218 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| /// OpenGL Mathematics (glm.g-truc.net)
 | |
| ///
 | |
| /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
 | |
| /// Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| /// of this software and associated documentation files (the "Software"), to deal
 | |
| /// in the Software without restriction, including without limitation the rights
 | |
| /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| /// copies of the Software, and to permit persons to whom the Software is
 | |
| /// furnished to do so, subject to the following conditions:
 | |
| /// 
 | |
| /// The above copyright notice and this permission notice shall be included in
 | |
| /// all copies or substantial portions of the Software.
 | |
| /// 
 | |
| /// Restrictions:
 | |
| ///		By making use of the Software for military purposes, you choose to make
 | |
| ///		a Bunny unhappy.
 | |
| /// 
 | |
| /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| /// THE SOFTWARE.
 | |
| ///
 | |
| /// @file test/core/func_geometric.cpp
 | |
| /// @date 2011-01-15 / 2011-09-13
 | |
| /// @author Christophe Riccio
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <glm/geometric.hpp>
 | |
| #include <glm/vector_relational.hpp>
 | |
| #include <glm/gtc/epsilon.hpp>
 | |
| #include <glm/gtc/vec1.hpp>
 | |
| #include <limits>
 | |
| 
 | |
| namespace length
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		float Length1 = glm::length(glm::vec1(1));
 | |
| 		float Length2 = glm::length(glm::vec2(1, 0));
 | |
| 		float Length3 = glm::length(glm::vec3(1, 0, 0));
 | |
| 		float Length4 = glm::length(glm::vec4(1, 0, 0, 0));
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += glm::abs(Length1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Length2 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Length3 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Length4 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace length
 | |
| 
 | |
| namespace distance
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		float Distance1 = glm::distance(glm::vec1(1), glm::vec1(1));
 | |
| 		float Distance2 = glm::distance(glm::vec2(1, 0), glm::vec2(1, 0));
 | |
| 		float Distance3 = glm::distance(glm::vec3(1, 0, 0), glm::vec3(1, 0, 0));
 | |
| 		float Distance4 = glm::distance(glm::vec4(1, 0, 0, 0), glm::vec4(1, 0, 0, 0));
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += glm::abs(Distance1) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Distance2) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Distance3) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Distance4) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace distance
 | |
| 
 | |
| namespace dot
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		float Dot1 = glm::dot(glm::vec1(1), glm::vec1(1));
 | |
| 		float Dot2 = glm::dot(glm::vec2(1), glm::vec2(1));
 | |
| 		float Dot3 = glm::dot(glm::vec3(1), glm::vec3(1));
 | |
| 		float Dot4 = glm::dot(glm::vec4(1), glm::vec4(1));
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += glm::abs(Dot1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Dot2 - 2.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Dot3 - 3.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 		Error += glm::abs(Dot4 - 4.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace dot
 | |
| 
 | |
| namespace cross
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		glm::vec3 Cross1 = glm::cross(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
 | |
| 		glm::vec3 Cross2 = glm::cross(glm::vec3(0, 1, 0), glm::vec3(1, 0, 0));
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += glm::all(glm::lessThan(glm::abs(Cross1 - glm::vec3(0, 0, 1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
 | |
| 		Error += glm::all(glm::lessThan(glm::abs(Cross2 - glm::vec3(0, 0,-1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace cross
 | |
| 
 | |
| namespace normalize
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		glm::vec3 Normalize1 = glm::normalize(glm::vec3(1, 0, 0));
 | |
| 		glm::vec3 Normalize2 = glm::normalize(glm::vec3(2, 0, 0));
 | |
| 
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		Error += glm::all(glm::lessThan(glm::abs(Normalize1 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
 | |
| 		Error += glm::all(glm::lessThan(glm::abs(Normalize2 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace normalize
 | |
| 
 | |
| namespace faceforward
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		{
 | |
| 			glm::vec3 N(0.0f, 0.0f, 1.0f);
 | |
| 			glm::vec3 I(1.0f, 0.0f, 1.0f);
 | |
| 			glm::vec3 Nref(0.0f, 0.0f, 1.0f);
 | |
| 			glm::vec3 F = glm::faceforward(N, I, Nref);
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace faceforward
 | |
| 
 | |
| namespace reflect
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		{
 | |
| 			glm::vec2 A(1.0f,-1.0f);
 | |
| 			glm::vec2 B(0.0f, 1.0f);
 | |
| 			glm::vec2 C = glm::reflect(A, B);
 | |
| 			Error += C == glm::vec2(1.0, 1.0) ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		{
 | |
| 			glm::dvec2 A(1.0f,-1.0f);
 | |
| 			glm::dvec2 B(0.0f, 1.0f);
 | |
| 			glm::dvec2 C = glm::reflect(A, B);
 | |
| 			Error += C == glm::dvec2(1.0, 1.0) ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace reflect
 | |
| 
 | |
| namespace refract
 | |
| {
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		{
 | |
| 			float A(-1.0f);
 | |
| 			float B(1.0f);
 | |
| 			float C = glm::refract(A, B, 0.5f);
 | |
| 			Error += C == -1.0f ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		{
 | |
| 			glm::vec2 A(0.0f,-1.0f);
 | |
| 			glm::vec2 B(0.0f, 1.0f);
 | |
| 			glm::vec2 C = glm::refract(A, B, 0.5f);
 | |
| 			Error += glm::all(glm::epsilonEqual(C, glm::vec2(0.0, -1.0), 0.0001f)) ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		{
 | |
| 			glm::dvec2 A(0.0f,-1.0f);
 | |
| 			glm::dvec2 B(0.0f, 1.0f);
 | |
| 			glm::dvec2 C = glm::refract(A, B, 0.5);
 | |
| 			Error += C == glm::dvec2(0.0, -1.0) ? 0 : 1;
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace refract
 | |
| 
 | |
| int main()
 | |
| {
 | |
| 	int Error(0);
 | |
| 
 | |
| 	Error += length::test();
 | |
| 	Error += distance::test();
 | |
| 	Error += dot::test();
 | |
| 	Error += cross::test();
 | |
| 	Error += normalize::test();
 | |
| 	Error += faceforward::test();
 | |
| 	Error += reflect::test();
 | |
| 	Error += refract::test();
 | |
| 
 | |
| 	return Error;
 | |
| }
 | |
| 
 |