Merge branch 'intrinsic-promotion' of https://github.com/steve-lunarg/glslang into steve-lunarg-intrinsic-promotion

This commit is contained in:
John Kessenich
2016-12-03 13:27:22 -07:00
19 changed files with 5452 additions and 3263 deletions

View File

@@ -2557,7 +2557,7 @@ TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunct
//
const TFunction* fnCandidate;
bool builtIn;
fnCandidate = findFunction(loc, *function, builtIn);
fnCandidate = findFunction(loc, *function, builtIn, arguments);
if (fnCandidate) {
// This is a declared function that might map to
// - a built-in operator,
@@ -2599,21 +2599,27 @@ TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunct
}
}
// for decompositions, since we want to operate on the function node, not the aggregate holding
// output conversions.
const TIntermTyped* fnNode = result;
decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
// Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
// Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
// Also, build the qualifier list for user function calls, which are always called with an aggregate.
if (result->getAsAggregate()) {
// We don't do this is if there has been a decomposition, which will have added its own conversions
// for output parameters.
if (result == fnNode && result->getAsAggregate()) {
TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
qualifierList.push_back(qual);
}
result = addOutputArgumentConversions(*fnCandidate, *result->getAsAggregate());
result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
}
decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
}
}
@@ -2726,9 +2732,19 @@ void HlslParseContext::addInputArgumentConversions(const TFunction& function, TI
//
// Returns a node of a subtree that evaluates to the return value of the function.
//
TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermAggregate& intermNode)
TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
{
TIntermSequence& arguments = intermNode.getSequence();
assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
const TSourceLoc& loc = intermNode.getLoc();
TIntermSequence argSequence; // temp sequence for unary node args
if (intermNode.getAsUnaryNode())
argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
const auto needsConversion = [&](int argNum) {
return function[argNum].type->getQualifier().isParamOutput() &&
(*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
@@ -2761,8 +2777,8 @@ TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& fu
if (intermNode.getBasicType() != EbtVoid) {
// do the "tempRet = function(...), " bit from above
tempRet = makeInternalVariable("tempReturn", intermNode.getType());
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, intermNode.getLoc());
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
} else
conversionTree = &intermNode;
@@ -2777,7 +2793,7 @@ TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& fu
// Make a temporary for what the function expects the argument to look like.
TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
tempArg->getWritableType().getQualifier().makeTemporary();
TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, intermNode.getLoc());
TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
// This makes the deepest level, the member-wise copy
TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(), tempArgNode);
@@ -2785,17 +2801,18 @@ TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& fu
conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
// replace the argument with another node for the same tempArg variable
arguments[i] = intermediate.addSymbol(*tempArg, intermNode.getLoc());
arguments[i] = intermediate.addSymbol(*tempArg, loc);
}
}
// Finalize the tree topology (see bigger comment above).
if (tempRet) {
// do the "..., tempRet" bit from above
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, intermNode.getLoc());
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
}
conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), intermNode.getLoc());
conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
return conversionTree;
}
@@ -4348,7 +4365,8 @@ void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQuali
//
// Return the function symbol if found, otherwise nullptr.
//
const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn,
TIntermNode* args)
{
// const TFunction* function = nullptr;
@@ -4454,9 +4472,81 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFu
// send to the generic selector
const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
if (bestMatch == nullptr)
if (bestMatch == nullptr) {
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
else if (tie)
return nullptr;
}
// For builtins, we can convert across the arguments. This will happen in several steps:
// Step 1: If there's an exact match, use it.
// Step 2a: Otherwise, get the operator from the best match and promote arguments:
// Step 2b: reconstruct the TFunction based on the new arg types
// Step 3: Re-select after type promotion is applied, to find proper candidate.
if (builtIn) {
// Step 1: If there's an exact match, use it.
if (call.getMangledName() == bestMatch->getMangledName())
return bestMatch;
// Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
// are that kind of operator.
if (args != nullptr) {
// The arg list can be a unary node, or an aggregate. We have to handle both.
// We will use the normal promote() facilities, which require an interm node.
TIntermOperator* promote = nullptr;
if (call.getParamCount() == 1) {
promote = new TIntermUnary(bestMatch->getBuiltInOp());
promote->getAsUnaryNode()->setOperand(args->getAsTyped());
} else {
promote = new TIntermAggregate(bestMatch->getBuiltInOp());
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
}
if (! intermediate.promote(promote))
return nullptr;
// Obtain the promoted arg list.
if (call.getParamCount() == 1) {
args = promote->getAsUnaryNode()->getOperand();
} else {
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
}
}
// Step 2b: reconstruct the TFunction based on the new arg types
TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
if (args->getAsAggregate()) {
// Handle aggregates: put all args into the new function call
for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) {
// TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
TParameter param = { 0, new TType };
param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
convertedCall.addParameter(param);
}
} else if (args->getAsUnaryNode()) {
// Handle unaries: put all args into the new function call
TParameter param = { 0, new TType };
param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
convertedCall.addParameter(param);
} else if (args->getAsTyped()) {
// Handle bare e.g, floats, not in an aggregate.
TParameter param = { 0, new TType };
param.type->shallowCopy(args->getAsTyped()->getType());
convertedCall.addParameter(param);
} else {
assert(0); // unknown argument list.
return nullptr;
}
// Step 3: Re-select after type promotion, to find proper candidate
// send to the generic selector
bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
// At this point, there should be no tie.
}
if (tie)
error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
return bestMatch;