glm/glm/detail/func_matrix.inl
2014-01-04 22:32:28 +01:00

596 lines
18 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref core
/// @file glm/core/func_matrix.inl
/// @date 2008-03-08 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../geometric.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "type_mat2x2.hpp"
#include "type_mat2x3.hpp"
#include "type_mat2x4.hpp"
#include "type_mat3x2.hpp"
#include "type_mat3x3.hpp"
#include "type_mat3x4.hpp"
#include "type_mat4x2.hpp"
#include "type_mat4x3.hpp"
#include "type_mat4x4.hpp"
#include <limits>
namespace glm{
namespace detail
{
template
<
template <class, precision> class vecTypeA,
template <class, precision> class vecTypeB,
typename T, precision P
>
struct compute_outerProduct{};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec2, detail::tvec2, T, P>
{
typedef detail::tmat2x2<T, P> return_type;
static return_type call(detail::tvec2<T, P> const & c, detail::tvec2<T, P> const & r)
{
detail::tmat2x2<T, P> m(detail::tmat2x2<T, P>::null);
m[0][0] = c[0] * r[0];
m[0][1] = c[1] * r[0];
m[1][0] = c[0] * r[1];
m[1][1] = c[1] * r[1];
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec3, detail::tvec3, T, P>
{
typedef detail::tmat3x3<T, P> return_type;
static return_type call(detail::tvec3<T, P> const & c, detail::tvec3<T, P> const & r)
{
detail::tmat3x3<T, P> m(detail::tmat3x3<T, P>::null);
for(length_t i(0); i < m.length(); ++i)
m[i] = c * r[i];
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec4, detail::tvec4, T, P>
{
typedef detail::tmat4x4<T, P> return_type;
static return_type call(detail::tvec4<T, P> const & c, detail::tvec4<T, P> const & r)
{
detail::tmat4x4<T, P> m(detail::tmat4x4<T, P>::null);
for(length_t i(0); i < m.length(); ++i)
m[i] = c * r[i];
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec3, detail::tvec2, T, P>
{
typedef detail::tmat2x3<T, P> return_type;
static return_type call(detail::tvec3<T, P> const & c, detail::tvec2<T, P> const & r)
{
detail::tmat2x3<T, P> m(detail::tmat2x3<T, P>::null);
m[0][0] = c.x * r.x;
m[0][1] = c.y * r.x;
m[0][2] = c.z * r.x;
m[1][0] = c.x * r.y;
m[1][1] = c.y * r.y;
m[1][2] = c.z * r.y;
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec2, detail::tvec3, T, P>
{
typedef detail::tmat3x2<T, P> return_type;
static return_type call(detail::tvec2<T, P> const & c, detail::tvec3<T, P> const & r)
{
detail::tmat3x2<T, P> m(detail::tmat3x2<T, P>::null);
m[0][0] = c.x * r.x;
m[0][1] = c.y * r.x;
m[1][0] = c.x * r.y;
m[1][1] = c.y * r.y;
m[2][0] = c.x * r.z;
m[2][1] = c.y * r.z;
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec4, detail::tvec2, T, P>
{
typedef detail::tmat2x4<T, P> return_type;
static return_type call(detail::tvec4<T, P> const & c, detail::tvec2<T, P> const & r)
{
detail::tmat2x4<T, P> m(detail::tmat2x4<T, P>::null);
m[0][0] = c.x * r.x;
m[0][1] = c.y * r.x;
m[0][2] = c.z * r.x;
m[0][3] = c.w * r.x;
m[1][0] = c.x * r.y;
m[1][1] = c.y * r.y;
m[1][2] = c.z * r.y;
m[1][3] = c.w * r.y;
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec2, detail::tvec4, T, P>
{
typedef detail::tmat4x2<T, P> return_type;
static return_type call(detail::tvec2<T, P> const & c, detail::tvec4<T, P> const & r)
{
detail::tmat4x2<T, P> m(detail::tmat4x2<T, P>::null);
m[0][0] = c.x * r.x;
m[0][1] = c.y * r.x;
m[1][0] = c.x * r.y;
m[1][1] = c.y * r.y;
m[2][0] = c.x * r.z;
m[2][1] = c.y * r.z;
m[3][0] = c.x * r.w;
m[3][1] = c.y * r.w;
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec4, detail::tvec3, T, P>
{
typedef detail::tmat3x4<T, P> return_type;
static return_type call(detail::tvec4<T, P> const & c, detail::tvec3<T, P> const & r)
{
detail::tmat3x4<T, P> m(detail::tmat3x4<T, P>::null);
m[0][0] = c.x * r.x;
m[0][1] = c.y * r.x;
m[0][2] = c.z * r.x;
m[0][3] = c.w * r.x;
m[1][0] = c.x * r.y;
m[1][1] = c.y * r.y;
m[1][2] = c.z * r.y;
m[1][3] = c.w * r.y;
m[2][0] = c.x * r.z;
m[2][1] = c.y * r.z;
m[2][2] = c.z * r.z;
m[2][3] = c.w * r.z;
return m;
}
};
template <typename T, precision P>
struct compute_outerProduct<detail::tvec3, detail::tvec4, T, P>
{
typedef detail::tmat4x3<T, P> return_type;
static return_type call(detail::tvec3<T, P> const & c, detail::tvec4<T, P> const & r)
{
detail::tmat4x3<T, P> m(detail::tmat4x3<T, P>::null);
m[0][0] = c.x * r.x;
m[0][1] = c.y * r.x;
m[0][2] = c.z * r.x;
m[1][0] = c.x * r.y;
m[1][1] = c.y * r.y;
m[1][2] = c.z * r.y;
m[2][0] = c.x * r.z;
m[2][1] = c.y * r.z;
m[2][2] = c.z * r.z;
m[3][0] = c.x * r.w;
m[3][1] = c.y * r.w;
