130 lines
2.5 KiB
C++
130 lines
2.5 KiB
C++
#include <glm/common.hpp>
|
|
#include <glm/exponential.hpp>
|
|
#include <glm/gtc/ulp.hpp>
|
|
#include <glm/gtc/vec1.hpp>
|
|
|
|
int test_pow()
|
|
{
|
|
int Error(0);
|
|
|
|
float A = glm::pow(10.f, 10.f);
|
|
glm::vec1 B = glm::pow(glm::vec1(10.f), glm::vec1(10.f));
|
|
glm::vec2 C = glm::pow(glm::vec2(10.f), glm::vec2(10.f));
|
|
glm::vec3 D = glm::pow(glm::vec3(10.f), glm::vec3(10.f));
|
|
glm::vec4 E = glm::pow(glm::vec4(10.f), glm::vec4(10.f));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_exp()
|
|
{
|
|
int Error(0);
|
|
|
|
float A = glm::exp(10.f);
|
|
glm::vec1 B = glm::exp(glm::vec1(10.f));
|
|
glm::vec2 C = glm::exp(glm::vec2(10.f));
|
|
glm::vec3 D = glm::exp(glm::vec3(10.f));
|
|
glm::vec4 E = glm::exp(glm::vec4(10.f));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_log()
|
|
{
|
|
int Error(0);
|
|
|
|
float A = glm::log(10.f);
|
|
glm::vec1 B = glm::log(glm::vec1(10.f));
|
|
glm::vec2 C = glm::log(glm::vec2(10.f));
|
|
glm::vec3 D = glm::log(glm::vec3(10.f));
|
|
glm::vec4 E = glm::log(glm::vec4(10.f));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_exp2()
|
|
{
|
|
int Error(0);
|
|
|
|
float A = glm::exp2(10.f);
|
|
glm::vec1 B = glm::exp2(glm::vec1(10.f));
|
|
glm::vec2 C = glm::exp2(glm::vec2(10.f));
|
|
glm::vec3 D = glm::exp2(glm::vec3(10.f));
|
|
glm::vec4 E = glm::exp2(glm::vec4(10.f));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_log2()
|
|
{
|
|
int Error(0);
|
|
|
|
float A = glm::log2(10.f);
|
|
glm::vec1 B = glm::log2(glm::vec1(10.f));
|
|
glm::vec2 C = glm::log2(glm::vec2(10.f));
|
|
glm::vec3 D = glm::log2(glm::vec3(10.f));
|
|
glm::vec4 E = glm::log2(glm::vec4(10.f));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_sqrt()
|
|
{
|
|
int Error(0);
|
|
|
|
# if GLM_ARCH & GLM_ARCH_SSE2_BIT
|
|
for(float f = 0.1f; f < 30.0f; f += 0.1f)
|
|
{
|
|
float r = _mm_cvtss_f32(_mm_sqrt_ps(_mm_set1_ps(f)));
|
|
float s = std::sqrt(f);
|
|
Error += glm::abs(r - s) < 0.01f ? 0 : 1;
|
|
assert(!Error);
|
|
}
|
|
# endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
|
|
|
|
float A = glm::sqrt(10.f);
|
|
glm::vec1 B = glm::sqrt(glm::vec1(10.f));
|
|
glm::vec2 C = glm::sqrt(glm::vec2(10.f));
|
|
glm::vec3 D = glm::sqrt(glm::vec3(10.f));
|
|
glm::vec4 E = glm::sqrt(glm::vec4(10.f));
|
|
|
|
return Error;
|
|
}
|
|
|
|
int test_inversesqrt()
|
|
{
|
|
int Error(0);
|
|
|
|
glm::uint ulp(0);
|
|
float diff(0.0f);
|
|
|
|
for(float f = 0.001f; f < 10.f; f *= 1.01f)
|
|
{
|
|
glm::lowp_fvec1 u(f);
|
|
glm::lowp_fvec1 lowp_v = glm::inversesqrt(u);
|
|
float defaultp_v = glm::inversesqrt(f);
|
|
|
|
ulp = glm::max(glm::float_distance(lowp_v.x, defaultp_v), ulp);
|
|
diff = glm::abs(lowp_v.x - defaultp_v);
|
|
Error += diff > 0.1f ? 1 : 0;
|
|
}
|
|
|
|
return Error;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
int Error(0);
|
|
|
|
Error += test_pow();
|
|
Error += test_exp();
|
|
Error += test_log();
|
|
Error += test_exp2();
|
|
Error += test_log2();
|
|
Error += test_sqrt();
|
|
Error += test_inversesqrt();
|
|
|
|
return Error;
|
|
}
|
|
|