m

Manual

Version 0.9.8
10 September 2016

Christophe Riccio
glm@g-truc.net

mailto:glm@g-truc.net

The Happy Bunny License (Modified MIT License)

Copyright (c) 2005 - 2016 G-Truc Creation

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

Restrictions: By making use of the Software for military purposes, you choose to
make a Bunny unhappy.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The MIT License

Copyright (c) 2005 - 2016 G-Truc Creation

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Table of Contents

INTRODUCTION 6
1. GETTING STARTED 7
1.1. SETUP 7
1.2. FASTER PROGRAM COMPILATION 7
1.3. USE SAMPLE OF GLM CORE 7
1.4. DEPENDENCIES 8
2. SWIZZLE OPERATORS 9
2.1. DEFAULT C++98 IMPLEMENTATION 9
2.2. ANONYMOUS UNION MEMBER IMPLEMENTATION 10
3. PREPROCESSOR OPTIONS 11
3.1. DEFAULT PRECISION 11
3.2. COMPILE-TIME MESSAGE SYSTEM 11
3.3. C++ LANGUAGE DETECTION 12
3.4. SIMD SuPPORT 12
3.5. FORCE INLINE 13
3.6. VECTOR AND MATRIX STATIC SIZE 13
3.7. DISABLING DEFAULT CONSTRUCTOR INITIALIZATION 13
3.8. REQUIRE EXPLICIT CONVERSIONS 14
3.9. REMOVING GENTYPE RESTRICTION 15
4. STABLE EXTENSIONS 16
4.1. GLM_GTC_BITFIELD 16
4.2. GLM_GTC_COLOR_SPACE 16
4.3. GLM_GTC_CONSTANTS 16
4.4, GLM_GTC_EPSILON 16
4.5. GLM_GTC_INTEGER 16
4.6. GLM_GTC_MATRIX_ACCESS 17
4.7. GLM_GTC_MATRIX_INTEGER 17
4.8. GLM_GTC_MATRIX_INVERSE 17
4.9. GLM_GTC_MATRIX_TRANSFORM 17
4.10. GLM_GTC_NOISE 17
4.11. GLM_GTC_PACKING 20
4.12. GLM_GTC_QUATERNION 21
4.13. GLM_GTC_RANDOM 21
4.14. GLM_GTC_RECIPROCAL 23
4.15. GLM_GTC_ROUND 23
4.16. GLM_GTC_TYPE_PRECISION 23
4.17. GLM_GTC_TYPE_PTR 25
4.18. GLM_GTC_uLp 25
4.19. GLM_GTC_vecl 25
5. OPENGL INTEROPERABILITY 26
5.1. GLM REPLACEMENTS FOR DEPRECATED OPENGL FUNCTIONS 26

5.2. GLM REPLACEMENTS FOR GLU FUNCTIONS 27
6. KNOWN ISSUES 29
6.1. NOT FUNCTION 29
6.2. PRECISION QUALIFIERS SUPPORT 29
7. FAQ 30
7.1 WHY GLM FOLLOWS GLSL SPECIFICATION AND CONVENTIONS? 30
7.2. DOES GLM RUN GLSL PROGRAM? 30
7.3. DOES A GLSL COMPILER BUILD GLM CODES? 30
7.4. SHOULD | USE ‘GTX’ EXTENSIONS? 30
7.5. WHERE CAN | ASK MY QUESTIONS? 30
7.6. WHERE CAN | FIND THE DOCUMENTATION OF EXTENSIONS? 30
7.7. SHOULD | USE ‘USING NAMESPACE GLM;’? 30
7.8.1s GLM FAST? 30
7.9. WHEN | BUILD WITH VISUAL C++ WITH /W4 WARNING LEVEL, | HAVE WARNINGS... 31
7.10. WHY SOME GLIM FUNCTIONS CAN CRASH BECAUSE OF DIVISION BY ZERO? 31
7.11. WHAT UNIT FOR ANGLES IS USED IN GLM? 31
8. CODE SAMPLES 32
8.1. COMPUTE A TRIANGLE NORMAL 32
8.2. MATRIX TRANSFORM 32
8.3. VECTOR TYPES 33
8.4. LIGHTING 33
9. REFERENCES 35
9.1. GLM DEVELOPMENT 35
9.2. OPENGL SPECIFICATIONS 35
9.3. EXTERNAL LINKS 35
9.4. PROJECTS USING GLM 35
OUTERRA 35
OPENCLOTH 36
OPENGL 4.0 SHADING LANGUAGE COOKBOOK 37
LEO’S FORTURE 37
ARE YOU USING GLM IN A PROJECT? 38
9.5. OPENGL TUTORIALS USING GLM 38
9.6. ALTERNATIVES TO GLM 38
9.7. ACKNOWLEDGEMENTS 38

9.8. QUOTES FROM THE WEB ERROR! BOOKMARK NOT DEFINED.

Introduction

OpenGL Mathematics (GLM) is a C++ mathematics library for graphics C++ programs
based on the OpenGL Shading Language (GLSL) specifications.

GLM provides classes and functions designed and implemented with the same
naming conventions and functionalities than GLSL so that when a programmer
knows GLSL, he knows GLM as well which makes it really easy to use.

This project isn't limited to GLSL features. An extension system, based on the GLSL
extension conventions, provides extended capabilities: matrix transformations,
guaternions, data packing, random numbers, noise, etc...

This library works perfectly with OpenGL but it also ensures interoperability with
other third party libraries and SDK. It is a good candidate for software rendering
(raytracing / rasterisation), image processing, physic simulations and any
development context that requires a simple and convenient mathematics library.

GLM is written in C++98 but can take advantage of C++11 when supported by the
compiler. It is a platform independent library with no dependence and it officially
supports the following compilers:

- Apple Clang 4.0 and higher
- GCC 4.2 and higher

- Intel C++ Composer XE 2013 and higher
- LLVM 3.0 and higher

- Visual C++ 2010 and higher

- CUDA 4.0 and higher (experimental)

- Any conform C++98 or C++11 compiler

The source code and the documentation, including this manual, are licensed under
the Happy Bunny License (Modified MIT) and the MIT License.

