get_pointer() != 0); return *m_pn.get_pointer(); }
//!Returns the pointer pointing
//!to the owned object
pointer operator-> () const // never throws
{ BOOST_ASSERT(m_pn.get_pointer() != 0); return m_pn.get_pointer(); }
//!Returns the pointer pointing
//!to the owned object
pointer get() const // never throws
{ return m_pn.get_pointer(); }
/// @cond
// implicit conversion to "bool"
void unspecified_bool_type_func() const {}
typedef void (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{ return !m_pn.get_pointer() ? 0 : &this_type::unspecified_bool_type_func; }
/// @endcond
//!Not operator.
//!Returns true if this->get() != 0, false otherwise
bool operator! () const // never throws
{ return !m_pn.get_pointer(); }
//!Returns use_count() == 1.
//!unique() might be faster than use_count()
bool unique() const // never throws
{ return m_pn.unique(); }
//!Returns the number of shared_ptr objects, *this included,
//!that share ownership with *this, or an unspecified nonnegative
//!value when *this is empty.
//!use_count() is not necessarily efficient. Use only for
//!debugging and testing purposes, not for production code.
long use_count() const // never throws
{ return m_pn.use_count(); }
//!Exchanges the contents of the two
//!smart pointers.
void swap(shared_ptr<T, VoidAllocator, Deleter> & other) // never throws
{ m_pn.swap(other.m_pn); }
/// @cond
template<class T2, class A2, class Deleter2>
bool _internal_less(shared_ptr<T2, A2, Deleter2> const & rhs) const
{ return m_pn < rhs.m_pn; }
const_deleter_pointer get_deleter() const
{ return m_pn.get_deleter(); }
// const_allocator_pointer get_allocator() const
// { return m_pn.get_allocator(); }
private:
template<class T2, class A2, class Deleter2> friend class shared_ptr;
template<class T2, class A2, class Deleter2> friend class weak_ptr;
ipcdetail::shared_count<T, VoidAllocator, Deleter> m_pn; // reference counter
/// @endcond
}; // shared_ptr
template<class T, class VoidAllocator, class Deleter, class U, class VoidAllocator2, class Deleter2> inline
bool operator==(shared_ptr<T, VoidAllocator, Deleter> const & a, shared_ptr<U, VoidAllocator2, Deleter2> const & b)
{ return a.get() == b.get(); }
template<class T, class VoidAllocator, class Deleter, class U, class VoidAllocator2, class Deleter2> inline
bool operator!=(shared_ptr<T, VoidAllocator, Deleter> const & a, shared_ptr<U, VoidAllocator2, Deleter2> const & b)
{ return a.get() != b.get(); }
template<class T, class VoidAllocator, class Deleter, class U, class VoidAllocator2, class Deleter2> inline
bool operator<(shared_ptr<T, VoidAllocator, Deleter> const & a, shared_ptr<U, VoidAllocator2, Deleter2> const & b)
{ return a._internal_less(b); }
template<class T, class VoidAllocator, class Deleter> inline
void swap(shared_ptr<T, VoidAllocator, Deleter> & a, shared_ptr<T, VoidAllocator, Deleter> & b)
{ a.swap(b); }
template<class T, class VoidAllocator, class Deleter, class U> inline
shared_ptr<T, VoidAllocator, Deleter> static_pointer_cast(shared_ptr<U, VoidAllocator, Deleter> const & r)
{ return shared_ptr<T, VoidAllocator, Deleter>(r, ipcdetail::static_cast_tag()); }
template<class T, class VoidAllocator, class Deleter, class U> inline
shared_ptr<T, VoidAllocator, Deleter> const_pointer_cast(shared_ptr<U, VoidAllocator, Deleter> const & r)
{ return shared_ptr<T, VoidAllocator, Deleter>(r, ipcdetail::const_cast_tag()); }
template<class T, class VoidAllocator, class Deleter, class U> inline
shared_ptr<T, VoidAllocator, Deleter> dynamic_pointer_cast(shared_ptr<U, VoidAllocator, Deleter> const & r)
{ return shared_ptr<T, VoidAllocator, Deleter>(r, ipcdetail::dynamic_cast_tag()); }
// get_pointer() enables boost::mem_fn to recognize shared_ptr
template<class T, class VoidAllocator, class Deleter> inline
T * get_pointer(shared_ptr<T, VoidAllocator, Deleter> const & p)
{ return p.get(); }
// operator<<
template<class E, class T, class Y, class VoidAllocator, class Deleter> inline
std::basic_ostream<E, T> & operator<<
(std::basic_ostream<E, T> & os, shared_ptr<Y, VoidAllocator, Deleter> const & p)
{ os << p.get(); return os; }
//!Returns the type of a shared pointer
//!of type T with the allocator boost::interprocess::allocator allocator
//!and boost::interprocess::deleter deleter
//!that can be constructed in the given managed segment type.