m[3][2] = c.z * r.w;
return m;
}
};
template <template <class, precision> class matType, typename T, precision P>
struct compute_transpose{};
template <typename T, precision P>
struct compute_transpose<detail::tmat2x2, T, P>
{
static detail::tmat2x2<T, P> call(detail::tmat2x2<T, P> const & m)
{
detail::tmat2x2<T, P> result(detail::tmat2x2<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat2x3, T, P>
{
static detail::tmat3x2<T, P> call(detail::tmat2x3<T, P> const & m)
{
detail::tmat3x2<T, P> result(detail::tmat3x2<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat2x4, T, P>
{
static detail::tmat4x2<T, P> call(detail::tmat2x4<T, P> const & m)
{
detail::tmat4x2<T, P> result(detail::tmat4x2<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[3][0] = m[0][3];
result[3][1] = m[1][3];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat3x2, T, P>
{
static detail::tmat2x3<T, P> call(detail::tmat3x2<T, P> const & m)
{
detail::tmat2x3<T, P> result(detail::tmat2x3<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat3x3, T, P>
{
static detail::tmat3x3<T, P> call(detail::tmat3x3<T, P> const & m)
{
detail::tmat3x3<T, P> result(detail::tmat3x3<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat3x4, T, P>
{
static detail::tmat4x3<T, P> call(detail::tmat3x4<T, P> const & m)
{
detail::tmat4x3<T, P> result(detail::tmat4x3<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
result[3][0] = m[0][3];
result[3][1] = m[1][3];
result[3][2] = m[2][3];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat4x2, T, P>
{
static detail::tmat2x4<T, P> call(detail::tmat4x2<T, P> const & m)
{
detail::tmat2x4<T, P> result(detail::tmat2x4<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[0][3] = m[3][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[1][3] = m[3][1];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat4x3, T, P>
{
static detail::tmat3x4<T, P> call(detail::tmat4x3<T, P> const & m)
{
detail::tmat3x4<T, P> result(detail::tmat3x4<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[0][3] = m[3][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[1][3] = m[3][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
result[2][3] = m[3][2];
return result;
}
};
template <typename T, precision P>
struct compute_transpose<detail::tmat4x4, T, P>
{
static detail::tmat4x4<T, P> call(detail::tmat4x4<T, P> const & m)
{
detail::tmat4x4<T, P> result(detail::tmat4x4<T, P>::_null);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[0][3] = m[3][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[1][3] = m[3][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
result[2][3] = m[3][2];
result[3][0] = m[0][3];
result[3][1] = m[1][3];
result[3][2] = m[2][3];
result[3][3] = m[3][3];
return result;
}
};
template <template <class, precision> class matType, typename T, precision P>
struct compute_determinant{};
template <typename T, precision P>
struct compute_determinant<detail::tmat2x2, T, P>
{
static T call(detail::tmat2x2<T, P> const & m)
{
return m[0][0] * m[1][1] - m[1][0] * m[0][1];
}
};
template <typename T, precision P>
struct compute_determinant<detail::tmat3x3, T, P>
{
static T call(detail::tmat3x3<T, P> const & m)
{
return
+ m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
- m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2])
+ m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
}
};
template <typename T, precision P>
struct compute_determinant<detail::tmat4x4, T, P>
{
static T call(detail::tmat4x4<T, P> const & m)
{
T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
detail::tvec4<T, P> DetCof(
+ (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02),
- (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04),
+ (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05),
- (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05));
return m[0][0] * DetCof[0]
+ m[0][1] * DetCof[1]
+ m[0][2] * DetCof[2]
+ m[0][3] * DetCof[3];
}
};
template <template <class, precision> class matType, typename T, precision P>
struct compute_inverse{};
template <typename T, precision P>
struct compute_inverse<detail::tmat2x2, T, P>
{
static detail::tmat2x2<T, P> call(detail::tmat2x2<T, P> const & m)
{
T Determinant = determinant(m);
detail::tmat2x2<T, P> Inverse(
+ m[1][1] / Determinant,
- m[0][1] / Determinant,
- m[1][0] / Determinant,
+ m[0][0] / Determinant);
return Inverse;
}
};
template <typename T, precision P>
struct compute_inverse<detail::tmat3x3, T, P>
