Added boost header
This commit is contained in:
174
test/external/boost/lambda/detail/actions.hpp
vendored
Normal file
174
test/external/boost/lambda/detail/actions.hpp
vendored
Normal file
@@ -0,0 +1,174 @@
|
||||
// -- Boost Lambda Library - actions.hpp ----------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ----------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_ACTIONS_HPP
|
||||
#define BOOST_LAMBDA_ACTIONS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
|
||||
template<int Arity, class Act> class action;
|
||||
|
||||
// these need to be defined here, since the corresponding lambda
|
||||
// functions are members of lambda_functor classes
|
||||
|
||||
class assignment_action {};
|
||||
class subscript_action {};
|
||||
|
||||
template <class Action> class other_action;
|
||||
|
||||
// action for specifying the explicit return type
|
||||
template <class RET> class explicit_return_type_action {};
|
||||
|
||||
// action for preventing the expansion of a lambda expression
|
||||
struct protect_action {};
|
||||
|
||||
// must be defined here, comma is a special case
|
||||
struct comma_action {};
|
||||
|
||||
|
||||
// actions, for which the existence of protect is checked in return type
|
||||
// deduction.
|
||||
|
||||
template <class Action> struct is_protectable {
|
||||
BOOST_STATIC_CONSTANT(bool, value = false);
|
||||
};
|
||||
|
||||
// NOTE: comma action is protectable. Other protectable actions
|
||||
// are listed in operator_actions.hpp
|
||||
|
||||
template<> struct is_protectable<other_action<comma_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// this type is used in return type deductions to signal that deduction
|
||||
// did not find a result. It does not necessarily mean an error, it commonly
|
||||
// means that something else should be tried.
|
||||
class unspecified {};
|
||||
}
|
||||
|
||||
// function action is a special case: bind functions can be called with
|
||||
// the return type specialized explicitly e.g. bind<int>(foo);
|
||||
// If this call syntax is used, the return type is stored in the latter
|
||||
// argument of function_action template. Otherwise the argument gets the type
|
||||
// 'unspecified'.
|
||||
// This argument is only relevant in the return type deduction code
|
||||
template <int I, class Result_type = detail::unspecified>
|
||||
class function_action {};
|
||||
|
||||
template<class T> class function_action<1, T> {
|
||||
public:
|
||||
template<class RET, class A1>
|
||||
static RET apply(A1& a1) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<2, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2>
|
||||
static RET apply(A1& a1, A2& a2) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<3, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<4, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<5, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<6, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<7, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<8, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
|
||||
A8& a8) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<9, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
|
||||
A8& a8, A9& a9) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> class function_action<10, T> {
|
||||
public:
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9, class A10>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7,
|
||||
A8& a8, A9& a9, A10& a10) {
|
||||
return function_adaptor<typename boost::remove_cv<A1>::type>::
|
||||
template apply<RET>(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
110
test/external/boost/lambda/detail/arity_code.hpp
vendored
Normal file
110
test/external/boost/lambda/detail/arity_code.hpp
vendored
Normal file
@@ -0,0 +1,110 @@
|
||||
// -- Boost Lambda Library -------------------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_ARITY_CODE_HPP
|
||||
#define BOOST_LAMBDA_ARITY_CODE_HPP
|
||||
|
||||
#include "boost/type_traits/cv_traits.hpp"
|
||||
#include "boost/type_traits/transform_traits.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// These constants state, whether a lambda_functor instantiation results from
|
||||
// an expression which contains no placeholders (NONE),
|
||||
// only free1 placeholders (FIRST),
|
||||
// free2 placeholders and maybe free1 placeholders (SECOND),
|
||||
// free3 and maybe free1 and free2 placeholders (THIRD),
|
||||
// freeE placeholders and maybe free1 and free2 (EXCEPTION).
|
||||
// RETHROW means, that a rethrow expression is used somewhere in the lambda_functor.
|
||||
|
||||
enum { NONE = 0x00, // Notice we are using bits as flags here.
|
||||
FIRST = 0x01,
|
||||
SECOND = 0x02,
|
||||
THIRD = 0x04,
|
||||
EXCEPTION = 0x08,
|
||||
RETHROW = 0x10};
|
||||
|
||||
|
||||
template<class T>
|
||||
struct get_tuple_arity;
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <class T> struct get_arity_;
|
||||
|
||||
} // end detail;
|
||||
|
||||
template <class T> struct get_arity {
|
||||
|
||||
BOOST_STATIC_CONSTANT(int, value = detail::get_arity_<typename boost::remove_cv<typename boost::remove_reference<T>::type>::type>::value);
|
||||
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<class T>
|
||||
struct get_arity_ {
|
||||
BOOST_STATIC_CONSTANT(int, value = 0);
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct get_arity_<lambda_functor<T> > {
|
||||
BOOST_STATIC_CONSTANT(int, value = get_arity<T>::value);
|
||||
};
|
||||
|
||||
template<class Action, class Args>
|
||||
struct get_arity_<lambda_functor_base<Action, Args> > {
|
||||
BOOST_STATIC_CONSTANT(int, value = get_tuple_arity<Args>::value);
|
||||
};
|
||||
|
||||
template<int I>
|
||||
struct get_arity_<placeholder<I> > {
|
||||
BOOST_STATIC_CONSTANT(int, value = I);
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
template<class T>
|
||||
struct get_tuple_arity {
|
||||
BOOST_STATIC_CONSTANT(int, value = get_arity<typename T::head_type>::value | get_tuple_arity<typename T::tail_type>::value);
|
||||
};
|
||||
|
||||
|
||||
template<>
|
||||
struct get_tuple_arity<null_type> {
|
||||
BOOST_STATIC_CONSTANT(int, value = 0);
|
||||
};
|
||||
|
||||
|
||||
// Does T have placeholder<I> as it's subexpression?
|
||||
|
||||
template<class T, int I>
|
||||
struct has_placeholder {
|
||||
BOOST_STATIC_CONSTANT(bool, value = (get_arity<T>::value & I) != 0);
|
||||
};
|
||||
|
||||
template<int I, int J>
|
||||
struct includes_placeholder {
|
||||
BOOST_STATIC_CONSTANT(bool, value = (J & I) != 0);
|
||||
};
|
||||
|
||||
template<int I, int J>
|
||||
struct lacks_placeholder {
|
||||
BOOST_STATIC_CONSTANT(bool, value = ((J & I) == 0));
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
1879
test/external/boost/lambda/detail/bind_functions.hpp
vendored
Normal file
1879
test/external/boost/lambda/detail/bind_functions.hpp
vendored
Normal file
File diff suppressed because it is too large
Load Diff
50
test/external/boost/lambda/detail/control_constructs_common.hpp
vendored
Normal file
50
test/external/boost/lambda/detail/control_constructs_common.hpp
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
// Boost Lambda Library -- control_constructs_common.hpp -------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000 Gary Powell (powellg@amazon.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_CONTROL_CONSTRUCTS_COMMON_HPP)
|
||||
#define BOOST_CONTROL_CONSTRUCTS_COMMON_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// special types of lambda functors, used with control structures
|
||||
// to guarantee that they are composed correctly.
|
||||
|
||||
template<class Tag, class LambdaFunctor>
|
||||
class tagged_lambda_functor;
|
||||
|
||||
template<class Tag, class Args>
|
||||
class tagged_lambda_functor<Tag, lambda_functor<Args> >
|
||||
: public lambda_functor<Args>
|
||||
{
|
||||
public:
|
||||
tagged_lambda_functor(const Args& a) : lambda_functor<Args>(a) {}
|
||||
|
||||
tagged_lambda_functor(const lambda_functor<Args>& a)
|
||||
: lambda_functor<Args>(a) {}
|
||||
|
||||
// for the no body cases in control structures.
|
||||
tagged_lambda_functor() : lambda_functor<Args>() {}
|
||||
};
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#endif // BOOST_CONTROL_CONSTRUCTS_COMMON_HPP
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
789
test/external/boost/lambda/detail/function_adaptors.hpp
vendored
Normal file
789
test/external/boost/lambda/detail/function_adaptors.hpp
vendored
Normal file
@@ -0,0 +1,789 @@
|
||||
// Boost Lambda Library - function_adaptors.hpp ----------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_FUNCTION_ADAPTORS_HPP
|
||||
#define BOOST_LAMBDA_FUNCTION_ADAPTORS_HPP
|
||||
|
||||
#include "boost/mpl/has_xxx.hpp"
|
||||
#include "boost/tuple/tuple.hpp"
|
||||
#include "boost/type_traits/same_traits.hpp"
|
||||
#include "boost/type_traits/remove_reference.hpp"
|
||||
#include "boost/type_traits/remove_cv.hpp"
|
||||
#include "boost/type_traits/add_const.hpp"
|
||||
#include "boost/type_traits/add_volatile.hpp"
|
||||
#include "boost/utility/result_of.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
namespace detail {
|
||||
|
||||
BOOST_MPL_HAS_XXX_TEMPLATE_DEF(sig)
|
||||
|
||||
template<class Tuple>
|
||||
struct remove_references_from_elements {
|
||||
typedef typename boost::tuples::cons<
|
||||
typename boost::remove_reference<typename Tuple::head_type>::type,
|
||||
typename remove_references_from_elements<typename Tuple::tail_type>::type
|
||||
> type;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct remove_references_from_elements<boost::tuples::null_type> {
|
||||
typedef boost::tuples::null_type type;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
template <class Func> struct function_adaptor {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<Func>::type plainF;
|
||||
|
||||
#if !defined(BOOST_NO_RESULT_OF)
|
||||
// Support functors that use the boost::result_of return type convention.
|
||||
template<class Tuple, int Length, bool HasSig>
|
||||
struct result_converter;
|
||||
template<class Tuple, int Length>
|
||||
struct result_converter<Tuple, Length, true>
|
||||
: plainF::template sig<
|
||||
typename detail::remove_references_from_elements<Tuple>::type
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 0, false>
|
||||
: result_of<plainF()>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 1, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 2, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 3, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type,
|
||||
typename tuples::element<3, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 4, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type,
|
||||
typename tuples::element<3, Tuple>::type,
|
||||
typename tuples::element<4, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 5, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type,
|
||||
typename tuples::element<3, Tuple>::type,
|
||||
typename tuples::element<4, Tuple>::type,
|
||||
typename tuples::element<5, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 6, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type,
|
||||
typename tuples::element<3, Tuple>::type,
|
||||
typename tuples::element<4, Tuple>::type,
|
||||
typename tuples::element<5, Tuple>::type,
|
||||
typename tuples::element<6, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 7, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type,
|
||||
typename tuples::element<3, Tuple>::type,
|
||||
typename tuples::element<4, Tuple>::type,
|
||||
typename tuples::element<5, Tuple>::type,
|
||||
typename tuples::element<6, Tuple>::type,
|
||||
typename tuples::element<7, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 8, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type,
|
||||
typename tuples::element<3, Tuple>::type,
|
||||
typename tuples::element<4, Tuple>::type,
|
||||
typename tuples::element<5, Tuple>::type,
|
||||
typename tuples::element<6, Tuple>::type,
|
||||
typename tuples::element<7, Tuple>::type,
|
||||
typename tuples::element<8, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
template<class Tuple>
|
||||
struct result_converter<Tuple, 9, false>
|
||||
: result_of<plainF(
|
||||
typename tuples::element<1, Tuple>::type,
|
||||
typename tuples::element<2, Tuple>::type,
|
||||
typename tuples::element<3, Tuple>::type,
|
||||
typename tuples::element<4, Tuple>::type,
|
||||
typename tuples::element<5, Tuple>::type,
|
||||
typename tuples::element<6, Tuple>::type,
|
||||
typename tuples::element<7, Tuple>::type,
|
||||
typename tuples::element<8, Tuple>::type,
|
||||
typename tuples::element<9, Tuple>::type)
|
||||
>
|
||||
{};
|
||||
|
||||
// we do not know the return type off-hand, we must ask it from Func
|
||||
// To sig we pass a cons list, where the head is the function object type
|
||||
// itself (potentially cv-qualified)
|
||||
// and the tail contains the types of the actual arguments to be passed
|
||||
// to the function object. The arguments can be cv qualified
|
||||
// as well.
|
||||
template <class Args>
|
||||
struct sig
|
||||
: result_converter<
|
||||
Args
|
||||
, tuples::length<typename Args::tail_type>::value
|
||||
, detail::has_sig<plainF>::value
|
||||
>
|
||||
{};
|
||||
#else // BOOST_NO_RESULT_OF
|
||||
|
||||
template <class Args> class sig {
|
||||
typedef typename detail::remove_reference_and_cv<Func>::type plainF;
|
||||
public:
|
||||
typedef typename plainF::template sig<
|
||||
typename detail::remove_references_from_elements<Args>::type
|
||||
>::type type;
|
||||
};
|
||||
#endif
|
||||
|
||||
template<class RET, class A1>
|
||||
static RET apply(A1& a1) {
|
||||
return a1();
|
||||
}
|
||||
template<class RET, class A1, class A2>
|
||||
static RET apply(A1& a1, A2& a2) {
|
||||
return a1(a2);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3) {
|
||||
return a1(a2, a3);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return a1(a2, a3, a4);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return a1(a2, a3, a4, a5);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return a1(a2, a3, a4, a5, a6);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7) {
|
||||
return a1(a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7, A8& a8) {
|
||||
return a1(a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8, class A9>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7, A8& a8, A9& a9) {
|
||||
return a1(a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
template<class RET, class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8, class A9, class A10>
|
||||
static RET apply(A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6,
|
||||
A7& a7, A8& a8, A9& a9, A10& a10) {
|
||||
return a1(a2, a3, a4, a5, a6, a7, a8, a9, a10);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Func> struct function_adaptor<const Func>; // error
|
||||
|
||||
// -- function adaptors with data member access
|
||||
template <class Object, class T>
|
||||
struct function_adaptor<T Object::*> {
|
||||
|
||||
// typedef detail::unspecified type;
|
||||
|
||||
// T can have qualifiers and can be a reference type
|
||||
// We get the return type by adding const, if the object through which
|
||||
// the data member is accessed is const, and finally adding a reference
|
||||
template<class Args> class sig {
|
||||
typedef typename boost::tuples::element<1, Args>::type argument_type;
|
||||
typedef typename boost::remove_reference<
|
||||
argument_type
|
||||
>::type unref_type;
|
||||
|
||||
typedef typename detail::IF<boost::is_const<unref_type>::value,
|
||||
typename boost::add_const<T>::type,
|
||||
T
|
||||
>::RET properly_consted_return_type;
|
||||
|
||||
typedef typename detail::IF<boost::is_volatile<unref_type>::value,
|
||||
typename boost::add_volatile<properly_consted_return_type>::type,
|
||||
properly_consted_return_type
|
||||
>::RET properly_cvd_return_type;
|
||||
|
||||
|
||||
public:
|
||||
typedef typename detail::IF<boost::is_reference<argument_type>::value,
|
||||
typename boost::add_reference<properly_cvd_return_type>::type,
|
||||
typename boost::remove_cv<T>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, volatile Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const volatile Object& o) {
|
||||
return o.*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, volatile Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
template <class RET>
|
||||
static RET apply( T Object::*data, const volatile Object* o) {
|
||||
return o->*data;
|
||||
}
|
||||
};
|
||||
|
||||
// -- function adaptors with 1 argument apply
|
||||
|
||||
template <class Result>
|
||||
struct function_adaptor<Result (void)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply(Result (*func)()) {
|
||||
return func();
|
||||
}
|
||||
};
|
||||
|
||||
template <class Result>
|
||||
struct function_adaptor<Result (*)(void)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply(Result (*func)()) {
|
||||
return func();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 2 argument apply
|
||||
template <class Object, class Result>
|
||||
struct function_adaptor<Result (Object::*)() const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)() const, const Object* o) {
|
||||
return (o->*func)();
|
||||
}
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)() const, const Object& o) {
|
||||
return (o.*func)();
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Result>
|
||||
struct function_adaptor<Result (Object::*)()> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)(), Object* o) {
|
||||
return (o->*func)();
|
||||
}
|
||||
template <class RET>
|
||||
static Result apply( Result (Object::*func)(), Object& o) {
|
||||
return (o.*func)();
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Result>
|
||||
struct function_adaptor<Result (Arg1)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply(Result (*func)(Arg1), A1& a1) {
|
||||
return func(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply(Result (*func)(Arg1), A1& a1) {
|
||||
return func(a1);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 3 argument apply
|
||||
template <class Object, class Arg1, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1) const, const Object* o,
|
||||
A1& a1) {
|
||||
return (o->*func)(a1);
|
||||
}
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1) const, const Object& o,
|
||||
A1& a1) {
|
||||
return (o.*func)(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1), Object* o, A1& a1) {
|
||||
return (o->*func)(a1);
|
||||
}
|
||||
template <class RET, class A1>
|
||||
static Result apply( Result (Object::*func)(Arg1), Object& o, A1& a1) {
|
||||
return (o.*func)(a1);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply(Result (*func)(Arg1, Arg2), A1& a1, A2& a2) {
|
||||
return func(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply(Result (*func)(Arg1, Arg2), A1& a1, A2& a2) {
|
||||
return func(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 4 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2) const, const Object* o, A1& a1, A2& a2) {
|
||||
return (o->*func)(a1, a2);
|
||||
}
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2) const, const Object& o, A1& a1, A2& a2) {
|
||||
return (o.*func)(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2), Object* o, A1& a1, A2& a2) {
|
||||
return (o->*func)(a1, a2);
|
||||
}
|
||||
template <class RET, class A1, class A2>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2), Object& o, A1& a1, A2& a2) {
|
||||
return (o.*func)(a1, a2);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3), A1& a1, A2& a2, A3& a3) {
|
||||
return func(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3), A1& a1, A2& a2, A3& a3) {
|
||||
return func(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 5 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3) const, const Object* o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o->*func)(a1, a2, a3);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3) const, const Object& o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o.*func)(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3), Object* o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o->*func)(a1, a2, a3);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3), Object& o, A1& a1, A2& a2, A3& a3) {
|
||||
return (o.*func)(a1, a2, a3);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4), A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return func(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4), A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return func(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 6 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o->*func)(a1, a2, a3, a4);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o.*func)(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4), Object* o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o->*func)(a1, a2, a3, a4);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4), Object& o, A1& a1, A2& a2, A3& a3, A4& a4) {
|
||||
return (o.*func)(a1, a2, a3, a4);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return func(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return func(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 7 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return func(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return func(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 8 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 9 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// -- function adaptors with 10 argument apply
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const, const Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8) const, const Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Object, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Result>
|
||||
struct function_adaptor<Result (Object::*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), Object* o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o->*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8>
|
||||
static Result apply( Result (Object::*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8), Object& o, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8) {
|
||||
return (o.*func)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9, class Result>
|
||||
struct function_adaptor<Result (Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9, class Result>
|
||||
struct function_adaptor<Result (*)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
|
||||
|
||||
template<class T> struct sig { typedef Result type; };
|
||||
template <class RET, class A1, class A2, class A3, class A4, class A5, class A6, class A7, class A8, class A9>
|
||||
static Result apply(Result (*func)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9), A1& a1, A2& a2, A3& a3, A4& a4, A5& a5, A6& a6, A7& a7, A8& a8, A9& a9) {
|
||||
return func(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
104
test/external/boost/lambda/detail/is_instance_of.hpp
vendored
Normal file
104
test/external/boost/lambda/detail/is_instance_of.hpp
vendored
Normal file
@@ -0,0 +1,104 @@
|
||||
// Boost Lambda Library - is_instance_of.hpp ---------------------
|
||||
|
||||
// Copyright (C) 2001 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ---------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_IS_INSTANCE_OF
|
||||
#define BOOST_LAMBDA_IS_INSTANCE_OF
|
||||
|
||||
#include "boost/config.hpp" // for BOOST_STATIC_CONSTANT
|
||||
#include "boost/type_traits/conversion_traits.hpp" // for is_convertible
|
||||
#include "boost/preprocessor/enum_shifted_params.hpp"
|
||||
#include "boost/preprocessor/repeat_2nd.hpp"
|
||||
|
||||
// is_instance_of --------------------------------
|
||||
//
|
||||
// is_instance_of_n<A, B>::value is true, if type A is
|
||||
// an instantiation of a template B, or A derives from an instantiation
|
||||
// of template B
|
||||
//
|
||||
// n is the number of template arguments for B
|
||||
//
|
||||
// Example:
|
||||
// is_instance_of_2<std::istream, basic_stream>::value == true
|
||||
|
||||
// The original implementation was somewhat different, with different versions
|
||||
// for different compilers. However, there was still a problem
|
||||
// with gcc.3.0.2 and 3.0.3 compilers, which didn't think regard
|
||||
// is_instance_of_N<...>::value was a constant.
