Change infrastructure to support constant folding across built-in functions, as required by 1.2 semantics. Partially fleshed out with min/max and some trig functions. Still have to complete all operations.
git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@20806 e7fa87d3-cd2b-0410-9028-fcbf551c1848
This commit is contained in:
parent
3f3e0ad3ad
commit
53fb465729
@ -18,5 +18,5 @@ void main()
|
||||
vec4 e[constInt + uniformInt]; // error
|
||||
vec4 f[uniformInt + constInt]; // error
|
||||
|
||||
vec4 g[sin(3.2)]; // okay
|
||||
vec4 g[int(sin(0.3)) + 1]; // okay
|
||||
}
|
||||
|
||||
29
Test/constFold.frag
Normal file
29
Test/constFold.frag
Normal file
@ -0,0 +1,29 @@
|
||||
#version 430
|
||||
|
||||
const int a = 1;
|
||||
const int b = 2;
|
||||
const int c = a + b; // 3
|
||||
const int d = c - a; // 2
|
||||
const float e = float(d); // 2.0
|
||||
const float f = e * float(c); // 6.0
|
||||
const float g = f / float(d); // 3.0
|
||||
|
||||
in vec4 inv;
|
||||
out vec4 FragColor;
|
||||
|
||||
void main()
|
||||
{
|
||||
vec4 dx = dFdx(inv);
|
||||
const ivec4 v = ivec4(a, b, c, d);
|
||||
vec4 array2[v.y]; // 2
|
||||
const ivec4 u = ~v;
|
||||
|
||||
const float h = degrees(g); // 171.88
|
||||
|
||||
FragColor = vec4(e, f, g, h); // 2, 6, 3, 171.88
|
||||
|
||||
vec4 array3[c]; // 3
|
||||
vec4 arrayMax[int(max(float(array2.length()), float(array3.length())))];
|
||||
vec4 arrayMin[int(min(float(array2.length()), float(array3.length())))];
|
||||
FragColor = vec4(arrayMax.length(), arrayMin.length(), sin(3.14), cos(3.14)); // 3, 2, .00159, -.999
|
||||
}
|
||||
@ -26,4 +26,5 @@ comment.frag
|
||||
330.frag
|
||||
330comp.frag
|
||||
constErrors.frag
|
||||
constFold.frag
|
||||
errors.frag
|
||||
|
||||
@ -147,6 +147,7 @@ xcopy /y $(IntDir)$(TargetName)$(TargetExt) Test</Command>
|
||||
</ResourceCompile>
|
||||
</ItemDefinitionGroup>
|
||||
<ItemGroup>
|
||||
<ClCompile Include="glslang\MachineIndependent\Constant.cpp" />
|
||||
<ClCompile Include="glslang\MachineIndependent\gen_glslang.cpp" />
|
||||
<ClCompile Include="glslang\MachineIndependent\glslang_tab.cpp" />
|
||||
<ClCompile Include="glslang\MachineIndependent\InfoSink.cpp" />
|
||||
|
||||
@ -106,6 +106,9 @@
|
||||
<ClCompile Include="glslang\MachineIndependent\Versions.cpp">
|
||||
<Filter>Machine Independent</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="glslang\MachineIndependent\Constant.cpp">
|
||||
<Filter>Machine Independent</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="glslang\MachineIndependent\Initialize.h">
|
||||
|
||||
@ -406,6 +406,7 @@ public:
|
||||
virtual TIntermConstantUnion* getAsConstantUnion() { return this; }
|
||||
virtual void traverse(TIntermTraverser* );
|
||||
virtual TIntermTyped* fold(TOperator, TIntermTyped*, TInfoSink&);
|
||||
virtual TIntermTyped* fold(TOperator, const TType&, TInfoSink&);
|
||||
protected:
|
||||
constUnion *unionArrayPointer;
|
||||
};
|
||||
|
||||
608
glslang/MachineIndependent/Constant.cpp
Normal file
608
glslang/MachineIndependent/Constant.cpp
Normal file
@ -0,0 +1,608 @@
|
||||
//
|
||||
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
|
||||
//Copyright (C) 2012-2013 LunarG, Inc.
|
||||
//
|
||||
//All rights reserved.
|
||||
//
|
||||
//Redistribution and use in source and binary forms, with or without
|
||||
//modification, are permitted provided that the following conditions
|
||||
//are met:
|
||||
//
|
||||
// Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
//
|
||||
// Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following
|
||||
// disclaimer in the documentation and/or other materials provided
|
||||
// with the distribution.
|
||||
//
|
||||
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived
|
||||
// from this software without specific prior written permission.
|
||||
//
|
||||
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
//POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
|
||||
#include "localintermediate.h"
|
||||
|
||||
namespace {
|
||||
|
||||
// Some helper functions
|
||||
|
||||
const double pi = 3.1415926535897932384626433832795;
|
||||
|
||||
bool CompareStruct(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray);
|
||||
|
||||
bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
|
||||
{
|
||||
if (leftNodeType.isArray()) {
|
||||
TType typeWithoutArrayness = leftNodeType;
|
||||
typeWithoutArrayness.dereference();
|
||||
|
||||
int arraySize = leftNodeType.getArraySize();
|
||||
|
||||
for (int i = 0; i < arraySize; ++i) {
|
||||
int offset = typeWithoutArrayness.getObjectSize() * i;
|
||||
if (! CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
|
||||
return false;
|
||||
}
|
||||
} else
|
||||
return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CompareStruct(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
|
||||
{
|
||||
TTypeList* fields = leftNodeType.getStruct();
|
||||
|
||||
size_t structSize = fields->size();
|
||||
int index = 0;
|
||||
|
||||
for (size_t j = 0; j < structSize; j++) {
|
||||
int size = (*fields)[j].type->getObjectSize();
|
||||
for (int i = 0; i < size; i++) {
|
||||
if ((*fields)[j].type->getBasicType() == EbtStruct) {
|
||||
if (!CompareStructure(*(*fields)[j].type, &rightUnionArray[index], &leftUnionArray[index]))
|
||||
return false;
|
||||
} else {
|
||||
if (leftUnionArray[index] != rightUnionArray[index])
|
||||
return false;
|
||||
index++;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
}; // end anonymous namespace
|
||||
|
||||
//
|
||||
// The fold functions see if an operation on a constant can be done in place,
|
||||
// without generating run-time code.
|
||||
//
|
||||
// Returns the node to keep using, which may or may not be the node passed in.
|
||||
//
|
||||
// Note: As of version 1.2, all constant operations must be folded. It is
|
||||
// not opportunistic, but rather a semantic requirement.
