Promote GTC_constants

This commit is contained in:
Christophe Riccio
2012-01-25 18:54:28 +00:00
parent fb3a41995a
commit f267b6ea18
5 changed files with 190 additions and 717 deletions

186
glm/gtc/constants.hpp Normal file
View File

@@ -0,0 +1,186 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_constants
/// @file glm/gtc/constants.hpp
/// @date 2011-09-30 / 2012-01-25
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
///
/// @defgroup gtc_constants GLM_GTC_constants: Provide build-in constants
/// @ingroup gtc
///
/// @brief Allow to perform bit operations on integer values
///
/// <glm/gtc/constants.hpp> need to be included to use these features.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTC_constants
#define GLM_GTC_constants GLM_VERSION
// Dependency:
#include "../glm.hpp"
#include "../gtc/half_float.hpp"
#if(defined(GLM_MESSAGES) && !defined(glm_ext))
# pragma message("GLM: GLM_GTC_constants extension included")
#endif
namespace glm
{
/// @addtogroup gtc_constants
/// @{
/// Return the epsilon constant for floating point types.
/// @todo Implement epsilon for half-precision floating point type.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T epsilon();
/// Return 0.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T zero();
/// Return 1.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T one();
/// Return the pi constant.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T pi();
/// Return square root of pi.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T root_pi();
/// Return pi / 2.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T half_pi();
/// Return pi / 4.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T quarter_pi();
/// Return 1 / pi.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T one_over_pi();
/// Return 2 / pi.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T two_over_pi();
/// Return 2 / sqrt(pi).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T two_over_root_pi();
/// Return 1 / sqrt(2).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T one_over_root_two();
/// Return sqrt(pi / 2).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T root_half_pi();
/// Return sqrt(2 * pi).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T root_two_pi();
/// Return sqrt(ln(4)).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T root_ln_four();
/// Return e constant.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T e();
/// Return Euler's constant.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T euler();
/// Return sqrt(2).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T root_two();
/// Return sqrt(3).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T root_three();
/// Return sqrt(5).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T root_five();
/// Return ln(2).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T ln_two();
/// Return ln(10).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T ln_ten();
/// Return ln(ln(2)).
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T ln_ln_two();
/// Return 1 / 3.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T third();
/// Return 2 / 3.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T two_thirds();
/// Return the golden ratio constant.
/// @see gtc_constants
template <typename T>
GLM_CONSTEXPR T golden_ratio();
/// @}
} //namespace glm
#include "constants.inl"
#endif//GLM_GTC_constants

180
glm/gtc/constants.inl Normal file
View File

@@ -0,0 +1,180 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_constants
/// @file glm/gtx/constants.inl
/// @date 2011-10-14 / 2012-01-25
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T epsilon()
{
return std::numeric_limits<T>::epsilon();
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T zero()
{
return T(0);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T one()
{
return T(1);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T pi()
{
return T(3.14159265358979323846264338327950288);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T root_pi()
{
return T(1.772453850905516027);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T half_pi()
{
return T(1.57079632679489661923132169163975144);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T quarter_pi()
{
return T(0.785398163397448309615660845819875721);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T one_over_pi()
{
return T(0.318309886183790671537767526745028724);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T two_over_pi()
{
return T(0.636619772367581343075535053490057448);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T two_over_root_pi()
{
return T(1.12837916709551257389615890312154517);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T one_over_root_two()
{
return T(0.707106781186547524400844362104849039);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T root_half_pi()
{
return T(1.253314137315500251);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T root_two_pi()
{
return T(2.506628274631000502);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T root_ln_four()
{
return T(1.17741002251547469);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T e()
{
return T(2.71828182845904523536);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T euler()
{
return T(0.577215664901532860606);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T root_two()
{
return T(1.41421356237309504880168872420969808);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T root_three()
{
return T(1.73205080756887729352744634150587236);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T root_five()
{
return T(2.23606797749978969640917366873127623);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T ln_two()
{
return T(0.693147180559945309417232121458176568);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T ln_ten()
{
return T(2.30258509299404568401799145468436421);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T ln_ln_two()
{
return T(-0.3665129205816643);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T third()
{
return T(0.3333333333333333333333333333333333333333);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T two_thirds()
{
return T(0.666666666666666666666666666666666666667);
}
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR T golden_ratio()
{
return T(1.61803398874989484820458683436563811);
}
} //namespace glm