|
||||
// John Maddock suggested the way around this problem by building
|
||||
// is_instance_of templates using boost::is_convertible.
|
||||
// Now we only have one version of is_instance_of templates, which delagate
|
||||
// all the nasty compiler tricks to is_convertible.
|
||||
|
||||
#define BOOST_LAMBDA_CLASS(z, N,A) BOOST_PP_COMMA_IF(N) class
|
||||
#define BOOST_LAMBDA_CLASS_ARG(z, N,A) BOOST_PP_COMMA_IF(N) class A##N
|
||||
#define BOOST_LAMBDA_ARG(z, N,A) BOOST_PP_COMMA_IF(N) A##N
|
||||
|
||||
#define BOOST_LAMBDA_CLASS_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_CLASS, NAME)
|
||||
|
||||
#define BOOST_LAMBDA_CLASS_ARG_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_CLASS_ARG, NAME)
|
||||
|
||||
#define BOOST_LAMBDA_ARG_LIST(n, NAME) BOOST_PP_REPEAT(n, BOOST_LAMBDA_ARG, NAME)
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
#define BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE(INDEX) \
|
||||
\
|
||||
namespace detail { \
|
||||
\
|
||||
template <template<BOOST_LAMBDA_CLASS_LIST(INDEX,T)> class F> \
|
||||
struct BOOST_PP_CAT(conversion_tester_,INDEX) { \
|
||||
template<BOOST_LAMBDA_CLASS_ARG_LIST(INDEX,A)> \
|
||||
BOOST_PP_CAT(conversion_tester_,INDEX) \
|
||||
(const F<BOOST_LAMBDA_ARG_LIST(INDEX,A)>&); \
|
||||
}; \
|
||||
\
|
||||
} /* end detail */ \
|
||||
\
|
||||
template <class From, template <BOOST_LAMBDA_CLASS_LIST(INDEX,T)> class To> \
|
||||
struct BOOST_PP_CAT(is_instance_of_,INDEX) \
|
||||
{ \
|
||||
private: \
|
||||
typedef ::boost::is_convertible< \
|
||||
From, \
|
||||
BOOST_PP_CAT(detail::conversion_tester_,INDEX)<To> \
|
||||
> helper_type; \
|
||||
\
|
||||
public: \
|
||||
BOOST_STATIC_CONSTANT(bool, value = helper_type::value); \
|
||||
};
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_HELPER(z, N, A) BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE( BOOST_PP_INC(N) )
|
||||
|
||||
// Generate the traits for 1-4 argument templates
|
||||
|
||||
BOOST_PP_REPEAT_2ND(4,BOOST_LAMBDA_HELPER,FOO)
|
||||
|
||||
#undef BOOST_LAMBDA_HELPER
|
||||
#undef BOOST_LAMBDA_IS_INSTANCE_OF_TEMPLATE
|
||||
#undef BOOST_LAMBDA_CLASS
|
||||
#undef BOOST_LAMBDA_ARG
|
||||
#undef BOOST_LAMBDA_CLASS_ARG
|
||||
#undef BOOST_LAMBDA_CLASS_LIST
|
||||
#undef BOOST_LAMBDA_ARG_LIST
|
||||
#undef BOOST_LAMBDA_CLASS_ARG_LIST
|
||||
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
48
test/external/boost/lambda/detail/lambda_config.hpp
vendored
Normal file
48
test/external/boost/lambda/detail/lambda_config.hpp
vendored
Normal file
@@ -0,0 +1,48 @@
|
||||
// Boost Lambda Library - lambda_config.hpp ------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ---------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_CONFIG_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_CONFIG_HPP
|
||||
|
||||
// add to boost/config.hpp
|
||||
// for now
|
||||
|
||||
|
||||
# if defined __GNUC__
|
||||
# if (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
|
||||
# define BOOST_REF_TO_FUNC_CONFLICTS_WITH_REF_TO_T
|
||||
# define BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
|
||||
# endif
|
||||
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 97)
|
||||
# define BOOST_NO_TEMPLATED_STREAMS
|
||||
# define BOOST_LAMBDA_INCORRECT_BIND_OVERLOADING
|
||||
# endif
|
||||
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 95)
|
||||
# define BOOST_LAMBDA_FAILS_IN_TEMPLATE_KEYWORD_AFTER_SCOPE_OPER
|
||||
# endif
|
||||
# endif // __GNUC__
|
||||
|
||||
|
||||
#if defined __KCC
|
||||
|
||||
#define BOOST_NO_FDECL_TEMPLATES_AS_TEMPLATE_TEMPLATE_PARAMS
|
||||
|
||||
#endif // __KCC
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
615
test/external/boost/lambda/detail/lambda_functor_base.hpp
vendored
Normal file
615
test/external/boost/lambda/detail/lambda_functor_base.hpp
vendored
Normal file
@@ -0,0 +1,615 @@
|
||||
// Boost Lambda Library lambda_functor_base.hpp -----------------------------
|
||||
//
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_HPP
|
||||
|
||||
#include "boost/type_traits/add_reference.hpp"
|
||||
#include "boost/type_traits/add_const.hpp"
|
||||
#include "boost/type_traits/remove_const.hpp"
|
||||
#include "boost/lambda/detail/lambda_fwd.hpp"
|
||||
#include "boost/lambda/detail/lambda_traits.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable:4512) //assignment operator could not be generated
|
||||
#endif
|
||||
|
||||
// for return type deductions we wrap bound argument to this class,
|
||||
// which fulfils the base class contract for lambda_functors
|
||||
template <class T>
|
||||
class identity {
|
||||
|
||||
T elem;
|
||||
public:
|
||||
|
||||
typedef T element_t;
|
||||
|
||||
// take all parameters as const references. Note that non-const references
|
||||
// stay as they are.
|
||||
typedef typename boost::add_reference<
|
||||
typename boost::add_const<T>::type
|
||||
>::type par_t;
|
||||
|
||||
explicit identity(par_t t) : elem(t) {}
|
||||
|
||||
template <typename SigArgs>
|
||||
struct sig { typedef typename boost::remove_const<element_t>::type type; };
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return elem; }
|
||||
};
|
||||
|
||||
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
template <class T>
|
||||
inline lambda_functor<identity<T&> > var(T& t) { return identity<T&>(t); }
|
||||
|
||||
// for lambda functors, var is an identity operator. It was forbidden
|
||||
// at some point, but we might want to var something that can be a
|
||||
// non-lambda functor or a lambda functor.
|
||||
template <class T>
|
||||
lambda_functor<T> var(const lambda_functor<T>& t) { return t; }
|
||||
|
||||
template <class T> struct var_type {
|
||||
typedef lambda_functor<identity<T&> > type;
|
||||
};
|
||||
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
lambda_functor<identity<typename bound_argument_conversion<const T>::type> >
|
||||
constant(const T& t) {
|
||||
return identity<typename bound_argument_conversion<const T>::type>(t);
|
||||
}
|
||||
template <class T>
|
||||
lambda_functor<T> constant(const lambda_functor<T>& t) { return t; }
|
||||
|
||||
template <class T> struct constant_type {
|
||||
typedef
|
||||
lambda_functor<
|
||||
identity<typename bound_argument_conversion<const T>::type>
|
||||
> type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <class T>
|
||||
inline lambda_functor<identity<const T&> > constant_ref(const T& t) {
|
||||
return identity<const T&>(t);
|
||||
}
|
||||
template <class T>
|
||||
lambda_functor<T> constant_ref(const lambda_functor<T>& t) { return t; }
|
||||
|
||||
template <class T> struct constant_ref_type {
|
||||
typedef
|
||||
lambda_functor<identity<const T&> > type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// as_lambda_functor turns any types to lambda functors
|
||||
// non-lambda_functors will be bound argument types
|
||||
template <class T>
|
||||
struct as_lambda_functor {
|
||||
typedef typename
|
||||
detail::remove_reference_and_cv<T>::type plain_T;
|
||||
typedef typename
|
||||
detail::IF<is_lambda_functor<plain_T>::value,
|
||||
plain_T,
|
||||
lambda_functor<
|
||||
identity<typename bound_argument_conversion<T>::type>
|
||||
>
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// turns arbitrary objects into lambda functors
|
||||
template <class T>
|
||||
inline
|
||||
lambda_functor<identity<typename bound_argument_conversion<const T>::type> >
|
||||
to_lambda_functor(const T& t) {
|
||||
return identity<typename bound_argument_conversion<const T>::type>(t);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline lambda_functor<T>
|
||||
to_lambda_functor(const lambda_functor<T>& t) {
|
||||
return t;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
|
||||
|
||||
// In a call constify_rvals<T>::go(x)
|
||||
// x should be of type T. If T is a non-reference type, do
|
||||
// returns x as const reference.
|
||||
// Otherwise the type doesn't change.
|
||||
// The purpose of this class is to avoid
|
||||
// 'cannot bind temporaries to non-const references' errors.
|
||||
template <class T> struct constify_rvals {
|
||||
template<class U>
|
||||
static inline const U& go(const U& u) { return u; }
|
||||
};
|
||||
|
||||
template <class T> struct constify_rvals<T&> {
|
||||
template<class U>
|
||||
static inline U& go(U& u) { return u; }
|
||||
};
|
||||
|
||||
// check whether one of the elements of a tuple (cons list) is of type
|
||||
// null_type. Needed, because the compiler goes ahead and instantiates
|
||||
// sig template for nullary case even if the nullary operator() is not
|
||||
// called
|
||||
template <class T> struct is_null_type
|
||||
{ BOOST_STATIC_CONSTANT(bool, value = false); };
|
||||
|
||||
template <> struct is_null_type<null_type>
|
||||
{ BOOST_STATIC_CONSTANT(bool, value = true); };
|
||||
|
||||
template<class Tuple> struct has_null_type {
|
||||
BOOST_STATIC_CONSTANT(bool, value = (is_null_type<typename Tuple::head_type>::value || has_null_type<typename Tuple::tail_type>::value));
|
||||
};
|
||||
template<> struct has_null_type<null_type> {
|
||||
BOOST_STATIC_CONSTANT(bool, value = false);
|
||||
};
|
||||
|
||||
|
||||
// helpers -------------------
|
||||
|
||||
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_argument_types_ {
|
||||
typedef typename as_lambda_functor<typename Args::head_type>::type lf_t;
|
||||
typedef typename lf_t::inherited::template sig<SigArgs>::type el_t;
|
||||
public:
|
||||
typedef
|
||||
boost::tuples::cons<
|
||||
el_t,
|
||||
typename deduce_argument_types_<typename Args::tail_type, SigArgs>::type
|
||||
> type;
|
||||
};
|
||||
|
||||
template<class SigArgs>
|
||||
class deduce_argument_types_<null_type, SigArgs> {
|
||||
public:
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
|
||||
// // note that tuples cannot have plain function types as elements.
|
||||
// // Hence, all other types will be non-const, except references to
|
||||
// // functions.
|
||||
// template <class T> struct remove_reference_except_from_functions {
|
||||
// typedef typename boost::remove_reference<T>::type t;
|
||||
// typedef typename detail::IF<boost::is_function<t>::value, T, t>::RET type;
|
||||
// };
|
||||
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_non_ref_argument_types_ {
|
||||
typedef typename as_lambda_functor<typename Args::head_type>::type lf_t;
|
||||
typedef typename lf_t::inherited::template sig<SigArgs>::type el_t;
|
||||
public:
|
||||
typedef
|
||||
boost::tuples::cons<
|
||||
// typename detail::remove_reference_except_from_functions<el_t>::type,
|
||||
typename boost::remove_reference<el_t>::type,
|
||||
typename deduce_non_ref_argument_types_<typename Args::tail_type, SigArgs>::type
|
||||
> type;
|
||||
};
|
||||
|
||||
template<class SigArgs>
|
||||
class deduce_non_ref_argument_types_<null_type, SigArgs> {
|
||||
public:
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// -------------
|
||||
|
||||
// take stored Args and Open Args, and return a const list with
|
||||
// deduced elements (real return types)
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_argument_types {
|
||||
typedef typename deduce_argument_types_<Args, SigArgs>::type t1;
|
||||
public:
|
||||
typedef typename detail::IF<
|
||||
has_null_type<t1>::value, null_type, t1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// take stored Args and Open Args, and return a const list with
|
||||
// deduced elements (references are stripped from the element types)
|
||||
|
||||
template<class Args, class SigArgs>
|
||||
class deduce_non_ref_argument_types {
|
||||
typedef typename deduce_non_ref_argument_types_<Args, SigArgs>::type t1;
|
||||
public:
|
||||
typedef typename detail::IF<
|
||||
has_null_type<t1>::value, null_type, t1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template <int N, class Args, class SigArgs>
|
||||
struct nth_return_type_sig {
|
||||
typedef typename
|
||||
as_lambda_functor<
|
||||
typename boost::tuples::element<N, Args>::type
|
||||
// typename tuple_element_as_reference<N, Args>::type
|
||||
>::type lf_type;
|
||||
|
||||
typedef typename lf_type::inherited::template sig<SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<int N, class Tuple> struct element_or_null {
|
||||
typedef typename boost::tuples::element<N, Tuple>::type type;
|
||||
};
|
||||
|
||||
template<int N> struct element_or_null<N, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
// -- lambda_functor base ---------------------
|
||||
|
||||
// the explicit_return_type_action case -----------------------------------
|
||||
template<class RET, class Args>
|
||||
class lambda_functor_base<explicit_return_type_action<RET>, Args>
|
||||
{
|
||||
public:
|
||||
Args args;
|
||||
|
||||
typedef RET result_type;
|
||||
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template <class SigArgs> struct sig { typedef RET type; };
|
||||
|
||||
template<class RET_, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
return detail::constify_rvals<RET>::go(
|
||||
detail::r_select<RET>::go(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS));
|
||||
}
|
||||
};
|
||||
|
||||
// the protect_action case -----------------------------------
|
||||
template<class Args>
|
||||
class lambda_functor_base<protect_action, Args>
|
||||
{
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const
|
||||
{
|
||||
CALL_USE_ARGS;
|
||||
return boost::tuples::get<0>(args);
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
// typedef typename detail::tuple_element_as_reference<0, SigArgs>::type type;
|
||||
typedef typename boost::tuples::element<0, Args>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// Do nothing --------------------------------------------------------
|
||||
class do_nothing_action {};
|
||||
|
||||
template<class Args>
|
||||
class lambda_functor_base<do_nothing_action, Args> {
|
||||
// Args args;
|
||||
public:
|
||||
// explicit lambda_functor_base(const Args& a) {}
|
||||
lambda_functor_base() {}
|
||||
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS> RET call(CALL_FORMAL_ARGS) const {
|
||||
return CALL_USE_ARGS;
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig { typedef void type; };
|
||||
};
|
||||
|
||||
|
||||
// These specializations provide a shorter notation to define actions.
|
||||
// These lambda_functor_base instances take care of the recursive evaluation
|
||||
// of the arguments and pass the evaluated arguments to the apply function
|
||||
// of an action class. To make action X work with these classes, one must
|
||||
// instantiate the lambda_functor_base as:
|
||||
// lambda_functor_base<action<ARITY, X>, Args>
|
||||
// Where ARITY is the arity of the apply function in X
|
||||
|
||||
// The return type is queried as:
|
||||
// return_type_N<X, EvaluatedArgumentTypes>::type
|
||||
// for which there must be a specialization.
|
||||
|
||||
// Function actions, casts, throws,... all go via these classes.
