478 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			478 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| /// OpenGL Mathematics (glm.g-truc.net)
 | |
| ///
 | |
| /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
 | |
| /// Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| /// of this software and associated documentation files (the "Software"), to deal
 | |
| /// in the Software without restriction, including without limitation the rights
 | |
| /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| /// copies of the Software, and to permit persons to whom the Software is
 | |
| /// furnished to do so, subject to the following conditions:
 | |
| /// 
 | |
| /// The above copyright notice and this permission notice shall be included in
 | |
| /// all copies or substantial portions of the Software.
 | |
| /// 
 | |
| /// Restrictions:
 | |
| ///		By making use of the Software for military purposes, you choose to make
 | |
| ///		a Bunny unhappy.
 | |
| /// 
 | |
| /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| /// THE SOFTWARE.
 | |
| ///
 | |
| /// @file test/gtx/gtx_fast_trigonometry.cpp
 | |
| /// @date 2013-10-25 / 2014-11-25
 | |
| /// @author Christophe Riccio
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <glm/gtc/type_precision.hpp>
 | |
| #include <glm/gtx/fast_trigonometry.hpp>
 | |
| #include <glm/gtx/integer.hpp>
 | |
| #include <glm/gtx/common.hpp>
 | |
| #include <glm/gtc/constants.hpp>
 | |
| #include <glm/gtc/ulp.hpp>
 | |
| #include <glm/gtc/vec1.hpp>
 | |
| #include <glm/trigonometric.hpp>
 | |
| #include <cmath>
 | |
| #include <ctime>
 | |
| #include <cstdio>
 | |
| #include <vector>
 | |
| 
 | |
| namespace fastCos
 | |
| {
 | |
| 	int perf()
 | |
| 	{
 | |
| 		const float begin = -glm::pi<float>();
 | |
| 		const float end = glm::pi<float>();
 | |
| 		float result = 0.f;
 | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::fastCos(i);
 | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::cos(i);
 | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock();
 | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1;
 | |
| 		const std::clock_t time_default = timestamp3 - timestamp2;
 | |
| 		std::printf("fastCos Time %d clocks\n", static_cast<unsigned int>(time_fast));
 | |
| 		std::printf("cos Time %d clocks\n", static_cast<unsigned int>(time_default));
 | |
| 
 | |
| 		return time_fast < time_default ? 0 : 1;
 | |
| 	}
 | |
| }//namespace fastCos
 | |
| 
 | |
| namespace fastSin
 | |
| {
 | |
| 	/*
 | |
| 	float sin(float x) {
 | |
| 	float temp;
 | |
| 	temp = (x + M_PI) / ((2 * M_PI) - M_PI);
 | |
| 	return limited_sin((x + M_PI) - ((2 * M_PI) - M_PI) * temp));
 | |
| 	}
 | |
| 	*/
 | |
| 
 | |
| 	int perf()
 | |
| 	{
 | |
| 		const float begin = -glm::pi<float>();
 | |
| 		const float end = glm::pi<float>();
 | |
| 		float result = 0.f;
 | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::fastSin(i);
 | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::sin(i);
 | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock();
 | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1;
 | |
| 		const std::clock_t time_default = timestamp3 - timestamp2;
 | |
| 		std::printf("fastSin Time %d clocks\n", static_cast<unsigned int>(time_fast));
 | |
| 		std::printf("sin Time %d clocks\n", static_cast<unsigned int>(time_default));
 | |
| 
 | |
| 		return time_fast < time_default ? 0 : 1;
 | |
| 	}
 | |
| }//namespace fastSin
 | |
| 
 | |
| namespace fastTan
 | |
| {
 | |
| 	int perf()
 | |
| 	{
 | |
| 		const float begin = -glm::pi<float>();
 | |
| 		const float end = glm::pi<float>();
 | |
| 		float result = 0.f;
 | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::fastTan(i);
 | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock();
 | |
| 		for (float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::tan(i);
 | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock();
 | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1;
 | |
| 		const std::clock_t time_default = timestamp3 - timestamp2;
 | |
| 		std::printf("fastTan Time %d clocks\n", static_cast<unsigned int>(time_fast));
 | |