|
||||
//
|
||||
|
||||
//
|
||||
// Do folding between a pair of nodes
|
||||
//
|
||||
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
|
||||
{
|
||||
constUnion *unionArray = getUnionArrayPointer();
|
||||
int objectSize = getType().getObjectSize();
|
||||
constUnion* newConstArray = 0;
|
||||
|
||||
// For most cases, the return type matches the argument type, so set that
|
||||
// up and just code to exceptions below.
|
||||
TType returnType = getType();
|
||||
|
||||
//
|
||||
// A pair of nodes is to be folded together
|
||||
//
|
||||
|
||||
TIntermConstantUnion *node = constantNode->getAsConstantUnion();
|
||||
constUnion *rightUnionArray = node->getUnionArrayPointer();
|
||||
|
||||
if (getType().getBasicType() != node->getBasicType()) {
|
||||
infoSink.info.message(EPrefixInternalError, "Constant folding basic types don't match", getLine());
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
|
||||
// for a case like float f = vec4(2,3,4,5) + 1.2;
|
||||
rightUnionArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; ++i)
|
||||
rightUnionArray[i] = *node->getUnionArrayPointer();
|
||||
} else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
|
||||
// for a case like float f = 1.2 + vec4(2,3,4,5);
|
||||
rightUnionArray = node->getUnionArrayPointer();
|
||||
unionArray = new constUnion[constantNode->getType().getObjectSize()];
|
||||
for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
|
||||
unionArray[i] = *getUnionArrayPointer();
|
||||
returnType = node->getType();
|
||||
objectSize = constantNode->getType().getObjectSize();
|
||||
}
|
||||
|
||||
int index = 0;
|
||||
bool boolNodeFlag = false;
|
||||
switch(op) {
|
||||
case EOpAdd:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] + rightUnionArray[i];
|
||||
break;
|
||||
case EOpSub:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] - rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpMul:
|
||||
case EOpVectorTimesScalar:
|
||||
case EOpMatrixTimesScalar:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] * rightUnionArray[i];
|
||||
break;
|
||||
case EOpMatrixTimesMatrix:
|
||||
newConstArray = new constUnion[getMatrixRows() * node->getMatrixCols()];
|
||||
for (int row = 0; row < getMatrixRows(); row++) {
|
||||
for (int column = 0; column < node->getMatrixCols(); column++) {
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < node->getMatrixRows(); i++)
|
||||
sum += unionArray[i * getMatrixRows() + row].getFConst() * rightUnionArray[column * node->getMatrixRows() + i].getFConst();
|
||||
newConstArray[column * getMatrixRows() + row].setFConst(sum);
|
||||
}
|
||||
}
|
||||
returnType = TType(getType().getBasicType(), EvqConst, 0, getMatrixRows(), node->getMatrixCols());
|
||||
break;
|
||||
case EOpDiv:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtFloat:
|
||||
if (rightUnionArray[i] == 0.0f) {
|
||||
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
|
||||
newConstArray[i].setFConst(FLT_MAX);
|
||||
} else
|
||||
newConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
|
||||
break;
|
||||
|
||||
case EbtInt:
|
||||
if (rightUnionArray[i] == 0) {
|
||||
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
|
||||
newConstArray[i].setIConst(0xEFFFFFFF);
|
||||
} else
|
||||
newConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
|
||||
break;
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case EOpMatrixTimesVector:
|
||||
newConstArray = new constUnion[getMatrixRows()];
|
||||
for (int i = 0; i < getMatrixRows(); i++) {
|
||||
float sum = 0.0f;
|
||||
for (int j = 0; j < node->getVectorSize(); j++) {
|
||||
sum += unionArray[j*getMatrixRows() + i].getFConst() * rightUnionArray[j].getFConst();
|
||||
}
|
||||
newConstArray[i].setFConst(sum);
|
||||
}
|
||||
|
||||
returnType = TType(getBasicType(), EvqConst, getMatrixRows());
|
||||
break;
|
||||
|
||||
case EOpVectorTimesMatrix:
|
||||
newConstArray = new constUnion[node->getMatrixCols()];
|
||||
for (int i = 0; i < node->getMatrixCols(); i++) {
|
||||
float sum = 0.0f;
|
||||
for (int j = 0; j < getVectorSize(); j++)
|
||||
sum += unionArray[j].getFConst() * rightUnionArray[i*node->getMatrixRows() + j].getFConst();
|
||||
newConstArray[i].setFConst(sum);
|
||||
}
|
||||
|
||||
returnType = TType(getBasicType(), EvqConst, node->getMatrixCols());
|
||||
break;
|
||||
|
||||
case EOpMod:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] % rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpRightShift:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] >> rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLeftShift:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] << rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpAnd:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] & rightUnionArray[i];
|
||||
break;
|
||||
case EOpInclusiveOr:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] | rightUnionArray[i];
|
||||
break;
|
||||
case EOpExclusiveOr:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] ^ rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] && rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
newConstArray[i] = unionArray[i] || rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLogicalXor:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtBool: newConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
|
||||
default: assert(false && "Default missing");
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case EOpLessThan:
|
||||
assert(objectSize == 1);
|
||||
newConstArray = new constUnion[1];
|
||||
newConstArray->setBConst(*unionArray < *rightUnionArray);
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
case EOpGreaterThan:
|
||||
assert(objectSize == 1);
|
||||
newConstArray = new constUnion[1];
|
||||
newConstArray->setBConst(*unionArray > *rightUnionArray);
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
case EOpLessThanEqual:
|
||||
{
|
||||
assert(objectSize == 1);
|
||||
constUnion constant;
|
||||
constant.setBConst(*unionArray > *rightUnionArray);
|
||||
newConstArray = new constUnion[1];
|
||||
newConstArray->setBConst(!constant.getBConst());
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
}
|
||||
case EOpGreaterThanEqual:
|
||||
{
|
||||
assert(objectSize == 1);
|
||||
constUnion constant;
|
||||
constant.setBConst(*unionArray < *rightUnionArray);
|
||||
newConstArray = new constUnion[1];
|
||||
newConstArray->setBConst(!constant.getBConst());
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
}
|
||||
|
||||
case EOpEqual:
|
||||
if (getType().getBasicType() == EbtStruct) {
|
||||
if (! CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
|
||||
boolNodeFlag = true;
|
||||
} else {
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
if (unionArray[i] != rightUnionArray[i]) {
|
||||
boolNodeFlag = true;
|
||||
break; // break out of for loop
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
newConstArray = new constUnion[1];
|
||||
newConstArray->setBConst(! boolNodeFlag);
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
|
||||
case EOpNotEqual:
|
||||
if (getType().getBasicType() == EbtStruct) {
|
||||
if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
|
||||
boolNodeFlag = true;
|
||||
} else {
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
if (unionArray[i] == rightUnionArray[i]) {
|
||||
boolNodeFlag = true;
|
||||
break; // break out of for loop
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
newConstArray = new constUnion[1];
|
||||
newConstArray->setBConst(! boolNodeFlag);
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
TIntermConstantUnion *newNode = new TIntermConstantUnion(newConstArray, returnType);
|
||||
newNode->setLine(getLine());
|
||||
|
||||
return newNode;
|
||||
}
|
||||
|
||||
//
|
||||
// Do single unary node folding
|
||||
//
|
||||
TIntermTyped* TIntermConstantUnion::fold(TOperator op, const TType& returnType, TInfoSink& infoSink)
|
||||
{
|
||||
constUnion *unionArray = getUnionArrayPointer();
|
||||
int objectSize = getType().getObjectSize();
|
||||
|
||||
// First, size the result, which is mostly the same as the argument's size,
|
||||
// but not always.