|
||||
|
||||
|
||||
template<class Act, class Args>
|
||||
class lambda_functor_base<action<0, Act>, Args>
|
||||
{
|
||||
public:
|
||||
// Args args; not needed
|
||||
explicit lambda_functor_base(const Args& /*a*/) {}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename return_type_N<Act, null_type>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
CALL_USE_ARGS;
|
||||
return Act::template apply<RET>();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART
|
||||
#error "Multiple defines of BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART"
|
||||
#endif
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(ARITY) \
|
||||
template<class Act, class Args> \
|
||||
class lambda_functor_base<action<ARITY, Act>, Args> \
|
||||
{ \
|
||||
public: \
|
||||
Args args; \
|
||||
\
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::deduce_argument_types<Args, SigArgs>::type rets_t; \
|
||||
public: \
|
||||
typedef typename \
|
||||
return_type_N_prot<Act, rets_t>::type type; \
|
||||
}; \
|
||||
\
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
using boost::tuples::get; \
|
||||
using detail::constify_rvals; \
|
||||
using detail::r_select; \
|
||||
using detail::element_or_null; \
|
||||
using detail::deduce_argument_types;
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(1)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(2)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(3)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(4)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(5)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(6)
|
||||
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(7)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(8)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
typedef typename element_or_null<7, rets_t>::type rt7;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(9)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
typedef typename element_or_null<7, rets_t>::type rt7;
|
||||
typedef typename element_or_null<8, rets_t>::type rt8;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt8>::go(r_select<rt8>::go(get<8>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART(10)
|
||||
typedef typename
|
||||
deduce_argument_types<Args, tuple<CALL_REFERENCE_TYPES> >::type rets_t;
|
||||
typedef typename element_or_null<0, rets_t>::type rt0;
|
||||
typedef typename element_or_null<1, rets_t>::type rt1;
|
||||
typedef typename element_or_null<2, rets_t>::type rt2;
|
||||
typedef typename element_or_null<3, rets_t>::type rt3;
|
||||
typedef typename element_or_null<4, rets_t>::type rt4;
|
||||
typedef typename element_or_null<5, rets_t>::type rt5;
|
||||
typedef typename element_or_null<6, rets_t>::type rt6;
|
||||
typedef typename element_or_null<7, rets_t>::type rt7;
|
||||
typedef typename element_or_null<8, rets_t>::type rt8;
|
||||
typedef typename element_or_null<9, rets_t>::type rt9;
|
||||
|
||||
return Act::template apply<RET>(
|
||||
constify_rvals<rt0>::go(r_select<rt0>::go(get<0>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt1>::go(r_select<rt1>::go(get<1>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt2>::go(r_select<rt2>::go(get<2>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt3>::go(r_select<rt3>::go(get<3>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt4>::go(r_select<rt4>::go(get<4>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt5>::go(r_select<rt5>::go(get<5>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt6>::go(r_select<rt6>::go(get<6>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt7>::go(r_select<rt7>::go(get<7>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt8>::go(r_select<rt8>::go(get<8>(args), CALL_ACTUAL_ARGS)),
|
||||
constify_rvals<rt9>::go(r_select<rt9>::go(get<9>(args), CALL_ACTUAL_ARGS))
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
#undef BOOST_LAMBDA_LAMBDA_FUNCTOR_BASE_FIRST_PART
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
324
test/external/boost/lambda/detail/lambda_functors.hpp
vendored
Normal file
324
test/external/boost/lambda/detail/lambda_functors.hpp
vendored
Normal file
@@ -0,0 +1,324 @@
|
||||
// Boost Lambda Library - lambda_functors.hpp -------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
|
||||
// ------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
|
||||
|
||||
#include <boost/config.hpp>
|
||||
#include <boost/detail/workaround.hpp>
|
||||
|
||||
#if BOOST_WORKAROUND(BOOST_MSVC, == 1310)
|
||||
|
||||
#include <boost/mpl/or.hpp>
|
||||
#include <boost/utility/enable_if.hpp>
|
||||
#include <boost/type_traits/is_array.hpp>
|
||||
|
||||
#define BOOST_LAMBDA_DISABLE_IF_ARRAY1(A1, R1)\
|
||||
typename lazy_disable_if<is_array<A1>, typename R1 >::type
|
||||
#define BOOST_LAMBDA_DISABLE_IF_ARRAY2(A1, A2, R1, R2) \
|
||||
typename lazy_disable_if<mpl::or_<is_array<A1>, is_array<A2> >, typename R1, R2 >::type
|
||||
#define BOOST_LAMBDA_DISABLE_IF_ARRAY3(A1, A2, A3, R1, R2, R3) \
|
||||
typename lazy_disable_if<mpl::or_<is_array<A1>, is_array<A2>, is_array<A3> >, typename R1, R2, R3 >::type
|
||||
|
||||
#else
|
||||
|
||||
#define BOOST_LAMBDA_DISABLE_IF_ARRAY1(A1, R1) typename R1::type
|
||||
#define BOOST_LAMBDA_DISABLE_IF_ARRAY2(A1, A2, R1, R2) typename R1, R2::type
|
||||
#define BOOST_LAMBDA_DISABLE_IF_ARRAY3(A1, A2, A3, R1, R2, R3) typename R1, R2, R3::type
|
||||
|
||||
#endif
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// -- lambda_functor --------------------------------------------
|
||||
// --------------------------------------------------------------
|
||||
|
||||
//inline const null_type const_null_type() { return null_type(); }
|
||||
|
||||
namespace detail {
|
||||
namespace {
|
||||
|
||||
static const null_type constant_null_type = null_type();
|
||||
|
||||
} // unnamed
|
||||
} // detail
|
||||
|
||||
class unused {};
|
||||
|
||||
#define cnull_type() detail::constant_null_type
|
||||
|
||||
// -- free variables types --------------------------------------------------
|
||||
|
||||
// helper to work around the case where the nullary return type deduction
|
||||
// is always performed, even though the functor is not nullary
|
||||
namespace detail {
|
||||
template<int N, class Tuple> struct get_element_or_null_type {
|
||||
typedef typename
|
||||
detail::tuple_element_as_reference<N, Tuple>::type type;
|
||||
};
|
||||
template<int N> struct get_element_or_null_type<N, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
}
|
||||
|
||||
template <int I> struct placeholder;
|
||||
|
||||
template<> struct placeholder<FIRST> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<0, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
BOOST_STATIC_ASSERT(boost::is_reference<RET>::value);
|
||||
CALL_USE_ARGS; // does nothing, prevents warnings for unused args
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct placeholder<SECOND> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<1, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return b; }
|
||||
};
|
||||
|
||||
template<> struct placeholder<THIRD> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<2, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return c; }
|
||||
};
|
||||
|
||||
template<> struct placeholder<EXCEPTION> {
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename detail::get_element_or_null_type<3, SigArgs>::type type;
|
||||
};
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return env; }
|
||||
};
|
||||
|
||||
typedef const lambda_functor<placeholder<FIRST> > placeholder1_type;
|
||||
typedef const lambda_functor<placeholder<SECOND> > placeholder2_type;
|
||||
typedef const lambda_functor<placeholder<THIRD> > placeholder3_type;
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// free variables are lambda_functors. This is to allow uniform handling with
|
||||
// other lambda_functors.
|
||||
// -------------------------------------------------------------------
|
||||
|
||||
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable:4512) //assignment operator could not be generated
|
||||
#endif
|
||||
|
||||
// -- lambda_functor NONE ------------------------------------------------
|
||||
template <class T>
|
||||
class lambda_functor : public T
|
||||
{
|
||||
|
||||
BOOST_STATIC_CONSTANT(int, arity_bits = get_arity<T>::value);
|
||||
|
||||
public:
|
||||
typedef T inherited;
|
||||
|
||||
lambda_functor() {}
|
||||
lambda_functor(const lambda_functor& l) : inherited(l) {}
|
||||
|
||||
lambda_functor(const T& t) : inherited(t) {}
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename inherited::template
|
||||
sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
// Note that this return type deduction template is instantiated, even
|
||||
// if the nullary
|
||||
// operator() is not called at all. One must make sure that it does not fail.
|
||||
typedef typename
|
||||
inherited::template sig<null_type>::type
|
||||
nullary_return_type;
|
||||
|
||||
// Support for boost::result_of.
|
||||
template <class Sig> struct result;
|
||||
template <class F>
|
||||
struct result<F()> {
|
||||
typedef nullary_return_type type;
|
||||
};
|
||||
template <class F, class A>
|
||||
struct result<F(A)> {
|
||||
typedef typename sig<tuple<F, A> >::type type;
|
||||
};
|
||||
template <class F, class A, class B>
|
||||
struct result<F(A, B)> {
|
||||
typedef typename sig<tuple<F, A, B> >::type type;
|
||||
};
|
||||
template <class F, class A, class B, class C>
|
||||
struct result<F(A, B, C)> {
|
||||
typedef typename sig<tuple<F, A, B, C> >::type type;
|
||||
};
|
||||
|
||||
nullary_return_type operator()() const {
|
||||
return inherited::template
|
||||
call<nullary_return_type>
|
||||
(cnull_type(), cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A>
|
||||
typename inherited::template sig<tuple<A&> >::type
|
||||
operator()(A& a) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A&> >::type
|
||||
>(a, cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A>
|
||||
BOOST_LAMBDA_DISABLE_IF_ARRAY1(A, inherited::template sig<tuple<A const&> >)
|
||||
operator()(A const& a) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A const&> >::type
|
||||
>(a, cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename inherited::template sig<tuple<A&, B&> >::type
|
||||
operator()(A& a, B& b) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A&, B&> >::type
|
||||
>(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
BOOST_LAMBDA_DISABLE_IF_ARRAY2(A, B, inherited::template sig<tuple<A const&, B&> >)
|
||||
operator()(A const& a, B& b) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A const&, B&> >::type
|
||||
>(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
BOOST_LAMBDA_DISABLE_IF_ARRAY2(A, B, inherited::template sig<tuple<A&, B const&> >)
|
||||
operator()(A& a, B const& b) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A&, B const&> >::type
|
||||
>(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
BOOST_LAMBDA_DISABLE_IF_ARRAY2(A, B, inherited::template sig<tuple<A const&, B const&> >)
|
||||
operator()(A const& a, B const& b) const {
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A const&, B const&> >::type
|
||||
>(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename inherited::template sig<tuple<A&, B&, C&> >::type
|
||||
operator()(A& a, B& b, C& c) const
|
||||
{
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A&, B&, C&> >::type
|
||||
>(a, b, c, cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
BOOST_LAMBDA_DISABLE_IF_ARRAY3(A, B, C, inherited::template sig<tuple<A const&, B const&, C const&> >)
|
||||
operator()(A const& a, B const& b, C const& c) const
|
||||
{
|
||||
return inherited::template call<
|
||||
typename inherited::template sig<tuple<A const&, B const&, C const&> >::type
|
||||
>(a, b, c, cnull_type());
|
||||
}
|
||||
|
||||
// for internal calls with env
|
||||
template<CALL_TEMPLATE_ARGS>
|
||||
typename inherited::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
internal_call(CALL_FORMAL_ARGS) const {
|
||||
return inherited::template
|
||||
call<typename inherited::template
|
||||
sig<tuple<CALL_REFERENCE_TYPES> >::type>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
template<class A>
|
||||
const lambda_functor<lambda_functor_base<
|
||||
other_action<assignment_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> > >
|
||||
operator=(const A& a) const {
|
||||
return lambda_functor_base<
|
||||
other_action<assignment_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> >
|
||||
( boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type>(*this, a) );
|
||||
}
|
||||
|
||||
template<class A>
|
||||
const lambda_functor<lambda_functor_base<
|
||||
other_action<subscript_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> > >
|
||||
operator[](const A& a) const {
|
||||
return lambda_functor_base<
|
||||
other_action<subscript_action>,
|
||||
boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type> >
|
||||
( boost::tuple<lambda_functor,
|
||||
typename const_copy_argument <const A>::type>(*this, a ) );
|
||||
}
|
||||
};
|
||||
|
||||
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
// is_placeholder
|
||||
|
||||
#include <boost/is_placeholder.hpp>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
|
||||
template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::FIRST> > >
|
||||
{
|
||||
enum _vt { value = 1 };
|
||||
};
|
||||
|
||||
template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::SECOND> > >
|
||||
{
|
||||
enum _vt { value = 2 };
|
||||
};
|
||||
|
||||
template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::THIRD> > >
|
||||
{
|
||||
enum _vt { value = 3 };
|
||||
};
|
||||
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
74
test/external/boost/lambda/detail/lambda_fwd.hpp
vendored
Normal file
74
test/external/boost/lambda/detail/lambda_fwd.hpp
vendored
Normal file
@@ -0,0 +1,74 @@
|
||||
// lambda_fwd.hpp - Boost Lambda Library -------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// -------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_FWD_HPP
|
||||
#define BOOST_LAMBDA_FWD_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<class T> struct generate_error;
|
||||
|
||||
}
|
||||
// -- placeholders --------------------------------------------
|
||||
|
||||
template <int I> struct placeholder;
|
||||
|
||||
// function_adaptors
|
||||
template <class Func>
|
||||
struct function_adaptor;
|
||||
|
||||
template <int I, class Act> class action;
|
||||
|
||||
template <class Base>
|
||||
class lambda_functor;
|
||||
|
||||
template <class Act, class Args>
|
||||
class lambda_functor_base;
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
|
||||
// #define CALL_TEMPLATE_ARGS class A, class Env
|
||||
// #define CALL_FORMAL_ARGS A& a, Env& env
|
||||
// #define CALL_ACTUAL_ARGS a, env
|
||||
// #define CALL_ACTUAL_ARGS_NO_ENV a
|
||||
// #define CALL_REFERENCE_TYPES A&, Env&
|
||||
// #define CALL_PLAIN_TYPES A, Env
|
||||
#define CALL_TEMPLATE_ARGS class A, class B, class C, class Env
|
||||
#define CALL_FORMAL_ARGS A& a, B& b, C& c, Env& env
|
||||
#define CALL_ACTUAL_ARGS a, b, c, env
|
||||
#define CALL_ACTUAL_ARGS_NO_ENV a, b, c
|
||||
#define CALL_REFERENCE_TYPES A&, B&, C&, Env&
|
||||
#define CALL_PLAIN_TYPES A, B, C, Env
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
template<class A1, class A2, class A3, class A4>
|
||||
void do_nothing(A1&, A2&, A3&, A4&) {}
|
||||
|
||||
} // detail
|
||||
} // lambda
|
||||
} // boost
|
||||
|
||||
// prevent the warnings from unused arguments
|
||||
#define CALL_USE_ARGS \
|
||||
::boost::lambda::detail::do_nothing(a, b, c, env)
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
578
test/external/boost/lambda/detail/lambda_traits.hpp
vendored
Normal file
578
test/external/boost/lambda/detail/lambda_traits.hpp
vendored
Normal file
@@ -0,0 +1,578 @@
|
||||
// - lambda_traits.hpp --- Boost Lambda Library ----------------------------
|
||||
//
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
// -------------------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP
|
||||
#define BOOST_LAMBDA_LAMBDA_TRAITS_HPP
|
||||
|
||||
#include "boost/type_traits/transform_traits.hpp"
|
||||
#include "boost/type_traits/cv_traits.hpp"
|
||||
#include "boost/type_traits/function_traits.hpp"
|
||||
#include "boost/type_traits/object_traits.hpp"
|
||||
#include "boost/tuple/tuple.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// -- if construct ------------------------------------------------
|
||||
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
|
||||
|
||||
template <class Then, class Else> struct IF<false, Then, Else> {
|
||||
typedef Else RET;
|
||||
};
|
||||
|
||||
|
||||
// An if construct that doesn't instantiate the non-matching template:
|
||||
|
||||
// Called as:
|
||||
// IF_type<condition, A, B>::type
|
||||
// The matching template must define the typeded 'type'
|
||||
// I.e. A::type if condition is true, B::type if condition is false
|
||||
// Idea from Vesa Karvonen (from C&E as well I guess)
|
||||
template<class T>
|
||||
struct IF_type_
|
||||
{
|
||||
typedef typename T::type type;
|
||||
};
|
||||
|
||||
|
||||
template<bool C, class T, class E>
|
||||
struct IF_type
|
||||
{
|
||||
typedef typename
|
||||
IF_type_<typename IF<C, T, E>::RET >::type type;
|
||||
};
|
||||
|
||||
// helper that can be used to give typedef T to some type
|
||||
template <class T> struct identity_mapping { typedef T type; };
|
||||
|
||||
// An if construct for finding an integral constant 'value'
|
||||
// Does not instantiate the non-matching branch
|
||||
// Called as IF_value<condition, A, B>::value
|
||||
// If condition is true A::value must be defined, otherwise B::value
|
||||
|
||||
template<class T>
|
||||
struct IF_value_
|
||||
{
|
||||
BOOST_STATIC_CONSTANT(int, value = T::value);
|
||||
};
|
||||
|
||||
|
||||
template<bool C, class T, class E>
|
||||
struct IF_value
|
||||
{
|
||||
BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value));
|
||||
};
|
||||
|
||||
|
||||
// --------------------------------------------------------------
|
||||
|
||||
// removes reference from other than function types:
|
||||
template<class T> class remove_reference_if_valid
|
||||
{
|
||||
|
||||
typedef typename boost::remove_reference<T>::type plainT;
|
||||
public:
|
||||
typedef typename IF<
|
||||
boost::is_function<plainT>::value,
|
||||
T,
|
||||
plainT
|
||||
>::RET type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<class T> struct remove_reference_and_cv {
|
||||
typedef typename boost::remove_cv<
|
||||
typename boost::remove_reference<T>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// returns a reference to the element of tuple T
|
||||
template<int N, class T> struct tuple_element_as_reference {
|
||||
typedef typename
|
||||
boost::tuples::access_traits<
|
||||
typename boost::tuples::element<N, T>::type
|
||||
>::non_const_type type;
|
||||
};
|
||||
|
||||
// returns the cv and reverence stripped type of a tuple element
|
||||
template<int N, class T> struct tuple_element_stripped {
|
||||
typedef typename
|
||||
remove_reference_and_cv<
|
||||
typename boost::tuples::element<N, T>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// is_lambda_functor -------------------------------------------------
|
||||
|
||||
template <class T> struct is_lambda_functor_ {
|
||||
BOOST_STATIC_CONSTANT(bool, value = false);
|
||||
};
|
||||
|
||||
template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
} // end detail
|
||||
|
||||
|
||||
template <class T> struct is_lambda_functor {
|
||||
BOOST_STATIC_CONSTANT(bool,
|
||||
value =
|
||||
detail::is_lambda_functor_<
|
||||
typename detail::remove_reference_and_cv<T>::type
|
||||
>::value);
|
||||
};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// -- parameter_traits_ ---------------------------------------------
|
||||
|
||||
// An internal parameter type traits class that respects
|
||||
// the reference_wrapper class.
|
||||
|
||||
// The conversions performed are:
|
||||
// references -> compile_time_error
|
||||
// T1 -> T2,
|
||||
// reference_wrapper<T> -> T&
|
||||
// const array -> ref to const array
|
||||
// array -> ref to array
|
||||
// function -> ref to function
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
|
||||
template<class T1, class T2>
|
||||
struct parameter_traits_ {
|
||||
typedef T2 type;
|
||||
};
|
||||
|
||||
// Do not instantiate with reference types
|
||||
template<class T, class Any> struct parameter_traits_<T&, Any> {
|
||||
typedef typename
|
||||
generate_error<T&>::
|
||||
parameter_traits_class_instantiated_with_reference_type type;
|
||||
};
|
||||
|
||||
// Arrays can't be stored as plain types; convert them to references
|
||||
template<class T, int n, class Any> struct parameter_traits_<T[n], Any> {
|
||||
typedef T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n, class Any>
|
||||
struct parameter_traits_<const T[n], Any> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n, class Any>
|
||||
struct parameter_traits_<volatile T[n], Any> {
|
||||
typedef volatile T (&type)[n];
|
||||
};
|
||||
template<class T, int n, class Any>
|
||||
struct parameter_traits_<const volatile T[n], Any> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<const boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T, class Any>
|
||||
struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class Any>
|
||||
struct parameter_traits_<void, Any> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<const lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
// Are the volatile versions needed?