Thanks for contributing to the project by submitting reports for bugs and feature
requests. Any feedback is welcome at glm@g-truc.net.

http://www.opengl.org/registry/
http://www.opengl.org/
http://www.opengl.org/
https://developer.apple.com/Library/mac/documentation/CompilerTools/Conceptual/LLVMCompilerOverview/index.html
http://gcc.gnu.org/
https://software.intel.com/en-us/intel-compilers
http://llvm.org/
http://www.visualstudio.com/
https://developer.nvidia.com/about-cuda
http://glm.g-truc.net/copying.txt
https://github.com/g-truc/glm/issues
mailto:glm@g-truc.net

1. Getting started

1.1. Setup

GLM is a header only library. Hence, there is nothing to build to use it. To use GLM, a
programmer only has to include <gim/glm.hpp> in his program. This include provides
all the GLSL features implemented by GLM.

Core GLM features can be included using individual headers to allow faster user
program compilations.

<glm/vec2.hpp>: vec2, bvec2, dvec2, ivec2 and uvec2
<glm/vec3.hpp>: vec3, bvec3, dvec3, ivec3 and uvec3
<glm/vec4.hpp>: vecd, bvecd4, dvecd, ivecd and uvecsd
<glm/mat2x2.hpp>: mat2, dmat2

<glm/mat2x3.hpp>: mat2x3, dmat2x3

<glm/mat2x4.hpp>: mat2x4, dmat2x4

<glm/mat3x2.hpp>: mat3x2, dmat3x2

<glm/mat3x3.hpp>: mat3, dmat3

<glm/mat3x4.hpp>: mat3x4, dmat2

<glm/mat4x2.hpp>: matdx2, dmatdx2

<glm/mat4x3.hpp>: matdx3, dmatdx3

<glm/mat4x4.hpp>: matd, dmatd

<glm/common.hpp>: all the GLSL common functions
<glm/exponential.hpp>: all the GLSL exponential functions
<glm/geometry.hpp>: all the GLSL geometry functions
<glm/integer.hpp>: all the GLSL integer functions
<glm/matrix.hpp>: all the GLSL matrix functions
<glm/packing.hpp>: all the GLSL packing functions
<glm/trigonometric.hpp>: all the GLSL trigonometric functions
<glm/vector_relational.hpp>: all the GLSL vector relational functions

1.2. Faster program compilation

GLM is a header only library that makes a heavy usage of C++ templates. This design
may significantly increase the compile time for files that use GLM. Hence, it is
important to limit GLM inclusion to header and source files that actually use it.
Likewise, GLM extensions should be included only in program sources using them.

To further help compilation time, GLM 0.9.5 introduced <glm/fwd.hpp> that provides
forward declarations of GLM types.

// Header file
#include <glm/fwd.hpp>

// Source file
#include <glm/glm.hpp>

1.3. Use sample of GLM core

// Include GLM core features
#include <glm/vec3.hpp>

#include <glm/vec4.hpp>

#include <glm/mat4x4.hpp>
#include <glm/trigonometric.hpp>

// Include GLM extensions
#include <glm/gtc/matrix_transform.hpp>

glm: :mat4 transform(
glm::vec2 const& Orientation,
glm::vec3 const& Translate,
glm::vec3 const& Up)

{
glm::mat4 Proj = glm::perspective(glm::radians(45.f), 1.33f, 0.1f, 10.f);
glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.f), Translate);
glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Orientation.y, Up);
glm::mat4 View = glm::rotate(ViewRotateX, Orientation.x, Up);
glm::mat4 Model = glm::mat4(1.0f);
return Proj * View * Model;

}

1.4. Dependencies

When <glm/gim.hpp> is included, GLM provides all the GLSL features it implements in
C++.

There is no dependence with external libraries or external headers such as gl.h,
glcorearb.h, gl3.h, glu.h oOr windows.h. However, if <boost/static_assert.hpp> IS
included, Boost static assert will be used all over GLM code to provide compiled time
errors unless GLM is built with a C++ 11 compiler in which case static_assert. If
neither are detected, GLM will rely on its own implementation of static assert.

http://www.opengl.org/registry/api/GL/glcorearb.h
http://www.boost.org/doc/libs/1_52_0/doc/html/boost_staticassert.html
http://en.cppreference.com/w/cpp/language/static_assert

2. Swizzle operators

A common feature of shader languages like GLSL is the swizzle operators. Those
allow selecting multiple components of a vector and change their order. For
example, “variable.x”, “variable.xzy” and “variable.zxyy” form respectively a scalar, a
three components vector and a four components vector. With GLSL, swizzle
operators can be both R-values and L-values. Finally, vector components can be

N

accessed using “xyzw”, “rgba” or “stpq”.

GLM supports a subset of this functionality as described in the following sub-
sections. Swizzle operators are disabled by default. To enable them GLM_sw1zzLE must
be defined before any inclusion of <gim/gim.hpp>. Enabling swizzle operators will
massively increase the size of compiled files and the compilation time.

2.1. Default C++98 implementation

The C++98 implementation exposes the R-value swizzle operators as member
functions of vector types.

#tdefine GLM_SWIZZLE
#include <glm/glm.hpp>

void foo()

{
glm: ColorRGBA(1.8f, ©.5f, 0.0f, 1.0f);
glm:: ColorBGR = ColorRGBA.bgr();
glm:: PositionA(1.0f, ©.5f, @0.0f, 1.0f);
glm:: PositionB = PositionXYZ.xyz() * 2.0f;
glm:: TexcoordST(1.0f, 0.5f);
glm:: TexcoordSTPQ = TexcoordST.stst();

}

Swizzle operators return a copy of the component values hence they can’t be used
as L-values to change the value of the variables.

#tdefine GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

void foo()

{
glm:: A(l1.0f, 0.5f, 0.0f);

// /'\ No compiler error but A is not affected
// This code modify the components of an anonymous copy.
A.bgr() = glm:: (2.0f, 1.5f, 1.0f); // A is not modified!

2.2. Anonymous union member implementation

Visual C++ supports anonymous structures in union, which is a non-standard
language extension, but it enables a very powerful implementation of swizzle
operators on Windows supporting both L-value swizzle operators and a syntax that
doesn’t require parentheses in some cases. This implementation is only enabled
when the language extension is enabled and GLM_swizzLE is defined.

