451 lines
14 KiB
C++
451 lines
14 KiB
C++
// (C) Copyright John Maddock 2006.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_MATH_SF_DIGAMMA_HPP
|
|
#define BOOST_MATH_SF_DIGAMMA_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <boost/math/tools/rational.hpp>
|
|
#include <boost/math/tools/promotion.hpp>
|
|
#include <boost/math/policies/error_handling.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/mpl/comparison.hpp>
|
|
|
|
namespace boost{
|
|
namespace math{
|
|
namespace detail{
|
|
//
|
|
// Begin by defining the smallest value for which it is safe to
|
|
// use the asymptotic expansion for digamma:
|
|
//
|
|
inline unsigned digamma_large_lim(const mpl::int_<0>*)
|
|
{ return 20; }
|
|
|
|
inline unsigned digamma_large_lim(const void*)
|
|
{ return 10; }
|
|
//
|
|
// Implementations of the asymptotic expansion come next,
|
|
// the coefficients of the series have been evaluated
|
|
// in advance at high precision, and the series truncated
|
|
// at the first term that's too small to effect the result.
|
|
// Note that the series becomes divergent after a while
|
|
// so truncation is very important.
|
|
//
|
|
// This first one gives 34-digit precision for x >= 20:
|
|
//
|
|
template <class T>
|
|
inline T digamma_imp_large(T x, const mpl::int_<0>*)
|
|
{
|
|
BOOST_MATH_STD_USING // ADL of std functions.
|
|
static const T P[] = {
|
|
0.083333333333333333333333333333333333333333333333333L,
|
|
-0.0083333333333333333333333333333333333333333333333333L,
|
|
0.003968253968253968253968253968253968253968253968254L,
|
|
-0.0041666666666666666666666666666666666666666666666667L,
|
|
0.0075757575757575757575757575757575757575757575757576L,
|
|
-0.021092796092796092796092796092796092796092796092796L,
|
|
0.083333333333333333333333333333333333333333333333333L,
|
|
-0.44325980392156862745098039215686274509803921568627L,
|
|
3.0539543302701197438039543302701197438039543302701L,
|
|
-26.456212121212121212121212121212121212121212121212L,
|
|
281.4601449275362318840579710144927536231884057971L,
|
|
-3607.510546398046398046398046398046398046398046398L,
|
|
54827.583333333333333333333333333333333333333333333L,
|
|
-974936.82385057471264367816091954022988505747126437L,
|
|
20052695.796688078946143462272494530559046688078946L,
|
|
-472384867.72162990196078431372549019607843137254902L,
|
|
12635724795.916666666666666666666666666666666666667L
|
|
};
|
|
x -= 1;
|
|
T result = log(x);
|
|
result += 1 / (2 * x);
|
|
T z = 1 / (x*x);
|
|
result -= z * tools::evaluate_polynomial(P, z);
|
|
return result;
|
|
}
|
|
//
|
|
// 19-digit precision for x >= 10:
|
|
//
|
|
template <class T>
|
|
inline T digamma_imp_large(T x, const mpl::int_<64>*)
|
|
{
|
|
BOOST_MATH_STD_USING // ADL of std functions.
|
|
static const T P[] = {
|
|
0.083333333333333333333333333333333333333333333333333L,
|
|
-0.0083333333333333333333333333333333333333333333333333L,
|
|
0.003968253968253968253968253968253968253968253968254L,
|
|
-0.0041666666666666666666666666666666666666666666666667L,
|
|
0.0075757575757575757575757575757575757575757575757576L,
|
|
-0.021092796092796092796092796092796092796092796092796L,
|
|
0.083333333333333333333333333333333333333333333333333L,
|
|
-0.44325980392156862745098039215686274509803921568627L,
|
|
3.0539543302701197438039543302701197438039543302701L,
|
|
-26.456212121212121212121212121212121212121212121212L,
|
|
281.4601449275362318840579710144927536231884057971L,
|
|
};
|
|
x -= 1;
|
|
T result = log(x);
|
|
result += 1 / (2 * x);
|
|
T z = 1 / (x*x);
|
|
result -= z * tools::evaluate_polynomial(P, z);
|
|
return result;
|
|
}
|
|
//
|
|
// 17-digit precision for x >= 10:
|
|
//
|
|
template <class T>
|
|
inline T digamma_imp_large(T x, const mpl::int_<53>*)
|
|
{
|
|
BOOST_MATH_STD_USING // ADL of std functions.