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<volatile lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg, class Any>
|
||||
struct parameter_traits_<const volatile lambda_functor<Arg>, Any > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
} // end namespace detail
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// traits classes for lambda expressions (bind functions, operators ...)
|
||||
|
||||
// must be instantiated with non-reference types
|
||||
|
||||
// The default is const plain type -------------------------
|
||||
// const T -> const T,
|
||||
// T -> const T,
|
||||
// references -> compile_time_error
|
||||
// reference_wrapper<T> -> T&
|
||||
// array -> const ref array
|
||||
template<class T>
|
||||
struct const_copy_argument {
|
||||
typedef typename
|
||||
detail::parameter_traits_<
|
||||
T,
|
||||
typename detail::IF<boost::is_function<T>::value, T&, const T>::RET
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// T may be a function type. Without the IF test, const would be added
|
||||
// to a function type, which is illegal.
|
||||
|
||||
// all arrays are converted to const.
|
||||
// This traits template is used for 'const T&' parameter passing
|
||||
// and thus the knowledge of the potential
|
||||
// non-constness of an actual argument is lost.
|
||||
template<class T, int n> struct const_copy_argument <T[n]> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
template<class T, int n> struct const_copy_argument <volatile T[n]> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct const_copy_argument<T&> {};
|
||||
// do not instantiate with references
|
||||
// typedef typename detail::generate_error<T&>::references_not_allowed type;
|
||||
|
||||
|
||||
template<>
|
||||
struct const_copy_argument<void> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
|
||||
// Does the same as const_copy_argument, but passes references through as such
|
||||
template<class T>
|
||||
struct bound_argument_conversion {
|
||||
typedef typename const_copy_argument<T>::type type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bound_argument_conversion<T&> {
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
// The default is non-const reference -------------------------
|
||||
// const T -> const T&,
|
||||
// T -> T&,
|
||||
// references -> compile_time_error
|
||||
// reference_wrapper<T> -> T&
|
||||
template<class T>
|
||||
struct reference_argument {
|
||||
typedef typename detail::parameter_traits_<T, T&>::type type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct reference_argument<T&> {
|
||||
typedef typename detail::generate_error<T&>::references_not_allowed type;
|
||||
};
|
||||
|
||||
template<class Arg>
|
||||
struct reference_argument<lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg>
|
||||
struct reference_argument<const lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
// Are the volatile versions needed?
|
||||
template<class Arg>
|
||||
struct reference_argument<volatile lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<class Arg>
|
||||
struct reference_argument<const volatile lambda_functor<Arg> > {
|
||||
typedef lambda_functor<Arg> type;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct reference_argument<void> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// Array to pointer conversion
|
||||
template <class T>
|
||||
struct array_to_pointer {
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <const T[N]> {
|
||||
typedef const T* type;
|
||||
};
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <T[N]> {
|
||||
typedef T* type;
|
||||
};
|
||||
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <const T (&) [N]> {
|
||||
typedef const T* type;
|
||||
};
|
||||
template <class T, int N>
|
||||
struct array_to_pointer <T (&) [N]> {
|
||||
typedef T* type;
|
||||
};
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// The call_traits for bind
|
||||
// Respects the reference_wrapper class.
|
||||
|
||||
// These templates are used outside of bind functions as well.
|
||||
// the bind_tuple_mapper provides a shorter notation for default
|
||||
// bound argument storing semantics, if all arguments are treated
|
||||
// uniformly.
|
||||
|
||||
// from template<class T> foo(const T& t) : bind_traits<const T>::type
|
||||
// from template<class T> foo(T& t) : bind_traits<T>::type
|
||||
|
||||
// Conversions:
|
||||
// T -> const T,
|
||||
// cv T -> cv T,
|
||||
// T& -> T&
|
||||
// reference_wrapper<T> -> T&
|
||||
// const reference_wrapper<T> -> T&
|
||||
// array -> const ref array
|
||||
|
||||
// make bound arguments const, this is a deliberate design choice, the
|
||||
// purpose is to prevent side effects to bound arguments that are stored
|
||||
// as copies
|
||||
template<class T>
|
||||
struct bind_traits {
|
||||
typedef const T type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bind_traits<T&> {
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
// null_types are an exception, we always want to store them as non const
|
||||
// so that other templates can assume that null_type is always without const
|
||||
template<>
|
||||
struct bind_traits<null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// the bind_tuple_mapper, bind_type_generators may
|
||||
// introduce const to null_type
|
||||
template<>
|
||||
struct bind_traits<const null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// Arrays can't be stored as plain types; convert them to references.
|
||||
// All arrays are converted to const. This is because bind takes its
|
||||
// parameters as const T& and thus the knowledge of the potential
|
||||
// non-constness of actual argument is lost.
|
||||
template<class T, int n> struct bind_traits <T[n]> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n>
|
||||
struct bind_traits<const T[n]> {
|
||||
typedef const T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n> struct bind_traits<volatile T[n]> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
template<class T, int n>
|
||||
struct bind_traits<const volatile T[n]> {
|
||||
typedef const volatile T (&type)[n];
|
||||
};
|
||||
|
||||
template<class R>
|
||||
struct bind_traits<R()> {
|
||||
typedef R(&type)();
|
||||
};
|
||||
|
||||
template<class R, class Arg1>
|
||||
struct bind_traits<R(Arg1)> {
|
||||
typedef R(&type)(Arg1);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2>
|
||||
struct bind_traits<R(Arg1, Arg2)> {
|
||||
typedef R(&type)(Arg1, Arg2);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2, class Arg3>
|
||||
struct bind_traits<R(Arg1, Arg2, Arg3)> {
|
||||
typedef R(&type)(Arg1, Arg2, Arg3);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2, class Arg3, class Arg4>
|
||||
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> {
|
||||
typedef R(&type)(Arg1, Arg2, Arg3, Arg4);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
|
||||
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
||||
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6>
|
||||
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
||||
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7>
|
||||
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
||||
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
|
||||
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
||||
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8);
|
||||
};
|
||||
|
||||
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
|
||||
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
|
||||
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9);
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bind_traits<reference_wrapper<T> >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
struct bind_traits<const reference_wrapper<T> >{
|
||||
typedef T& type;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct bind_traits<void> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <
|
||||
class T0 = null_type, class T1 = null_type, class T2 = null_type,
|
||||
class T3 = null_type, class T4 = null_type, class T5 = null_type,
|
||||
class T6 = null_type, class T7 = null_type, class T8 = null_type,
|
||||
class T9 = null_type
|
||||
>
|
||||
struct bind_tuple_mapper {
|
||||
typedef
|
||||
tuple<typename bind_traits<T0>::type,
|
||||
typename bind_traits<T1>::type,
|
||||
typename bind_traits<T2>::type,
|
||||
typename bind_traits<T3>::type,
|
||||
typename bind_traits<T4>::type,
|
||||
typename bind_traits<T5>::type,
|
||||
typename bind_traits<T6>::type,
|
||||
typename bind_traits<T7>::type,
|
||||
typename bind_traits<T8>::type,
|
||||
typename bind_traits<T9>::type> type;
|
||||
};
|
||||
|
||||
// bind_traits, except map const T& -> const T
|
||||
// this is needed e.g. in currying. Const reference arguments can
|
||||
// refer to temporaries, so it is not safe to store them as references.
|
||||
template <class T> struct remove_const_reference {
|
||||
typedef typename bind_traits<T>::type type;
|
||||
};
|
||||
|
||||
template <class T> struct remove_const_reference<const T&> {
|
||||
typedef const T type;
|
||||
};
|
||||
|
||||
|
||||
// maps the bind argument types to the resulting lambda functor type
|
||||
template <
|
||||
class T0 = null_type, class T1 = null_type, class T2 = null_type,
|
||||
class T3 = null_type, class T4 = null_type, class T5 = null_type,
|
||||
class T6 = null_type, class T7 = null_type, class T8 = null_type,
|
||||
class T9 = null_type
|
||||
>
|
||||
class bind_type_generator {
|
||||
|
||||
typedef typename
|
||||
detail::bind_tuple_mapper<
|
||||
T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
|
||||
>::type args_t;
|
||||
|
||||
BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value);
|
||||
|
||||
typedef
|
||||
action<
|
||||
nof_elems,
|
||||
function_action<nof_elems>
|
||||
> action_type;
|
||||
|
||||
public:
|
||||
typedef
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action_type,
|
||||
args_t
|
||||
>
|
||||
> type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // detail
|
||||
|
||||
template <class T> inline const T& make_const(const T& t) { return t; }
|
||||
|
||||
|
||||
} // end of namespace lambda
|
||||
} // end of namespace boost
|
||||
|
||||
|
||||
|
||||
#endif // BOOST_LAMBDA_TRAITS_HPP
|
||||
737
test/external/boost/lambda/detail/member_ptr.hpp
vendored
Normal file
737
test/external/boost/lambda/detail/member_ptr.hpp
vendored
Normal file
@@ -0,0 +1,737 @@
|
||||
// Boost Lambda Library -- member_ptr.hpp ---------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
// Copyright (C) 2000 Gary Powell (gary.powell@sierra.com)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#if !defined(BOOST_LAMBDA_MEMBER_PTR_HPP)
|
||||
#define BOOST_LAMBDA_MEMBER_PTR_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
class member_pointer_action {};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// the boost type_traits member_pointer traits are not enough,
|
||||
// need to know more details.
|
||||
template<class T>
|
||||
struct member_pointer {
|
||||
typedef typename boost::add_reference<T>::type type;
|
||||
typedef detail::unspecified class_type;
|
||||
typedef detail::unspecified qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<T U::*> {
|
||||
typedef typename boost::add_reference<T>::type type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<const T U::*> {
|
||||
typedef typename boost::add_reference<const T>::type type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<volatile T U::*> {
|
||||
typedef typename boost::add_reference<volatile T>::type type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
template<class T, class U>
|
||||
struct member_pointer<const volatile T U::*> {
|
||||
typedef typename boost::add_reference<const volatile T>::type type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = true);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = false);
|
||||
};
|
||||
|
||||
// -- nonconst member functions --
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)()> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9)> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
// -- const member functions --
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)() const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
// -- volatile --
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)() volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
// -- const volatile
|
||||
template<class T, class U>
|
||||
struct member_pointer<T (U::*)() const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1>
|
||||
struct member_pointer<T (U::*)(A1) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2>
|
||||
struct member_pointer<T (U::*)(A1, A2) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
template<class T, class U, class A1, class A2, class A3, class A4, class A5,
|
||||
class A6, class A7, class A8, class A9>
|
||||
struct member_pointer<T (U::*)(A1, A2, A3, A4, A5, A6, A7, A8, A9) const volatile> {
|
||||
typedef T type;
|
||||
typedef U class_type;
|
||||
typedef const volatile U qualified_class_type;
|
||||
BOOST_STATIC_CONSTANT(bool, is_data_member = false);
|
||||
BOOST_STATIC_CONSTANT(bool, is_function_member = true);
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
namespace detail {
|
||||
|
||||
// this class holds a pointer to a member function and the object.
|
||||
// when called, it just calls the member function with the parameters
|
||||
// provided
|
||||
|
||||
// It would have been possible to use existing lambda_functors to represent
|
||||
// a bound member function like this, but to have a separate template is
|
||||
// safer, since now this functor doesn't mix and match with lambda_functors
|
||||
// only thing you can do with this is to call it
|
||||
|
||||
// note that previously instantiated classes
|
||||
// (other_action<member_pointer_action> and member_pointer_action_helper
|
||||
// guarantee, that A and B are
|
||||
// such types, that for objects a and b of corresponding types, a->*b leads
|
||||
// to the builtin ->* to be called. So types that would end in a call to
|
||||
// a user defined ->* do not create a member_pointer_caller object.
|
||||
|
||||
template<class RET, class A, class B>
|
||||
class member_pointer_caller {
|
||||
A a; B b;
|
||||
|
||||
public:
|
||||
member_pointer_caller(const A& aa, const B& bb) : a(aa), b(bb) {}
|
||||
|
||||
RET operator()() const { return (a->*b)(); }
|
||||
|
||||
template<class A1>
|
||||
RET operator()(const A1& a1) const { return (a->*b)(a1); }
|
||||
|
||||
template<class A1, class A2>
|
||||
RET operator()(const A1& a1, const A2& a2) const { return (a->*b)(a1, a2); }
|
||||
|
||||
template<class A1, class A2, class A3>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3) const {
|
||||
return (a->*b)(a1, a2, a3);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3,
|
||||
const A4& a4) const {
|
||||
return (a->*b)(a1, a2, a3, a4);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6, const A7& a7) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6, a7);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6, const A7& a7,
|
||||
const A8& a8) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6, a7, a8);
|
||||
}
|
||||
|
||||
template<class A1, class A2, class A3, class A4, class A5, class A6,
|
||||
class A7, class A8, class A9>
|
||||
RET operator()(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
|
||||
const A5& a5, const A6& a6, const A7& a7,
|
||||
const A8& a8, const A9& a9) const {
|
||||
return (a->*b)(a1, a2, a3, a4, a5, a6, a7, a8, a9);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// helper templates for return type deduction and action classes
|
||||
// different cases for data member, function member, neither
|
||||
|
||||
// true-true case
|
||||
template <bool Is_data_member, bool Is_function_member>
|
||||
struct member_pointer_action_helper;
|
||||
// cannot be both, no body provided
|
||||
|
||||
// data member case
|
||||
// this means, that B is a data member and A is a pointer type,
|
||||
// so either built-in ->* should be called, or there is an error
|
||||
template <>
|
||||
struct member_pointer_action_helper<true, false> {
|
||||
public:
|
||||
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
return a->*b;
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type {
|
||||
private:
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plainB;
|
||||
|
||||
typedef typename detail::member_pointer<plainB>::type type0;
|
||||
// we remove the reference now, as we may have to add cv:s
|
||||
typedef typename boost::remove_reference<type0>::type type1;
|
||||
|
||||
// A is a reference to pointer
|
||||
// remove the top level cv qualifiers and reference
|
||||
typedef typename
|
||||
detail::remove_reference_and_cv<A>::type non_ref_A;
|
||||
|
||||
// A is a pointer type, so take the type pointed to
|
||||
typedef typename ::boost::remove_pointer<non_ref_A>::type non_pointer_A;
|
||||
|
||||
public:
|
||||
// For non-reference types, we must add const and/or volatile if
|
||||
// the pointer type has these qualifiers
|
||||
// If the member is a reference, these do not have any effect
|
||||
// (cv T == T if T is a reference type)
|
||||
typedef typename detail::IF<
|
||||
::boost::is_const<non_pointer_A>::value,
|
||||
typename ::boost::add_const<type1>::type,
|
||||
type1
|
||||
>::RET type2;
|
||||
typedef typename detail::IF<
|
||||
::boost::is_volatile<non_pointer_A>::value,
|
||||
typename ::boost::add_volatile<type2>::type,
|
||||
type2
|
||||
>::RET type3;
|
||||
// add reference back
|
||||
typedef typename ::boost::add_reference<type3>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// neither case
|
||||
template <>
|
||||
struct member_pointer_action_helper<false, false> {
|
||||
public:
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
// not a built in member pointer operator, just call ->*
|
||||
return a->*b;
|
||||
}
|
||||
// an overloaded member pointer operators, user should have specified
|
||||
// the return type
|
||||
// At this point we know that there is no matching specialization for
|
||||
// return_type_2, so try return_type_2_plain
|
||||
template<class A, class B>
|
||||
struct return_type {
|
||||
|
||||
typedef typename plain_return_type_2<
|
||||
other_action<member_pointer_action>, A, B
|
||||
>::type type;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
|
||||
// member pointer function case
|
||||
// This is a built in ->* call for a member function,
|
||||
// the only thing that you can do with that, is to give it some arguments
|
||||
// note, it is guaranteed that A is a pointer type, and thus it cannot
|
||||
// be a call to overloaded ->*
|
||||
template <>
|
||||
struct member_pointer_action_helper<false, true> {
|
||||
public:
|
||||
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
typedef typename ::boost::remove_cv<B>::type plainB;
|
||||
typedef typename detail::member_pointer<plainB>::type ret_t;
|
||||
typedef typename ::boost::remove_cv<A>::type plainA;
|
||||
|
||||
// we always strip cv:s to
|
||||
// make the two routes (calling and type deduction)
|
||||
// to give the same results (and the const does not make any functional
|
||||
// difference)
|
||||
return detail::member_pointer_caller<ret_t, plainA, plainB>(a, b);
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type {
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plainB;
|
||||
typedef typename detail::member_pointer<plainB>::type ret_t;
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plainA;
|
||||
|
||||
typedef detail::member_pointer_caller<ret_t, plainA, plainB> type;
|
||||
};
|
||||
};
|
||||
|
||||
} // detail
|
||||
|
||||
template<> class other_action<member_pointer_action> {
|
||||
public:
|
||||
template<class RET, class A, class B>
|
||||
static RET apply(A& a, B& b) {
|
||||
typedef typename
|
||||
::boost::remove_cv<B>::type plainB;
|
||||
|
||||
return detail::member_pointer_action_helper<
|
||||
boost::is_pointer<A>::value &&
|
||||
detail::member_pointer<plainB>::is_data_member,
|
||||
boost::is_pointer<A>::value &&
|
||||
detail::member_pointer<plainB>::is_function_member
|
||||
>::template apply<RET>(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
// return type deduction --
|
||||
|
||||
// If the right argument is a pointer to data member,
|
||||
// and the left argument is of compatible pointer to class type
|
||||
// return type is a reference to the data member type
|
||||
|
||||
// if right argument is a pointer to a member function, and the left
|
||||
// argument is of a compatible type, the return type is a
|
||||
// member_pointer_caller (see above)
|
||||
|
||||
// Otherwise, return type deduction fails. There is either an error,
|
||||
// or the user is trying to call an overloaded ->*
|
||||
// In such a case either ret<> must be used, or a return_type_2 user
|
||||
// defined specialization must be provided
|
||||
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<member_pointer_action>, A, B> {
|
||||
private:
|
||||
typedef typename
|
||||
detail::remove_reference_and_cv<B>::type plainB;
|
||||
public:
|
||||
typedef typename
|
||||
detail::member_pointer_action_helper<
|
||||
detail::member_pointer<plainB>::is_data_member,
|
||||
detail::member_pointer<plainB>::is_function_member
|
||||
>::template return_type<A, B>::type type;
|
||||
};
|
||||
|
||||
// this is the way the generic lambda_functor_base functions instantiate
|
||||
// return type deduction. We turn it into return_type_2, so that the
|
||||
// user can provide specializations on that level.