#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

void foo()

{
glm:: ColorRGBA(1.0f, ©.5f, 0.0f, 1.0f);
// l-value:
glm:: ColorBGRA = ColorRGBA.bgra;

// r-value:
ColorRGBA.bgra = ColorRGBA;

// Both 1l-value and r-value
ColorRGBA.bgra = ColorRGBA.rgba;

}

Anonymous union member swizzle operators don’t return vector types (gim::vec2,
glm::vec3 and glm::vec4) but implementation specific objects that can be
automatically interpreted by other swizzle operators and vector constructors.
Unfortunately, those can’t be interpreted by GLM functions so that the programmer
must convert a swizzle operators to a vector type or call the () operator on a swizzle
objects to pass it to another C++ functions.

#tdefine GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>

void foo()
{
glm:: Color(l.0f, ©.5f, @0.0f, 1.0f);

// Generates compiler errors. Color.rgba is not a vector type.
glm:: ClampedA = glm::clamp(Color.rgba, @.f, 1.f); // ERROR

// We need to cast the swizzle operator into glm::vec4

// With by using a constructor
glm:: ClampedB = glm::clamp(glm:: (Color.rgba), o0.f, 1.f); // OK

// Or by using the () operator
glm:: ClampedC = glm::clamp(Color.rgba(), ©.f, 1.f); // OK

3. Preprocessor options

3.1. Default precision

In C+4, it is not possible to implement GLSL default precision (GLSL 4.10 specification
section 4.5.3) using GLSL syntax.

precision mediump int;
precision highp float;

To use the default precision functionality, GLM provides some defines that need to
add before any include of gim.hpp:

#define GLM_PRECISION_MEDIUMP_INT;
#define GLM_PRECISION HIGHP_FLOAT;
#include <glm/glm.hpp>

Available defines for floating point types (gim: :vec*, glm: :mat*):

GLM_PRECISION_LOWP_FLOAT: Low precision
GLM_PRECISION_MEDIUMP_FLOAT: Medium precision
GLM_PRECISION_HIGHP_FLOAT: High precision (default)

Available defines for floating point types (gim: :dvec*, glm: :dmat*):

GLM_PRECISION_LOWP_DOUBLE: Low precision
GLM_PRECISION_MEDIUMP_DOUBLE: Medium precision
GLM_PRECISION_HIGHP_DOUBLE: High precision (default)

Available defines for signed integer types (gim: :ivec*):

GLM_PRECISION_LOWP_INT: Low precision
GLM_PRECISION_MEDIUMP_INT: Medium precision
GLM_PRECISION_HIGHP_INT: High precision (default)

Available defines for unsigned integer types (gim: :uvec*):

GLM_PRECISION_LOWP_UINT: Low precision
GLM_PRECISION_MEDIUMP_UINT: Medium precision
GLM_PRECISION_HIGHP_UINT: High precision (default)

3.2. Compile-time message system

GLM includes a notification system which can display some information at build
time:

- Platform: Windows, Linux, Native Client, QNX, etc.
- Compiler: Visual C++, Clang, GCC, ICC, etc.
- Build model: 32bits or 64 bits

- C++ version : C++98, C++11, MS extensions, etc.
- Architecture: x86, SSE, AVX, etc.

- Included extensions

- etc.

This system is disabled by default. To enable this system, define GLM_FORCE_MESSAGES
before any inclusion of <gim/gim.hpp>. The messages are generated only by compiler
supporting #program message and only once per project build.

#define GLM_FORCE_MESSAGES
#include <glm/glm.hpp>

3.3. C++ language detection

GLM will automatically take advantage of compilers’ language extensions when
enabled. To increase cross platform compatibility and to avoid compiler extensions,
a programmer can define GLM_FORCE_cxx98 before any inclusion of <gim/glm.hpp> to
restrict the language feature set C++98:

#define GLM_FORCE_CXX98
#include <glm/glm.hpp>

For C++11 and C++14, equivalent defines are available: GLM FORCE_Cxx1i1,
GLM_FORCE_CXX14.

#define GLM_FORCE_CXX11
#include <glm/glm.hpp>

GLM_FORCE_CXX14 overrides GLM_FORCE_CXX11 and GLM_FORCE_CXX11 overrides
GLM_FORCE_cxx98 defines.

3.4. SIMD support

GLM provides some SIMD optimizations based on compiler intrinsics. These
optimizations will be automatically thanks to compiler arguments. For example, if a
program is compiled with Visual Studio using /arch:avx, GLM will detect this
argument and generate code using AVX instructions automatically when available.

It's possible to avoid the instruction set detection by forcing the use of a specific
instruction set with one of the fallowing define: GLM _FORCE_SSE2, GLM_FORCE_SSE3,
GLM_FORCE_SSSE3, GLM_FORCE_SSE41, GLM_FORCE_SSE42, GLM_FORCE_AVX, GLM_FORCE_AVX2 or
GLM_FORCE_AVX512.

The use of intrinsic functions by GLM implementation can be avoided using the
define GLM_rorce_PURE before any inclusion of GLM headers.

#tdefine GLM_FORCE_PURE
#include <glm/glm.hpp>

// GLM code will be compiled using pure C++ code

https://msdn.microsoft.com/en-us/library/26td21ds.aspx

#tdefine GLM_FORCE_AVX2
#include <glm/glm.hpp>

// If the compiler doesn’t support AVX2 instrinsics,
// compiler errors will happen.

Additionally, GLM provides a low level SIMD API in gim/simd directory for users who
are really interested in writing fast algorithms.

3.5. Force inline

To push further the software performance, a programmer can define
GLM_FORCE_INLINE before any inclusion of <gim/gim.hpp> to force the compiler to inline
GLM code.

#define GLM_FORCE_INLINE
#include <glm/glm.hpp>

3.6. Vector and matrix static size

GLSL supports the member function .1ength() for all vector and matrix types.

#include <glm/glm.hpp>

void foo(const & v)

{
int Length = v.length();

}

This function returns a int however this function typically interacts with STL size t
based code. GLM provides GLM_FORCE_SIZE_T_LENGTH pre-processor option so that
member functions length() return a size_t.

Additionally, GLM defines the type gim::length_t to identify length() returned type,
independently from GLM_FORCE_SIZE_T_LENGTH.

#define GLM_FORCE_SIZE_T_LENGTH
#include <glm/glm.hpp>

void foo(const & v)

{
glm::size_t Length = v.length();

3.7. Disabling default constructor initialization

By default and following GLSL specifications, vector and matrix default constructors
initialize the components to zero. This is a reliable behavior but initialization has a
cost and it’s not always necessary. This behavior can be disable at compilation time
by define GLM_FORCE_NO_cTOR_INIT before any inclusion of <gim/glm.hpp> or other GLM
include.

