350 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			350 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | ||
| /// OpenGL Mathematics (glm.g-truc.net)
 | ||
| ///
 | ||
| /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
 | ||
| /// Permission is hereby granted, free of charge, to any person obtaining a copy
 | ||
| /// of this software and associated documentation files (the "Software"), to deal
 | ||
| /// in the Software without restriction, including without limitation the rights
 | ||
| /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | ||
| /// copies of the Software, and to permit persons to whom the Software is
 | ||
| /// furnished to do so, subject to the following conditions:
 | ||
| ///
 | ||
| /// The above copyright notice and this permission notice shall be included in
 | ||
| /// all copies or substantial portions of the Software.
 | ||
| ///
 | ||
| /// Restrictions:
 | ||
| ///		By making use of the Software for military purposes, you choose to make
 | ||
| ///		a Bunny unhappy.
 | ||
| ///
 | ||
| /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | ||
| /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | ||
| /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | ||
| /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | ||
| /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | ||
| /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | ||
| /// THE SOFTWARE.
 | ||
| ///
 | ||
| /// @file test/gtc/gtc_quaternion.cpp
 | ||
| /// @date 2010-09-16 / 2014-11-25
 | ||
| /// @author Christophe Riccio
 | ||
| ///////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| #define GLM_META_PROG_HELPERS
 | ||
| #include <glm/gtc/quaternion.hpp>
 | ||
| #include <glm/gtc/epsilon.hpp>
 | ||
| #include <glm/vector_relational.hpp>
 | ||
| #include <vector>
 | ||
| 
 | ||
| int test_quat_angle()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
 | ||
| 		float A = glm::angle(N);
 | ||
| 		Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1)));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
 | ||
| 		float A = glm::angle(N);
 | ||
| 		Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3)));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1;
 | ||
| 		float A = glm::angle(N);
 | ||
| 		Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_angleAxis()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
 | ||
| 	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
 | ||
| 	glm::quat C = glm::mix(A, B, 0.5f);
 | ||
| 	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 
 | ||
| 	Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_mix()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1));
 | ||
| 	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
 | ||
| 	glm::quat C = glm::mix(A, B, 0.5f);
 | ||
| 	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 
 | ||
| 	Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1;
 | ||
| 	Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_precision()
 | ||
| {
 | ||
| 	int Error = 0;
 | ||
| 
 | ||
| 	Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1;
 | ||
| 	Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_normalize()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
 | ||
| 	}
 | ||
| 	{
 | ||
| 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3));
 | ||
| 		glm::quat N = glm::normalize(Q);
 | ||
| 		float L = glm::length(N);
 | ||
| 		Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_euler()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::quat q(1.0f, 0.0f, 0.0f, 1.0f);
 | ||
| 		float Roll = glm::roll(q);
 | ||
| 		float Pitch = glm::pitch(q);
 | ||
| 		float Yaw = glm::yaw(q);
 | ||
| 		glm::vec3 Angles = glm::eulerAngles(q);
 | ||
| 	}
 | ||
| 
 | ||
| 	{
 | ||
| 		glm::dquat q(1.0f, 0.0f, 0.0f, 1.0f);
 | ||
| 		double Roll = glm::roll(q);
 | ||
| 		double Pitch = glm::pitch(q);
 | ||
| 		double Yaw = glm::yaw(q);
 | ||
| 		glm::dvec3 Angles = glm::eulerAngles(q);
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_slerp()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	float const Epsilon = 0.0001f;//glm::epsilon<float>();
 | ||
| 
 | ||
| 	float sqrt2 = sqrt(2.0f)/2.0f;
 | ||
| 	glm::quat id;
 | ||
| 	glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f);
 | ||
| 	glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f);
 | ||
| 
 | ||
| 	// Testing a == 0
 | ||
| 	// Must be id
 | ||
| 	glm::quat id2 = glm::slerp(id, Y90rot, 0.0f);
 | ||
| 	Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing a == 1
 | ||
| 	// Must be 90<39> rotation on Y : 0 0.7 0 0.7
 | ||
| 	glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f);
 | ||
| 	Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing standard, easy case
 | ||
| 	// Must be 45<34> rotation on Y : 0 0.38 0 0.92
 | ||
| 	glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f);
 | ||
| 
 | ||
| 	// Testing reverse case
 | ||
| 	// Must be 45<34> rotation on Y : 0 0.38 0 0.92
 | ||
| 	glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f);
 | ||