|
||||
template<class Args>
|
||||
struct return_type_N<other_action<member_pointer_action>, Args> {
|
||||
typedef typename boost::tuples::element<0, Args>::type A;
|
||||
typedef typename boost::tuples::element<1, Args>::type B;
|
||||
typedef typename
|
||||
return_type_2<other_action<member_pointer_action>,
|
||||
typename boost::remove_reference<A>::type,
|
||||
typename boost::remove_reference<B>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
template<class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, typename const_copy_argument<Arg2>::type>
|
||||
>
|
||||
>
|
||||
operator->*(const lambda_functor<Arg1>& a1, const Arg2& a2)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, typename const_copy_argument<Arg2>::type>
|
||||
>
|
||||
(tuple<lambda_functor<Arg1>,
|
||||
typename const_copy_argument<Arg2>::type>(a1, a2));
|
||||
}
|
||||
|
||||
template<class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
operator->*(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
template<class Arg1, class Arg2>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<typename const_copy_argument<Arg1>::type, lambda_functor<Arg2> >
|
||||
>
|
||||
>
|
||||
operator->*(const Arg1& a1, const lambda_functor<Arg2>& a2)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<2, other_action<member_pointer_action> >,
|
||||
tuple<typename const_copy_argument<Arg1>::type, lambda_functor<Arg2> >
|
||||
>
|
||||
(tuple<typename const_copy_argument<Arg1>::type,
|
||||
lambda_functor<Arg2> >(a1, a2));
|
||||
}
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
139
test/external/boost/lambda/detail/operator_actions.hpp
vendored
Normal file
139
test/external/boost/lambda/detail/operator_actions.hpp
vendored
Normal file
@@ -0,0 +1,139 @@
|
||||
// -- operator_actions.hpp - Boost Lambda Library ----------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
// For more information, see http://lambda.cs.utu.fi
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATOR_ACTIONS_HPP
|
||||
#define BOOST_LAMBDA_OPERATOR_ACTIONS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
// -- artihmetic ----------------------
|
||||
|
||||
class plus_action {};
|
||||
class minus_action {};
|
||||
class multiply_action {};
|
||||
class divide_action {};
|
||||
class remainder_action {};
|
||||
|
||||
// -- bitwise -------------------
|
||||
|
||||
class leftshift_action {};
|
||||
class rightshift_action {};
|
||||
class xor_action {};
|
||||
|
||||
|
||||
// -- bitwise/logical -------------------
|
||||
|
||||
class and_action {};
|
||||
class or_action {};
|
||||
class not_action {};
|
||||
|
||||
// -- relational -------------------------
|
||||
|
||||
class less_action {};
|
||||
class greater_action {};
|
||||
class lessorequal_action {};
|
||||
class greaterorequal_action {};
|
||||
class equal_action {};
|
||||
class notequal_action {};
|
||||
|
||||
// -- increment/decrement ------------------------------
|
||||
|
||||
class increment_action {};
|
||||
class decrement_action {};
|
||||
|
||||
// -- void return ------------------------------
|
||||
|
||||
// -- other ------------------------------
|
||||
|
||||
class addressof_action {};
|
||||
// class comma_action {}; // defined in actions.hpp
|
||||
class contentsof_action {};
|
||||
// class member_pointer_action {}; (defined in member_ptr.hpp)
|
||||
|
||||
|
||||
// -- actioun group templates --------------------
|
||||
|
||||
template <class Action> class arithmetic_action;
|
||||
template <class Action> class bitwise_action;
|
||||
template <class Action> class logical_action;
|
||||
template <class Action> class relational_action;
|
||||
template <class Action> class arithmetic_assignment_action;
|
||||
template <class Action> class bitwise_assignment_action;
|
||||
template <class Action> class unary_arithmetic_action;
|
||||
template <class Action> class pre_increment_decrement_action;
|
||||
template <class Action> class post_increment_decrement_action;
|
||||
|
||||
// ---------------------------------------------------------
|
||||
|
||||
// actions, for which the existence of protect is checked in return type
|
||||
// deduction.
|
||||
|
||||
template <class Act> struct is_protectable<arithmetic_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<bitwise_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<logical_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<relational_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act>
|
||||
struct is_protectable<arithmetic_assignment_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<bitwise_assignment_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct is_protectable<unary_arithmetic_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act>
|
||||
struct is_protectable<pre_increment_decrement_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <class Act> struct
|
||||
is_protectable<post_increment_decrement_action<Act> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
template <> struct is_protectable<other_action<addressof_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template <> struct is_protectable<other_action<contentsof_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
template<> struct is_protectable<other_action<subscript_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
template<> struct is_protectable<other_action<assignment_action> > {
|
||||
BOOST_STATIC_CONSTANT(bool, value = true);
|
||||
};
|
||||
|
||||
// NOTE: comma action is also protectable, but the specialization is
|
||||
// in actions.hpp
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
271
test/external/boost/lambda/detail/operator_lambda_func_base.hpp
vendored
Normal file
271
test/external/boost/lambda/detail/operator_lambda_func_base.hpp
vendored
Normal file
@@ -0,0 +1,271 @@
|
||||
// Boost Lambda Library - operator_lambda_func_base.hpp -----------------
|
||||
//
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATOR_LAMBDA_FUNC_BASE_HPP
|
||||
#define BOOST_LAMBDA_OPERATOR_LAMBDA_FUNC_BASE_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
|
||||
// These operators cannot be implemented as apply functions of action
|
||||
// templates
|
||||
|
||||
|
||||
// Specialization for comma.
|
||||
template<class Args>
|
||||
class lambda_functor_base<other_action<comma_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS),
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
private:
|
||||
typedef typename
|
||||
detail::deduce_argument_types<Args, SigArgs>::type rets_t;
|
||||
public:
|
||||
typedef typename return_type_2_comma< // comma needs special handling
|
||||
typename detail::element_or_null<0, rets_t>::type,
|
||||
typename detail::element_or_null<1, rets_t>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// helper traits to make the expression shorter, takes binary action
|
||||
// bound argument tuple, open argument tuple and gives the return type
|
||||
|
||||
template<class Action, class Bound, class Open> class binary_rt {
|
||||
private:
|
||||
typedef typename
|
||||
detail::deduce_argument_types<Bound, Open>::type rets_t;
|
||||
public:
|
||||
typedef typename return_type_2_prot<
|
||||
Action,
|
||||
typename detail::element_or_null<0, rets_t>::type,
|
||||
typename detail::element_or_null<1, rets_t>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
// same for unary actions
|
||||
template<class Action, class Bound, class Open> class unary_rt {
|
||||
private:
|
||||
typedef typename
|
||||
detail::deduce_argument_types<Bound, Open>::type rets_t;
|
||||
public:
|
||||
typedef typename return_type_1_prot<
|
||||
Action,
|
||||
typename detail::element_or_null<0, rets_t>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
// Specialization for logical and (to preserve shortcircuiting)
|
||||
// this could be done with a macro as the others, code used to be different
|
||||
template<class Args>
|
||||
class lambda_functor_base<logical_action<and_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) &&
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename
|
||||
detail::binary_rt<logical_action<and_action>, Args, SigArgs>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// Specialization for logical or (to preserve shortcircuiting)
|
||||
// this could be done with a macro as the others, code used to be different
|
||||
template<class Args>
|
||||
class lambda_functor_base<logical_action< or_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) ||
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename
|
||||
detail::binary_rt<logical_action<or_action>, Args, SigArgs>::type type;
|
||||
};
|
||||
};
|
||||
|
||||
// Specialization for subscript
|
||||
template<class Args>
|
||||
class lambda_functor_base<other_action<subscript_action>, Args> {
|
||||
public:
|
||||
Args args;
|
||||
public:
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {}
|
||||
|
||||
template<class RET, CALL_TEMPLATE_ARGS>
|
||||
RET call(CALL_FORMAL_ARGS) const {
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)
|
||||
[detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS)];
|
||||
}
|
||||
|
||||
template<class SigArgs> struct sig {
|
||||
typedef typename
|
||||
detail::binary_rt<other_action<subscript_action>, Args, SigArgs>::type
|
||||
type;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
#define BOOST_LAMBDA_BINARY_ACTION(SYMBOL, ACTION_CLASS) \
|
||||
template<class Args> \
|
||||
class lambda_functor_base<ACTION_CLASS, Args> { \
|
||||
public: \
|
||||
Args args; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
return detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) \
|
||||
SYMBOL \
|
||||
detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); \
|
||||
} \
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::binary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
|
||||
}; \
|
||||
};
|
||||
|
||||
#define BOOST_LAMBDA_PREFIX_UNARY_ACTION(SYMBOL, ACTION_CLASS) \
|
||||
template<class Args> \
|
||||
class lambda_functor_base<ACTION_CLASS, Args> { \
|
||||
public: \
|
||||
Args args; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
return SYMBOL \
|
||||
detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS); \
|
||||
} \
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::unary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
|
||||
}; \
|
||||
};
|
||||
|
||||
#define BOOST_LAMBDA_POSTFIX_UNARY_ACTION(SYMBOL, ACTION_CLASS) \
|
||||
template<class Args> \
|
||||
class lambda_functor_base<ACTION_CLASS, Args> { \
|
||||
public: \
|
||||
Args args; \
|
||||
public: \
|
||||
explicit lambda_functor_base(const Args& a) : args(a) {} \
|
||||
\
|
||||
template<class RET, CALL_TEMPLATE_ARGS> \
|
||||
RET call(CALL_FORMAL_ARGS) const { \
|
||||
return \
|
||||
detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) SYMBOL; \
|
||||
} \
|
||||
template<class SigArgs> struct sig { \
|
||||
typedef typename \
|
||||
detail::unary_rt<ACTION_CLASS, Args, SigArgs>::type type; \
|
||||
}; \
|
||||
};
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(+,arithmetic_action<plus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(-,arithmetic_action<minus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(*,arithmetic_action<multiply_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(/,arithmetic_action<divide_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(%,arithmetic_action<remainder_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(<<,bitwise_action<leftshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>>,bitwise_action<rightshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(&,bitwise_action<and_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(|,bitwise_action<or_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(^,bitwise_action<xor_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(<,relational_action<less_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>,relational_action<greater_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(<=,relational_action<lessorequal_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>=,relational_action<greaterorequal_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(==,relational_action<equal_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(!=,relational_action<notequal_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(+=,arithmetic_assignment_action<plus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(-=,arithmetic_assignment_action<minus_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(*=,arithmetic_assignment_action<multiply_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(/=,arithmetic_assignment_action<divide_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(%=,arithmetic_assignment_action<remainder_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(<<=,bitwise_assignment_action<leftshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(>>=,bitwise_assignment_action<rightshift_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(&=,bitwise_assignment_action<and_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(|=,bitwise_assignment_action<or_action>)
|
||||
BOOST_LAMBDA_BINARY_ACTION(^=,bitwise_assignment_action<xor_action>)
|
||||
|
||||
BOOST_LAMBDA_BINARY_ACTION(=,other_action< assignment_action>)
|
||||
|
||||
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(+, unary_arithmetic_action<plus_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(-, unary_arithmetic_action<minus_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(~, bitwise_action<not_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(!, logical_action<not_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(++, pre_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(--, pre_increment_decrement_action<decrement_action>)
|
||||
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(&,other_action<addressof_action>)
|
||||
BOOST_LAMBDA_PREFIX_UNARY_ACTION(*,other_action<contentsof_action>)
|
||||
|
||||
BOOST_LAMBDA_POSTFIX_UNARY_ACTION(++, post_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_POSTFIX_UNARY_ACTION(--, post_increment_decrement_action<decrement_action>)
|
||||
|
||||
|
||||
#undef BOOST_LAMBDA_POSTFIX_UNARY_ACTION
|
||||
#undef BOOST_LAMBDA_PREFIX_UNARY_ACTION
|
||||
#undef BOOST_LAMBDA_BINARY_ACTION
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
917
test/external/boost/lambda/detail/operator_return_type_traits.hpp
vendored
Normal file
917
test/external/boost/lambda/detail/operator_return_type_traits.hpp
vendored
Normal file
@@ -0,0 +1,917 @@
|
||||
// operator_return_type_traits.hpp -- Boost Lambda Library ------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
|
||||
#define BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
|
||||
|
||||
#include "boost/lambda/detail/is_instance_of.hpp"
|
||||
#include "boost/type_traits/same_traits.hpp"
|
||||
|
||||
#include "boost/indirect_reference.hpp"
|
||||
#include "boost/detail/container_fwd.hpp"
|
||||
|
||||
#include <cstddef> // needed for the ptrdiff_t
|
||||
#include <iosfwd> // for istream and ostream
|
||||
|
||||
#include <iterator> // needed for operator&
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
// -- general helper templates for type deduction ------------------
|
||||
|
||||
// Much of the type deduction code for standard arithmetic types from Gary Powell
|
||||
|
||||
template <class A> struct promote_code { static const int value = -1; };
|
||||
// this means that a code is not defined for A
|
||||
|
||||
// -- the next 5 types are needed in if_then_else_return
|
||||
// the promotion order is not important, but they must have distinct values.
|
||||
template <> struct promote_code<bool> { static const int value = 10; };
|
||||
template <> struct promote_code<char> { static const int value = 20; };
|
||||
template <> struct promote_code<unsigned char> { static const int value = 30; };
|
||||
template <> struct promote_code<signed char> { static const int value = 40; };
|
||||
template <> struct promote_code<short int> { static const int value = 50; };
|
||||
// ----------
|
||||
|
||||
template <> struct promote_code<int> { static const int value = 100; };
|
||||
template <> struct promote_code<unsigned int> { static const int value = 200; };
|
||||
template <> struct promote_code<long> { static const int value = 300; };
|
||||
template <> struct promote_code<unsigned long> { static const int value = 400; };
|
||||
|
||||
template <> struct promote_code<float> { static const int value = 500; };
|
||||
template <> struct promote_code<double> { static const int value = 600; };
|
||||
template <> struct promote_code<long double> { static const int value = 700; };
|
||||
|
||||
// TODO: wchar_t
|
||||
|
||||
// forward delcaration of complex.
|
||||
|
||||
} // namespace detail
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
template <> struct promote_code< std::complex<float> > { static const int value = 800; };
|
||||
template <> struct promote_code< std::complex<double> > { static const int value = 900; };
|
||||
template <> struct promote_code< std::complex<long double> > { static const int value = 1000; };
|
||||
|
||||
// -- int promotion -------------------------------------------
|
||||
template <class T> struct promote_to_int { typedef T type; };
|
||||
|
||||
template <> struct promote_to_int<bool> { typedef int type; };
|
||||
template <> struct promote_to_int<char> { typedef int type; };
|
||||
template <> struct promote_to_int<unsigned char> { typedef int type; };
|
||||
template <> struct promote_to_int<signed char> { typedef int type; };
|
||||
template <> struct promote_to_int<short int> { typedef int type; };
|
||||
|
||||
// The unsigned short int promotion rule is this:
|
||||
// unsigned short int to signed int if a signed int can hold all values
|
||||
// of unsigned short int, otherwise go to unsigned int.
|
||||
template <> struct promote_to_int<unsigned short int>
|
||||
{
|
||||
typedef
|
||||
detail::IF<sizeof(int) <= sizeof(unsigned short int),
|
||||
// I had the logic reversed but ">" messes up the parsing.
|
||||
unsigned int,
|
||||
int>::RET type;
|
||||
};
|
||||
|
||||
|
||||
// TODO: think, should there be default behaviour for non-standard types?