GLM default behavior:

#include <glm/glm.hpp>

void foo()

¢ glm::vecd4 v; // v is (0.0f, 0.0f, 0.0f, 0.0f)
X

GLM behavior using GLM_FORCE_NO_CTOR_INIT:

#define GLM_FORCE_NO_CTOR_INIT
#include <glm/glm.hpp>

void foo()

{ glm::vecd v; // v is fill with garbage

)

Alternatively, GLM allows to explicitly not initialize a variable:

#include <glm/glm.hpp>
void foo()

{

glm::vecd4 v(glm::uninitialize);

3.8. Require explicit conversions

GLSL supports implicit conversions of vector and matrix types. For example, an ivec4
can be implicitly converted into veca.

Often, this behaviour is not desirable but following the spirit of the library, this
behavior is supported in GLM. However, GLM 0.9.6 introduced the define
GLM_FORCE_EXPLICIT_CTOR to require explicit conversion for GLM types.

#include <glm/glm.hpp>
void foo()
{

glm::ivecd a;

glm::vec4 b(a); // Explicit conversion, OK
glm::vec4 c = a; // Implicit conversion, OK

}
With GLM_FORCE_EXPLICIT_CTOR define, implicit conversions are not allowed:

#tdefine GLM_FORCE_EXPLICIT_CTOR
#include <glm/glm.hpp>

void foo()

{

glm::ivecd a;

glm::vec4 b(a); // Explicit conversion, OK
glm::vec4 ¢ = a; // Implicit conversion, ERROR

3.9. Removing genType restriction

By default GLM only supports basic types as genType for vector, matrix and
quaternion types:

#include <glm/glm.hpp>

typedef glm::tvecd4<float> my_fvecs;

GLM 0.9.8 introduced GLM_FORCE_UNRESTRICTED_GENTYPE define to relax this
restriction:

#define GLM_FORCE_UNRESTRICTED_GENTYPE
#include <glm/glm.hpp>
#include "half.hpp" // Define “half” class with equivalent behavior than “float”

typedef glm::tvec4<half> my_hvec4;

However, defining GLM_FORCE_UNRESTRICTED_GENTYPE is not compatible with
GLM_FORCE_sWIzZLE and will generate a compilation error if both are defined at the
same time.

4. Stable extensions

GLM extends the core GLSL feature set with extensions. These extensions include:
guaternion, transformation, spline, matrix inverse, color spaces, etc.

To include an extension, we only need to include the dedicated header file. Once
included, the features are added to the GLM namespace.

#tinclude <glm/glm.hpp>
#tinclude <glm/gtc/matrix_transform.hpp>

int foo()
{
glm:: Position = glm:: (glm:: (0.0f), 1.0f);
glm:: Model = glm::translate(
glm:: (1.0f), glm::vec3(1.0f));
glm:: Transformed = Model * Position;
return 0;
}

When an extension is included, all the dependent core functionalities and extensions
will be included as well.

4.1. GLM_GTC_bitfield
Fast bitfield operations on scalar and vector variables.

<glm/gtc/bitfield.hpp> need to be included to use these features.

4.2. GLM_GTC_color_space
Conversion between linear RGB to sRGB and sRGB to linear RGB.

<glm/gtc/color_space.hpp> need to be included to use these features.

4.3. GLM_GTC_constants
Provide a list of built-in constants.

<glm/gtc/constants.hpp> need to be included to use these features.

4.4. GLM_GTC_epsilon
Approximate equal and not equal comparisons with selectable epsilon.

<glm/gtc/epsilon.hpp> need to be included to use these features.

4.5. GLM_GTC_integer

Provide integer variants of GLM core functions.

<glm/gtc/integer.hpp> need to be included to use these features.

4.6. GLM_GTC_matrix_access
Define functions to access rows or columns of a matrix easily.

<glm/gtc/matrix_access.hpp> need to be included to use these features.

4.7. GLM_GTC_matrix_integer

Provide integer matrix types. Inverse and determinant functions are not supported
for these types.

<glm/gtc/matrix_integer.hpp> need to be included to use these features.

4.8. GLM_GTC_matrix_inverse

Define additional matrix inverting functions.

<glm/gtc/matrix_inverse.hpp> need to be included to use these features.

4.9. GLM_GTC_matrix_transform
Define functions that generate common transformation matrices.

The matrices generated by this extension use standard OpenGL fixed-function
conventions. For example, the lookat function generates a transform from world
space into the specific eye space that the projective matrix functions (perspective,
ortho, etc) are designed to expect. The OpenGL compatibility specifications define
the particular layout of this eye space.

<glm/gtc/matrix_transform.hpp> need to be included to use these features.

4.10. GLM_GTC_noise

Define 2D, 3D and 4D procedural noise functions.

<glm/gtc/noise.hpp> need to be included to use these features.

e P

) &
EARTS
('!“ b':’:: h’ 5

- e

i - g
Figure 4.10.3: glm::simplex(glm::vec4(x / 16.f, y / 16.f, 0.5f, 0.5f));

Figure 4.10.5: glm: :perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f));

Figure 4.10.6: glm: :perlin(glm: :vec4(x / 16.f, y / 16.f, 0.5f, 0.5F)));

Figure 4.10.7: glm: :perlin(glm::vec2(x / 16.f, y / 16.f), glm::vec2(2.0f));

Figure 4.10.8: glm: :perlin(glm::vec3(x / 16.f, y / 16.f, 0.5f), glm::vec3(2.0f));

Figure 4.10.9: glm: :perlin(glm::vec4(x / 16.f, y / 16.f, glm::vec2(0.5f)),
glm::vec4(2.0f));

4.11. GLM_GTC_packing

Convert scalar and vector types to packed formats. This extension can also unpack
packed data to the original format. The use of packing functions will results in
precision lost. However, the extension guarantee that packing a value previously
unpacked from the same format will be perform loselessly.

<glm/gtc/packing.hpp> need to be included to use these features.

Define a quaternion type and several quaternion operations.

<glm/gtc/quaternion.hpp> need to be included to use these features.

Generate random number from various distribution methods.

<glm/gtc/random.hpp> need to be included to use these features.