|
|
static const T P[] = {
|
|
0.083333333333333333333333333333333333333333333333333L,
|
|
-0.0083333333333333333333333333333333333333333333333333L,
|
|
0.003968253968253968253968253968253968253968253968254L,
|
|
-0.0041666666666666666666666666666666666666666666666667L,
|
|
0.0075757575757575757575757575757575757575757575757576L,
|
|
-0.021092796092796092796092796092796092796092796092796L,
|
|
0.083333333333333333333333333333333333333333333333333L,
|
|
-0.44325980392156862745098039215686274509803921568627L
|
|
};
|
|
x -= 1;
|
|
T result = log(x);
|
|
result += 1 / (2 * x);
|
|
T z = 1 / (x*x);
|
|
result -= z * tools::evaluate_polynomial(P, z);
|
|
return result;
|
|
}
|
|
//
|
|
// 9-digit precision for x >= 10:
|
|
//
|
|
template <class T>
|
|
inline T digamma_imp_large(T x, const mpl::int_<24>*)
|
|
{
|
|
BOOST_MATH_STD_USING // ADL of std functions.
|
|
static const T P[] = {
|
|
0.083333333333333333333333333333333333333333333333333L,
|
|
-0.0083333333333333333333333333333333333333333333333333L,
|
|
0.003968253968253968253968253968253968253968253968254L
|
|
};
|
|
x -= 1;
|
|
T result = log(x);
|
|
result += 1 / (2 * x);
|
|
T z = 1 / (x*x);
|
|
result -= z * tools::evaluate_polynomial(P, z);
|
|
return result;
|
|
}
|
|
//
|
|
// Now follow rational approximations over the range [1,2].
|
|
//
|
|
// 35-digit precision:
|
|
//
|
|
template <class T>
|
|
T digamma_imp_1_2(T x, const mpl::int_<0>*)
|
|
{
|
|
//
|
|
// Now the approximation, we use the form:
|
|
//
|
|
// digamma(x) = (x - root) * (Y + R(x-1))
|
|
//
|
|
// Where root is the location of the positive root of digamma,
|
|
// Y is a constant, and R is optimised for low absolute error
|
|
// compared to Y.
|
|
//
|
|
// Max error found at 128-bit long double precision: 5.541e-35
|
|
// Maximum Deviation Found (approximation error): 1.965e-35
|
|
//
|
|
static const float Y = 0.99558162689208984375F;
|
|
|
|
static const T root1 = 1569415565.0 / 1073741824uL;
|
|
static const T root2 = (381566830.0 / 1073741824uL) / 1073741824uL;
|
|
static const T root3 = ((111616537.0 / 1073741824uL) / 1073741824uL) / 1073741824uL;
|
|
static const T root4 = (((503992070.0 / 1073741824uL) / 1073741824uL) / 1073741824uL) / 1073741824uL;
|
|
static const T root5 = 0.52112228569249997894452490385577338504019838794544e-36L;
|
|
|
|
static const T P[] = {
|
|
0.25479851061131551526977464225335883769L,
|
|
-0.18684290534374944114622235683619897417L,
|
|
-0.80360876047931768958995775910991929922L,
|
|
-0.67227342794829064330498117008564270136L,
|
|
-0.26569010991230617151285010695543858005L,
|
|
-0.05775672694575986971640757748003553385L,
|
|
-0.0071432147823164975485922555833274240665L,
|
|
-0.00048740753910766168912364555706064993274L,
|
|
-0.16454996865214115723416538844975174761e-4L,
|
|
-0.20327832297631728077731148515093164955e-6L
|
|
};
|
|
static const T Q[] = {
|
|
1,
|
|
2.6210924610812025425088411043163287646L,
|
|
2.6850757078559596612621337395886392594L,
|
|
1.4320913706209965531250495490639289418L,
|
|
0.4410872083455009362557012239501953402L,
|
|
0.081385727399251729505165509278152487225L,
|
|
0.0089478633066857163432104815183858149496L,
|
|
0.00055861622855066424871506755481997374154L,
|
|
0.1760168552357342401304462967950178554e-4L,
|
|
0.20585454493572473724556649516040874384e-6L,
|
|
-0.90745971844439990284514121823069162795e-11L,
|
|
0.48857673606545846774761343500033283272e-13L,
|
|
};
|
|
T g = x - root1;
|
|
g -= root2;
|
|
g -= root3;
|
|
g -= root4;
|
|
g -= root5;
|
|
T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
|
|
T result = g * Y + g * r;
|
|
|
|
return result;
|
|
}
|
|
//
|
|
// 19-digit precision:
|
|
//
|
|
template <class T>
|
|
T digamma_imp_1_2(T x, const mpl::int_<64>*)
|
|
{
|
|
//
|
|
// Now the approximation, we use the form:
|
|
//
|
|
// digamma(x) = (x - root) * (Y + R(x-1))
|
|
//
|
|
// Where root is the location of the positive root of digamma,
|
|
// Y is a constant, and R is optimised for low absolute error
|
|
// compared to Y.
