Added boost header
This commit is contained in:
235
test/external/boost/math/complex/acos.hpp
vendored
Normal file
235
test/external/boost/math/complex/acos.hpp
vendored
Normal file
@@ -0,0 +1,235 @@
|
||||
// (C) Copyright John Maddock 2005.
|
||||
// Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||||
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED
|
||||
#define BOOST_MATH_COMPLEX_ACOS_INCLUDED
|
||||
|
||||
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
|
||||
# include <boost/math/complex/details.hpp>
|
||||
#endif
|
||||
#ifndef BOOST_MATH_LOG1P_INCLUDED
|
||||
# include <boost/math/special_functions/log1p.hpp>
|
||||
#endif
|
||||
#include <boost/assert.hpp>
|
||||
|
||||
#ifdef BOOST_NO_STDC_NAMESPACE
|
||||
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
|
||||
#endif
|
||||
|
||||
namespace boost{ namespace math{
|
||||
|
||||
template<class T>
|
||||
std::complex<T> acos(const std::complex<T>& z)
|
||||
{
|
||||
//
|
||||
// This implementation is a transcription of the pseudo-code in:
|
||||
//
|
||||
// "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling."
|
||||
// T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
|
||||
// ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
|
||||
//
|
||||
|
||||
//
|
||||
// These static constants should really be in a maths constants library:
|
||||
//
|
||||
static const T one = static_cast<T>(1);
|
||||
//static const T two = static_cast<T>(2);
|
||||
static const T half = static_cast<T>(0.5L);
|
||||
static const T a_crossover = static_cast<T>(1.5L);
|
||||
static const T b_crossover = static_cast<T>(0.6417L);
|
||||
static const T s_pi = static_cast<T>(3.141592653589793238462643383279502884197L);
|
||||
static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
|
||||
static const T log_two = static_cast<T>(0.69314718055994530941723212145817657L);
|
||||
static const T quarter_pi = static_cast<T>(0.78539816339744830961566084581987572L);
|
||||
|
||||
//
|
||||
// Get real and imaginary parts, discard the signs as we can
|
||||
// figure out the sign of the result later:
|
||||
//
|
||||
T x = std::fabs(z.real());
|
||||
T y = std::fabs(z.imag());
|
||||
|
||||
T real, imag; // these hold our result
|
||||
|
||||
//
|
||||
// Handle special cases specified by the C99 standard,
|
||||
// many of these special cases aren't really needed here,
|
||||
// but doing it this way prevents overflow/underflow arithmetic
|
||||
// in the main body of the logic, which may trip up some machines:
|
||||
//
|
||||
if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
|
||||
{
|
||||
if(y == std::numeric_limits<T>::infinity())
|
||||
{
|
||||
real = quarter_pi;
|
||||
imag = std::numeric_limits<T>::infinity();
|
||||
}
|
||||
else if(detail::test_is_nan(y))
|
||||
{
|
||||
return std::complex<T>(y, -std::numeric_limits<T>::infinity());
|
||||
}
|
||||
else
|
||||
{
|
||||
// y is not infinity or nan:
|
||||
real = 0;
|
||||
imag = std::numeric_limits<T>::infinity();
|
||||
}
|
||||
}
|
||||
else if(detail::test_is_nan(x))
|
||||
{
|
||||
if(y == std::numeric_limits<T>::infinity())
|
||||
return std::complex<T>(x, (z.imag() < 0) ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity());
|
||||
return std::complex<T>(x, x);
|
||||
}
|
||||
else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
|
||||
{
|
||||
real = half_pi;
|
||||
imag = std::numeric_limits<T>::infinity();
|
||||
}
|
||||
else if(detail::test_is_nan(y))
|
||||
{
|
||||
return std::complex<T>((x == 0) ? half_pi : y, y);
|
||||
}
|
||||
else
|
||||
{
|
||||
//
|
||||
// What follows is the regular Hull et al code,
|
||||
// begin with the special case for real numbers:
|
||||
//
|
||||
if((y == 0) && (x <= one))
|
||||
return std::complex<T>((x == 0) ? half_pi : std::acos(z.real()));
|
||||
//
|
||||
// Figure out if our input is within the "safe area" identified by Hull et al.