Figure 4.13.1: glm: :vec4(glm: :linearRand(glm: :vec2(-1), glm::vec2(1)), @, 1);

Figure 4.13.2: glm::vec4(glm: :circularRand(1.0f), 0, 1);

Figure 4.13.3: glm: :vec4(glm: :sphericalRand(1.0f), 1);

Figure 4.13.4: glm: :vec4(glm: :diskRand(1.0f), 0, 1);

Figure 4.13.5: glm: :vec4(glm: :ballRand(1.0f), 1);

Figure 4.13.6: glm: :vec4(glm: :gaussRand(glm::vec3(@), glm::vec3(1)), 1);

Provide hyperbolic functions: secant, cosecant, cotangent, etc.

<glm/gtc/reciprocal.hpp> need to be included to use these functionalities.

Rounding operation on power of two and multiple values.

<glm/gtc/round.hpp> need to be included to use these functionalities.

Add vector and matrix types with defined precisions. Eg, 18vec4: vector of 4 signed
integer of 8 bits.

This extension adds defines to set the default precision of each class of types added:
Available defines for signed 8-bit integer types (gim: :i8vec*):

GLM_PRECISION_LOWP_INT8: Low precision
GLM_PRECISION_MEDIUMP_INT8: Medium precision
GLM_PRECISION_HIGHP_INT8: High precision (default)

Available defines for unsigned 8-bit integer types (gim: :usvec*):

GLM_PRECISION_LOWP_UINT8: Low precision
GLM_PRECISION_MEDIUMP_UINT8: Medium precision
GLM_PRECISION_HIGHP_UINT8: High precision (default)

Available defines for signed 16-bit integer types (gim: :il6vec*):

GLM_PRECISION_LOWP_INT16: Low precision
GLM_PRECISION_MEDIUMP_INT16: Medium precision
GLM_PRECISION_HIGHP_INT16: High precision (default)

Available defines for unsigned 16-bit integer types (glm: :ui6évec*):

GLM_PRECISION_LOWP_UINT16: LOow precision
GLM_PRECISION_MEDIUMP_UINT16: Medium precision
GLM_PRECISION_HIGHP_UINT16: High precision (default)

Available defines for signed 32-bit integer types (gim: :i32vec*):

GLM_PRECISION_LOWP_INT32: Low precision
GLM_PRECISION_MEDIUMP_INT32: Medium precision
GLM_PRECISION_HIGHP_INT32: High precision (default)

Available defines for unsigned 32-bit integer types (gim: :u32vec*):

GLM_PRECISION_LOWP_UINT32: Low precision
GLM_PRECISION_MEDIUMP_UINT32: Medium precision
GLM_PRECISION_HIGHP_UINT32: High precision (default)

Available defines for signed 64-bit integer types (gim: :i64vec*):

GLM_PRECISION_LOWP_INT64: Low precision
GLM_PRECISION_MEDIUMP_INT64: Medium precision
GLM_PRECISION_HIGHP_INT64: High precision (default)

Available defines for unsigned 64-bit integer types (glm: :ue4vec*):

GLM_PRECISION_LOWP_UINT64: Low precision
GLM_PRECISION_MEDIUMP_UINTe64: Medium precision
GLM_PRECISION_HIGHP_UINT64: High precision (default)

Available defines for 32-bit floating-point types (gim::f32vec*, glm::f32mat*,
glm::F32quatﬁ

GLM_PRECISION_LOWP_FLOAT32: Low precision
GLM_PRECISION_MEDIUMP_FLOAT32: Medium precision
GLM_PRECISION_HIGHP_FLOAT32: High precision (default)

Available defines for 64-bit floating-point types (gim::fé4vec*, glm::f64mat*,
glm::f64quatﬁ

GLM_PRECISION_LOWP_FLOAT64: Low precision
GLM_PRECISION_MEDIUMP_FLOAT64: Medium precision
GLM_PRECISION_HIGHP_FLOAT64: High precision (default)

<glm/gtc/type_precision.hpp> need to be included to use these functionalities.

4.17. GLM_GTC_type_ptr
Handle the interaction between pointers and vector, matrix types.

This extension defines an overloaded function, gim: :value_ptr, which takes any of the
core template types (vec3, mat4, etc.). It returns a pointer to the memory layout of
the object. Matrix types store their values in column-major order.

This is useful for uploading data to matrices or copying data to buffer objects.

// GLM_GTC_type_ptr extension provides a safe solution:
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>

void foo()

{
glm:: v(0.0f);
glm:: m(1.0f);

glVertex3fv(glm::value_ptr(v))
glLoadMatrixfv(glm::value_ptr(m));
}

// Another solution inspired by STL:
#include <glm/glm.hpp>

void foo()

{
glm:: v(0.0f);
glm:: m(1.0f);
glVertex3fv(&v[e]);

glLoadMatrixfv(&m[0][0]);

}

Note: It would be possible to implement glvertex3fv(glm::vec3(e)) in C++ with the
appropriate cast operator that would result as an implicit cast in this example.
However cast operators may produce programs running with unexpected behaviours
without build error or any form of notification.

<glm/gtc/type_ptr.hpp> need to be included to use these features.

4.18. GLM_GTC_ulp

Allow the measurement of the accuracy of a function against a reference
implementation. This extension works on floating-point data and provides results in
ULP.

<glm/gtc/ulp.hpp> need to be included to use these features.

4.19. GLM_GTC_vecl
Add *vec1 types.

<glm/gtc/vecl.hpp> need to be included to use these features.

http://www.opengl.org/sdk/docs/man2/xhtml/glVertex.xml
http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf

5. OpenGL interoperability

5.1. GLM replacements for deprecated OpenGL functions

OpenGL 3.1 specification has deprecated some features that have been removed
from OpenGL 3.2 core profile specification. GLM provides some replacement
functions.

glRotate{f, d}:

glm:: glm: :rotate(
glm:: const & m,
float angle,
glm:: const & axis);
glm:: glm: :rotate(
glm:: const & m,
double angle,
glm:: const & axis);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

glScale{f, d}:
glm:: glm: :scale(

glm:: const & m,

glm:: const & factors);
glm:: glm::scale(

glm:: const & m,

glm:: const & factors);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

glTranslate{f, d}:

glm:: glm: :translate(

glm:: const & m,

glm:: const & translation);
glm:: glm: :translate(

glm:: const & m,

glm:: const & translation);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gllLoadIdentity:
glm:: (1.0) or glm:: O,
glm:: (1.0) or glm:: 0);