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// ------------------------------------------
|
||||
// Unary actions ----------------------------
|
||||
// ------------------------------------------
|
||||
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1 {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1<unary_arithmetic_action<Act>, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
template<class Act, class A>
|
||||
struct return_type_1<unary_arithmetic_action<Act>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
unary_arithmetic_action<Act>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
template<class A>
|
||||
struct plain_return_type_1<bitwise_action<not_action>, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
// bitwise not, operator~()
|
||||
template<class A> struct return_type_1<bitwise_action<not_action>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
bitwise_action<not_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
// prefix increment and decrement operators return
|
||||
// their argument by default as a non-const reference
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1<pre_increment_decrement_action<Act>, A> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
template<class Act, class A>
|
||||
struct return_type_1<pre_increment_decrement_action<Act>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
pre_increment_decrement_action<Act>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// post decrement just returns the same plain type.
|
||||
template<class Act, class A>
|
||||
struct plain_return_type_1<post_increment_decrement_action<Act>, A> {
|
||||
typedef A type;
|
||||
};
|
||||
|
||||
template<class Act, class A>
|
||||
struct return_type_1<post_increment_decrement_action<Act>, A>
|
||||
{
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
post_increment_decrement_action<Act>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// logical not, operator!()
|
||||
template<class A>
|
||||
struct plain_return_type_1<logical_action<not_action>, A> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
template<class A>
|
||||
struct return_type_1<logical_action<not_action>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
logical_action<not_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// address of action ---------------------------------------
|
||||
|
||||
|
||||
template<class A>
|
||||
struct return_type_1<other_action<addressof_action>, A> {
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
other_action<addressof_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type1;
|
||||
|
||||
// If no user defined specialization for A, then return the
|
||||
// cv qualified pointer to A
|
||||
typedef typename detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::remove_reference<A>::type*,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// contentsof action ------------------------------------
|
||||
|
||||
// TODO: this deduction may lead to fail directly,
|
||||
// (if A has no specialization for iterator_traits and has no
|
||||
// typedef A::reference.
|
||||
// There is no easy way around this, cause there doesn't seem to be a way
|
||||
// to test whether a class is an iterator or not.
|
||||
|
||||
// The default works with std::iterators.
|
||||
|
||||
namespace detail {
|
||||
|
||||
// A is a nonreference type
|
||||
template <class A> struct contentsof_type {
|
||||
typedef typename boost::indirect_reference<A>::type type;
|
||||
};
|
||||
|
||||
// this is since the nullary () in lambda_functor is always instantiated
|
||||
template <> struct contentsof_type<null_type> {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
|
||||
template <class A> struct contentsof_type<const A> {
|
||||
typedef typename contentsof_type<A>::type type;
|
||||
};
|
||||
|
||||
template <class A> struct contentsof_type<volatile A> {
|
||||
typedef typename contentsof_type<A>::type type;
|
||||
};
|
||||
|
||||
template <class A> struct contentsof_type<const volatile A> {
|
||||
typedef typename contentsof_type<A>::type type;
|
||||
};
|
||||
|
||||
// standard iterator traits should take care of the pointer types
|
||||
// but just to be on the safe side, we have the specializations here:
|
||||
// these work even if A is cv-qualified.
|
||||
template <class A> struct contentsof_type<A*> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A> struct contentsof_type<A* const> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A> struct contentsof_type<A* volatile> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A> struct contentsof_type<A* const volatile> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
template<class A, int N> struct contentsof_type<A[N]> {
|
||||
typedef A& type;
|
||||
};
|
||||
template<class A, int N> struct contentsof_type<const A[N]> {
|
||||
typedef const A& type;
|
||||
};
|
||||
template<class A, int N> struct contentsof_type<volatile A[N]> {
|
||||
typedef volatile A& type;
|
||||
};
|
||||
template<class A, int N> struct contentsof_type<const volatile A[N]> {
|
||||
typedef const volatile A& type;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
template<class A>
|
||||
struct return_type_1<other_action<contentsof_action>, A> {
|
||||
|
||||
typedef
|
||||
typename plain_return_type_1<
|
||||
other_action<contentsof_action>,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::type type1;
|
||||
|
||||
// If no user defined specialization for A, then return the
|
||||
// cv qualified pointer to A
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::contentsof_type<
|
||||
typename boost::remove_reference<A>::type
|
||||
>,
|
||||
detail::identity_mapping<type1>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// binary actions ---------------------------------------------------
|
||||
// ------------------------------------------------------------------
|
||||
|
||||
// here the default case is: no user defined versions:
|
||||
template <class Act, class A, class B>
|
||||
struct plain_return_type_2 {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// error classes
|
||||
class illegal_pointer_arithmetic{};
|
||||
|
||||
// pointer arithmetic type deductions ----------------------
|
||||
// value = false means that this is not a pointer arithmetic case
|
||||
// value = true means, that this can be a pointer arithmetic case, but not necessarily is
|
||||
// This means, that for user defined operators for pointer types, say for some operator+(X, *Y),
|
||||
// the deductions must be coded at an earliel level (return_type_2).
|
||||
|
||||
template<class Act, class A, class B>
|
||||
struct pointer_arithmetic_traits { static const bool value = false; };
|
||||
|
||||
template<class A, class B>
|
||||
struct pointer_arithmetic_traits<plus_action, A, B> {
|
||||
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
|
||||
|
||||
static const bool is_pointer_A = boost::is_pointer<AP>::value;
|
||||
static const bool is_pointer_B = boost::is_pointer<BP>::value;
|
||||
|
||||
static const bool value = is_pointer_A || is_pointer_B;
|
||||
|
||||
// can't add two pointers.
|
||||
// note, that we do not check wether the other type is valid for
|
||||
// addition with a pointer.
|
||||
// the compiler will catch it in the apply function
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
is_pointer_A && is_pointer_B,
|
||||
detail::return_type_deduction_failure<
|
||||
detail::illegal_pointer_arithmetic
|
||||
>,
|
||||
typename detail::IF<is_pointer_A, AP, BP>::RET
|
||||
>::RET type;
|
||||
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct pointer_arithmetic_traits<minus_action, A, B> {
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
|
||||
typedef typename
|
||||
array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
|
||||
|
||||
static const bool is_pointer_A = boost::is_pointer<AP>::value;
|
||||
static const bool is_pointer_B = boost::is_pointer<BP>::value;
|
||||
|
||||
static const bool value = is_pointer_A || is_pointer_B;
|
||||
|
||||
static const bool same_pointer_type =
|
||||
is_pointer_A && is_pointer_B &&
|
||||
boost::is_same<
|
||||
typename boost::remove_const<
|
||||
typename boost::remove_pointer<
|
||||
typename boost::remove_const<AP>::type
|
||||
>::type
|
||||
>::type,
|
||||
typename boost::remove_const<
|
||||
typename boost::remove_pointer<
|
||||
typename boost::remove_const<BP>::type
|
||||
>::type
|
||||
>::type
|
||||
>::value;
|
||||
|
||||
// ptr - ptr has type ptrdiff_t
|
||||
// note, that we do not check if, in ptr - B, B is
|
||||
// valid for subtraction with a pointer.
|
||||
// the compiler will catch it in the apply function
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
same_pointer_type, const std::ptrdiff_t,
|
||||
typename detail::IF<
|
||||
is_pointer_A,
|
||||
AP,
|
||||
detail::return_type_deduction_failure<detail::illegal_pointer_arithmetic>
|
||||
>::RET
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// -- arithmetic actions ---------------------------------------------
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<bool is_pointer_arithmetic, class Act, class A, class B>
|
||||
struct return_type_2_arithmetic_phase_1;
|
||||
|
||||
template<class A, class B> struct return_type_2_arithmetic_phase_2;
|
||||
template<class A, class B> struct return_type_2_arithmetic_phase_3;
|
||||
|
||||
} // namespace detail
|
||||
|
||||
|
||||
// drop any qualifiers from the argument types within arithmetic_action
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<arithmetic_action<Act>, A, B>
|
||||
{
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter the whole arithmetic deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::return_type_2_arithmetic_phase_1<
|
||||
detail::pointer_arithmetic_traits<Act, A, B>::value, Act, A, B
|
||||
>,
|
||||
plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// perform integral promotion, no pointer arithmetic
|
||||
template<bool is_pointer_arithmetic, class Act, class A, class B>
|
||||
struct return_type_2_arithmetic_phase_1
|
||||
{
|
||||
typedef typename
|
||||
return_type_2_arithmetic_phase_2<
|
||||
typename remove_reference_and_cv<A>::type,
|
||||
typename remove_reference_and_cv<B>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// pointer_arithmetic
|
||||
template<class Act, class A, class B>
|
||||
struct return_type_2_arithmetic_phase_1<true, Act, A, B>
|
||||
{
|
||||
typedef typename
|
||||
pointer_arithmetic_traits<Act, A, B>::type type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2_arithmetic_phase_2 {
|
||||
typedef typename
|
||||
return_type_2_arithmetic_phase_3<
|
||||
typename promote_to_int<A>::type,
|
||||
typename promote_to_int<B>::type
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// specialization for unsigned int.
|
||||
// We only have to do these two specialization because the value promotion will
|
||||
// take care of the other cases.
|
||||
// The unsigned int promotion rule is this:
|
||||
// unsigned int to long if a long can hold all values of unsigned int,
|
||||
// otherwise go to unsigned long.
|
||||
|
||||
// struct so I don't have to type this twice.
|
||||
struct promotion_of_unsigned_int
|
||||
{
|
||||
typedef
|
||||
detail::IF<sizeof(long) <= sizeof(unsigned int),
|
||||
unsigned long,
|
||||
long>::RET type;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct return_type_2_arithmetic_phase_2<unsigned int, long>
|
||||
{
|
||||
typedef promotion_of_unsigned_int::type type;
|
||||
};
|
||||
template<>
|
||||
struct return_type_2_arithmetic_phase_2<long, unsigned int>
|
||||
{
|
||||
typedef promotion_of_unsigned_int::type type;
|
||||
};
|
||||
|
||||
|
||||
template<class A, class B> struct return_type_2_arithmetic_phase_3 {
|
||||
enum { promote_code_A_value = promote_code<A>::value,
|
||||
promote_code_B_value = promote_code<B>::value }; // enums for KCC
|
||||
typedef typename
|
||||
detail::IF<
|
||||
promote_code_A_value == -1 || promote_code_B_value == -1,
|
||||
detail::return_type_deduction_failure<return_type_2_arithmetic_phase_3>,
|
||||
typename detail::IF<
|
||||
((int)promote_code_A_value > (int)promote_code_B_value),
|
||||
A,
|
||||
B
|
||||
>::RET
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// -- bitwise actions -------------------------------------------
|
||||
// note: for integral types deuduction is similar to arithmetic actions.
|
||||
|
||||
// drop any qualifiers from the argument types within arithmetic action
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<bitwise_action<Act>, A, B>
|
||||
{
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<bitwise_action<Act>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter type deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
return_type_2<arithmetic_action<plus_action>, A, B>,
|
||||
plain_return_type_2<bitwise_action<Act>, plain_A, plain_B>
|
||||
>::type type;
|
||||
|
||||
// plus_action is just a random pick, has to be a concrete instance
|
||||
|
||||
// TODO: This check is only valid for built-in types, overloaded types might
|
||||
// accept floating point operators
|
||||
|
||||
// bitwise operators not defined for floating point types
|
||||
// these test are not strictly needed here, since the error will be caught in
|
||||
// the apply function
|
||||
BOOST_STATIC_ASSERT(!(boost::is_float<plain_A>::value && boost::is_float<plain_B>::value));
|
||||
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifdef BOOST_NO_TEMPLATED_STREAMS
|
||||
|
||||
template<class A, class B>
|
||||
struct leftshift_type {
|
||||
|
||||
typedef typename detail::IF<
|
||||
boost::is_convertible<
|
||||
typename boost::remove_reference<A>::type*,
|
||||
std::ostream*
|
||||
>::value,
|
||||
std::ostream&,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct rightshift_type {
|
||||
|
||||
typedef typename detail::IF<
|
||||
|
||||
boost::is_convertible<
|
||||
typename boost::remove_reference<A>::type*,
|
||||
std::istream*
|
||||
>::value,
|
||||
std::istream&,
|
||||
typename detail::remove_reference_and_cv<A>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
template <class T> struct get_ostream_type {
|
||||
typedef std::basic_ostream<typename T::char_type,
|
||||
typename T::traits_type>& type;
|
||||
};
|
||||
|
||||
template <class T> struct get_istream_type {
|
||||
typedef std::basic_istream<typename T::char_type,
|
||||
typename T::traits_type>& type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct leftshift_type {
|
||||
private:
|
||||
typedef typename boost::remove_reference<A>::type plainA;
|
||||
public:
|
||||
typedef typename detail::IF_type<
|
||||
is_instance_of_2<plainA, std::basic_ostream>::value,
|
||||
get_ostream_type<plainA>, //reference to the stream
|
||||
detail::remove_reference_and_cv<A>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct rightshift_type {
|
||||
private:
|
||||
typedef typename boost::remove_reference<A>::type plainA;
|
||||
public:
|
||||
typedef typename detail::IF_type<
|
||||
is_instance_of_2<plainA, std::basic_istream>::value,
|
||||
get_istream_type<plainA>, //reference to the stream
|
||||
detail::remove_reference_and_cv<A>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
} // end detail
|
||||
|
||||
// ostream
|
||||
template<class A, class B>
|
||||
struct return_type_2<bitwise_action<leftshift_action>, A, B>
|
||||
{
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<bitwise_action<leftshift_action>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter type deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::leftshift_type<A, B>,
|
||||
plain_return_type_2<bitwise_action<leftshift_action>, plain_A, plain_B>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// istream
|
||||
template<class A, class B>
|
||||
struct return_type_2<bitwise_action<rightshift_action>, A, B>
|
||||
{
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<bitwise_action<rightshift_action>, plain_A, plain_B>::type type1;
|
||||
|
||||
// if user defined return type, do not enter type deductions
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::rightshift_type<A, B>,
|
||||
plain_return_type_2<bitwise_action<rightshift_action>, plain_A, plain_B>
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// -- logical actions ----------------------------------------
|
||||
// always bool
|
||||
// NOTE: this may not be true for some weird user-defined types,
|
||||
template<class A, class B, class Act>
|
||||
struct plain_return_type_2<logical_action<Act>, A, B> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<logical_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<logical_action<Act>, plain_A, plain_B>::type type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
// -- relational actions ----------------------------------------
|
||||
// always bool
|
||||
// NOTE: this may not be true for some weird user-defined types,
|
||||
template<class A, class B, class Act>
|
||||
struct plain_return_type_2<relational_action<Act>, A, B> {
|
||||
typedef bool type;
|
||||
};
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<relational_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<relational_action<Act>, plain_A, plain_B>::type type;
|
||||
};
|
||||
|
||||
// Assingment actions -----------------------------------------------
|
||||
// return type is the type of the first argument as reference
|
||||
|
||||
// note that cv-qualifiers are preserved.
|
||||
// Yes, assignment operator can be const!
|
||||
|
||||
// NOTE: this may not be true for some weird user-defined types,
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<arithmetic_assignment_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
arithmetic_assignment_action<Act>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::add_reference<A>::type,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class A, class B, class Act>
|
||||
struct return_type_2<bitwise_assignment_action<Act>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
bitwise_assignment_action<Act>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::add_reference<A>::type,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<assignment_action>, A, B> {
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
other_action<assignment_action>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
typename boost::add_reference<A>::type,
|
||||
type1
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// -- other actions ----------------------------------------
|
||||
|
||||
// comma action ----------------------------------
|
||||
// Note: this may not be true for some weird user-defined types,
|
||||
|
||||
// NOTE! This only tries the plain_return_type_2 layer and gives
|
||||
// detail::unspecified as default. If no such specialization is found, the
|
||||
// type rule in the spcecialization of the return_type_2_prot is used
|
||||
// to give the type of the right argument (which can be a reference too)
|
||||
// (The built in operator, can return a l- or rvalue).
