85 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/// @ref gtx_matrix_factorisation
 | 
						||
 | 
						||
namespace glm
 | 
						||
{
 | 
						||
	template <length_t C, length_t R, typename T, qualifier Q>
 | 
						||
	GLM_FUNC_QUALIFIER mat<C, R, T, Q> flipud(mat<C, R, T, Q> const& in)
 | 
						||
	{
 | 
						||
		mat<R, C, T, Q> tin = transpose(in);
 | 
						||
		tin = fliplr(tin);
 | 
						||
		mat<C, R, T, Q> out = transpose(tin);
 | 
						||
 | 
						||
		return out;
 | 
						||
	}
 | 
						||
 | 
						||
	template <length_t C, length_t R, typename T, qualifier Q>
 | 
						||
	GLM_FUNC_QUALIFIER mat<C, R, T, Q> fliplr(mat<C, R, T, Q> const& in)
 | 
						||
	{
 | 
						||
		mat<C, R, T, Q> out;
 | 
						||
		for (length_t i = 0; i < C; i++)
 | 
						||
		{
 | 
						||
			out[i] = in[(C - i) - 1];
 | 
						||
		}
 | 
						||
 | 
						||
		return out;
 | 
						||
	}
 | 
						||
 | 
						||
	template <length_t C, length_t R, typename T, qualifier Q>
 | 
						||
	GLM_FUNC_QUALIFIER void qr_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& q, mat<C, (C < R ? C : R), T, Q>& r)
 | 
						||
	{
 | 
						||
		// Uses modified Gram-Schmidt method
 | 
						||
		// Source: https://en.wikipedia.org/wiki/Gram–Schmidt_process
 | 
						||
		// And https://en.wikipedia.org/wiki/QR_decomposition
 | 
						||
 | 
						||
		//For all the linearly independs columns of the input...
 | 
						||
		// (there can be no more linearly independents columns than there are rows.)
 | 
						||
		for (length_t i = 0; i < (C < R ? C : R); i++)
 | 
						||
		{
 | 
						||
			//Copy in Q the input's i-th column.
 | 
						||
			q[i] = in[i];
 | 
						||
 | 
						||
			//j = [0,i[
 | 
						||
			// Make that column orthogonal to all the previous ones by substracting to it the non-orthogonal projection of all the previous columns.
 | 
						||
			// Also: Fill the zero elements of R
 | 
						||
			for (length_t j = 0; j < i; j++)
 | 
						||
			{
 | 
						||
				q[i] -= dot(q[i], q[j])*q[j];
 | 
						||
				r[j][i] = 0;
 | 
						||
			}
 | 
						||
 | 
						||
			//Now, Q i-th column is orthogonal to all the previous columns. Normalize it.
 | 
						||
			q[i] = normalize(q[i]);
 | 
						||
 | 
						||
			//j = [i,C[
 | 
						||
			//Finally, compute the corresponding coefficients of R by computing the projection of the resulting column on the other columns of the input.
 | 
						||
			for (length_t j = i; j < C; j++)
 | 
						||
			{
 | 
						||
				r[j][i] = dot(in[j], q[i]);
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	template <length_t C, length_t R, typename T, qualifier Q>
 | 
						||
	GLM_FUNC_QUALIFIER void rq_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& r, mat<C, (C < R ? C : R), T, Q>& q)
 | 
						||
	{
 | 
						||
		// From https://en.wikipedia.org/wiki/QR_decomposition:
 | 
						||
		// The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
 | 
						||
		// QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
 | 
						||
		// RQ decomposition is Gram–Schmidt orthogonalization of rows of A, started from the last row.
 | 
						||
 | 
						||
		mat<R, C, T, Q> tin = transpose(in);
 | 
						||
		tin = fliplr(tin);
 | 
						||
 | 
						||
		mat<R, (C < R ? C : R), T, Q> tr;
 | 
						||
		mat<(C < R ? C : R), C, T, Q> tq;
 | 
						||
		qr_decompose(tin, tq, tr);
 | 
						||
 | 
						||
		tr = fliplr(tr);
 | 
						||
		r = transpose(tr);
 | 
						||
		r = fliplr(r);
 | 
						||
 | 
						||
		tq = fliplr(tq);
 | 
						||
		q = transpose(tq);
 | 
						||
	}
 | 
						||
} //namespace glm
 |