template<class T, class ManagedMemory>
struct managed_shared_ptr
{
typedef typename ManagedMemory::template allocator<void>::type void_allocator;
typedef typename ManagedMemory::template deleter<T>::type deleter;
typedef shared_ptr< T, void_allocator, deleter> type;
};
//!Returns an instance of a shared pointer constructed
//!with the default allocator and deleter from a pointer
//!of type T that has been allocated in the passed managed segment
template<class T, class ManagedMemory>
inline typename managed_shared_ptr<T, ManagedMemory>::type
make_managed_shared_ptr(T *constructed_object, ManagedMemory &managed_memory)
{
return typename managed_shared_ptr<T, ManagedMemory>::type
( constructed_object
, managed_memory.template get_allocator<void>()
, managed_memory.template get_deleter<T>()
);
}
//!Returns an instance of a shared pointer constructed
//!with the default allocator and deleter from a pointer
//!of type T that has been allocated in the passed managed segment.
//!Does not throw, return null shared pointer in error.
template<class T, class ManagedMemory>
inline typename managed_shared_ptr<T, ManagedMemory>::type
make_managed_shared_ptr(T *constructed_object, ManagedMemory &managed_memory, std::nothrow_t)
{
try{
return typename managed_shared_ptr<T, ManagedMemory>::type
( constructed_object
, managed_memory.template get_allocator<void>()
, managed_memory.template get_deleter<T>()
);
}
catch(...){
return typename managed_shared_ptr<T, ManagedMemory>::type();
}
}
} // namespace interprocess
/// @cond
#if defined(_MSC_VER) && (_MSC_VER < 1400)
// get_pointer() enables boost::mem_fn to recognize shared_ptr
template<class T, class VoidAllocator, class Deleter> inline
T * get_pointer(boost::interprocess::shared_ptr<T, VoidAllocator, Deleter> const & p)
{ return p.get(); }
#endif
/// @endcond
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_SHARED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,551 @@
//////////////////////////////////////////////////////////////////////////////
// I, Howard Hinnant, hereby place this code in the public domain.
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of
// Howard Hinnant's unique_ptr emulation code.
//
// (C) Copyright Ion Gaztanaga 2006. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_UNIQUE_PTR_HPP_INCLUDED
#define BOOST_INTERPROCESS_UNIQUE_PTR_HPP_INCLUDED
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/assert.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/pointer_type.hpp>
#include <boost/interprocess/detail/move.hpp>
#include <boost/compressed_pair.hpp>
#include <boost/static_assert.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/type_traits.hpp>
#include <boost/interprocess/smart_ptr/deleter.hpp>
#include <cstddef>
//!\file
//!Describes the smart pointer unique_ptr
namespace boost{
namespace interprocess{
/// @cond
template <class T, class D> class unique_ptr;
namespace ipcdetail {
template <class T> struct unique_ptr_error;
template <class T, class D>
struct unique_ptr_error<const unique_ptr<T, D> >
{
typedef unique_ptr<T, D> type;
};
} //namespace ipcdetail {
/// @endcond
//!Template unique_ptr stores a pointer to an object and deletes that object
//!using the associated deleter when it is itself destroyed (such as when
//!leaving block scope.
//!