|
||||
constUnion* newConstArray;
|
||||
switch (op) {
|
||||
// TODO: functionality: constant folding: finish listing exceptions to size here
|
||||
case EOpDeterminant:
|
||||
case EOpAny:
|
||||
case EOpAll:
|
||||
newConstArray = new constUnion[1];
|
||||
break;
|
||||
default:
|
||||
newConstArray = new constUnion[objectSize];
|
||||
}
|
||||
|
||||
// TODO: Functionality: constant folding: separate component-wise from non-component-wise
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
switch (op) {
|
||||
case EOpNegative:
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtFloat: newConstArray[i].setFConst(-unionArray[i].getFConst()); break;
|
||||
case EbtInt: newConstArray[i].setIConst(-unionArray[i].getIConst()); break;
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
case EOpLogicalNot:
|
||||
case EOpVectorLogicalNot:
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtBool: newConstArray[i].setBConst(!unionArray[i].getBConst()); break;
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
case EOpBitwiseNot:
|
||||
newConstArray[i] = ~unionArray[i];
|
||||
break;
|
||||
case EOpRadians:
|
||||
newConstArray[i].setFConst(static_cast<float>(unionArray[i].getFConst() * pi / 180.0));
|
||||
break;
|
||||
case EOpDegrees:
|
||||
newConstArray[i].setFConst(static_cast<float>(unionArray[i].getFConst() * 180.0 / pi));
|
||||
break;
|
||||
case EOpSin:
|
||||
newConstArray[i].setFConst(sin(unionArray[i].getFConst()));
|
||||
break;
|
||||
case EOpCos:
|
||||
newConstArray[i].setFConst(cos(unionArray[i].getFConst()));
|
||||
break;
|
||||
case EOpTan:
|
||||
newConstArray[i].setFConst(tan(unionArray[i].getFConst()));
|
||||
break;
|
||||
case EOpAsin:
|
||||
newConstArray[i].setFConst(asin(unionArray[i].getFConst()));
|
||||
break;
|
||||
case EOpAcos:
|
||||
newConstArray[i].setFConst(acos(unionArray[i].getFConst()));
|
||||
break;
|
||||
case EOpAtan:
|
||||
newConstArray[i].setFConst(atan(unionArray[i].getFConst()));
|
||||
break;
|
||||
|
||||
// TODO: Functionality: constant folding: the rest of the ops have to be fleshed out
|
||||
|
||||
case EOpExp:
|
||||
case EOpLog:
|
||||
case EOpExp2:
|
||||
case EOpLog2:
|
||||
case EOpSqrt:
|
||||
case EOpInverseSqrt:
|
||||
|
||||
case EOpAbs:
|
||||
case EOpSign:
|
||||
case EOpFloor:
|
||||
case EOpCeil:
|
||||
case EOpFract:
|
||||
|
||||
case EOpLength:
|
||||
|
||||
case EOpDPdx:
|
||||
case EOpDPdy:
|
||||
case EOpFwidth:
|
||||
// The derivatives are all mandated to create a constant 0.
|
||||
|
||||
case EOpDeterminant:
|
||||
case EOpMatrixInverse:
|
||||
case EOpTranspose:
|
||||
|
||||
case EOpAny:
|
||||
case EOpAll:
|
||||
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
TIntermConstantUnion *newNode = new TIntermConstantUnion(newConstArray, returnType);
|
||||
newNode->getTypePointer()->getQualifier().storage = EvqConst;
|
||||
newNode->setLine(getLine());
|
||||
|
||||
return newNode;
|
||||
}
|
||||
|
||||
//
|
||||
// Do constant folding for an aggregate node that has all its children
|
||||
// as constants and an operator that requires constant folding.
|
||||
//
|
||||
TIntermTyped* TIntermediate::fold(TIntermAggregate* aggrNode)
|
||||
{
|
||||
if (! areAllChildConst(aggrNode))
|
||||
return aggrNode;
|
||||
|
||||
if (aggrNode->isConstructor())
|
||||
return foldConstructor(aggrNode);
|
||||
|
||||
TIntermSequence& children = aggrNode->getSequence();
|
||||
|
||||
// First, see if this is an operation to constant fold, kick out if not,
|
||||
// see what size the result is if so.
