glm/glm/gtc/random.inl
John McFarlane 506a487d24 parameterize number of dimensions of vector in tvec<D, T, P>
- specializes for 1, 2, 3 and 4-dimensional vector types
  which are then aliased as tvec1, tvec2, tvec3 and tvec4
- requires C++11 aliases; breaks compatability with C++03
- tested on:
  - clang-3.5.2, clang-3.8.0
  - gcc 4.8.5, gcc 5.4.1, gcc 6.2.0

TODO:
- still uses template template parameters - most can probably be removed
- some definitions might now be de-duplicated
2016-12-28 17:07:12 -08:00

351 lines
12 KiB
C++

/// @ref gtc_random
/// @file glm/gtc/random.inl
#include "../geometric.hpp"
#include "../exponential.hpp"
#include <cstdlib>
#include <ctime>
#include <cassert>
namespace glm{
namespace detail
{
template <int D, typename T, precision P, template <int, class, precision> class vecType>
struct compute_rand
{
GLM_FUNC_QUALIFIER static vecType<D, T, P> call();
};
template <precision P>
struct compute_rand<1, uint8, P, tvec>
{
GLM_FUNC_QUALIFIER static tvec1<uint8, P> call()
{
return tvec1<uint8, P>(
std::rand() % std::numeric_limits<uint8>::max());
}
};
template <precision P>
struct compute_rand<2, uint8, P, tvec>
{
GLM_FUNC_QUALIFIER static tvec2<uint8, P> call()
{
return tvec2<uint8, P>(
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max());
}
};
template <precision P>
struct compute_rand<3, uint8, P, tvec>
{
GLM_FUNC_QUALIFIER static tvec3<uint8, P> call()
{
return tvec3<uint8, P>(
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max());
}
};
template <precision P>
struct compute_rand<4, uint8, P, tvec>
{
GLM_FUNC_QUALIFIER static tvec4<uint8, P> call()
{
return tvec4<uint8, P>(
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max());
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_rand<D, uint16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, uint16, P> call()
{
return
(vecType<D, uint16, P>(compute_rand<D, uint8, P, vecType>::call()) << static_cast<uint16>(8)) |
(vecType<D, uint16, P>(compute_rand<D, uint8, P, vecType>::call()) << static_cast<uint16>(0));
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_rand<D, uint32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, uint32, P> call()
{
return
(vecType<D, uint32, P>(compute_rand<D, uint16, P, vecType>::call()) << static_cast<uint32>(16)) |
(vecType<D, uint32, P>(compute_rand<D, uint16, P, vecType>::call()) << static_cast<uint32>(0));
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_rand<D, uint64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, uint64, P> call()
{
return
(vecType<D, uint64, P>(compute_rand<D, uint32, P, vecType>::call()) << static_cast<uint64>(32)) |
(vecType<D, uint64, P>(compute_rand<D, uint32, P, vecType>::call()) << static_cast<uint64>(0));
}
};
template <int D, typename T, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand
{
GLM_FUNC_QUALIFIER static vecType<D, T, P> call(vecType<D, T, P> const & Min, vecType<D, T, P> const & Max);
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, int8, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, int8, P> call(vecType<D, int8, P> const & Min, vecType<D, int8, P> const & Max)
{
return (vecType<D, int8, P>(compute_rand<D, uint8, P, vecType>::call() % vecType<D, uint8, P>(Max + static_cast<int8>(1) - Min))) + Min;
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, uint8, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, uint8, P> call(vecType<D, uint8, P> const & Min, vecType<D, uint8, P> const & Max)
{
return (compute_rand<D, uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min;
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, int16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, int16, P> call(vecType<D, int16, P> const & Min, vecType<D, int16, P> const & Max)
{
return (vecType<D, int16, P>(compute_rand<D, uint16, P, vecType>::call() % vecType<D, uint16, P>(Max + static_cast<int16>(1) - Min))) + Min;
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, uint16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, uint16, P> call(vecType<D, uint16, P> const & Min, vecType<D, uint16, P> const & Max)
{
return (compute_rand<D, uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min;
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, int32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, int32, P> call(vecType<D, int32, P> const & Min, vecType<D, int32, P> const & Max)
{
return (vecType<D, int32, P>(compute_rand<D, uint32, P, vecType>::call() % vecType<D, uint32, P>(Max + static_cast<int32>(1) - Min))) + Min;
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, uint32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, uint32, P> call(vecType<D, uint32, P> const & Min, vecType<D, uint32, P> const & Max)
{
return (compute_rand<D, uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min;
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, int64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, int64, P> call(vecType<D, int64, P> const & Min, vecType<D, int64, P> const & Max)
{