//!The unique_ptr provides a semantics of strict ownership. A unique_ptr owns the
//!object it holds a pointer to.
//!
//!A unique_ptr is not CopyConstructible, nor CopyAssignable, however it is
//!MoveConstructible and Move-Assignable.
//!
//!The uses of unique_ptr include providing exception safety for dynamically
//!allocated memory, passing ownership of dynamically allocated memory to a
//!function, and returning dynamically allocated memory from a function
//!
//!A client-supplied template argument D must be a
//!function pointer or functor for which, given a value d of type D and a pointer
//!ptr to a type T*, the expression d(ptr) is
//!valid and has the effect of deallocating the pointer as appropriate for that
//!deleter. D may also be an lvalue-reference to a deleter.
//!
//!If the deleter D maintains state, it is intended that this state stay with
//!the associated pointer as ownership is transferred
//!from unique_ptr to unique_ptr. The deleter state need never be copied,
//!only moved or swapped as pointer ownership
//!is moved around. That is, the deleter need only be MoveConstructible,
//!MoveAssignable, and Swappable, and need not be CopyConstructible
//!(unless copied into the unique_ptr) nor CopyAssignable.
template <class T, class D>
class unique_ptr
{
/// @cond
struct nat {int for_bool_;};
typedef typename ipcdetail::add_reference<D>::type deleter_reference;
typedef typename ipcdetail::add_reference<const D>::type deleter_const_reference;
/// @endcond
public:
typedef T element_type;
typedef D deleter_type;
typedef typename ipcdetail::pointer_type<T, D>::type pointer;
//!Requires: D must be default constructible, and that construction must not
//!throw an exception. D must not be a reference type.
//!
//!Effects: Constructs a unique_ptr which owns nothing.
//!
//!Postconditions: get() == 0. get_deleter() returns a reference to a
//!default constructed deleter D.
//!
//!Throws: nothing.
unique_ptr()
: ptr_(pointer(0))
{}
//!Requires: The expression D()(p) must be well formed. The default constructor
//!of D must not throw an exception.
//!
//!D must not be a reference type.
//!
//!Effects: Constructs a unique_ptr which owns p.
//!
//!Postconditions: get() == p. get_deleter() returns a reference to a default constructed deleter D.
//!
//!Throws: nothing.
explicit unique_ptr(pointer p)
: ptr_(p)
{}
//!Requires: The expression d(p) must be well formed.
//!
//!Postconditions: get() == p. get_deleter() returns a reference to the
//!internally stored deleter. If D is a
//!reference type then get_deleter() returns a reference to the lvalue d.
//!
//!Throws: nothing.
unique_ptr(pointer p
,typename ipcdetail::if_<ipcdetail::is_reference<D>
,D
,typename ipcdetail::add_reference<const D>::type>::type d)
: ptr_(p, d)
{}
//!Requires: If the deleter is not a reference type, construction of the
//!deleter D from an lvalue D must not throw an exception.
//!
//!Effects: Constructs a unique_ptr which owns the pointer which u owns
//!(if any). If the deleter is not a reference type, it is move constructed
//!from u's deleter, otherwise the reference is copy constructed from u's deleter.
//!
//!After the construction, u no longer owns a pointer.
//![ Note: The deleter constructor can be implemented with
//! boost::interprocess::forward<D>. -end note ]
//!
//!Postconditions: get() == value u.get() had before the construction.
//!get_deleter() returns a reference to the internally stored deleter which
//!was constructed from u.get_deleter(). If D is a reference type then get_-
//!deleter() and u.get_deleter() both reference the same lvalue deleter.
//!
//!Throws: nothing.
unique_ptr(BOOST_RV_REF(unique_ptr) u)
: ptr_(u.release(), boost::interprocess::forward<D>(u.get_deleter()))
{}
//!Requires: If D is not a reference type, construction of the deleter
//!D from an rvalue of type E must be well formed
//!and not throw an exception. If D is a reference type, then E must be
//!the same type as D (diagnostic required). unique_ptr<U, E>::pointer
//!must be implicitly convertible to pointer.
//!