|
||||
int objectSize;
|
||||
switch (aggrNode->getOp()) {
|
||||
case EOpMin:
|
||||
case EOpMax:
|
||||
case EOpReflect:
|
||||
case EOpRefract:
|
||||
case EOpFaceForward:
|
||||
case EOpAtan:
|
||||
case EOpPow:
|
||||
case EOpClamp:
|
||||
case EOpMix:
|
||||
case EOpDistance:
|
||||
case EOpCross:
|
||||
case EOpNormalize:
|
||||
objectSize = children[0]->getAsConstantUnion()->getType().getObjectSize();
|
||||
break;
|
||||
case EOpDot:
|
||||
objectSize = 1;
|
||||
break;
|
||||
case EOpOuterProduct:
|
||||
objectSize = children[0]->getAsTyped()->getType().getVectorSize() *
|
||||
children[1]->getAsTyped()->getType().getVectorSize();
|
||||
break;
|
||||
case EOpStep:
|
||||
objectSize = std::max(children[0]->getAsTyped()->getType().getVectorSize(),
|
||||
children[1]->getAsTyped()->getType().getVectorSize());
|
||||
break;
|
||||
case EOpSmoothStep:
|
||||
objectSize = std::max(children[0]->getAsTyped()->getType().getVectorSize(),
|
||||
children[2]->getAsTyped()->getType().getVectorSize());
|
||||
break;
|
||||
default:
|
||||
return aggrNode;
|
||||
}
|
||||
constUnion* newConstArray = new constUnion[objectSize];
|
||||
|
||||
TVector<constUnion*> childConstUnions;
|
||||
for (unsigned int i = 0; i < children.size(); ++i)
|
||||
childConstUnions.push_back(children[i]->getAsConstantUnion()->getUnionArrayPointer());
|
||||
|
||||
// Second, do the actual folding
|
||||
|
||||
// TODO: Functionality: constant folding: separate component-wise from non-component-wise
|
||||
switch (aggrNode->getOp()) {
|
||||
case EOpMin:
|
||||
case EOpMax:
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
if (aggrNode->getOp() == EOpMax)
|
||||
newConstArray[i].setFConst(std::max(childConstUnions[0]->getFConst(), childConstUnions[1]->getFConst()));
|
||||
else
|
||||
newConstArray[i].setFConst(std::min(childConstUnions[0]->getFConst(), childConstUnions[1]->getFConst()));
|
||||
}
|
||||
break;
|
||||
|
||||
// TODO: Functionality: constant folding: the rest of the ops have to be fleshed out
|
||||
|
||||
case EOpAtan:
|
||||
case EOpPow:
|
||||
case EOpClamp:
|
||||
case EOpMix:
|
||||
case EOpStep:
|
||||
case EOpSmoothStep:
|
||||
case EOpDistance:
|
||||
case EOpDot:
|
||||
case EOpCross:
|
||||
case EOpNormalize:
|
||||
case EOpFaceForward:
|
||||
case EOpReflect:
|
||||
case EOpRefract:
|
||||
case EOpOuterProduct:
|
||||
infoSink.info.message(EPrefixInternalError, "constant folding operation not implemented", aggrNode->getLine());
|
||||
return aggrNode;
|
||||
|
||||
default:
|
||||
return aggrNode;
|
||||
}
|
||||
|
||||
TIntermConstantUnion *newNode = new TIntermConstantUnion(newConstArray, aggrNode->getType());
|
||||
newNode->getTypePointer()->getQualifier().storage = EvqConst;
|
||||
newNode->setLine(aggrNode->getLine());
|
||||
|
||||
return newNode;
|
||||
}
|
||||
|
||||
bool TIntermediate::areAllChildConst(TIntermAggregate* aggrNode)
|
||||
{
|
||||
bool allConstant = true;
|
||||
|
||||
// check if all the child nodes are constants so that they can be inserted into
|
||||
// the parent node
|
||||
if (aggrNode) {
|
||||
TIntermSequence& childSequenceVector = aggrNode->getSequence();
|
||||
for (TIntermSequence::iterator p = childSequenceVector.begin();
|
||||
p != childSequenceVector.end(); p++) {
|
||||
if (!(*p)->getAsTyped()->getAsConstantUnion())
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return allConstant;
|
||||
}
|
||||
|
||||
TIntermTyped* TIntermediate::foldConstructor(TIntermAggregate* aggrNode)
|
||||
{
|
||||
bool returnVal = false;
|
||||
|
||||
constUnion* unionArray = new constUnion[aggrNode->getType().getObjectSize()];
|
||||
if (aggrNode->getSequence().size() == 1)
|
||||
returnVal = parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), aggrNode->getType(), true);
|
||||
else
|
||||
returnVal = parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), aggrNode->getType());
|
||||
|
||||
if (returnVal)
|
||||
return aggrNode;
|
||||
|
||||
return addConstantUnion(unionArray, aggrNode->getType(), aggrNode->getLine());
|
||||
}
|
||||
@ -43,8 +43,6 @@
|
||||
#include "RemoveTree.h"
|
||||
#include <float.h>
|
||||
|
||||
bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// First set of functions are to help build the intermediate representation.
|
||||
@ -270,7 +268,7 @@ TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode,
|
||||
return 0;
|
||||
|
||||
if (childTempConstant) {
|
||||
TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
|
||||
TIntermTyped* newChild = childTempConstant->fold(op, node->getType(), infoSink);
|
||||
|
||||
if (newChild)
|
||||
return newChild;
|
||||
@ -289,7 +287,7 @@ TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode,
|
||||
// Returns an aggregate node, which could be the one passed in if
|
||||
// it was already an aggregate.
|
||||
//
|
||||
TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, TSourceLoc line)
|
||||
TIntermTyped* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, const TType& type, TSourceLoc line)
|
||||
{
|
||||
TIntermAggregate* aggNode;
|
||||
|
||||
@ -317,7 +315,9 @@ TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperat
|
||||
if (line != 0)
|
||||
aggNode->setLine(line);
|
||||
|
||||
return aggNode;
|
||||
aggNode->setType(type);
|
||||
|
||||
return fold(aggNode);
|
||||
}
|
||||
|
||||
//
|
||||
@ -431,7 +431,7 @@ TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TInt
|
||||
|
||||
if (node->getAsConstantUnion()) {
|
||||
|
||||
return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
|
||||
return promoteConstantUnion(promoteTo, node->getAsConstantUnion());
|
||||
} else {
|
||||
//
|
||||
// Add a new newNode for the conversion.
|
||||
@ -822,6 +822,7 @@ bool TIntermOperator::isConstructor() const
|
||||
{
|
||||
return op > EOpConstructGuardStart && op < EOpConstructGuardEnd;
|
||||
}
|
||||
|
||||
//
|
||||
// Make sure the type of a unary operator is appropriate for its
|
||||
// combination of operation and operand type.
|
||||
@ -833,10 +834,13 @@ bool TIntermUnary::promote(TInfoSink&)
|
||||
switch (op) {
|
||||
case EOpLogicalNot:
|
||||
if (operand->getBasicType() != EbtBool)
|
||||
|
||||
return false;
|
||||
break;
|
||||
case EOpBitwiseNot:
|
||||
if (operand->getBasicType() != EbtInt)
|
||||
if (operand->getBasicType() != EbtInt &&
|
||||
operand->getBasicType() != EbtUint)
|
||||
|
||||
return false;
|
||||
break;
|
||||
case EOpNegative:
|
||||
@ -844,22 +848,53 @@ bool TIntermUnary::promote(TInfoSink&)
|
||||
case EOpPostDecrement:
|
||||
case EOpPreIncrement:
|
||||
case EOpPreDecrement:
|
||||
if (operand->getBasicType() == EbtBool)
|
||||
if (operand->getBasicType() != EbtInt &&
|
||||
operand->getBasicType() != EbtUint &&
|
||||
operand->getBasicType() != EbtFloat)
|
||||
|
||||
return false;
|
||||
break;
|
||||
|
||||
// operators for built-ins are already type checked against their prototype
|
||||
//
|
||||
// Operators for built-ins are already type checked against their prototype.
|
||||
// Special case the non-float ones, just so we don't give an error.