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<comma_action>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
other_action<comma_action>, plain_A, plain_B
|
||||
>::type type;
|
||||
};
|
||||
|
||||
// subscript action -----------------------------------------------
|
||||
|
||||
|
||||
namespace detail {
|
||||
// A and B are nonreference types
|
||||
template <class A, class B> struct subscript_type {
|
||||
typedef detail::unspecified type;
|
||||
};
|
||||
|
||||
template <class A, class B> struct subscript_type<A*, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A, class B> struct subscript_type<A* const, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A, class B> struct subscript_type<A* volatile, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
template <class A, class B> struct subscript_type<A* const volatile, B> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
|
||||
template<class A, class B, int N> struct subscript_type<A[N], B> {
|
||||
typedef A& type;
|
||||
};
|
||||
|
||||
// these 3 specializations are needed to make gcc <3 happy
|
||||
template<class A, class B, int N> struct subscript_type<const A[N], B> {
|
||||
typedef const A& type;
|
||||
};
|
||||
template<class A, class B, int N> struct subscript_type<volatile A[N], B> {
|
||||
typedef volatile A& type;
|
||||
};
|
||||
template<class A, class B, int N> struct subscript_type<const volatile A[N], B> {
|
||||
typedef const volatile A& type;
|
||||
};
|
||||
|
||||
} // end detail
|
||||
|
||||
template<class A, class B>
|
||||
struct return_type_2<other_action<subscript_action>, A, B> {
|
||||
|
||||
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
|
||||
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
|
||||
|
||||
typedef typename boost::remove_reference<A>::type nonref_A;
|
||||
typedef typename boost::remove_reference<B>::type nonref_B;
|
||||
|
||||
typedef typename
|
||||
plain_return_type_2<
|
||||
other_action<subscript_action>, plain_A, plain_B
|
||||
>::type type1;
|
||||
|
||||
typedef typename
|
||||
detail::IF_type<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
detail::subscript_type<nonref_A, nonref_B>,
|
||||
plain_return_type_2<other_action<subscript_action>, plain_A, plain_B>
|
||||
>::type type;
|
||||
|
||||
};
|
||||
|
||||
template<class Key, class T, class Cmp, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::map<Key, T, Cmp, Allocator>, B> {
|
||||
typedef T& type;
|
||||
// T == std::map<Key, T, Cmp, Allocator>::mapped_type;
|
||||
};
|
||||
|
||||
template<class Key, class T, class Cmp, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::multimap<Key, T, Cmp, Allocator>, B> {
|
||||
typedef T& type;
|
||||
// T == std::map<Key, T, Cmp, Allocator>::mapped_type;
|
||||
};
|
||||
|
||||
// deque
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::deque<T, Allocator>, B> {
|
||||
typedef typename std::deque<T, Allocator>::reference type;
|
||||
};
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, const std::deque<T, Allocator>, B> {
|
||||
typedef typename std::deque<T, Allocator>::const_reference type;
|
||||
};
|
||||
|
||||
// vector
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::vector<T, Allocator>, B> {
|
||||
typedef typename std::vector<T, Allocator>::reference type;
|
||||
};
|
||||
template<class T, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, const std::vector<T, Allocator>, B> {
|
||||
typedef typename std::vector<T, Allocator>::const_reference type;
|
||||
};
|
||||
|
||||
// basic_string
|
||||
template<class Char, class Traits, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, std::basic_string<Char, Traits, Allocator>, B> {
|
||||
typedef typename std::basic_string<Char, Traits, Allocator>::reference type;
|
||||
};
|
||||
template<class Char, class Traits, class Allocator, class B>
|
||||
struct plain_return_type_2<other_action<subscript_action>, const std::basic_string<Char, Traits, Allocator>, B> {
|
||||
typedef typename std::basic_string<Char, Traits, Allocator>::const_reference type;
|
||||
};
|
||||
|
||||
template<class Char, class Traits, class Allocator>
|
||||
struct plain_return_type_2<arithmetic_action<plus_action>,
|
||||
std::basic_string<Char, Traits, Allocator>,
|
||||
std::basic_string<Char, Traits, Allocator> > {
|
||||
typedef std::basic_string<Char, Traits, Allocator> type;
|
||||
};
|
||||
|
||||
template<class Char, class Traits, class Allocator>
|
||||
struct plain_return_type_2<arithmetic_action<plus_action>,
|
||||
const Char*,
|
||||
std::basic_string<Char, Traits, Allocator> > {
|
||||
typedef std::basic_string<Char, Traits, Allocator> type;
|
||||
};
|
||||
|
||||
template<class Char, class Traits, class Allocator>
|
||||
struct plain_return_type_2<arithmetic_action<plus_action>,
|
||||
std::basic_string<Char, Traits, Allocator>,
|
||||
const Char*> {
|
||||
typedef std::basic_string<Char, Traits, Allocator> type;
|
||||
};
|
||||
|
||||
template<class Char, class Traits, class Allocator, std::size_t N>
|
||||
struct plain_return_type_2<arithmetic_action<plus_action>,
|
||||
Char[N],
|
||||
std::basic_string<Char, Traits, Allocator> > {
|
||||
typedef std::basic_string<Char, Traits, Allocator> type;
|
||||
};
|
||||
|
||||
template<class Char, class Traits, class Allocator, std::size_t N>
|
||||
struct plain_return_type_2<arithmetic_action<plus_action>,
|
||||
std::basic_string<Char, Traits, Allocator>,
|
||||
Char[N]> {
|
||||
typedef std::basic_string<Char, Traits, Allocator> type;
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
370
test/external/boost/lambda/detail/operators.hpp
vendored
Normal file
370
test/external/boost/lambda/detail/operators.hpp
vendored
Normal file
@@ -0,0 +1,370 @@
|
||||
// Boost Lambda Library - operators.hpp --------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ---------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_OPERATORS_HPP
|
||||
#define BOOST_LAMBDA_OPERATORS_HPP
|
||||
|
||||
#include "boost/lambda/detail/is_instance_of.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
#if defined BOOST_LAMBDA_BE1
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE1"
|
||||
#endif
|
||||
|
||||
// For all BOOSTA_LAMBDA_BE* macros:
|
||||
|
||||
// CONSTA must be either 'A' or 'const A'
|
||||
// CONSTB must be either 'B' or 'const B'
|
||||
|
||||
// It is stupid to have the names A and B as macro arguments, but it avoids
|
||||
// the need to pass in emtpy macro arguments, which gives warnings on some
|
||||
// compilers
|
||||
|
||||
#define BOOST_LAMBDA_BE1(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
|
||||
template<class Arg, class B> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<Arg>, typename const_copy_argument <CONSTB>::type> \
|
||||
> \
|
||||
> \
|
||||
OPER_NAME (const lambda_functor<Arg>& a, CONSTB& b) { \
|
||||
return \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<Arg>, typename const_copy_argument <CONSTB>::type>\
|
||||
> \
|
||||
(tuple<lambda_functor<Arg>, typename const_copy_argument <CONSTB>::type>(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_BE2
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE2"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_BE2(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
|
||||
template<class A, class Arg> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<typename CONVERSION <CONSTA>::type, lambda_functor<Arg> > \
|
||||
> \
|
||||
> \
|
||||
OPER_NAME (CONSTA& a, const lambda_functor<Arg>& b) { \
|
||||
return \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<typename CONVERSION <CONSTA>::type, lambda_functor<Arg> > \
|
||||
> \
|
||||
(tuple<typename CONVERSION <CONSTA>::type, lambda_functor<Arg> >(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_BE3
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE3"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_BE3(OPER_NAME, ACTION, CONSTA, CONSTB, CONVERSION) \
|
||||
template<class ArgA, class ArgB> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<ArgA>, lambda_functor<ArgB> > \
|
||||
> \
|
||||
> \
|
||||
OPER_NAME (const lambda_functor<ArgA>& a, const lambda_functor<ArgB>& b) { \
|
||||
return \
|
||||
lambda_functor_base< \
|
||||
ACTION, \
|
||||
tuple<lambda_functor<ArgA>, lambda_functor<ArgB> > \
|
||||
> \
|
||||
(tuple<lambda_functor<ArgA>, lambda_functor<ArgB> >(a, b)); \
|
||||
}
|
||||
|
||||
#if defined BOOST_LAMBDA_BE
|
||||
#error "Multiple defines of BOOST_LAMBDA_BE"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_BE(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
|
||||
BOOST_LAMBDA_BE1(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
|
||||
BOOST_LAMBDA_BE2(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION) \
|
||||
BOOST_LAMBDA_BE3(OPER_NAME, ACTION, CONSTA, CONSTB, CONST_CONVERSION)
|
||||
|
||||
#define BOOST_LAMBDA_EMPTY()
|
||||
|
||||
BOOST_LAMBDA_BE(operator+, arithmetic_action<plus_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator-, arithmetic_action<minus_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator*, arithmetic_action<multiply_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator/, arithmetic_action<divide_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator%, arithmetic_action<remainder_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator<<, bitwise_action<leftshift_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator>>, bitwise_action<rightshift_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator&, bitwise_action<and_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator|, bitwise_action<or_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator^, bitwise_action<xor_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator&&, logical_action<and_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator||, logical_action<or_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator<, relational_action<less_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator>, relational_action<greater_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator<=, relational_action<lessorequal_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator>=, relational_action<greaterorequal_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator==, relational_action<equal_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE(operator!=, relational_action<notequal_action>, const A, const B, const_copy_argument)
|
||||
|
||||
BOOST_LAMBDA_BE(operator+=, arithmetic_assignment_action<plus_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator-=, arithmetic_assignment_action<minus_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator*=, arithmetic_assignment_action<multiply_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator/=, arithmetic_assignment_action<divide_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator%=, arithmetic_assignment_action<remainder_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator<<=, bitwise_assignment_action<leftshift_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator>>=, bitwise_assignment_action<rightshift_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator&=, bitwise_assignment_action<and_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator|=, bitwise_assignment_action<or_action>, A, const B, reference_argument)
|
||||
BOOST_LAMBDA_BE(operator^=, bitwise_assignment_action<xor_action>, A, const B, reference_argument)
|
||||
|
||||
|
||||
// A special trick for comma operator for correct preprocessing
|
||||
#if defined BOOST_LAMBDA_COMMA_OPERATOR_NAME
|
||||
#error "Multiple defines of BOOST_LAMBDA_COMMA_OPERATOR_NAME"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_COMMA_OPERATOR_NAME operator,
|
||||
|
||||
BOOST_LAMBDA_BE1(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE2(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const A, const B, const_copy_argument)
|
||||
BOOST_LAMBDA_BE3(BOOST_LAMBDA_COMMA_OPERATOR_NAME, other_action<comma_action>, const A, const B, const_copy_argument)
|
||||
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
// special cases for ostream& << Any and istream& >> Any ---------------
|
||||
// the actual stream classes may vary and thus a specialisation for,
|
||||
// say ostream& does not match (the general case above is chosen).
|
||||
// Therefore we specialise for non-const reference:
|
||||
// if the left argument is a stream, we store the stream as reference
|
||||
// if it is something else, we store a const plain by default
|
||||
|
||||
// Note that the overloading is const vs. non-const first argument
|
||||
|
||||
#ifdef BOOST_NO_TEMPLATED_STREAMS
|
||||
template<class T> struct convert_ostream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
boost::is_convertible<T*, std::ostream*>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class T> struct convert_istream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
boost::is_convertible<T*, std::istream*>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
#else
|
||||
|
||||
template<class T> struct convert_ostream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
is_instance_of_2<
|
||||
T, std::basic_ostream
|
||||
>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
template<class T> struct convert_istream_to_ref_others_to_c_plain_by_default {
|
||||
typedef typename detail::IF<
|
||||
is_instance_of_2<
|
||||
T, std::basic_istream
|
||||
>::value,
|
||||
T&,
|
||||
typename const_copy_argument <T>::type
|
||||
>::RET type;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // detail
|
||||
|
||||
BOOST_LAMBDA_BE2(operator<<, bitwise_action< leftshift_action>, A, const B, detail::convert_ostream_to_ref_others_to_c_plain_by_default)
|
||||
BOOST_LAMBDA_BE2(operator>>, bitwise_action< rightshift_action>, A, const B, detail::convert_istream_to_ref_others_to_c_plain_by_default)
|
||||
|
||||
|
||||
// special case for io_manipulators.
|
||||
// function references cannot be given as arguments to lambda operator
|
||||
// expressions in general. With << and >> the use of manipulators is
|
||||
// so common, that specializations are provided to make them work.
|
||||
|
||||
template<class Arg, class Ret, class ManipArg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
bitwise_action<leftshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
>
|
||||
operator<<(const lambda_functor<Arg>& a, Ret(&b)(ManipArg))
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
bitwise_action<leftshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
( tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>(a, b) );
|
||||
}
|
||||
|
||||
template<class Arg, class Ret, class ManipArg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
bitwise_action<rightshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
>
|
||||
operator>>(const lambda_functor<Arg>& a, Ret(&b)(ManipArg))
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
bitwise_action<rightshift_action>,
|
||||
tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>
|
||||
>
|
||||
( tuple<lambda_functor<Arg>, Ret(&)(ManipArg)>(a, b) );
|
||||
}
|
||||
|
||||
|
||||
// (+ and -) take their arguments as const references.
|
||||
// This has consquences with pointer artihmetic
|
||||
// E.g int a[]; ... *a = 1 works but not *(a+1) = 1.
|
||||
// the result of a+1 would be const
|
||||
// To make the latter work too,
|
||||
// non-const arrays are taken as non-const and stored as non-const as well.
|
||||
#if defined BOOST_LAMBDA_PTR_ARITHMETIC_E1
|
||||
#error "Multiple defines of BOOST_LAMBDA_PTR_ARITHMETIC_E1"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_PTR_ARITHMETIC_E1(OPER_NAME, ACTION, CONSTB) \
|
||||
template<class Arg, int N, class B> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg>, CONSTB(&)[N]> > \
|
||||
> \
|
||||
OPER_NAME (const lambda_functor<Arg>& a, CONSTB(&b)[N]) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg>, CONSTB(&)[N]> > \
|
||||
(tuple<lambda_functor<Arg>, CONSTB(&)[N]>(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
#if defined BOOST_LAMBDA_PTR_ARITHMETIC_E2
|
||||
#error "Multiple defines of BOOST_LAMBDA_PTR_ARITHMETIC_E2"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_PTR_ARITHMETIC_E2(OPER_NAME, ACTION, CONSTA) \
|
||||
template<int N, class A, class Arg> \
|
||||
inline const \
|
||||
lambda_functor< \
|
||||
lambda_functor_base<ACTION, tuple<CONSTA(&)[N], lambda_functor<Arg> > > \
|
||||
> \
|
||||
OPER_NAME (CONSTA(&a)[N], const lambda_functor<Arg>& b) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base<ACTION, tuple<CONSTA(&)[N], lambda_functor<Arg> > > \
|
||||
(tuple<CONSTA(&)[N], lambda_functor<Arg> >(a, b)); \
|
||||
}
|
||||
|
||||
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator+, arithmetic_action<plus_action>, B)
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator+, arithmetic_action<plus_action>, A)
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator+, arithmetic_action<plus_action>,const B)
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator+, arithmetic_action<plus_action>,const A)
|
||||
|
||||
|
||||
//BOOST_LAMBDA_PTR_ARITHMETIC_E1(operator-, arithmetic_action<minus_action>)
|
||||
// This is not needed, since the result of ptr-ptr is an rvalue anyway
|
||||
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator-, arithmetic_action<minus_action>, A)
|
||||
BOOST_LAMBDA_PTR_ARITHMETIC_E2(operator-, arithmetic_action<minus_action>, const A)
|
||||
|
||||
|
||||
#undef BOOST_LAMBDA_BE1
|
||||
#undef BOOST_LAMBDA_BE2
|
||||
#undef BOOST_LAMBDA_BE3
|
||||
#undef BOOST_LAMBDA_BE
|
||||
#undef BOOST_LAMBDA_COMMA_OPERATOR_NAME
|
||||
|
||||
#undef BOOST_LAMBDA_PTR_ARITHMETIC_E1
|
||||
#undef BOOST_LAMBDA_PTR_ARITHMETIC_E2
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------
|
||||
// unary operators -----------------------------------------------------
|
||||
// ---------------------------------------------------------------------
|
||||
|
||||
#if defined BOOST_LAMBDA_UE
|
||||
#error "Multiple defines of BOOST_LAMBDA_UE"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_UE(OPER_NAME, ACTION) \
|
||||
template<class Arg> \
|
||||
inline const \
|
||||
lambda_functor<lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > > \
|
||||
OPER_NAME (const lambda_functor<Arg>& a) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > \
|
||||
( tuple<lambda_functor<Arg> >(a) ); \
|
||||
}
|
||||
|
||||
|
||||
BOOST_LAMBDA_UE(operator+, unary_arithmetic_action<plus_action>)
|
||||
BOOST_LAMBDA_UE(operator-, unary_arithmetic_action<minus_action>)
|
||||
BOOST_LAMBDA_UE(operator~, bitwise_action<not_action>)
|
||||
BOOST_LAMBDA_UE(operator!, logical_action<not_action>)
|
||||
BOOST_LAMBDA_UE(operator++, pre_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_UE(operator--, pre_increment_decrement_action<decrement_action>)
|
||||
BOOST_LAMBDA_UE(operator*, other_action<contentsof_action>)
|
||||
BOOST_LAMBDA_UE(operator&, other_action<addressof_action>)
|
||||
|
||||
#if defined BOOST_LAMBDA_POSTFIX_UE
|
||||
#error "Multiple defines of BOOST_LAMBDA_POSTFIX_UE"
|
||||
#endif
|
||||
|
||||
#define BOOST_LAMBDA_POSTFIX_UE(OPER_NAME, ACTION) \
|
||||
template<class Arg> \
|
||||
inline const \
|
||||
lambda_functor<lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > > \
|
||||
OPER_NAME (const lambda_functor<Arg>& a, int) \
|
||||
{ \
|
||||
return \
|
||||
lambda_functor_base<ACTION, tuple<lambda_functor<Arg> > > \
|
||||
( tuple<lambda_functor<Arg> >(a) ); \
|
||||
}
|
||||
|
||||
|
||||
BOOST_LAMBDA_POSTFIX_UE(operator++, post_increment_decrement_action<increment_action>)
|
||||
BOOST_LAMBDA_POSTFIX_UE(operator--, post_increment_decrement_action<decrement_action>)
|
||||
|
||||
#undef BOOST_LAMBDA_UE
|
||||
#undef BOOST_LAMBDA_POSTFIX_UE
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
325
test/external/boost/lambda/detail/ret.hpp
vendored
Normal file
325
test/external/boost/lambda/detail/ret.hpp
vendored
Normal file
@@ -0,0 +1,325 @@
|
||||
// Boost Lambda Library ret.hpp -----------------------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_RET_HPP
|
||||
#define BOOST_LAMBDA_RET_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
// TODO:
|
||||
|
||||
// Add specializations for function references for ret, protect and unlambda
|
||||
// e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
|
||||
// for a function type.
|
||||
// on the other hand unlambda(*foo) does work
|
||||
|
||||
|
||||
// -- ret -------------------------
|
||||
// the explicit return type template
|
||||
|
||||
// TODO: It'd be nice to make ret a nop for other than lambda functors
|
||||
// but causes an ambiguiyty with gcc (not with KCC), check what is the
|
||||
// right interpretation.
|
||||
|
||||
// // ret for others than lambda functors has no effect
|
||||
// template <class U, class T>
|
||||
// inline const T& ret(const T& t) { return t; }
|
||||
|
||||
|
||||
template<class RET, class Arg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
explicit_return_type_action<RET>,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
>
|
||||
ret(const lambda_functor<Arg>& a1)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
explicit_return_type_action<RET>,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg> >(a1));
|
||||
}
|
||||
|
||||
// protect ------------------
|
||||
|
||||
// protecting others than lambda functors has no effect
|
||||
template <class T>
|
||||
inline const T& protect(const T& t) { return t; }
|
||||
|
||||
template<class Arg>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
protect_action,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
>
|
||||
protect(const lambda_functor<Arg>& a1)
|
||||
{
|
||||
return
|
||||
lambda_functor_base<
|
||||
protect_action,
|
||||
tuple<lambda_functor<Arg> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg> >(a1));
|
||||
}
|
||||
|
||||
// -------------------------------------------------------------------
|
||||
|
||||
// Hides the lambda functorness of a lambda functor.
|
||||
// After this, the functor is immune to argument substitution, etc.
|
||||
// This can be used, e.g. to make it safe to pass lambda functors as
|
||||
// arguments to functions, which might use them as target functions
|
||||
|
||||
// note, unlambda and protect are different things. Protect hides the lambda
|
||||
// functor for one application, unlambda for good.
|
||||
|
||||
template <class LambdaFunctor>
|
||||
class non_lambda_functor
|
||||
{
|
||||
LambdaFunctor lf;
|
||||
public:
|
||||
|
||||
// This functor defines the result_type typedef.
|
||||
// The result type must be deducible without knowing the arguments
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename
|
||||
LambdaFunctor::inherited::
|
||||
template sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
||||
|
||||
typename LambdaFunctor::nullary_return_type
|
||||
operator()() const {
|
||||
return lf.template
|
||||
call<typename LambdaFunctor::nullary_return_type>
|
||||
(cnull_type(), cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A>
|
||||
typename sig<tuple<const non_lambda_functor, A&> >::type
|
||||
operator()(A& a) const {
|
||||
return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename sig<tuple<const non_lambda_functor, A&, B&> >::type
|
||||
operator()(A& a, B& b) const {
|
||||
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
|
||||
operator()(A& a, B& b, C& c) const {
|
||||
return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg>
|
||||
inline const Arg& unlambda(const Arg& a) { return a; }
|
||||
|
||||
template <class Arg>
|
||||
inline const non_lambda_functor<lambda_functor<Arg> >
|
||||
unlambda(const lambda_functor<Arg>& a)
|
||||
{
|
||||
return non_lambda_functor<lambda_functor<Arg> >(a);
|
||||
}
|
||||
|
||||
// Due to a language restriction, lambda functors cannot be made to
|
||||
// accept non-const rvalue arguments. Usually iterators do not return
|
||||
// temporaries, but sometimes they do. That's why a workaround is provided.