//!Effects: Constructs a unique_ptr which owns the pointer which u owns
//!(if any). If the deleter is not a reference
//!type, it is move constructed from u's deleter, otherwise the reference
//!is copy constructed from u's deleter.
//!
//!After the construction, u no longer owns a pointer.
//!
//!postconditions get() == value u.get() had before the construction,
//!modulo any required offset adjustments
//!resulting from the cast from U* to T*. get_deleter() returns a reference to the internally stored deleter which
//!was constructed from u.get_deleter().
//!
//!Throws: nothing.
template <class U, class E>
unique_ptr(BOOST_RV_REF_2_TEMPL_ARGS(unique_ptr, U, E) u,
typename ipcdetail::enable_if_c<
ipcdetail::is_convertible<typename unique_ptr<U, E>::pointer, pointer>::value &&
ipcdetail::is_convertible<E, D>::value &&
(
!ipcdetail::is_reference<D>::value ||
ipcdetail::is_same<D, E>::value
)
,
nat
>::type = nat())
: ptr_(const_cast<unique_ptr<U,E>&>(u).release(), boost::interprocess::move<D>(u.get_deleter()))
{}
//!Effects: If get() == 0 there are no effects. Otherwise get_deleter()(get()).
//!
//!Throws: nothing.
~unique_ptr()
{ reset(); }
// assignment
//!Requires: Assignment of the deleter D from an rvalue D must not throw an exception.
//!
//!Effects: reset(u.release()) followed by a move assignment from u's deleter to
//!this deleter.
//!
//!Postconditions: This unique_ptr now owns the pointer which u owned, and u no
//!longer owns it.
//!
//!Returns: *this.
//!
//!Throws: nothing.
unique_ptr& operator=(BOOST_RV_REF(unique_ptr) u)
{
reset(u.release());
ptr_.second() = boost::interprocess::move(u.get_deleter());
return *this;
}
//!Requires: Assignment of the deleter D from an rvalue D must not
//!throw an exception. U* must be implicitly convertible to T*.
//!
//!Effects: reset(u.release()) followed by a move assignment from
//!u's deleter to this deleter. If either D or E is
//!a reference type, then the referenced lvalue deleter participates
//!in the move assignment.
//!
//!Postconditions: This unique_ptr now owns the pointer which u owned,
//!and u no longer owns it.
//!
//!Returns: *this.
//!
//!Throws: nothing.
template <class U, class E>
unique_ptr& operator=(BOOST_RV_REF_2_TEMPL_ARGS(unique_ptr, U, E) u)
{
reset(u.release());
ptr_.second() = boost::interprocess::move(u.get_deleter());
return *this;
}
//!Assigns from the literal 0 or NULL.
//!
//!Effects: reset().
//!
//!Postcondition: get() == 0
//!
//!Returns: *this.
//!
//!Throws: nothing.
unique_ptr& operator=(int nat::*)
{
reset();
return *this;
}
//!Requires: get() != 0.
//!Returns: *get().
//!Throws: nothing.
typename ipcdetail::add_reference<T>::type operator*() const
{ return *ptr_.first(); }
//!Requires: get() != 0.
//!Returns: get().
//!Throws: nothing.
pointer operator->() const
{ return ptr_.first(); }
//!Returns: The stored pointer.
//!Throws: nothing.
pointer get() const
{ return ptr_.first(); }
//!Returns: A reference to the stored deleter.
//!
//!Throws: nothing.
deleter_reference get_deleter()
{ return ptr_.second(); }
//!Returns: A const reference to the stored deleter.
//!
//!Throws: nothing.
deleter_const_reference get_deleter() const
{ return ptr_.second(); }
//!Returns: An unspecified value that, when used in boolean
//!contexts, is equivalent to get() != 0.
//!
//!Throws: nothing.
operator int nat::*() const
{ return ptr_.first() ? &nat::for_bool_ : 0; }
//!Postcondition: get() == 0.
//!
//!Returns: The value get() had at the start of the call to release.
//!