|
||||
//
|
||||
|
||||
case EOpAny:
|
||||
case EOpAll:
|
||||
setType(TType(EbtBool));
|
||||
|
||||
return true;
|
||||
|
||||
case EOpVectorLogicalNot:
|
||||
break;
|
||||
|
||||
case EOpLength:
|
||||
setType(TType(EbtFloat, EvqTemporary, operand->getQualifier().precision));
|
||||
|
||||
return true;
|
||||
|
||||
case EOpTranspose:
|
||||
setType(TType(operand->getType().getBasicType(), EvqTemporary, operand->getQualifier().precision, 0,
|
||||
operand->getType().getMatrixRows(),
|
||||
operand->getType().getMatrixCols()));
|
||||
return true;
|
||||
|
||||
case EOpDeterminant:
|
||||
setType(TType(operand->getType().getBasicType(), EvqTemporary, operand->getQualifier().precision));
|
||||
|
||||
return true;
|
||||
|
||||
default:
|
||||
// TODO: functionality: uint/int versions of built-ins
|
||||
// make sure all paths set the type
|
||||
if (operand->getBasicType() != EbtFloat)
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
setType(operand->getType());
|
||||
getTypePointer()->getQualifier().storage = EvqTemporary;
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -1125,30 +1160,6 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CompareStruct(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
|
||||
{
|
||||
TTypeList* fields = leftNodeType.getStruct();
|
||||
|
||||
size_t structSize = fields->size();
|
||||
int index = 0;
|
||||
|
||||
for (size_t j = 0; j < structSize; j++) {
|
||||
int size = (*fields)[j].type->getObjectSize();
|
||||
for (int i = 0; i < size; i++) {
|
||||
if ((*fields)[j].type->getBasicType() == EbtStruct) {
|
||||
if (!CompareStructure(*(*fields)[j].type, &rightUnionArray[index], &leftUnionArray[index]))
|
||||
return false;
|
||||
} else {
|
||||
if (leftUnionArray[index] != rightUnionArray[index])
|
||||
return false;
|
||||
index++;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void TIntermTyped::propagatePrecision(TPrecisionQualifier newPrecision)
|
||||
{
|
||||
if (getQualifier().precision != EpqNone || (getBasicType() != EbtInt && getBasicType() != EbtFloat))
|
||||
@ -1196,350 +1207,6 @@ void TIntermTyped::propagatePrecision(TPrecisionQualifier newPrecision)
|
||||
// indexing?
|
||||
}
|
||||
|
||||
bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
|
||||
{
|
||||
if (leftNodeType.isArray()) {
|
||||
TType typeWithoutArrayness = leftNodeType;
|
||||
typeWithoutArrayness.dereference();
|
||||
|
||||
int arraySize = leftNodeType.getArraySize();
|
||||
|
||||
for (int i = 0; i < arraySize; ++i) {
|
||||
int offset = typeWithoutArrayness.getObjectSize() * i;
|
||||
if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
|
||||
return false;
|
||||
}
|
||||
} else
|
||||
return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// The fold functions see if an operation on a constant can be done in place,
|
||||
// without generating run-time code.
|
||||
//
|
||||
// Returns the node to keep using, which may or may not be the node passed in.
|
||||
//
|
||||
|
||||
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
|
||||
{
|
||||
constUnion *unionArray = getUnionArrayPointer();
|
||||
int objectSize = getType().getObjectSize();
|
||||
|
||||
if (constantNode) { // binary operations
|
||||
TIntermConstantUnion *node = constantNode->getAsConstantUnion();
|
||||
constUnion *rightUnionArray = node->getUnionArrayPointer();
|
||||
TType returnType = getType();
|
||||
|
||||
if (getType().getBasicType() != node->getBasicType()) {
|
||||
infoSink.info.message(EPrefixInternalError, "Constant folding basic types don't match", getLine());
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
|
||||
// for a case like float f = vec4(2,3,4,5) + 1.2;
|
||||
rightUnionArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; ++i)
|
||||
rightUnionArray[i] = *node->getUnionArrayPointer();
|
||||
} else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
|
||||
// for a case like float f = 1.2 + vec4(2,3,4,5);
|
||||
rightUnionArray = node->getUnionArrayPointer();
|
||||
unionArray = new constUnion[constantNode->getType().getObjectSize()];
|
||||
for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
|
||||
unionArray[i] = *getUnionArrayPointer();
|
||||
returnType = node->getType();
|
||||
objectSize = constantNode->getType().getObjectSize();
|
||||
}
|
||||
|
||||
constUnion* tempConstArray = 0;
|
||||
TIntermConstantUnion *tempNode;
|
||||
int index = 0;
|
||||
bool boolNodeFlag = false;
|
||||
switch(op) {
|
||||
case EOpAdd:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] + rightUnionArray[i];
|
||||
break;
|
||||
case EOpSub:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] - rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpMul:
|
||||
case EOpVectorTimesScalar:
|
||||
case EOpMatrixTimesScalar:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] * rightUnionArray[i];
|
||||
break;
|
||||
case EOpMatrixTimesMatrix:
|
||||
tempConstArray = new constUnion[getMatrixRows() * node->getMatrixCols()];
|
||||
for (int row = 0; row < getMatrixRows(); row++) {
|
||||
for (int column = 0; column < node->getMatrixCols(); column++) {
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < node->getMatrixRows(); i++)
|
||||
sum += unionArray[i * getMatrixRows() + row].getFConst() * rightUnionArray[column * node->getMatrixRows() + i].getFConst();
|
||||
tempConstArray[column * getMatrixRows() + row].setFConst(sum);
|
||||
}
|
||||
}
|
||||
returnType = TType(getType().getBasicType(), EvqConst, 0, getMatrixRows(), node->getMatrixCols());
|
||||
break;
|
||||
case EOpOuterProduct:
|
||||
// TODO: functionality >= 120
|
||||
break;
|
||||
case EOpDeterminant:
|
||||
// TODO: functionality >= 150
|
||||
break;
|
||||
case EOpMatrixInverse:
|
||||
// TODO: functionality >= 150
|
||||
break;
|
||||
case EOpTranspose:
|
||||
// TODO: functionality >= 120
|
||||
break;
|
||||
case EOpDiv:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtFloat:
|
||||
if (rightUnionArray[i] == 0.0f) {
|
||||
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
|
||||
tempConstArray[i].setFConst(FLT_MAX);
|
||||
} else
|
||||
tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
|
||||
break;
|
||||
|
||||
case EbtInt:
|
||||
if (rightUnionArray[i] == 0) {
|
||||
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
|
||||
tempConstArray[i].setIConst(0xEFFFFFFF);
|
||||
} else
|
||||
tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
|
||||
break;
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case EOpMatrixTimesVector:
|
||||
tempConstArray = new constUnion[getMatrixRows()];
|
||||
for (int i = 0; i < getMatrixRows(); i++) {
|
||||
float sum = 0.0f;
|
||||
for (int j = 0; j < node->getVectorSize(); j++) {
|
||||
sum += unionArray[j*getMatrixRows() + i].getFConst() * rightUnionArray[j].getFConst();
|
||||
}
|
||||
tempConstArray[i].setFConst(sum);
|
||||
}
|
||||
|
||||
tempNode = new TIntermConstantUnion(tempConstArray, TType(getBasicType(), EvqConst, getMatrixRows()));
|
||||
tempNode->setLine(getLine());
|
||||
|
||||
return tempNode;
|
||||
|
||||
case EOpVectorTimesMatrix:
|
||||
tempConstArray = new constUnion[node->getMatrixCols()];
|
||||