From GLM core library: <gim/glm.hpp>

glMultMatrix{f, d}:

glm:: () * glm:: O;

glm:: () * glm:: 0O);

From GLM core library: <gim/glm.hpp>

glLoadTransposeMatrix{f, d}:
glm: :transpose(glm:: 0);
glm: :transpose(glm:: 0O);

From GLM core library: <gim/glm.hpp>

glMultTransposeMatrix{f, d}:
glm:: () * glm::transpose(glm:: 0));

http://www.opengl.org/sdk/docs/man2/xhtml/glScale.xml

glm:: () * glm::transpose(glm:: 0);
From GLM core library: <gim/glm.hpp>

glFrustum:

glm:: glm: :frustum(
float left, float right,
float bottom, float top,
float zNear, float zFar);

glm:: glm: :frustum(
double left, double right,
double bottom, double top,
double zNear, double zFar);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

glortho:

glm:: glm: :ortho(
float left, float right,
float bottom, float top,
float zNear, float zFar);

glm:: glm: :ortho(
double left, double right,
double bottom, double top,
double zNear, double zFar);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

5.2. GLM replacements for GLU functions

glulLookAt:

glm:: glm: :lookAt(
glm:: const & eye,
glm:: const & center,
glm:: const & up);

glm:: glm: :lookAt(
glm:: const & eye,
glm:: const & center,
glm:: const & up);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluOrtho2D:
glm:: glm: :ortho(
float left, float right, float bottom, float top);

glm:: glm: :ortho(
double left, double right, double bottom, double top);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluPerspective:
glm:: perspective(
float fovy, float aspect, float zNear, float zFar);

glm:: perspective(
double fovy, double aspect, double zNear, double zFar);

One difference between GLM and GLU is that fovy is expressed in radians in GLM
instead of degrees.

http://www.opengl.org/sdk/docs/man2/xhtml/glFrustum.xml

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluPickMatrix:

glm:: pickMatrix(
glm:: const & center,
glm:: const & delta,
glm:: const & viewport);

glm:: pickMatrix(
glm:: const & center,
glm:: const & delta,
glm:: const & viewport);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluProject:

glm:: project(

glm:: const & obj,

glm:: const & model,

glm:: const & proj,

glm::{i, " '} const & viewport);
glm:: project(

glm:: const & obj,

glm:: const & model,

glm:: const & proj,

glm::{i, "', d} const & viewport);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluUnProject:

glm:: unProject(

glm:: const & win,

glm:: const & model,

glm:: const & proj,

glm::{i, " '} const & viewport);
glm:: unProject(

glm:: const & win,

glm:: const & model,

glm:: const & proj,

glm::{i, ' ', d} const & viewport);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

http://www.opengl.org/sdk/docs/man2/xhtml/gluProject.xml

6. Known issues

This section reports the divergences of GLM with GLSL.

6.1. not function

The GLSL keyword not is also a keyword in C++. To prevent name collisions, ensure
cross compiler support and a high API consistency, the GLSL not function has been
implemented with the name not_.

6.2. Precision qualifiers support

GLM supports GLSL precision qualifiers through prefixes instead of qualifiers. For
example, additionally to vec4, GLM exposes lowp_vec4, mediump_vec4 and highp_vec4

types.

Similarly to GLSL, GLM precision qualifiers are used to handle trade-off between
performances and precisions of operations in term of ULPs.

By default, all the types use high precision.

// Using precision qualifier in GLSL:

ivec3 foo(in vec4d v)

{
highp vecd4 a = v;
mediump vec4 b = a;
lowp ivec3 ¢ = ivec3(b);
return c;

}

// Using precision qualifier in GLM:
#include <glm/glm.hpp>

ivec3 foo(const vecd & v)

{
highp vec4 a = v;
medium _vecd4 b = a;
lowp_ivec3 c¢ = glm::ivec3(b);

return c;

http://en.wikipedia.org/wiki/Unit_in_the_last_place

7. FAQ

7.1 Why GLM follows GLSL specification and conventions?

Following GLSL conventions is a really strict policy of GLM. It has been designed
following the idea that everyone does its own math library with his own conventions.
The idea is that brilliant developers (the OpenGL ARB) worked together and agreed
to make GLSL. Following GLSL conventions is a way to find consensus. Moreover,
basically when a developer knows GLSL, he knows GLM.

7.2. Does GLM run GLSL program?

No, GLM is a C++ implementation of a subset of GLSL.

7.3.Does a GLSL compiler build GLM codes?

No, this is not what GLM attends to do.

7.4. Should I use ‘GTX’ extensions?

GTX extensions are qualified to be experimental extensions. In GLM this means that
these extensions might change from version to version without any restriction. In
practice, it doesn’t really change except time to time. GTC extensions are stabled,
tested and perfectly reliable in time. Many GTX extensions extend GTC extensions
and provide a way to explore features and implementations and APIs and then are
promoted to GTC extensions. This is fairly the way OpenGL features are developed;
through extensions.

7.5. Where can I ask my questions?

A good place is the OpenGL Toolkits forum on OpenGL.org.

7.6. Where can I find the documentation of extensions?

The Doxygen generated documentation includes a complete list of all extensions
available. Explore this APl documentation to get a complete view of all GLM
capabilities!

7.7.Should I use ‘using namespace glm;’?

NO! Chances are that if using namespace glm; is called, especially in a header file,
name collisions will happen as GLM is based on GLSL which uses common tokens for
types and functions. Avoiding using namespace glm; will a higher compatibility with
third party library and SDKs.

7.8. Is GLM fast?

http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=postlist&Board=10&page=1
http://www.opengl.org/
http://glm.g-truc.net/html/index.html

GLM is mainly designed to be convenient and that's why it is written against the GLSL
specification.

Following the Pareto principle where 20% of the code consumes 80% of the
execution time, GLM operates perfectly on the 80% of the code that consumes 20%
of the performances. Furthermore, thanks to the lowp, mediump and highp qualifiers,
GLM provides approximations which trade precision for performance. Finally, GLM
can automatically produce SIMD optimized code for functions of its implementation.

However, on performance critical code paths, we should expect that dedicated
algorithms should be written to reach peak performance.