//!Throws: nothing.
pointer release()
{
pointer tmp = ptr_.first();
ptr_.first() = 0;
return tmp;
}
//!Effects: If p == get() there are no effects. Otherwise get_deleter()(get()).
//!
//!Postconditions: get() == p.
//!
//!Throws: nothing.
void reset(pointer p = 0)
{
if (ptr_.first() != p){
if (ptr_.first())
ptr_.second()(ptr_.first());
ptr_.first() = p;
}
}
//!Requires: The deleter D is Swappable and will not throw an exception under swap.
//!
//!Effects: The stored pointers of this and u are exchanged.
//! The stored deleters are swapped (unqualified).
//!Throws: nothing.
void swap(unique_ptr& u)
{ ptr_.swap(u.ptr_); }
/// @cond
private:
boost::compressed_pair<pointer, D> ptr_;
BOOST_MOVABLE_BUT_NOT_COPYABLE(unique_ptr)
template <class U, class E> unique_ptr(unique_ptr<U, E>&);
template <class U> unique_ptr(U&, typename ipcdetail::unique_ptr_error<U>::type = 0);
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&);
template <class U> typename ipcdetail::unique_ptr_error<U>::type operator=(U&);
/// @endcond
};
/*
template <class T, class D>
class unique_ptr<T[], D>
{
struct nat {int for_bool_;};
typedef typename ipcdetail::add_reference<D>::type deleter_reference;
typedef typename ipcdetail::add_reference<const D>::type deleter_const_reference;
public:
typedef T element_type;
typedef D deleter_type;
typedef typename ipcdetail::pointer_type<T, D>::type pointer;
// constructors
unique_ptr() : ptr_(pointer()) {}
explicit unique_ptr(pointer p) : ptr_(p) {}
unique_ptr(pointer p, typename if_<
boost::is_reference<D>,
D,
typename ipcdetail::add_reference<const D>::type>::type d)
: ptr_(p, d) {}
unique_ptr(const unique_ptr& u)
: ptr_(const_cast<unique_ptr&>(u).release(), u.get_deleter()) {}
// destructor
~unique_ptr() {reset();}
// assignment
unique_ptr& operator=(const unique_ptr& cu)
{
unique_ptr& u = const_cast<unique_ptr&>(cu);
reset(u.release());
ptr_.second() = u.get_deleter();
return *this;
}
unique_ptr& operator=(int nat::*)
{
reset();
return *this;
}
// observers
typename ipcdetail::add_reference<T>::type operator[](std::size_t i) const {return ptr_.first()[i];}
pointer get() const {return ptr_.first();}
deleter_reference get_deleter() {return ptr_.second();}
deleter_const_reference get_deleter() const {return ptr_.second();}
operator int nat::*() const {return ptr_.first() ? &nat::for_bool_ : 0;}
// modifiers
pointer release()
{
pointer tmp = ptr_.first();
ptr_.first() = 0;
return tmp;
}
void reset(pointer p = 0)
{
if (ptr_.first() != p)
{
if (ptr_.first())
ptr_.second()(ptr_.first());
ptr_.first() = p;
}
}
void swap(unique_ptr& u) {ptr_.swap(u.ptr_);}
private:
boost::compressed_pair<pointer, D> ptr_;
template <class U, class E> unique_ptr(U p, E,
typename boost::enable_if<boost::is_convertible<U, pointer> >::type* = 0);
template <class U> explicit unique_ptr(U,
typename boost::enable_if<boost::is_convertible<U, pointer> >::type* = 0);
unique_ptr(unique_ptr&);
template <class U> unique_ptr(U&, typename ipcdetail::unique_ptr_error<U>::type = 0);
unique_ptr& operator=(unique_ptr&);
template <class U> typename ipcdetail::unique_ptr_error<U>::type operator=(U&);
};
template <class T, class D, std::size_t N>
class unique_ptr<T[N], D>
{
struct nat {int for_bool_;};
typedef typename ipcdetail::add_reference<D>::type deleter_reference;
typedef typename ipcdetail::add_reference<const D>::type deleter_const_reference;
public:
typedef T element_type;
typedef D deleter_type;
typedef typename ipcdetail::pointer_type<T, D>::type pointer;
static const std::size_t size = N;
// constructors
unique_ptr() : ptr_(0) {}
explicit unique_ptr(pointer p) : ptr_(p) {}
unique_ptr(pointer p, typename if_<
boost::is_reference<D>,
D,
typename ipcdetail::add_reference<const D>::type>::type d)
: ptr_(p, d) {}
unique_ptr(const unique_ptr& u)
: ptr_(const_cast<unique_ptr&>(u).release(), u.get_deleter()) {}
// destructor
~unique_ptr() {reset();}
// assignment
unique_ptr& operator=(const unique_ptr& cu)