for (int i = 0; i < node->getMatrixCols(); i++) {
|
||||
float sum = 0.0f;
|
||||
for (int j = 0; j < getVectorSize(); j++)
|
||||
sum += unionArray[j].getFConst() * rightUnionArray[i*node->getMatrixRows() + j].getFConst();
|
||||
tempConstArray[i].setFConst(sum);
|
||||
}
|
||||
|
||||
tempNode = new TIntermConstantUnion(tempConstArray, TType(getBasicType(), EvqConst, node->getMatrixCols()));
|
||||
tempNode->setLine(getLine());
|
||||
|
||||
return tempNode;
|
||||
|
||||
case EOpMod:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] % rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpRightShift:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] >> rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLeftShift:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] << rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpAnd:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] & rightUnionArray[i];
|
||||
break;
|
||||
case EOpInclusiveOr:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] | rightUnionArray[i];
|
||||
break;
|
||||
case EOpExclusiveOr:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] ^ rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] && rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++)
|
||||
tempConstArray[i] = unionArray[i] || rightUnionArray[i];
|
||||
break;
|
||||
|
||||
case EOpLogicalXor:
|
||||
tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
|
||||
default: assert(false && "Default missing");
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case EOpLessThan:
|
||||
assert(objectSize == 1);
|
||||
tempConstArray = new constUnion[1];
|
||||
tempConstArray->setBConst(*unionArray < *rightUnionArray);
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
case EOpGreaterThan:
|
||||
assert(objectSize == 1);
|
||||
tempConstArray = new constUnion[1];
|
||||
tempConstArray->setBConst(*unionArray > *rightUnionArray);
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
case EOpLessThanEqual:
|
||||
{
|
||||
assert(objectSize == 1);
|
||||
constUnion constant;
|
||||
constant.setBConst(*unionArray > *rightUnionArray);
|
||||
tempConstArray = new constUnion[1];
|
||||
tempConstArray->setBConst(!constant.getBConst());
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
}
|
||||
case EOpGreaterThanEqual:
|
||||
{
|
||||
assert(objectSize == 1);
|
||||
constUnion constant;
|
||||
constant.setBConst(*unionArray < *rightUnionArray);
|
||||
tempConstArray = new constUnion[1];
|
||||
tempConstArray->setBConst(!constant.getBConst());
|
||||
returnType = TType(EbtBool, EvqConst);
|
||||
break;
|
||||
}
|
||||
|
||||
case EOpEqual:
|
||||
if (getType().getBasicType() == EbtStruct) {
|
||||
if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
|
||||
boolNodeFlag = true;
|
||||
} else {
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
if (unionArray[i] != rightUnionArray[i]) {
|
||||
boolNodeFlag = true;
|
||||
break; // break out of for loop
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tempConstArray = new constUnion[1];
|
||||
if (!boolNodeFlag) {
|
||||
tempConstArray->setBConst(true);
|
||||
}
|
||||
else {
|
||||
tempConstArray->setBConst(false);
|
||||
}
|
||||
|
||||
tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EvqConst));
|
||||
tempNode->setLine(getLine());
|
||||
|
||||
return tempNode;
|
||||
|
||||
case EOpNotEqual:
|
||||
if (getType().getBasicType() == EbtStruct) {
|
||||
if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
|
||||
boolNodeFlag = true;
|
||||
} else {
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
if (unionArray[i] == rightUnionArray[i]) {
|
||||
boolNodeFlag = true;
|
||||
break; // break out of for loop
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tempConstArray = new constUnion[1];
|
||||
if (!boolNodeFlag) {
|
||||
tempConstArray->setBConst(true);
|
||||
}
|
||||
else {
|
||||
tempConstArray->setBConst(false);
|
||||
}
|
||||
|
||||
tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EvqConst));
|
||||
tempNode->setLine(getLine());
|
||||
|
||||
return tempNode;
|
||||
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
|
||||
return 0;
|
||||
}
|
||||
tempNode = new TIntermConstantUnion(tempConstArray, returnType);
|
||||
tempNode->setLine(getLine());
|
||||
|
||||
return tempNode;
|
||||
} else {
|
||||
//
|
||||
// Do unary operations
|
||||
//
|
||||
TIntermConstantUnion *newNode = 0;
|
||||
constUnion* tempConstArray = new constUnion[objectSize];
|
||||
for (int i = 0; i < objectSize; i++) {
|
||||
switch(op) {
|
||||
case EOpNegative:
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
|
||||
case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
|
||||
switch (getType().getBasicType()) {
|
||||
case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
|
||||
default:
|
||||
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
newNode = new TIntermConstantUnion(tempConstArray, getType());
|
||||
newNode->setLine(getLine());
|
||||
return newNode;
|
||||
}
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
|
||||
{
|
||||
if (node->getType().isArray())
|
||||
|
||||
@ -1161,33 +1161,12 @@ bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPu
|
||||
return false;
|
||||
}
|
||||
|
||||
bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
|
||||
{
|
||||
if (!aggrNode->isConstructor())
|
||||
return false;
|
||||
|
||||
bool allConstant = true;
|
||||
|
||||
// check if all the child nodes are constants so that they can be inserted into
|
||||
// the parent node
|
||||
if (aggrNode) {
|
||||
TIntermSequence &childSequenceVector = aggrNode->getSequence() ;
|
||||
for (TIntermSequence::iterator p = childSequenceVector.begin();
|
||||
p != childSequenceVector.end(); p++) {
|
||||
if (!(*p)->getAsTyped()->getAsConstantUnion())
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return allConstant;
|
||||
}
|
||||
|
||||
// This function is used to test for the correctness of the parameters passed to various constructor functions
|
||||
// and also convert them to the right datatype if it is allowed and required.
|
||||
//
|
||||
// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
|
||||
//
|
||||
TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line)
|
||||
TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType& type, TOperator op, TFunction* fnCall, TSourceLoc line)
|
||||
{
|
||||
if (node == 0)
|
||||
return 0;
|
||||
@ -1196,10 +1175,10 @@ TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type
|
||||
|
||||
TTypeList::iterator memberTypes;
|
||||
if (op == EOpConstructStruct)
|
||||
memberTypes = type->getStruct()->begin();
|
||||
memberTypes = type.getStruct()->begin();
|
||||
|
||||
TType elementType = *type;
|
||||
if (type->isArray())
|
||||
TType elementType = type;
|
||||
if (type.isArray())
|
||||
elementType.dereference();
|
||||
|
||||
bool singleArg;
|
||||
@ -1215,18 +1194,15 @@ TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type
|
||||
if (singleArg) {
|
||||
// If structure constructor or array constructor is being called
|
||||
// for only one parameter inside the structure, we need to call constructStruct function once.