| 		std::printf("tan Time %d clocks\n", static_cast<unsigned int>(time_default));
 | |
| 
 | |
| 		return time_fast < time_default ? 0 : 1;
 | |
| 	}
 | |
| }//namespace fastTan
 | |
| 
 | |
| namespace fastAcos
 | |
| {
 | |
| 	int perf()
 | |
| 	{
 | |
| 		const float begin = -glm::pi<float>();
 | |
| 		const float end = glm::pi<float>();
 | |
| 		float result = 0.f;
 | |
| 
 | |
| 		const std::clock_t timestamp1 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::fastAcos(i);
 | |
| 
 | |
| 		const std::clock_t timestamp2 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::acos(i);
 | |
| 
 | |
| 		const std::clock_t timestamp3 = std::clock();
 | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1;
 | |
| 		const std::clock_t time_default = timestamp3 - timestamp2;
 | |
| 
 | |
| 		std::printf("fastAcos Time %d clocks\n", static_cast<unsigned int>(time_fast));
 | |
| 		std::printf("acos Time %d clocks\n", static_cast<unsigned int>(time_default));
 | |
| 
 | |
| 		return time_fast < time_default ? 0 : 1;
 | |
| 	}
 | |
| }//namespace fastAcos
 | |
| 
 | |
| namespace fastAsin
 | |
| {
 | |
| 	int perf()
 | |
| 	{
 | |
| 		const float begin = -glm::pi<float>();
 | |
| 		const float end = glm::pi<float>();
 | |
| 		float result = 0.f;
 | |
| 		const std::clock_t timestamp1 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::fastAsin(i);
 | |
| 		const std::clock_t timestamp2 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::asin(i);
 | |
| 		const std::clock_t timestamp3 = std::clock();
 | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1;
 | |
| 		const std::clock_t time_default = timestamp3 - timestamp2;
 | |
| 		std::printf("fastAsin Time %d clocks\n", static_cast<unsigned int>(time_fast));
 | |
| 		std::printf("asin Time %d clocks\n", static_cast<unsigned int>(time_default));
 | |
| 
 | |
| 		return time_fast < time_default ? 0 : 1;
 | |
| 	}
 | |
| }//namespace fastAsin
 | |
| 
 | |
| namespace fastAtan
 | |
| {
 | |
| 	int perf()
 | |
| 	{
 | |
| 		const float begin = -glm::pi<float>();
 | |
| 		const float end = glm::pi<float>();
 | |
| 		float result = 0.f;
 | |
| 		const std::clock_t timestamp1 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::fastAtan(i);
 | |
| 		const std::clock_t timestamp2 = std::clock();
 | |
| 		for(float i = begin; i < end; i = glm::next_float(i))
 | |
| 			result = glm::atan(i);
 | |
| 		const std::clock_t timestamp3 = std::clock();
 | |
| 		const std::clock_t time_fast = timestamp2 - timestamp1;
 | |
| 		const std::clock_t time_default = timestamp3 - timestamp2;
 | |
| 		std::printf("fastAtan Time %d clocks\n", static_cast<unsigned int>(time_fast));
 | |
| 		std::printf("atan Time %d clocks\n", static_cast<unsigned int>(time_default));
 | |
| 
 | |
| 		return time_fast < time_default ? 0 : 1;
 | |
| 	}
 | |
| }//namespace fastAtan
 | |
| 
 | |
| namespace taylorCos
 | |
| {
 | |
| 	glm::vec4 const AngleShift(0.0f, glm::pi<float>() * 0.5f, glm::pi<float>() * 1.0f, glm::pi<float>() * 1.5f);
 | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesNewCos(vecType<T, P> const & x)
 | |
| 	{
 | |
| 		vecType<T, P> const Powed2(x * x);
 | |
| 		vecType<T, P> const Powed4(Powed2 * Powed2);
 | |
| 		vecType<T, P> const Powed6(Powed4 * Powed2);
 | |
| 		vecType<T, P> const Powed8(Powed4 * Powed4);
 | |
| 
 | |
| 		return static_cast<T>(1)
 | |
| 			- Powed2 * static_cast<T>(0.5)
 | |
| 			+ Powed4 * static_cast<T>(0.04166666666666666666666666666667)
 | |
| 			- Powed6 * static_cast<T>(0.00138888888888888888888888888889)
 | |
| 			+ Powed8 * static_cast<T>(2.4801587301587301587301587301587e-5);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesNewCos6(vecType<T, P> const & x)
 | |
| 	{
 | |
| 		vecType<T, P> const Powed2(x * x);
 | |
| 		vecType<T, P> const Powed4(Powed2 * Powed2);
 | |
| 		vecType<T, P> const Powed6(Powed4 * Powed2);
 | |
| 
 | |
| 		return static_cast<T>(1)
 | |
| 			- Powed2 * static_cast<T>(0.5)
 | |
| 			+ Powed4 * static_cast<T>(0.04166666666666666666666666666667)
 | |
| 			- Powed6 * static_cast<T>(0.00138888888888888888888888888889);
 | |
| 	}
 | |
| 
 | |