|
|
//
|
|
// Max error found at 80-bit long double precision: 5.016e-20
|
|
// Maximum Deviation Found (approximation error): 3.575e-20
|
|
//
|
|
static const float Y = 0.99558162689208984375F;
|
|
|
|
static const T root1 = 1569415565.0 / 1073741824uL;
|
|
static const T root2 = (381566830.0 / 1073741824uL) / 1073741824uL;
|
|
static const T root3 = 0.9016312093258695918615325266959189453125e-19L;
|
|
|
|
static const T P[] = {
|
|
0.254798510611315515235L,
|
|
-0.314628554532916496608L,
|
|
-0.665836341559876230295L,
|
|
-0.314767657147375752913L,
|
|
-0.0541156266153505273939L,
|
|
-0.00289268368333918761452L
|
|
};
|
|
static const T Q[] = {
|
|
1,
|
|
2.1195759927055347547L,
|
|
1.54350554664961128724L,
|
|
0.486986018231042975162L,
|
|
0.0660481487173569812846L,
|
|
0.00298999662592323990972L,
|
|
-0.165079794012604905639e-5L,
|
|
0.317940243105952177571e-7L
|
|
};
|
|
T g = x - root1;
|
|
g -= root2;
|
|
g -= root3;
|
|
T r = tools::evaluate_polynomial(P, x-1) / tools::evaluate_polynomial(Q, x-1);
|
|
T result = g * Y + g * r;
|
|
|
|
return result;
|
|
}
|
|
//
|
|
// 18-digit precision:
|
|
//
|
|
template <class T>
|
|
T digamma_imp_1_2(T x, const mpl::int_<53>*)
|
|
{
|
|
//
|
|
// Now the approximation, we use the form:
|
|
//
|
|
// digamma(x) = (x - root) * (Y + R(x-1))
|
|
//
|
|
// Where root is the location of the positive root of digamma,
|
|
// Y is a constant, and R is optimised for low absolute error
|
|
// compared to Y.
|
|
//
|
|
// Maximum Deviation Found: 1.466e-18
|
|
// At double precision, max error found: 2.452e-17
|
|
//
|
|
static const float Y = 0.99558162689208984F;
|
|
|
|
static const T root1 = 1569415565.0 / 1073741824uL;
|
|
static const T root2 = (381566830.0 / 1073741824uL) / 1073741824uL;
|
|
static const T root3 = 0.9016312093258695918615325266959189453125e-19L;
|
|
|
|
static const T P[] = {
|
|
0.25479851061131551L,
|
|
-0.32555031186804491L,
|
|
-0.65031853770896507L,
|
|
-0.28919126444774784L,
|
|
-0.045251321448739056L,
|
|
-0.0020713321167745952L
|
|
};
|
|
static const T Q[] = {
|
|
1L,
|
|
2.0767117023730469L,
|
|
1.4606242909763515L,
|
|
0.43593529692665969L,
|
|
0.054151797245674225L,
|
|
0.0021284987017821144L,
|
|
-0.55789841321675513e-6L
|
|
};
|
|
T g = x - root1;
|
|
g -= root2;
|
|
g -= root3;
|
|
T r = tools::evaluate_polynomial(P, x-1) / tools::evaluate_polynomial(Q, x-1);
|
|
T result = g * Y + g * r;
|
|
|
|
return result;
|
|
}
|
|
//
|
|
// 9-digit precision:
|
|
//
|
|
template <class T>
|
|
inline T digamma_imp_1_2(T x, const mpl::int_<24>*)
|
|
{
|
|
//
|
|
// Now the approximation, we use the form:
|
|
//
|
|
// digamma(x) = (x - root) * (Y + R(x-1))
|
|
//
|
|
// Where root is the location of the positive root of digamma,
|
|
// Y is a constant, and R is optimised for low absolute error
|
|
// compared to Y.