| 
 | ||
| 	// Testing against full circle around the sphere instead of shortest path
 | ||
| 	// Must be 45<34> rotation on Y
 | ||
| 	// certainly not a 135<33> rotation
 | ||
| 	glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f);
 | ||
| 	float Y45angle3 = glm::angle(Y45rot3);
 | ||
| 	Error += glm::epsilonEqual(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
 | ||
| 	Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Same, but inverted
 | ||
| 	// Must also be 45<34> rotation on Y :  0 0.38 0 0.92
 | ||
| 	// -0 -0.38 -0 -0.92 is ok too
 | ||
| 	glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f);
 | ||
| 	Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing q1 = q2
 | ||
| 	// Must be 90<39> rotation on Y : 0 0.7 0 0.7
 | ||
| 	glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f);
 | ||
| 	Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing 180<38> rotation
 | ||
| 	// Must be 90<39> rotation on almost any axis that is on the XZ plane
 | ||
| 	glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f);
 | ||
| 	float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
 | ||
| 	Error += glm::epsilonEqual(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1;
 | ||
| 
 | ||
| 	// Testing almost equal quaternions (this test should pass through the linear interpolation)
 | ||
| 	// Must be 0 0.00X 0 0.99999
 | ||
| 	glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f);
 | ||
| 
 | ||
| 	// Testing quaternions with opposite sign
 | ||
| 	{
 | ||
| 		glm::quat a(-1, 0, 0, 0);
 | ||
| 
 | ||
| 		glm::quat result = glm::slerp(a, id, 0.5f);
 | ||
| 
 | ||
| 		Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_mul()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)));
 | ||
| 	glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0)));
 | ||
| 
 | ||
| 	glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1));
 | ||
| 	glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2);
 | ||
| 
 | ||
| 	glm::quat temp5 = glm::normalize(temp1 * temp2);
 | ||
| 	glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5);
 | ||
| 
 | ||
| #	ifndef GLM_FORCE_NO_CTOR_INIT
 | ||
| 	{
 | ||
| 		glm::quat temp7;
 | ||
| 
 | ||
| 		temp7 *= temp5;
 | ||
| 		temp7 *= glm::inverse(temp5);
 | ||
| 
 | ||
| 		Error += temp7 != glm::quat();
 | ||
| 	}
 | ||
| #	endif
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_two_axis_ctr()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	glm::quat q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
 | ||
| 	glm::vec3 v1 = q1 * glm::vec3(1, 0, 0);
 | ||
| 	Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1;
 | ||
| 
 | ||
| 	glm::quat q2 = q1 * q1;
 | ||
| 	glm::vec3 v2 = q2 * glm::vec3(1, 0, 0);
 | ||
| 	Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_type()
 | ||
| {
 | ||
| 	glm::quat A;
 | ||
| 	glm::dquat B;
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_mul_vec()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| 	glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1));
 | ||
| 	glm::vec3 v(1, 0, 0);
 | ||
| 	glm::vec3 u(q * v);
 | ||
| 	glm::vec3 w(u * q);
 | ||
| 
 | ||
| 	Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1;
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int test_quat_ctr()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| #	if GLM_HAS_TRIVIAL_QUERIES
 | ||
| 	//	Error += std::is_trivially_default_constructible<glm::quat>::value ? 0 : 1;
 | ||
| 	//	Error += std::is_trivially_default_constructible<glm::dquat>::value ? 0 : 1;
 | ||
| 	//	Error += std::is_trivially_copy_assignable<glm::quat>::value ? 0 : 1;
 | ||
| 	//	Error += std::is_trivially_copy_assignable<glm::dquat>::value ? 0 : 1;
 | ||
| 		Error += std::is_trivially_copyable<glm::quat>::value ? 0 : 1;
 | ||
| 		Error += std::is_trivially_copyable<glm::dquat>::value ? 0 : 1;
 | ||
| 
 | ||
| 		Error += std::is_copy_constructible<glm::quat>::value ? 0 : 1;
 | ||
| 		Error += std::is_copy_constructible<glm::dquat>::value ? 0 : 1;
 | ||
| #	endif
 | ||
| 
 | ||
| #	if GLM_HAS_INITIALIZER_LISTS
 | ||
| 	{
 | ||
| 		glm::quat A{0, 1, 2, 3};
 | ||
| 
 | ||
| 		std::vector<glm::quat> B{
 | ||
| 			{0, 1, 2, 3},
 | ||
| 			{0, 1, 2, 3}};
 | ||
| 	}
 | ||
| #	endif//GLM_HAS_INITIALIZER_LISTS
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | ||
| 
 | ||
| int main()
 | ||
| {
 | ||
| 	int Error(0);
 | ||
| 
 | ||
| #ifdef GLM_META_PROG_HELPERS
 | ||
| 		assert(glm::quat::components == 4);
 | ||
| 		assert(glm::quat::components == glm::quat().length());
 | ||
| #endif
 | ||
| 
 | ||
| 	Error += test_quat_ctr();
 | ||
| 	Error += test_quat_mul_vec();
 | ||
| 	Error += test_quat_two_axis_ctr();
 | ||
| 	Error += test_quat_mul();
 | ||
| 	Error += test_quat_precision();
 | ||
| 	Error += test_quat_type();
 | ||
| 	Error += test_quat_angle();
 | ||
| 	Error += test_quat_angleAxis();
 | ||
| 	Error += test_quat_mix();
 | ||
| 	Error += test_quat_normalize();
 | ||
| 	Error += test_quat_euler();
 | ||
| 	Error += test_quat_slerp();
 | ||
| 
 | ||
| 	return Error;
 | ||
| }
 | 