return (vecType<D, int64, P>(compute_rand<D, uint64, P, vecType>::call() % vecType<D, uint64, P>(Max + static_cast<int64>(1) - Min))) + Min;
}
};
template <int D, precision P, template <int, typename, precision> class vecType>
struct compute_linearRand<D, uint64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, uint64, P> call(vecType<D, uint64, P> const & Min, vecType<D, uint64, P> const & Max)
{
return (compute_rand<D, uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, float, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, float, lowp> call(vecType<D, float, lowp> const & Min, vecType<D, float, lowp> const & Max)
{
return vecType<D, float, lowp>(compute_rand<D, uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, float, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, float, mediump> call(vecType<D, float, mediump> const & Min, vecType<D, float, mediump> const & Max)
{
return vecType<D, float, mediump>(compute_rand<D, uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, float, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, float, highp> call(vecType<D, float, highp> const & Min, vecType<D, float, highp> const & Max)
{
return vecType<D, float, highp>(compute_rand<D, uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, double, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, double, lowp> call(vecType<D, double, lowp> const & Min, vecType<D, double, lowp> const & Max)
{
return vecType<D, double, lowp>(compute_rand<D, uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, double, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, double, mediump> call(vecType<D, double, mediump> const & Min, vecType<D, double, mediump> const & Max)
{
return vecType<D, double, mediump>(compute_rand<D, uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, double, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, double, highp> call(vecType<D, double, highp> const & Min, vecType<D, double, highp> const & Max)
{
return vecType<D, double, highp>(compute_rand<D, uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, long double, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, long double, lowp> call(vecType<D, long double, lowp> const & Min, vecType<D, long double, lowp> const & Max)
{
return vecType<D, long double, lowp>(compute_rand<D, uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, long double, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, long double, mediump> call(vecType<D, long double, mediump> const & Min, vecType<D, long double, mediump> const & Max)
{
return vecType<D, long double, mediump>(compute_rand<D, uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
template <int D, template <int, typename, precision> class vecType>
struct compute_linearRand<D, long double, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<D, long double, highp> call(vecType<D, long double, highp> const & Min, vecType<D, long double, highp> const & Max)
{
return vecType<D, long double, highp>(compute_rand<D, uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
}//namespace detail
template <typename genType>
GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max)
{
return detail::compute_linearRand<1, genType, highp, tvec>::call(
tvec1<genType, highp>(Min),
tvec1<genType, highp>(Max)).x;
}
template <int D, typename T, precision P, template <int, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<D, T, P> linearRand(vecType<D, T, P> const & Min, vecType<D, T, P> const & Max)
{
return detail::compute_linearRand<D, T, P, vecType>::call(Min, Max);
}
template <typename genType>
GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation)
{
genType w, x1, x2;
do
{
x1 = linearRand(genType(-1), genType(1));
x2 = linearRand(genType(-1), genType(1));
w = x1 * x1 + x2 * x2;
} while(w > genType(1));
return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean;
}
template <int D, typename T, precision P, template <int, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<D, T, P> gaussRand(vecType<D, T, P> const & Mean, vecType<D, T, P> const & Deviation)
{
return detail::functor2<D, T, P>::call(gaussRand, Mean, Deviation);
}
template <typename T>
GLM_FUNC_QUALIFIER tvec2<T, defaultp> diskRand(T Radius)
{
tvec2<T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
tvec2<T, defaultp>(-Radius),
tvec2<T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tvec3<T, defaultp> ballRand(T Radius)
{
tvec3<T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
tvec3<T, defaultp>(-Radius),
tvec3<T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tvec2<T, defaultp> circularRand(T Radius)
{
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
return tvec2<T, defaultp>(cos(a), sin(a)) * Radius;
}
template <typename T>
GLM_FUNC_QUALIFIER tvec3<T, defaultp> sphericalRand(T Radius)
{
T z = linearRand(T(-1), T(1));
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
T r = sqrt(T(1) - z * z);
T x = r * cos(a);
T y = r * sin(a);
return tvec3<T, defaultp>(x, y, z) * Radius;
}
}//namespace glm