160 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| /// OpenGL Mathematics (glm.g-truc.net)
 | |
| ///
 | |
| /// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
 | |
| /// Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| /// of this software and associated documentation files (the "Software"), to deal
 | |
| /// in the Software without restriction, including without limitation the rights
 | |
| /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| /// copies of the Software, and to permit persons to whom the Software is
 | |
| /// furnished to do so, subject to the following conditions:
 | |
| /// 
 | |
| /// The above copyright notice and this permission notice shall be included in
 | |
| /// all copies or substantial portions of the Software.
 | |
| /// 
 | |
| /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| /// THE SOFTWARE.
 | |
| ///
 | |
| /// @ref gtc_matrix_inverse
 | |
| /// @file glm/gtc/matrix_inverse.inl
 | |
| /// @date 2005-12-21 / 2011-06-15
 | |
| /// @author Christophe Riccio
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| namespace glm
 | |
| {
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> affineInverse
 | |
| 	(
 | |
| 		detail::tmat3x3<T, P> const & m
 | |
| 	)
 | |
| 	{
 | |
| 		detail::tmat3x3<T, P> Result(m);
 | |
| 		Result[2] = detail::tvec3<T, P>(0, 0, 1);
 | |
| 		Result = transpose(Result);
 | |
| 		detail::tvec3<T, P> Translation = Result * detail::tvec3<T, P>(-detail::tvec2<T, P>(m[2]), m[2][2]);
 | |
| 		Result[2] = Translation;
 | |
| 		return Result;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> affineInverse
 | |
| 	(
 | |
| 		detail::tmat4x4<T, P> const & m
 | |
| 	)
 | |
| 	{
 | |
| 		detail::tmat4x4<T, P> Result(m);
 | |
| 		Result[3] = detail::tvec4<T, P>(0, 0, 0, 1);
 | |
| 		Result = transpose(Result);
 | |
| 		detail::tvec4<T, P> Translation = Result * detail::tvec4<T, P>(-detail::tvec3<T, P>(m[3]), m[3][3]);
 | |
| 		Result[3] = Translation;
 | |
| 		return Result;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> inverseTranspose
 | |
| 	(
 | |
| 		detail::tmat2x2<T, P> const & m
 | |
| 	)
 | |
| 	{
 | |
| 		T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
 | |
| 
 | |
| 		detail::tmat2x2<T, P> Inverse(
 | |
| 			+ m[1][1] / Determinant,
 | |
| 			- m[0][1] / Determinant,
 | |
| 			- m[1][0] / Determinant,
 | |
| 			+ m[0][0] / Determinant);
 | |
| 
 | |
| 		return Inverse;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> inverseTranspose
 | |
| 	(
 | |
| 		detail::tmat3x3<T, P> const & m
 | |
| 	)
 | |
| 	{
 | |
| 		T Determinant =
 | |
| 			+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
 | |
| 			- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
 | |
| 			+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
 | |
| 
 | |
| 		detail::tmat3x3<T, P> Inverse;
 | |
| 		Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
 | |
| 		Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
 | |
| 		Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
 | |
| 		Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
 | |
| 		Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
 | |
| 		Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
 | |
| 		Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
 | |
| 		Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
 | |
| 		Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
 | |
| 		Inverse /= Determinant;
 | |
| 
 | |
| 		return Inverse;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> inverseTranspose
 | |
| 	(
 | |
| 		detail::tmat4x4<T, P> const & m
 | |
| 	)
 | |
| 	{
 | |
| 		T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
 | |
| 		T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
 | |
| 		T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
 | |
| 		T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
 | |
| 		T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
 | |
| 		T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
 | |
| 		T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
 | |
| 		T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
 | |
| 		T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
 | |
| 		T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
 | |
| 		T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
 | |
| 		T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
 | |
| 		T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
 | |
| 		T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
 | |
| 		T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
 | |
| 		T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
 | |
| 		T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
 | |
| 		T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
 | |
| 		T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
 | |
| 
 | |
| 		detail::tmat4x4<T, P> Inverse;
 | |
| 		Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
 | |
| 		Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
 | |
| 		Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
 | |
| 		Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
 | |
| 
 | |
| 		Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
 | |
| 		Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
 | |
| 		Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
 | |
| 		Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
 | |
| 
 | |
| 		Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
 | |
| 		Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
 | |
| 		Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
 | |
| 		Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
 | |
| 
 | |
| 		Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
 | |
| 		Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
 | |
| 		Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
 | |
| 		Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
 | |
| 
 | |
| 		T Determinant =
 | |
| 			+ m[0][0] * Inverse[0][0]
 | |
| 			+ m[0][1] * Inverse[0][1]
 | |
| 			+ m[0][2] * Inverse[0][2]
 | |
| 			+ m[0][3] * Inverse[0][3];
 | |
| 
 | |
| 		Inverse /= Determinant;
 | |
| 
 | |
| 		return Inverse;
 | |
| 	}
 | |
| }//namespace glm
 | 