|
||||
// This would be more efficient with portable floating point exception handling;
|
||||
// fortunately the quantities M and u identified by Hull et al (figure 3),
|
||||
// match with the max and min methods of numeric_limits<T>.
|
||||
//
|
||||
T safe_max = detail::safe_max(static_cast<T>(8));
|
||||
T safe_min = detail::safe_min(static_cast<T>(4));
|
||||
|
||||
T xp1 = one + x;
|
||||
T xm1 = x - one;
|
||||
|
||||
if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
|
||||
{
|
||||
T yy = y * y;
|
||||
T r = std::sqrt(xp1*xp1 + yy);
|
||||
T s = std::sqrt(xm1*xm1 + yy);
|
||||
T a = half * (r + s);
|
||||
T b = x / a;
|
||||
|
||||
if(b <= b_crossover)
|
||||
{
|
||||
real = std::acos(b);
|
||||
}
|
||||
else
|
||||
{
|
||||
T apx = a + x;
|
||||
if(x <= one)
|
||||
{
|
||||
real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x);
|
||||
}
|
||||
else
|
||||
{
|
||||
real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x);
|
||||
}
|
||||
}
|
||||
|
||||
if(a <= a_crossover)
|
||||
{
|
||||
T am1;
|
||||
if(x < one)
|
||||
{
|
||||
am1 = half * (yy/(r + xp1) + yy/(s - xm1));
|
||||
}
|
||||
else
|
||||
{
|
||||
am1 = half * (yy/(r + xp1) + (s + xm1));
|
||||
}
|
||||
imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
|
||||
}
|
||||
else
|
||||
{
|
||||
imag = std::log(a + std::sqrt(a*a - one));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
//
|
||||
// This is the Hull et al exception handling code from Fig 6 of their paper:
|
||||
//
|
||||
if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
|
||||
{
|
||||
if(x < one)
|
||||
{
|
||||
real = std::acos(x);
|
||||
imag = y / std::sqrt(xp1*(one-x));
|
||||
}
|
||||
else
|
||||
{
|
||||
real = 0;
|
||||
if(((std::numeric_limits<T>::max)() / xp1) > xm1)
|
||||
{
|
||||
// xp1 * xm1 won't overflow:
|
||||
imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
|
||||
}
|
||||
else
|
||||
{
|
||||
imag = log_two + std::log(x);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if(y <= safe_min)
|
||||
{
|
||||
// There is an assumption in Hull et al's analysis that
|
||||
// if we get here then x == 1. This is true for all "good"
|
||||
// machines where :
|
||||
//
|
||||
// E^2 > 8*sqrt(u); with:
|
||||
//
|
||||
// E = std::numeric_limits<T>::epsilon()
|
||||
// u = (std::numeric_limits<T>::min)()
|
||||
//
|
||||
// Hull et al provide alternative code for "bad" machines
|
||||
// but we have no way to test that here, so for now just assert
|
||||
// on the assumption:
|
||||
//
|
||||
BOOST_ASSERT(x == 1);
|
||||
real = std::sqrt(y);
|
||||
imag = std::sqrt(y);
|
||||
}
|
||||
else if(std::numeric_limits<T>::epsilon() * y - one >= x)
|
||||
{
|
||||
real = half_pi;
|
||||
imag = log_two + std::log(y);
|
||||
}
|
||||
else if(x > one)
|
||||
{
|
||||
real = std::atan(y/x);
|
||||
T xoy = x/y;
|
||||
imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
|
||||
}
|
||||
else
|
||||
{
|
||||
real = half_pi;
|
||||
T a = std::sqrt(one + y*y);
|
||||
imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Finish off by working out the sign of the result:
|
||||
//
|
||||
if(z.real() < 0)
|
||||
real = s_pi - real;
|
||||
if(z.imag() > 0)
|
||||
imag = -imag;
|
||||
|
||||
return std::complex<T>(real, imag);
|
||||
}
|
||||
|
||||
} } // namespaces
|
||||
|
||||
#endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED
|
||||
Reference in New Issue
Block a user