|
||||
// Note, that this potentially breaks const correctness, so be careful!
|
||||
|
||||
// any lambda functor can be turned into a const_incorrect_lambda_functor
|
||||
// The operator() takes arguments as consts and then casts constness
|
||||
// away. So this breaks const correctness!!! but is a necessary workaround
|
||||
// in some cases due to language limitations.
|
||||
// Note, that this is not a lambda_functor anymore, so it can not be used
|
||||
// as a sub lambda expression.
|
||||
|
||||
template <class LambdaFunctor>
|
||||
struct const_incorrect_lambda_functor {
|
||||
LambdaFunctor lf;
|
||||
public:
|
||||
|
||||
explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename
|
||||
LambdaFunctor::inherited::template
|
||||
sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
// The nullary case is not needed (no arguments, no parameter type problems)
|
||||
|
||||
template<class A>
|
||||
typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
|
||||
operator()(const A& a) const {
|
||||
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
|
||||
operator()(const A& a, const B& b) const {
|
||||
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
|
||||
operator()(const A& a, const B& b, const C& c) const {
|
||||
return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
|
||||
}
|
||||
};
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// any lambda functor can be turned into a const_parameter_lambda_functor
|
||||
// The operator() takes arguments as const.
|
||||
// This is useful if lambda functors are called with non-const rvalues.
|
||||
// Note, that this is not a lambda_functor anymore, so it can not be used
|
||||
// as a sub lambda expression.
|
||||
|
||||
template <class LambdaFunctor>
|
||||
struct const_parameter_lambda_functor {
|
||||
LambdaFunctor lf;
|
||||
public:
|
||||
|
||||
explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
|
||||
|
||||
template <class SigArgs> struct sig {
|
||||
typedef typename
|
||||
LambdaFunctor::inherited::template
|
||||
sig<typename SigArgs::tail_type>::type type;
|
||||
};
|
||||
|
||||
// The nullary case is not needed: no arguments, no constness problems.
|
||||
|
||||
template<class A>
|
||||
typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
|
||||
operator()(const A& a) const {
|
||||
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B>
|
||||
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
|
||||
operator()(const A& a, const B& b) const {
|
||||
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
|
||||
}
|
||||
|
||||
template<class A, class B, class C>
|
||||
typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
|
||||
>::type
|
||||
operator()(const A& a, const B& b, const C& c) const {
|
||||
return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
|
||||
}
|
||||
};
|
||||
|
||||
template <class Arg>
|
||||
inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
|
||||
break_const(const lambda_functor<Arg>& lf)
|
||||
{
|
||||
return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
|
||||
}
|
||||
|
||||
|
||||
template <class Arg>
|
||||
inline const const_parameter_lambda_functor<lambda_functor<Arg> >
|
||||
const_parameters(const lambda_functor<Arg>& lf)
|
||||
{
|
||||
return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
|
||||
}
|
||||
|
||||
// make void ------------------------------------------------
|
||||
// make_void( x ) turns a lambda functor x with some return type y into
|
||||
// another lambda functor, which has a void return type
|
||||
// when called, the original return type is discarded
|
||||
|
||||
// we use this action. The action class will be called, which means that
|
||||
// the wrapped lambda functor is evaluated, but we just don't do anything
|
||||
// with the result.
|
||||
struct voidifier_action {
|
||||
template<class Ret, class A> static void apply(A&) {}
|
||||
};
|
||||
|
||||
template<class Args> struct return_type_N<voidifier_action, Args> {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
template<class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
action<1, voidifier_action>,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
>
|
||||
make_void(const lambda_functor<Arg1>& a1) {
|
||||
return
|
||||
lambda_functor_base<
|
||||
action<1, voidifier_action>,
|
||||
tuple<lambda_functor<Arg1> >
|
||||
>
|
||||
(tuple<lambda_functor<Arg1> > (a1));
|
||||
}
|
||||
|
||||
// for non-lambda functors, make_void does nothing
|
||||
// (the argument gets evaluated immediately)
|
||||
|
||||
template<class Arg1>
|
||||
inline const
|
||||
lambda_functor<
|
||||
lambda_functor_base<do_nothing_action, null_type>
|
||||
>
|
||||
make_void(const Arg1& a1) {
|
||||
return
|
||||
lambda_functor_base<do_nothing_action, null_type>();
|
||||
}
|
||||
|
||||
// std_functor -----------------------------------------------------
|
||||
|
||||
// The STL uses the result_type typedef as the convention to let binders know
|
||||
// the return type of a function object.
|
||||
// LL uses the sig template.
|
||||
// To let LL know that the function object has the result_type typedef
|
||||
// defined, it can be wrapped with the std_functor function.
|
||||
|
||||
|
||||
// Just inherit form the template parameter (the standard functor),
|
||||
// and provide a sig template. So we have a class which is still the
|
||||
// same functor + the sig template.
|
||||
|
||||
template<class T>
|
||||
struct result_type_to_sig : public T {
|
||||
template<class Args> struct sig { typedef typename T::result_type type; };
|
||||
result_type_to_sig(const T& t) : T(t) {}
|
||||
};
|
||||
|
||||
template<class F>
|
||||
inline result_type_to_sig<F> std_functor(const F& f) { return f; }
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
282
test/external/boost/lambda/detail/return_type_traits.hpp
vendored
Normal file
282
test/external/boost/lambda/detail/return_type_traits.hpp
vendored
Normal file
@@ -0,0 +1,282 @@
|
||||
// return_type_traits.hpp -- Boost Lambda Library ---------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
|
||||
#define BOOST_LAMBDA_RETURN_TYPE_TRAITS_HPP
|
||||
|
||||
#include "boost/mpl/has_xxx.hpp"
|
||||
|
||||
#include <cstddef> // needed for the ptrdiff_t
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
|
||||
using ::boost::type_traits::ice_and;
|
||||
using ::boost::type_traits::ice_or;
|
||||
using ::boost::type_traits::ice_not;
|
||||
|
||||
// Much of the type deduction code for standard arithmetic types
|
||||
// from Gary Powell
|
||||
|
||||
// different arities:
|
||||
template <class Act, class A1> struct return_type_1; // 1-ary actions
|
||||
template <class Act, class A1, class A2> struct return_type_2; // 2-ary
|
||||
template <class Act, class Args> struct return_type_N; // >3- ary
|
||||
|
||||
template <class Act, class A1> struct return_type_1_prot;
|
||||
template <class Act, class A1, class A2> struct return_type_2_prot; // 2-ary
|
||||
template <class Act, class A1> struct return_type_N_prot; // >3-ary
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
template<class> class return_type_deduction_failure {};
|
||||
|
||||
// In some cases return type deduction should fail (an invalid lambda
|
||||
// expression). Sometimes the lambda expression can be ok, the return type
|
||||
// just is not deducible (user defined operators). Then return type deduction
|
||||
// should never be entered at all, and the use of ret<> does this.
|
||||
// However, for nullary lambda functors, return type deduction is always
|
||||
// entered, and there seems to be no way around this.
|
||||
|
||||
// (the return type is part of the prototype of the non-template
|
||||
// operator()(). The prototype is instantiated, even though the body
|
||||
// is not.)
|
||||
|
||||
// So, in the case the return type deduction should fail, it should not
|
||||
// fail directly, but rather result in a valid but wrong return type,
|
||||
// causing a compile time error only if the function is really called.
|
||||
|
||||
|
||||
|
||||
} // end detail
|
||||
|
||||
|
||||
|
||||
// return_type_X_prot classes --------------------------------------------
|
||||
// These classes are the first layer that gets instantiated from the
|
||||
// lambda_functor_base sig templates. It will check whether
|
||||
// the action is protectable and one of arguments is "protected" or its
|
||||
// evaluation will otherwise result in another lambda functor.
|
||||
// If this is a case, the result type will be another lambda functor.
|
||||
|
||||
// The arguments are always non-reference types, except for comma action
|
||||
// where the right argument can be a reference too. This is because it
|
||||
// matters (in the builtin case) whether the argument is an lvalue or
|
||||
// rvalue: int i; i, 1 -> rvalue; 1, i -> lvalue
|
||||
|
||||
template <class Act, class A> struct return_type_1_prot {
|
||||
public:
|
||||
typedef typename
|
||||
detail::IF<
|
||||
// is_protectable<Act>::value && is_lambda_functor<A>::value,
|
||||
ice_and<is_protectable<Act>::value, is_lambda_functor<A>::value>::value,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
Act,
|
||||
tuple<typename detail::remove_reference_and_cv<A>::type>
|
||||
>
|
||||
>,
|
||||
typename return_type_1<Act, A>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act> struct return_type_1_prot<Act, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// Unary actions (result from unary operators)
|
||||
// do not have a default return type.
|
||||
template<class Act, class A> struct return_type_1 {
|
||||
typedef typename
|
||||
detail::return_type_deduction_failure<return_type_1> type;
|
||||
};
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <class T>
|
||||
class protect_conversion {
|
||||
typedef typename boost::remove_reference<T>::type non_ref_T;
|
||||
public:
|
||||
|
||||
// add const to rvalues, so that all rvalues are stored as const in
|
||||
// the args tuple
|
||||
typedef typename detail::IF_type<
|
||||
// boost::is_reference<T>::value && !boost::is_const<non_ref_T>::value,
|
||||
ice_and<boost::is_reference<T>::value,
|
||||
ice_not<boost::is_const<non_ref_T>::value>::value>::value,
|
||||
detail::identity_mapping<T>,
|
||||
const_copy_argument<non_ref_T> // handles funtion and array
|
||||
>::type type; // types correctly
|
||||
};
|
||||
|
||||
} // end detail
|
||||
|
||||
template <class Act, class A, class B> struct return_type_2_prot {
|
||||
|
||||
// experimental feature
|
||||
// We may have a lambda functor as a result type of a subexpression
|
||||
// (if protect) has been used.
|
||||
// Thus, if one of the parameter types is a lambda functor, the result
|
||||
// is a lambda functor as well.
|
||||
// We need to make a conservative choise here.
|
||||
// The resulting lambda functor stores all const reference arguments as
|
||||
// const copies. References to non-const are stored as such.
|
||||
// So if the source of the argument is a const open argument, a bound
|
||||
// argument stored as a const reference, or a function returning a
|
||||
// const reference, that information is lost. There is no way of
|
||||
// telling apart 'real const references' from just 'LL internal
|
||||
// const references' (or it would be really hard)
|
||||
|
||||
// The return type is a subclass of lambda_functor, which has a converting
|
||||
// copy constructor. It can copy any lambda functor, that has the same
|
||||
// action type and code, and a copy compatible argument tuple.
|
||||
|
||||
|
||||
typedef typename boost::remove_reference<A>::type non_ref_A;
|
||||
typedef typename boost::remove_reference<B>::type non_ref_B;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
// is_protectable<Act>::value &&
|
||||
// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
|
||||
ice_and<is_protectable<Act>::value,
|
||||
ice_or<is_lambda_functor<A>::value,
|
||||
is_lambda_functor<B>::value>::value>::value,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
Act,
|
||||
tuple<typename detail::protect_conversion<A>::type,
|
||||
typename detail::protect_conversion<B>::type>
|
||||
>
|
||||
>,
|
||||
typename return_type_2<Act, non_ref_A, non_ref_B>::type
|
||||
>::RET type;
|
||||
};
|
||||
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act> struct return_type_2_prot<Act, null_type, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act, class Other> struct return_type_2_prot<Act, Other, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act, class Other> struct return_type_2_prot<Act, null_type, Other> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// comma is a special case, as the user defined operator can return
|
||||
// an lvalue (reference) too, hence it must be handled at this level.
|
||||
template<class A, class B>
|
||||
struct return_type_2_comma
|
||||
{
|
||||
typedef typename boost::remove_reference<A>::type non_ref_A;
|
||||
typedef typename boost::remove_reference<B>::type non_ref_B;
|
||||
|
||||
typedef typename
|
||||
detail::IF<
|
||||
// is_protectable<other_action<comma_action> >::value && // it is protectable
|
||||
// (is_lambda_functor<A>::value || is_lambda_functor<B>::value),
|
||||
ice_and<is_protectable<other_action<comma_action> >::value, // it is protectable
|
||||
ice_or<is_lambda_functor<A>::value,
|
||||
is_lambda_functor<B>::value>::value>::value,
|
||||
lambda_functor<
|
||||
lambda_functor_base<
|
||||
other_action<comma_action>,
|
||||
tuple<typename detail::protect_conversion<A>::type,
|
||||
typename detail::protect_conversion<B>::type>
|
||||
>
|
||||
>,
|
||||
typename
|
||||
return_type_2<other_action<comma_action>, non_ref_A, non_ref_B>::type
|
||||
>::RET type1;
|
||||
|
||||
// if no user defined return_type_2 (or plain_return_type_2) specialization
|
||||
// matches, then return the righthand argument
|
||||
typedef typename
|
||||
detail::IF<
|
||||
boost::is_same<type1, detail::unspecified>::value,
|
||||
B,
|
||||
type1
|
||||
>::RET type;
|
||||
|
||||
};
|
||||
|
||||
|
||||
// currently there are no protectable actions with > 2 args
|
||||
|
||||
template<class Act, class Args> struct return_type_N_prot {
|
||||
typedef typename return_type_N<Act, Args>::type type;
|
||||
};
|
||||
|
||||
// take care of the unavoidable instantiation for nullary case
|
||||
template<class Act> struct return_type_N_prot<Act, null_type> {
|
||||
typedef null_type type;
|
||||
};
|
||||
|
||||
// handle different kind of actions ------------------------
|
||||
|
||||
// use the return type given in the bind invocation as bind<Ret>(...)
|
||||
template<int I, class Args, class Ret>
|
||||
struct return_type_N<function_action<I, Ret>, Args> {
|
||||
typedef Ret type;
|
||||
};
|
||||
|
||||
// ::result_type support
|
||||
|
||||
namespace detail
|
||||
{
|
||||
|
||||
BOOST_MPL_HAS_XXX_TRAIT_DEF(result_type)
|
||||
|
||||
template<class F> struct get_result_type
|
||||
{
|
||||
typedef typename F::result_type type;
|
||||
};
|
||||
|
||||
template<class F, class A> struct get_sig
|
||||
{
|
||||
typedef typename function_adaptor<F>::template sig<A>::type type;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// Ret is detail::unspecified, so try to deduce return type
|
||||
template<int I, class Args>
|
||||
struct return_type_N<function_action<I, detail::unspecified>, Args > {
|
||||
|
||||
// in the case of function action, the first element in Args is
|
||||
// some type of function
|
||||
typedef typename Args::head_type Func;
|
||||
typedef typename detail::remove_reference_and_cv<Func>::type plain_Func;
|
||||
|
||||
public:
|
||||
// pass the function to function_adaptor, and get the return type from
|
||||
// that
|
||||
typedef typename detail::IF<
|
||||
detail::has_result_type<plain_Func>::value,
|
||||
detail::get_result_type<plain_Func>,
|
||||
detail::get_sig<plain_Func, Args>
|
||||
>::RET::type type;
|
||||
};
|
||||
|
||||
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
74
test/external/boost/lambda/detail/select_functions.hpp
vendored
Normal file
74
test/external/boost/lambda/detail/select_functions.hpp
vendored
Normal file
@@ -0,0 +1,74 @@
|
||||
// -- select_functions.hpp -- Boost Lambda Library --------------------------
|
||||
|
||||
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see http://www.boost.org
|
||||
|
||||
|
||||
#ifndef BOOST_LAMBDA_SELECT_FUNCTIONS_HPP
|
||||
#define BOOST_LAMBDA_SELECT_FUNCTIONS_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
|
||||
// select functions -------------------------------
|
||||
template<class Any, CALL_TEMPLATE_ARGS>
|
||||
inline Any& select(Any& any, CALL_FORMAL_ARGS) { CALL_USE_ARGS; return any; }
|
||||
|
||||
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
inline typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
select ( const lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
|
||||
return op.template call<
|
||||
typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
inline typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
select ( lambda_functor<Arg>& op, CALL_FORMAL_ARGS) {
|
||||
return op.template call<
|
||||
typename Arg::template sig<tuple<CALL_REFERENCE_TYPES> >::type
|
||||
>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------
|
||||
// select functions where the return type is explicitly given
|
||||
// Note: on many functions, this return type is just discarded.
|
||||
// The select functions are inside a class template, and the return type
|
||||
// is a class template argument.
|
||||
// The first implementation used function templates with an explicitly
|
||||
// specified template parameter.
|
||||
// However, this resulted in ambiguous calls (at least with gcc 2.95.2
|
||||
// and edg 2.44). Not sure whether the compilers were right or wrong.
|
||||
|
||||
template<class RET> struct r_select {
|
||||
|
||||
// Any == RET
|
||||
template<class Any, CALL_TEMPLATE_ARGS>
|
||||
static
|
||||
inline RET go (Any& any, CALL_FORMAL_ARGS) { CALL_USE_ARGS; return any; }
|
||||
|
||||
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
static
|
||||
inline RET go (const lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
|
||||
return op.template call<RET>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
template<class Arg, CALL_TEMPLATE_ARGS>
|
||||
static
|
||||
inline RET go (lambda_functor<Arg>& op, CALL_FORMAL_ARGS ) {
|
||||
return op.template call<RET>(CALL_ACTUAL_ARGS);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
} // namespace lambda
|
||||
} // namespace boost
|
||||
|
||||
#endif
|
||||
27
test/external/boost/lambda/detail/suppress_unused.hpp
vendored
Normal file
27
test/external/boost/lambda/detail/suppress_unused.hpp
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
// Boost Lambda Library suppress_unused.hpp -----------------------------
|
||||
//
|
||||
// Copyright (C) 2009 Steven Watanabe
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See
|
||||
// accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
// For more information, see www.boost.org
|
||||
|
||||
// ------------------------------------------------------------
|
||||
|
||||
#ifndef BOOST_LAMBDA_SUPRESS_UNUSED_HPP
|
||||
#define BOOST_LAMBDA_SUPRESS_UNUSED_HPP
|
||||
|
||||
namespace boost {
|
||||
namespace lambda {
|
||||
namespace detail {
|
||||
|
||||
template<class T>
|
||||
inline void suppress_unused_variable_warnings(const T&) {}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user