|
||||
if (type->isArray())
|
||||
newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
|
||||
if (type.isArray())
|
||||
newNode = constructStruct(node, elementType, 1, node->getLine());
|
||||
else if (op == EOpConstructStruct)
|
||||
newNode = constructStruct(node, (*memberTypes).type, 1, node->getLine(), false);
|
||||
newNode = constructStruct(node, *(*memberTypes).type, 1, node->getLine());
|
||||
else
|
||||
newNode = constructBuiltIn(type, op, node, node->getLine(), false);
|
||||
|
||||
if (newNode && newNode->getAsAggregate()) {
|
||||
TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
|
||||
if (constConstructor)
|
||||
return constConstructor;
|
||||
}
|
||||
if (newNode && (type.isArray() || op == EOpConstructStruct))
|
||||
newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, line);
|
||||
|
||||
return newNode;
|
||||
}
|
||||
@ -1246,10 +1222,10 @@ TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type
|
||||
|
||||
for (TIntermSequence::iterator p = sequenceVector.begin();
|
||||
p != sequenceVector.end(); p++, paramCount++) {
|
||||
if (type->isArray())
|
||||
newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
|
||||
if (type.isArray())
|
||||
newNode = constructStruct(*p, elementType, paramCount+1, node->getLine());
|
||||
else if (op == EOpConstructStruct)
|
||||
newNode = constructStruct(*p, (memberTypes[paramCount]).type, paramCount+1, node->getLine(), true);
|
||||
newNode = constructStruct(*p, *(memberTypes[paramCount]).type, paramCount+1, node->getLine());
|
||||
else
|
||||
newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
|
||||
|
||||
@ -1259,36 +1235,11 @@ TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type
|
||||
}
|
||||
}
|
||||
|
||||
TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
|
||||
TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
|
||||
if (constConstructor)
|
||||
return constConstructor;
|
||||
TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, line);
|
||||
|
||||
return constructor;
|
||||
}
|
||||
|
||||
TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
|
||||
{
|
||||
bool canBeFolded = areAllChildConst(aggrNode);
|
||||
aggrNode->setType(type);
|
||||
if (canBeFolded) {
|
||||
bool returnVal = false;
|
||||
constUnion* unionArray = new constUnion[type.getObjectSize()];
|
||||
if (aggrNode->getSequence().size() == 1) {
|
||||
returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type, true);
|
||||
}
|
||||
else {
|
||||
returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type);
|
||||
}
|
||||
if (returnVal)
|
||||
return 0;
|
||||
|
||||
return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
|
||||
// for the parameter to the constructor (passed to this function). Essentially, it converts
|
||||
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
|
||||
@ -1296,7 +1247,7 @@ TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, co
|
||||
//
|
||||
// Returns 0 for an error or the constructed node.
|
||||
//
|
||||
TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
|
||||
TIntermTyped* TParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
|
||||
{
|
||||
TIntermTyped* newNode;
|
||||
TOperator basicOp;
|
||||
@ -1368,11 +1319,11 @@ TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, T
|
||||
//
|
||||
|
||||
// Otherwise, skip out early.
|
||||
if (subset || newNode != node && newNode->getType() == *type)
|
||||
if (subset || newNode != node && newNode->getType() == type)
|
||||
return newNode;
|
||||
|
||||
// setAggregateOperator will insert a new node for the constructor, as needed.
|
||||
return intermediate.setAggregateOperator(newNode, op, line);
|
||||
return intermediate.setAggregateOperator(newNode, op, type, line);
|
||||
}
|
||||
|
||||
// This function tests for the type of the parameters to the structures constructors. Raises
|
||||
@ -1380,23 +1331,20 @@ TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, T
|
||||
//
|
||||
// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
|
||||
//
|
||||
TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset)
|
||||
TIntermTyped* TParseContext::constructStruct(TIntermNode* node, const TType& type, int paramCount, TSourceLoc line)
|
||||
{
|
||||
TIntermNode* converted = intermediate.addConversion(EOpConstructStruct, *type, node->getAsTyped());
|
||||
if (converted->getAsTyped()->getType() == *type) {
|
||||
if (subset)
|
||||
return converted->getAsTyped();
|
||||
else
|
||||
return intermediate.setAggregateOperator(converted->getAsTyped(), EOpConstructStruct, line);
|
||||
} else {
|
||||
TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
|
||||
if (! converted || converted->getType() != type) {
|
||||
error(line, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
|
||||
node->getAsTyped()->getType().getCompleteTypeString().c_str(), type->getCompleteTypeString().c_str());
|
||||
node->getAsTyped()->getType().getCompleteTypeString().c_str(), type.getCompleteTypeString().c_str());
|
||||
recover();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
return converted;
|
||||
}
|
||||
|
||||
//
|
||||
// This function returns the tree representation for the vector field(s) being accessed from contant vector.
|
||||
// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
|
||||
|
||||
@ -130,11 +130,9 @@ struct TParseContext {
|
||||
const TFunction* findFunction(int line, TFunction* pfnCall, bool *builtIn = 0);
|
||||
bool executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType,
|
||||
TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable = 0);
|
||||
bool areAllChildConst(TIntermAggregate* aggrNode);
|
||||
TIntermTyped* addConstructor(TIntermNode*, const TType*, TOperator, TFunction*, TSourceLoc);
|
||||
TIntermTyped* foldConstConstructor(TIntermAggregate* aggrNode, const TType& type);
|
||||
TIntermTyped* constructStruct(TIntermNode*, TType*, int, TSourceLoc, bool subset);
|
||||
TIntermTyped* constructBuiltIn(const TType*, TOperator, TIntermNode*, TSourceLoc, bool subset);
|
||||
TIntermTyped* addConstructor(TIntermNode*, const TType&, TOperator, TFunction*, TSourceLoc);
|
||||
TIntermTyped* constructStruct(TIntermNode*, const TType&, int, TSourceLoc);
|
||||
TIntermTyped* constructBuiltIn(const TType&, TOperator, TIntermNode*, TSourceLoc, bool subset);
|
||||
TIntermTyped* addConstVectorNode(TVectorFields&, TIntermTyped*, TSourceLoc);
|
||||
TIntermTyped* addConstMatrixNode(int , TIntermTyped*, TSourceLoc);
|
||||
TIntermTyped* addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line);
|
||||
|
||||
@ -105,7 +105,7 @@ int yy_input(char* buf, int max_size);
|
||||
|
||||
|
||||
%%
|
||||
<*>"//"[^\n]*"\n" { /* ?? carriage and/or line-feed? */ };
|
||||
<*>"//"[^\n]*"\n" { /* CPP should have taken care of this */ };
|
||||
|
||||
"attribute" { pyylval->lex.line = yylineno; return(ATTRIBUTE); } // TODO ES 30 reserved
|
||||
"const" { pyylval->lex.line = yylineno; return(CONST); }
|
||||
|
||||
@ -336,6 +336,7 @@ postfix_expression
|
||||
$$ = parseContext.intermediate.addIndex(EOpIndexIndirect, $1, $3, $2.line);
|
||||
}
|
||||
}
|
||||
|
||||
if ($$ == 0) {
|
||||
constUnion *unionArray = new constUnion[1];
|
||||
unionArray->setFConst(0.0f);
|
||||
@ -344,8 +345,7 @@ postfix_expression
|
||||
TType newType = $1->getType();
|
||||
newType.dereference();
|
||||
$$->setType(newType);
|
||||
//?? why wouldn't the code above get the type right?