| 	template <glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<float, P> fastAbs(vecType<float, P> x)
 | |
| 	{
 | |
| 		int* Pointer = reinterpret_cast<int*>(&x[0]);
 | |
| 		Pointer[0] &= 0x7fffffff;
 | |
| 		Pointer[1] &= 0x7fffffff;
 | |
| 		Pointer[2] &= 0x7fffffff;
 | |
| 		Pointer[3] &= 0x7fffffff;
 | |
| 		return x;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> fastCosNew(vecType<T, P> const & x)
 | |
| 	{
 | |
| 		vecType<T, P> const Angle0_PI(fastAbs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>()));
 | |
| 		return taylorSeriesNewCos6(x);
 | |
| /*
 | |
| 		vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>())));
 | |
| 
 | |
| 		vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi));
 | |
| 		vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi));
 | |
| 		vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI);
 | |
| 
 | |
| 		return ReturnSign * taylorSeriesNewCos(SectionAngle);
 | |
| */
 | |
| 	}
 | |
| 
 | |
| 	int perf_fastCosNew(float Begin, float End, std::size_t Samples)
 | |
| 	{
 | |
| 		std::vector<glm::vec4> Results;
 | |
| 		Results.resize(Samples);
 | |
| 
 | |
| 		float Steps = (End - Begin) / Samples;
 | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock();
 | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Results[i] = fastCosNew(AngleShift + glm::vec4(Begin + Steps * i));
 | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock();
 | |
| 
 | |
| 		std::printf("fastCosNew %ld clocks\n", TimeStampEnd - TimeStampBegin);
 | |
| 
 | |
| 		int Error = 0;
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1;
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> deterministic_fmod(vecType<T, P> const & x, T y)
 | |
| 	{
 | |
| 		return x - y * trunc(x / y);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> fastCosDeterminisctic(vecType<T, P> const & x)
 | |
| 	{
 | |
| 		vecType<T, P> const Angle0_PI(abs(deterministic_fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>()));
 | |
| 		vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>())));
 | |
| 
 | |
| 		vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi));
 | |
| 		vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi));
 | |
| 		vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI);
 | |
| 
 | |
| 		return ReturnSign * taylorSeriesNewCos(SectionAngle);
 | |
| 	}
 | |
| 
 | |
| 	int perf_fastCosDeterminisctic(float Begin, float End, std::size_t Samples)
 | |
| 	{
 | |
| 		std::vector<glm::vec4> Results;
 | |
| 		Results.resize(Samples);
 | |
| 
 | |
| 		float Steps = (End - Begin) / Samples;
 | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock();
 | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Results[i] = taylorCos::fastCosDeterminisctic(AngleShift + glm::vec4(Begin + Steps * i));
 | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock();
 | |
| 
 | |
| 		std::printf("fastCosDeterminisctic %ld clocks\n", TimeStampEnd - TimeStampBegin);
 | |
| 
 | |
| 		int Error = 0;
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1;
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> taylorSeriesRefCos(vecType<T, P> const & x)
 | |
| 	{
 | |
| 		return static_cast<T>(1)
 | |
| 			- (x * x) / glm::factorial(static_cast<T>(2))
 | |
| 			+ (x * x * x * x) / glm::factorial(static_cast<T>(4))
 | |
| 			- (x * x * x * x * x * x) / glm::factorial(static_cast<T>(6))
 | |
| 			+ (x * x * x * x * x * x * x * x) / glm::factorial(static_cast<T>(8));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
 | |
| 	GLM_FUNC_QUALIFIER vecType<T, P> fastRefCos(vecType<T, P> const & x)
 | |
| 	{
 | |
| 		vecType<T, P> const Angle0_PI(glm::abs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>()));
 | |
| //		return taylorSeriesRefCos(Angle0_PI);
 | |
| 
 | |
| 		vecType<bool, P> const FirstQuarterPi(lessThanEqual(Angle0_PI, vecType<T, P>(glm::half_pi<T>())));
 | |
| 
 | |
| 		vecType<T, P> const RevertAngle(mix(vecType<T, P>(glm::pi<T>()), vecType<T, P>(0), FirstQuarterPi));
 | |
| 		vecType<T, P> const ReturnSign(mix(vecType<T, P>(-1), vecType<T, P>(1), FirstQuarterPi));
 | |
| 		vecType<T, P> const SectionAngle(RevertAngle - Angle0_PI);
 | |
| 
 | |