7.9. When I build with Visual C++ with /W4 warning level, I have
warnings...

You should not have any warnings even in /W4 mode. However, if you expect such
level for your code, then you should ask for the same level to the compiler by at least
disabling the Visual C++ language extensions (/Za) which generates warnings when
used. If these extensions are enabled, then GLM will take advantage of them and the
compiler will generate warnings.

7.10. Why some GLM functions can crash because of division by
Zero?

GLM functions crashing is the result of a domain error that follows the precedent
given by C and C++ libraries. For example, it’'s a domain error to pass a null vector to
glm: :normalize function.

7.11. What unit for angles is used in GLM?

GLSL is using radians but GLU is using degrees to express angles. This has caused
GLM to use inconsistent units for angles. Starting with GLM 0.9.6, all GLM functions
are using radians. For more information, follow the link.

http://www.g-truc.net/post-0693.html#menu

8. Code samples

This series of samples only shows various GLM features without consideration of any
sort.

8.1. Compute a triangle normal

#include <glm/glm.hpp> // vec3 normalize cross

glm:: computeNormal

(
glm:: const & a,
glm:: const & b,
glm:: const & ¢

)

{

return glm::normalize(glm::cross(c - a, b - a));

}

// A much faster but less accurate alternative:
#include <glm/glm.hpp> // vec3 cross
#include <glm/gtx/fast_square_root.hpp> // fastNormalize

glm:: computeNormal

(
glm:: const & a,
glm:: const & b,
glm:: const & ¢

)

{

return glm::fastNormalize(glm::cross(c - a, b - a));

8.2. Matrix transform

// vec3, vec4, ivec4d, mat4d

#include <glm/glm.hpp>

// translate, rotate, scale, perspective
#include <glm/gtc/matrix_transform.hpp>
// value_ptr

#include <glm/gtc/type_ptr.hpp>

void setUniformmvpP

(
GLuint Location,
glm:: const & Translate,
glm:: const & Rotate

)

{

glm::mat4 Projection =
glm: :perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.f);
glm::mat4 ViewTranslate = glm::translate(
glm::mat4(1.0f),
Translate);
glm::mat4 ViewRotateX = glm::rotate(
ViewTranslate,
Rotate.y, glm::vec3(-1.0f, 0.0f, 0.0f));
glm::mat4 View = glm::rotate(
ViewRotateX,
Rotate.x, glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 Model = glm::scale(

glm:: (1.0f),

glm:: (0.5F));
glm:: MVP = Projection * View * Model;
glUniformMatrix4fv(Location, 1, GL_FALSE, glm::value_ptr(MvP));
}
8.3. Vector types

#tinclude <glm/glm.hpp> //vec2

#tinclude <glm/gtc/type_precision.hpp> //hvec2, i8vec2, i32vec2

std::size_t const VertexCount = 4;

// Float quad geometry

std::size_t const PositionSizeF32 = VertexCount * sizeof(glm::

glm:: const PositionDataF32[VertexCount] =
{

glm:: (-1.0f,-1.0f),

glm:: (1.0f,-1.0f),

glm:: (1.0f, 1.0f),

glm:: (-1.0f, 1.0f)

s

// Half-float quad geometry

std::size_t const PositionSizeF16 = VertexCount * sizeof(glm::

glm:: const PositionDataF16[VertexCount] =
{

glm:: (-1.0f, -1.0f),

glm:: (1.0f, -1.0f),

glm:: (1.0f, 1.0f),

glm:: (-1.0f, 1.0f)

b

// 8 bits signed integer quad geometry

std::size_t const PositionSizeI8 = VertexCount * sizeof(glm::

glm:: const PositionDatalI8[VertexCount] =
{

glm:: (-1,-1),

glm:: (1,-1),

glm:: (1, 1),

glm:: (-1, 1)

s

// 32 bits signed integer quad geometry

std::size_t const PositionSizeI32 = VertexCount * sizeof(glm::

glm:: const PositionDatalI32[VertexCount] =
{
glm:: (-1,-1),
glm:: (1,-1),
glm:: (1, 1),
glm:: (-1, 1)
¥
8.4. Lighting

#include <glm/glm.hpp> // vec3 normalize reflect dot pow
#include <glm/gtx/random.hpp> // vecRand3

// vecRand3, generate a random and equiprobable normalized vec3

glm:: lighting
(
intersection const & Intersection,
material const & Material,
light const & Light,
glm:: const & View

)8

)5

)5

glm:: Color = glm:: (0.0f);

glm:: LightVertor = glm::normalize(
Light.position() - Intersection.globalPosition() +
glm::vecRand3(0.0f, Light.inaccuracy());

if(!shadow(

Intersection.globalPosition(),
Light.position(),
LightVertor))

float Diffuse = glm::dot(Intersection.normal(), LightVector);
if(Diffuse <= 0.0f)

return Color;

if(Material.isDiffuse())

Color += Light.color() * Material.diffuse() * Diffuse;

if(Material.isSpecular())

{

¥
}

return Color;

glm:: Reflect = glm::reflect(
-LightVector,
Intersection.normal());
float Dot = glm::dot(Reflect, View);
float Base = Dot > ©.0f ? Dot : @.0f;
float Specular = glm::pow(Base, Material.exponent());
Color += Material.specular() * Specular;

9. References

9.1. GLM development

- GLM website

- GLM HEAD snapshot

- GLM bug report and feature request
- G-Truc Creation’s page

9.2. OpenGL specifications

- OpenGL 4.3 core specification
- GLSL 4.30 specification
- GLU 1.3 specification

9.3. External links

- The OpenGL Toolkits forum to ask guestions about GLM
- GLM on stackoverflow

9.4. Projects using GLM
Cinder

Cinder is a free and
open source library for
professional-quality
creative coding in C++.

Cinder is a C++
library for programming
with aesthetic intent -
the sort of development often called creative coding. This includes domains like
graphics, audio, video, and computational geometry. Cinder is cross-platform, with
official support for OS X, Windows, iOS, and WinRT.

Cinder is production-proven, powerful enough to be the primary tool for
professionals, but still suitable for learning and experimentation. Cinder is released
under the 2-Clause BSD License.