{
unique_ptr& u = const_cast<unique_ptr&>(cu);
reset(u.release());
ptr_.second() = u.get_deleter();
return *this;
}
unique_ptr& operator=(int nat::*)
{
reset();
return *this;
}
// observers
typename ipcdetail::add_reference<T>::type operator[](std::size_t i) const {return ptr_.first()[i];}
pointer get() const {return ptr_.first();}
deleter_reference get_deleter() {return ptr_.second();}
deleter_const_reference get_deleter() const {return ptr_.second();}
operator int nat::*() const {return ptr_.first() ? &nat::for_bool_ : 0;}
// modifiers
pointer release()
{
pointer tmp = ptr_.first();
ptr_.first() = 0;
return tmp;
}
void reset(pointer p = 0)
{
if (ptr_.first() != p)
{
if (ptr_.first())
ptr_.second()(ptr_.first(), N);
ptr_.first() = p;
}
}
void swap(unique_ptr& u) {ptr_.swap(u.ptr_);}
private:
boost::compressed_pair<pointer, D> ptr_;
template <class U, class E> unique_ptr(U p, E,
typename boost::enable_if<boost::is_convertible<U, pointer> >::type* = 0);
template <class U> explicit unique_ptr(U,
typename boost::enable_if<boost::is_convertible<U, pointer> >::type* = 0);
unique_ptr(unique_ptr&);
template <class U> unique_ptr(U&, typename ipcdetail::unique_ptr_error<U>::type = 0);
unique_ptr& operator=(unique_ptr&);
template <class U> typename ipcdetail::unique_ptr_error<U>::type operator=(U&);
};
*/
template <class T, class D> inline
void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y)
{ x.swap(y); }
template <class T1, class D1, class T2, class D2> inline
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y)
{ return x.get() == y.get(); }
template <class T1, class D1, class T2, class D2> inline
bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y)
{ return x.get() != y.get(); }
template <class T1, class D1, class T2, class D2> inline
bool operator <(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y)
{ return x.get() < y.get(); }
template <class T1, class D1, class T2, class D2> inline
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y)
{ return x.get() <= y.get(); }
template <class T1, class D1, class T2, class D2> inline
bool operator >(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y)
{ return x.get() > y.get(); }
template <class T1, class D1, class T2, class D2> inline
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y)
{ return x.get() >= y.get(); }
//!Returns the type of a unique pointer
//!of type T with boost::interprocess::deleter deleter
//!that can be constructed in the given managed segment type.
template<class T, class ManagedMemory>
struct managed_unique_ptr
{
typedef unique_ptr
< T
, typename ManagedMemory::template deleter<T>::type
> type;
};
//!Returns an instance of a unique pointer constructed
//!with boost::interproces::deleter from a pointer
//!of type T that has been allocated in the passed managed segment
template<class T, class ManagedMemory>
inline typename managed_unique_ptr<T, ManagedMemory>::type
make_managed_unique_ptr(T *constructed_object, ManagedMemory &managed_memory)
{
return typename managed_unique_ptr<T, ManagedMemory>::type
(constructed_object, managed_memory.template get_deleter<T>());
}
} //namespace interprocess{
} //namespace boost{
#include <boost/interprocess/detail/config_end.hpp>
#endif //#ifndef BOOST_INTERPROCESS_UNIQUE_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,259 @@
//////////////////////////////////////////////////////////////////////////////
//
// This file is the adaptation for Interprocess of boost/weak_ptr.hpp
//
// (C) Copyright Peter Dimov 2001, 2002, 2003
// (C) Copyright Ion Gaztanaga 2006-2009.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_WEAK_PTR_HPP_INCLUDED
#define BOOST_INTERPROCESS_WEAK_PTR_HPP_INCLUDED
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/smart_ptr/shared_ptr.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/smart_ptr/deleter.hpp>
#include <boost/pointer_to_other.hpp>
//!\file
//!Describes the smart pointer weak_ptr.