| 		return ReturnSign * taylorSeriesRefCos(SectionAngle);
 | |
| 	}
 | |
| 
 | |
| 	int perf_fastCosRef(float Begin, float End, std::size_t Samples)
 | |
| 	{
 | |
| 		std::vector<glm::vec4> Results;
 | |
| 		Results.resize(Samples);
 | |
| 
 | |
| 		float Steps = (End - Begin) / Samples;
 | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock();
 | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Results[i] = taylorCos::fastRefCos(AngleShift + glm::vec4(Begin + Steps * i));
 | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock();
 | |
| 
 | |
| 		std::printf("fastCosRef %ld clocks\n", TimeStampEnd - TimeStampBegin);
 | |
| 
 | |
| 		int Error = 0;
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1;
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int perf_fastCosOld(float Begin, float End, std::size_t Samples)
 | |
| 	{
 | |
| 		std::vector<glm::vec4> Results;
 | |
| 		Results.resize(Samples);
 | |
| 
 | |
| 		float Steps = (End - Begin) / Samples;
 | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock();
 | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Results[i] = glm::fastCos(AngleShift + glm::vec4(Begin + Steps * i));
 | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock();
 | |
| 
 | |
| 		std::printf("fastCosOld %ld clocks\n", TimeStampEnd - TimeStampBegin);
 | |
| 
 | |
| 		int Error = 0;
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1;
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int perf_cos(float Begin, float End, std::size_t Samples)
 | |
| 	{
 | |
| 		std::vector<glm::vec4> Results;
 | |
| 		Results.resize(Samples);
 | |
| 
 | |
| 		float Steps = (End - Begin) / Samples;
 | |
| 
 | |
| 		std::clock_t const TimeStampBegin = std::clock();
 | |
| 
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Results[i] = glm::cos(AngleShift + glm::vec4(Begin + Steps * i));
 | |
| 
 | |
| 		std::clock_t const TimeStampEnd = std::clock();
 | |
| 
 | |
| 		std::printf("cos %ld clocks\n", TimeStampEnd - TimeStampBegin);
 | |
| 
 | |
| 		int Error = 0;
 | |
| 		for(std::size_t i = 0; i < Samples; ++i)
 | |
| 			Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1;
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int perf()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		float const Begin = -glm::pi<float>();
 | |
| 		float const End = glm::pi<float>();
 | |
| 		std::size_t const Samples = 10000000;
 | |
| 
 | |
| 		Error += perf_cos(Begin, End, Samples);
 | |
| 		Error += perf_fastCosOld(Begin, End, Samples);
 | |
| 		Error += perf_fastCosRef(Begin, End, Samples);
 | |
| 		//Error += perf_fastCosNew(Begin, End, Samples);
 | |
| 		Error += perf_fastCosDeterminisctic(Begin, End, Samples);
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| 
 | |
| 	int test()
 | |
| 	{
 | |
| 		int Error = 0;
 | |
| 
 | |
| 		//for(float Angle = -4.0f * glm::pi<float>(); Angle < 4.0f * glm::pi<float>(); Angle += 0.1f)
 | |
| 		//for(float Angle = -720.0f; Angle < 720.0f; Angle += 0.1f)
 | |
| 		for(float Angle = 0.0f; Angle < 180.0f; Angle += 0.1f)
 | |
| 		{
 | |
| 			float const modAngle = std::fmod(glm::abs(Angle), 360.f);
 | |
| 			assert(modAngle >= 0.0f && modAngle <= 360.f);
 | |
| 			float const radAngle = glm::radians(modAngle);
 | |
| 			float const Cos0 = std::cos(radAngle);
 | |
| 
 | |
| 			float const Cos1 = taylorCos::fastRefCos(glm::fvec1(radAngle)).x;
 | |
| 			Error += glm::abs(Cos1 - Cos0) < 0.1f ? 0 : 1;
 | |
| 
 | |
| 			float const Cos2 = taylorCos::fastCosNew(glm::fvec1(radAngle)).x;
 | |
| 			//Error += glm::abs(Cos2 - Cos0) < 0.1f ? 0 : 1;
 | |
| 
 | |
| 			assert(!Error);
 | |
| 		}
 | |
| 
 | |
| 		return Error;
 | |
| 	}
 | |
| }//namespace taylorCos
 | |
| 
 | |
| int main()
 | |
| {
 | |
| 	int Error(0);
 | |
| 
 | |
| 	Error += ::taylorCos::test();
 | |
| 	Error += ::taylorCos::perf();
 | |
| 
 | |
| #	ifdef NDEBUG
 | |
| 		Error += ::fastCos::perf();
 | |
| 		Error += ::fastSin::perf();
 | |
| 		Error += ::fastTan::perf();
 | |
| 		Error += ::fastAcos::perf();
 | |
| 		Error += ::fastAsin::perf();
 | |
| 		Error += ::fastAtan::perf();
 | |
| #	endif//NDEBUG
 | |
| 
 | |
| 	return Error;
 | |
| }
 | 