{
static detail::tmat3x3<T, P> call(detail::tmat3x3<T, P> const & m)
{
T Determinant = determinant(m);
detail::tmat3x3<T, P> Inverse(detail::tmat3x3<T, P>::_null);
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
Inverse[1][0] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
Inverse[2][0] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
Inverse[0][1] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
Inverse[2][1] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
Inverse[0][2] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
Inverse[1][2] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
Inverse /= Determinant;
return Inverse;
}
};
template <typename T, precision P>
struct compute_inverse<detail::tmat4x4, T, P>
{
static detail::tmat4x4<T, P> call(detail::tmat4x4<T, P> const & m)
{
T Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
T Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
T Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
T Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
T Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
T Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
T Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
T Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
T Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
T Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
T Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
T Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
detail::tvec4<T, P> const SignA(+1, -1, +1, -1);
detail::tvec4<T, P> const SignB(-1, +1, -1, +1);
detail::tvec4<T, P> Fac0(Coef00, Coef00, Coef02, Coef03);
detail::tvec4<T, P> Fac1(Coef04, Coef04, Coef06, Coef07);
detail::tvec4<T, P> Fac2(Coef08, Coef08, Coef10, Coef11);
detail::tvec4<T, P> Fac3(Coef12, Coef12, Coef14, Coef15);
detail::tvec4<T, P> Fac4(Coef16, Coef16, Coef18, Coef19);
detail::tvec4<T, P> Fac5(Coef20, Coef20, Coef22, Coef23);
detail::tvec4<T, P> Vec0(m[1][0], m[0][0], m[0][0], m[0][0]);
detail::tvec4<T, P> Vec1(m[1][1], m[0][1], m[0][1], m[0][1]);
detail::tvec4<T, P> Vec2(m[1][2], m[0][2], m[0][2], m[0][2]);
detail::tvec4<T, P> Vec3(m[1][3], m[0][3], m[0][3], m[0][3]);
detail::tvec4<T, P> Inv0 = SignA * (Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2);
detail::tvec4<T, P> Inv1 = SignB * (Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4);
detail::tvec4<T, P> Inv2 = SignA * (Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5);
detail::tvec4<T, P> Inv3 = SignB * (Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5);
detail::tmat4x4<T, P> Inverse(Inv0, Inv1, Inv2, Inv3);
detail::tvec4<T, P> Row0(Inverse[0][0], Inverse[1][0], Inverse[2][0], Inverse[3][0]);
T Determinant = dot(m[0], Row0);
Inverse /= Determinant;
return Inverse;
}
};
}//namespace detail
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER matType<T, P> matrixCompMult(matType<T, P> const & x, matType<T, P> const & y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'matrixCompMult' only accept floating-point inputs");
matType<T, P> result(matType<T, P>::_null);
for(length_t i = 0; i < result.length(); ++i)
result[i] = x[i] * y[i];
return result;
}
template<template <class, precision> class vecTypeA, template <class, precision> class vecTypeB, typename T, precision P>
GLM_FUNC_QUALIFIER typename detail::compute_outerProduct<vecTypeA, vecTypeB, T, P>::return_type outerProduct(vecTypeA<T, P> const & c, vecTypeB<T, P> const & r)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'outerProduct' only accept floating-point inputs");
return detail::compute_outerProduct<vecTypeA, vecTypeB, T, P>::call(c, r);
}
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER typename matType<T, P>::transpose_type transpose(matType<T, P> const & m)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'transpose' only accept floating-point inputs");
return detail::compute_transpose<matType, T, P>::call(m);
}
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER T determinant(matType<T, P> const & m)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'determinant' only accept floating-point inputs");
return detail::compute_determinant<matType, T, P>::call(m);
}
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER matType<T, P> inverse(matType<T, P> const & m)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'inverse' only accept floating-point inputs");
return detail::compute_inverse<matType, T, P>::call(m);
}
}//namespace glm