namespace boost{
namespace interprocess{
//!The weak_ptr class template stores a "weak reference" to an object
//!that's already managed by a shared_ptr. To access the object, a weak_ptr
//!can be converted to a shared_ptr using the shared_ptr constructor or the
//!member function lock. When the last shared_ptr to the object goes away
//!and the object is deleted, the attempt to obtain a shared_ptr from the
//!weak_ptr instances that refer to the deleted object will fail: the constructor
//!will throw an exception of type bad_weak_ptr, and weak_ptr::lock will
//!return an empty shared_ptr.
//!
//!Every weak_ptr meets the CopyConstructible and Assignable requirements
//!of the C++ Standard Library, and so can be used in standard library containers.
//!Comparison operators are supplied so that weak_ptr works with the standard
//!library's associative containers.
//!
//!weak_ptr operations never throw exceptions.
//!
//!The class template is parameterized on T, the type of the object pointed to.
template<class T, class A, class D>
class weak_ptr
{
/// @cond
private:
// Borland 5.5.1 specific workarounds
typedef weak_ptr<T, A, D> this_type;
typedef typename boost::pointer_to_other
<typename A::pointer, T>::type pointer;
typedef typename ipcdetail::add_reference
<T>::type reference;
typedef typename ipcdetail::add_reference
<T>::type const_reference;
/// @endcond
public:
typedef T element_type;
typedef T value_type;
//!Effects: Constructs an empty weak_ptr.
//!Postconditions: use_count() == 0.
weak_ptr()
: m_pn() // never throws
{}
// generated copy constructor, assignment, destructor are fine
//
// The "obvious" converting constructor implementation:
//
// template<class Y>
// weak_ptr(weak_ptr<Y> const & r): m_px(r.m_px), m_pn(r.m_pn) // never throws
// {
// }
//
// has a serious problem.
//
// r.m_px may already have been invalidated. The m_px(r.m_px)
// conversion may require access to *r.m_px (virtual inheritance).
//
// It is not possible to avoid spurious access violations since
// in multithreaded programs r.m_px may be invalidated at any point.
//!Effects: If r is empty, constructs an empty weak_ptr; otherwise,
//!constructs a weak_ptr that shares ownership with r as if by storing a
//!copy of the pointer stored in r.
//!
//!Postconditions: use_count() == r.use_count().
//!
//!Throws: nothing.
template<class Y>
weak_ptr(weak_ptr<Y, A, D> const & r)
: m_pn(r.m_pn) // never throws
{
//Construct a temporary shared_ptr so that nobody
//can destroy the value while constructing this
const shared_ptr<T, A, D> &ref = r.lock();
m_pn.set_pointer(ref.get());
}
//!Effects: If r is empty, constructs an empty weak_ptr; otherwise,
//!constructs a weak_ptr that shares ownership with r as if by storing a
//!copy of the pointer stored in r.
//!
//!Postconditions: use_count() == r.use_count().
//!
//!Throws: nothing.
template<class Y>
weak_ptr(shared_ptr<Y, A, D> const & r)
: m_pn(r.m_pn) // never throws
{}
//!Effects: Equivalent to weak_ptr(r).swap(*this).
//!
//!Throws: nothing.
//!
//!Notes: The implementation is free to meet the effects (and the
//!implied guarantees) via different means, without creating a temporary.
template<class Y>
weak_ptr & operator=(weak_ptr<Y, A, D> const & r) // never throws
{
//Construct a temporary shared_ptr so that nobody
//can destroy the value while constructing this
const shared_ptr<T, A, D> &ref = r.lock();
m_pn = r.m_pn;
m_pn.set_pointer(ref.get());
return *this;
}
//!Effects: Equivalent to weak_ptr(r).swap(*this).