|
|
//
|
|
// Maximum Deviation Found: 3.388e-010
|
|
// At float precision, max error found: 2.008725e-008
|
|
//
|
|
static const float Y = 0.99558162689208984f;
|
|
static const T root = 1532632.0f / 1048576;
|
|
static const T root_minor = static_cast<T>(0.3700660185912626595423257213284682051735604e-6L);
|
|
static const T P[] = {
|
|
0.25479851023250261e0,
|
|
-0.44981331915268368e0,
|
|
-0.43916936919946835e0,
|
|
-0.61041765350579073e-1
|
|
};
|
|
static const T Q[] = {
|
|
0.1e1,
|
|
0.15890202430554952e1,
|
|
0.65341249856146947e0,
|
|
0.63851690523355715e-1
|
|
};
|
|
T g = x - root;
|
|
g -= root_minor;
|
|
T r = tools::evaluate_polynomial(P, x-1) / tools::evaluate_polynomial(Q, x-1);
|
|
T result = g * Y + g * r;
|
|
|
|
return result;
|
|
}
|
|
|
|
template <class T, class Tag, class Policy>
|
|
T digamma_imp(T x, const Tag* t, const Policy& pol)
|
|
{
|
|
//
|
|
// This handles reflection of negative arguments, and all our
|
|
// error handling, then forwards to the T-specific approximation.
|
|
//
|
|
BOOST_MATH_STD_USING // ADL of std functions.
|
|
|
|
T result = 0;
|
|
//
|
|
// Check for negative arguments and use reflection:
|
|
//
|
|
if(x < 0)
|
|
{
|
|
// Reflect:
|
|
x = 1 - x;
|
|
// Argument reduction for tan:
|
|
T remainder = x - floor(x);
|
|
// Shift to negative if > 0.5:
|
|
if(remainder > 0.5)
|
|
{
|
|
remainder -= 1;
|
|
}
|
|
//
|
|
// check for evaluation at a negative pole:
|
|
//
|
|
if(remainder == 0)
|
|
{
|
|
return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
|
|
}
|
|
result = constants::pi<T>() / tan(constants::pi<T>() * remainder);
|
|
}
|
|
//
|
|
// If we're above the lower-limit for the
|
|
// asymptotic expansion then use it:
|
|
//
|
|
if(x >= digamma_large_lim(t))
|
|
{
|
|
result += digamma_imp_large(x, t);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// If x > 2 reduce to the interval [1,2]:
|
|
//
|
|
while(x > 2)
|
|
{
|
|
x -= 1;
|
|
result += 1/x;
|
|
}
|
|
//
|
|
// If x < 1 use recurrance to shift to > 1:
|
|
//
|
|
if(x < 1)
|
|
{
|
|
result = -1/x;
|
|
x += 1;
|
|
}
|
|
result += digamma_imp_1_2(x, t);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template <class T, class Policy>
|
|
inline typename tools::promote_args<T>::type
|
|
digamma(T x, const Policy& pol)
|
|
{
|
|
typedef typename tools::promote_args<T>::type result_type;
|
|
typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
|
typedef typename policies::precision<T, Policy>::type precision_type;
|
|
typedef typename mpl::if_<
|
|
mpl::or_<
|
|
mpl::less_equal<precision_type, mpl::int_<0> >,
|
|
mpl::greater<precision_type, mpl::int_<64> >
|
|
>,
|
|
mpl::int_<0>,
|
|
typename mpl::if_<
|
|
mpl::less<precision_type, mpl::int_<25> >,
|
|
mpl::int_<24>,
|
|
typename mpl::if_<
|
|
mpl::less<precision_type, mpl::int_<54> >,
|
|
mpl::int_<53>,
|
|
mpl::int_<64>
|
|
>::type
|
|
>::type
|
|
>::type tag_type;
|
|
|
|
return policies::checked_narrowing_cast<result_type, Policy>(detail::digamma_imp(
|
|
static_cast<value_type>(x),
|
|
static_cast<const tag_type*>(0), pol), "boost::math::digamma<%1%>(%1%)");
|
|
}
|
|
|
|
template <class T>
|
|
inline typename tools::promote_args<T>::type
|
|
digamma(T x)
|
|
{
|
|
return digamma(x, policies::policy<>());
|
|
}
|
|
|
|
} // namespace math
|
|
} // namespace boost
|
|
#endif
|
|
|