Outerra

3D planetary engine for seamless planet rendering from space down to the surface.
Can use arbitrary resolution of elevation data, refining it to centimetre resolution
using fractal algorithms.

http://glm.g-truc.net/
https://github.com/g-truc/glm/archive/master.zip
https://github.com/g-truc/glm/issues
https://github.com/g-truc/glm/issues
http://www.g-truc.net/project-0016.html
http://www.opengl.org/registry/doc/glspec43.core.20120806.withchanges.pdf
http://www.opengl.org/registry/doc/glspec43.core.20120806.withchanges.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.4.30.7.diff.pdf
http://www.opengl.org/documentation/specs/glu/glu1_3.pdf
http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=postlist&Board=10&page=1
http://stackoverflow.com/search?q=GLM
http://opensource.org/licenses/BSD-2-Clause
http://outerra.com/

opencloth

A collection of source codes implementing cloth simulation algorithms in OpenGL.

Falcor

Real-time rendering research framework by NVIDIA.

http://code.google.com/p/opencloth/

Leo’s Forture

Leo’s Fortune is a platform adventure
game where you hunt down the cunning
and mysterious thief that stole your
gold. Available on PS4, Xbox One, PC,
Mac, iOS and Android.

Beautifully hand-crafted levels bring the
story of Leo to life in this epic adventure.

“I just returned home to find all my gold
has been stolen! For some devious
purpose, the thief has dropped pieces of
my gold like breadcrumbs through the
woods.”

“Despite this pickle of a trap, | am left
with no choice but to follow the trail.”

“Whatever lies ahead, | must recover my
fortune.” -Leopold

OpenGL 4.0 Shading Language
Cookbook

A full set of recipes demonstrating simple
and advanced techniques for producing
high-quality, real-time 3D graphics using
GLSL 4.0.

How to use the OpenGL Shading Language
to implement lighting and shading
techniques.

Use the new features of GLSL 4.0
including tessellation and geometry
shaders.

-

JORIR S5 GpamAs PN

OpenGL 4.0 shading
How to use textures in GLSL as part of a Language Cookbook

wide variety of techniques from basic
texture mapping to deferred shading.

Simple, easy-to-follow examples with
GLSL source code, as well as a basic
description of the theory behind each
technique.

http://www.leosfortune.com/
http://www.packtpub.com/opengl-4-0-shading-language-cookbook/book?tag=rk/opengl4-abr1/0811
http://www.packtpub.com/opengl-4-0-shading-language-cookbook/book?tag=rk/opengl4-abr1/0811

Are you using GLM in a project?

9.5. OpenGL tutorials using GLM

- The OpenGL Samples Pack, samples that show how to set up all the different new
features

- Learning Modern 3D Graphics rogramming, a great OpenGL tutorial using GLM by
Jason L. McKesson

- Morten Nobel-Jgrgensen’s review and use an OpenGL renderer

- Swiftless’ OpenGL tutorial using GLM by Donald Urquhart

- Rastergrid, many technical articles with companion programs using GLM by Daniel
Rakos

- OpenGL Tutorial, tutorials for OpenGL 3.1 and later

- OpenGL Programming on Wikibooks: For beginners who are discovering OpenGL.
- 3D Game Engine Programming: Learning the latest 3D Game Engine Programming
techniques.

- Game Tutorials, graphics and game programming.

- open.gl, OpenGL tutorial

- c-jump, GLM tutorial

- Learn OpenGL, OpenGL tutorial

- Are you using GLM in a tutorial?

9.6. Equivalent for other languages

- GImSharp: Open-source semi-generated GLM-flavored math library for .NET/C#.
- glm-js: JavaScript adaptation of the OpenGL Mathematics (GLM) C++ library
interfaces

- Java OpenGL Mathematics (GLM)

- JGLM - Java OpenGL Mathematics Library

- SwiftGL Math Library

- glm-go: Simple linear algebra library similar in spirit to GLM

- openll: Lua bindings for OpenGL, GLM, GLFW, OpenAL, SOIL and PhysicsFS

- glm-rs: GLSL mathematics for Rust programming language

9.7. Alternatives to GLM

- CML: The CML (Configurable Math Library) is a free C++ math library for games and
graphics.

- Eigen: A more heavy weight math library for general linear algebra in C++.

- glhlib: A much more than glu C library.

- Are you using or working on an alternative library to GLM?

9.8. Acknowledgements

mailto:glm@g-truc.net
mailto:glm@g-truc.net
mailto:glm@g-truc.net
http://www.g-truc.net/project-0026.html#menu
http://www.arcsynthesis.org/gltut/
http://blog.nobel-joergensen.com/2011/04/02/glm-brilliant-math-library-for-opengl/
https://github.com/mortennobel/RenderE
http://www.swiftless.com/opengltuts.html
http://rastergrid.com/blog/
http://www.opengl-tutorial.org/
http://en.wikibooks.org/wiki/OpenGL_Programming
http://3dgep.com/
mailto:http://www.gametutorials.com/opengl-4-matrices-and-glm/
mailto:https://open.gl/
mailto:http://www.c-jump.com/bcc/common/Talk3/Math/GLM/GLM.html
mailto:http://learnopengl.com/
mailto:glm@g-truc.net
https://github.com/Philip-Trettner/GlmSharp
https://github.com/humbletim/glm-js
https://github.com/java-graphics/glm
https://github.com/jroyalty/jglm
https://github.com/SwiftGL/Math/blob/master/Sources/glm.swift
https://github.com/jbowtie/glm-go
https://github.com/Polkm/openll
https://github.com/dche/glm-rs
http://cmldev.net/
http://eigen.tuxfamily.org/
http://glhlib.sourceforge.net/
mailto:glm@g-truc.net
mailto:glm@g-truc.net

GLM is developed and maintained by Christophe Riccio but many contributors have
made this project what it is.

Special thanks to:

- Ashima Arts and Stefan Gustavson for their work on webgl-noise which has been
used for GLM noises implementation.

- Arthur Winters for the C++11 and Visual C++ swizzle operators implementation and
tests.

- Joshua Smith and Christoph Schied for the discussions and the experiments around
the swizzle operator implementation issues.

- Guillaume Chevallereau for providing and maintaining the nightlight build system.

- Ghenadii Ursachi for GLM_GTX_matrix_interpolation implementation.

- Mathieu Roumillac for providing some implementation ideas.

- Grant James for the implementation of all combination of none-squared matrix
products.

- All the GLM users that have report bugs and hence help GLM to become a great
library!

http://www.g-truc.net/
https://github.com/ashima/webgl-noise
http://athile.net/library/wiki/index.php?title=Athile_Technologies
http://my.cdash.org/index.php?project=GLM
http://www.zeuscmd.com/