//!
//!Throws: nothing.
//!
//!Notes: The implementation is free to meet the effects (and the
//!implied guarantees) via different means, without creating a temporary.
template<class Y>
weak_ptr & operator=(shared_ptr<Y, A, D> const & r) // never throws
{ m_pn = r.m_pn; return *this; }
//!Returns: expired()? shared_ptr<T>(): shared_ptr<T>(*this).
//!
//!Throws: nothing.
shared_ptr<T, A, D> lock() const // never throws
{
// optimization: avoid throw overhead
if(expired()){
return shared_ptr<element_type, A, D>();
}
BOOST_TRY{
return shared_ptr<element_type, A, D>(*this);
}
BOOST_CATCH(bad_weak_ptr const &){
// Q: how can we get here?
// A: another thread may have invalidated r after the use_count test above.
return shared_ptr<element_type, A, D>();
}
BOOST_CATCH_END
}
//!Returns: 0 if *this is empty; otherwise, the number of shared_ptr objects
//!that share ownership with *this.
//!
//!Throws: nothing.
//!
//!Notes: use_count() is not necessarily efficient. Use only for debugging and
//!testing purposes, not for production code.
long use_count() const // never throws
{ return m_pn.use_count(); }
//!Returns: Returns: use_count() == 0.
//!
//!Throws: nothing.
//!
//!Notes: expired() may be faster than use_count().
bool expired() const // never throws
{ return m_pn.use_count() == 0; }
//!Effects: Equivalent to:
//!weak_ptr().swap(*this).
void reset() // never throws in 1.30+
{ this_type().swap(*this); }
//!Effects: Exchanges the contents of the two
//!smart pointers.
//!
//!Throws: nothing.
void swap(this_type & other) // never throws
{ ipcdetail::do_swap(m_pn, other.m_pn); }
/// @cond
template<class T2, class A2, class D2>
bool _internal_less(weak_ptr<T2, A2, D2> const & rhs) const
{ return m_pn < rhs.m_pn; }
template<class Y>
void _internal_assign(const ipcdetail::shared_count<Y, A, D> & pn2)
{
m_pn = pn2;
}
private:
template<class T2, class A2, class D2> friend class shared_ptr;
template<class T2, class A2, class D2> friend class weak_ptr;
ipcdetail::weak_count<T, A, D> m_pn; // reference counter
/// @endcond
}; // weak_ptr
template<class T, class A, class D, class U, class A2, class D2> inline
bool operator<(weak_ptr<T, A, D> const & a, weak_ptr<U, A2, D2> const & b)
{ return a._internal_less(b); }
template<class T, class A, class D> inline
void swap(weak_ptr<T, A, D> & a, weak_ptr<T, A, D> & b)
{ a.swap(b); }
//!Returns the type of a weak pointer
//!of type T with the allocator boost::interprocess::allocator allocator
//!and boost::interprocess::deleter deleter
//!that can be constructed in the given managed segment type.
template<class T, class ManagedMemory>
struct managed_weak_ptr
{
typedef weak_ptr
< T
, typename ManagedMemory::template allocator<void>::type
, typename ManagedMemory::template deleter<T>::type
> type;
};
//!Returns an instance of a weak pointer constructed
//!with the default allocator and deleter from a pointer
//!of type T that has been allocated in the passed managed segment
template<class T, class ManagedMemory>
inline typename managed_weak_ptr<T, ManagedMemory>::type
make_managed_weak_ptr(T *constructed_object, ManagedMemory &managed_memory)
{
return typename managed_weak_ptr<T, ManagedMemory>::type
( constructed_object
, managed_memory.template get_allocator<void>()
, managed_memory.template get_deleter<T>()
);
}
} // namespace interprocess
} // namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif // #ifndef BOOST_INTERPROCESS_WEAK_PTR_HPP_INCLUDED