|
||||
//?? write a dereference test
|
||||
// TODO: testing: write a set of dereference tests
|
||||
}
|
||||
}
|
||||
| function_call {
|
||||
@ -511,14 +511,13 @@ function_call
|
||||
//
|
||||
// It's a constructor, of type 'type'.
|
||||
//
|
||||
$$ = parseContext.addConstructor($1.intermNode, &type, op, fnCall, $1.line);
|
||||
$$ = parseContext.addConstructor($1.intermNode, type, op, fnCall, $1.line);
|
||||
}
|
||||
|
||||
if ($$ == 0) {
|
||||
parseContext.recover();
|
||||
$$ = parseContext.intermediate.setAggregateOperator(0, op, $1.line);
|
||||
$$ = parseContext.intermediate.setAggregateOperator(0, op, type, $1.line);
|
||||
}
|
||||
$$->setType(type);
|
||||
} else {
|
||||
//
|
||||
// Not a constructor. Find it in the symbol table.
|
||||
@ -539,6 +538,8 @@ function_call
|
||||
if (fnCandidate->getParamCount() == 1) {
|
||||
//
|
||||
// Treat it like a built-in unary operator.
|
||||
// addUnaryMath() should get the type correct on its own;
|
||||
// including constness (which would differ from the prototype).
|
||||
//
|
||||
$$ = parseContext.intermediate.addUnaryMath(op, $1.intermNode, 0, parseContext.symbolTable);
|
||||
if ($$ == 0) {
|
||||
@ -548,13 +549,12 @@ function_call
|
||||
YYERROR;
|
||||
}
|
||||
} else {
|
||||
$$ = parseContext.intermediate.setAggregateOperator($1.intermAggregate, op, $1.line);
|
||||
$$ = parseContext.intermediate.setAggregateOperator($1.intermAggregate, op, fnCandidate->getReturnType(), $1.line);
|
||||
}
|
||||
} else {
|
||||
// This is a real function call
|
||||
|
||||
$$ = parseContext.intermediate.setAggregateOperator($1.intermAggregate, EOpFunctionCall, $1.line);
|
||||
$$->setType(fnCandidate->getReturnType());
|
||||
$$ = parseContext.intermediate.setAggregateOperator($1.intermAggregate, EOpFunctionCall, fnCandidate->getReturnType(), $1.line);
|
||||
|
||||
// this is how we know whether the given function is a builtIn function or a user defined function
|
||||
// if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also
|
||||
@ -576,7 +576,6 @@ function_call
|
||||
qualifierList.push_back(qual);
|
||||
}
|
||||
}
|
||||
$$->setType(fnCandidate->getReturnType());
|
||||
} else {
|
||||
// error message was put out by PaFindFunction()
|
||||
// Put on a dummy node for error recovery
|
||||
@ -2991,7 +2990,7 @@ function_definition
|
||||
paramNodes = parseContext.intermediate.growAggregate(paramNodes, parseContext.intermediate.addSymbol(0, "", *param.type, $1.line), $1.line);
|
||||
}
|
||||
}
|
||||
parseContext.intermediate.setAggregateOperator(paramNodes, EOpParameters, $1.line);
|
||||
parseContext.intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), $1.line);
|
||||
$1.intermAggregate = paramNodes;
|
||||
parseContext.loopNestingLevel = 0;
|
||||
}
|
||||
@ -3003,9 +3002,8 @@ function_definition
|
||||
}
|
||||
parseContext.symbolTable.pop(&parseContext.defaultPrecision[0]);
|
||||
$$ = parseContext.intermediate.growAggregate($1.intermAggregate, $3, 0);
|
||||
parseContext.intermediate.setAggregateOperator($$, EOpFunction, $1.line);
|
||||
parseContext.intermediate.setAggregateOperator($$, EOpFunction, $1.function->getReturnType(), $1.line);
|
||||
$$->getAsAggregate()->setName($1.function->getMangledName().c_str());
|
||||
$$->getAsAggregate()->setType($1.function->getReturnType());
|
||||
|
||||
// store the pragma information for debug and optimize and other vendor specific
|
||||
// information. This information can be queried from the parse tree
|
||||
|
||||
@ -63,14 +63,17 @@ public:
|
||||
bool canImplicitlyPromote(TBasicType from, TBasicType to);
|
||||
TIntermAggregate* growAggregate(TIntermNode* left, TIntermNode* right, TSourceLoc);
|
||||
TIntermAggregate* makeAggregate(TIntermNode* node, TSourceLoc);
|
||||
TIntermAggregate* setAggregateOperator(TIntermNode*, TOperator, TSourceLoc);
|
||||
TIntermTyped* setAggregateOperator(TIntermNode*, TOperator, const TType& type, TSourceLoc);
|
||||
bool areAllChildConst(TIntermAggregate* aggrNode);
|
||||
TIntermTyped* fold(TIntermAggregate* aggrNode);
|
||||
TIntermTyped* foldConstructor(TIntermAggregate* aggrNode);
|
||||
TIntermNode* addSelection(TIntermTyped* cond, TIntermNodePair code, TSourceLoc);
|
||||
TIntermTyped* addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, TSourceLoc);
|
||||
TIntermTyped* addComma(TIntermTyped* left, TIntermTyped* right, TSourceLoc);
|
||||
TIntermTyped* addMethod(TIntermTyped*, const TType&, const TString*, TSourceLoc);
|
||||
TIntermConstantUnion* addConstantUnion(constUnion*, const TType&, TSourceLoc);
|
||||
TIntermTyped* promoteConstantUnion(TBasicType, TIntermConstantUnion*) ;
|
||||
bool parseConstTree(TSourceLoc, TIntermNode*, constUnion*, TOperator, TSymbolTable&, TType, bool singleConstantParam = false);
|
||||
bool parseConstTree(TSourceLoc, TIntermNode*, constUnion*, TOperator, TType, bool singleConstantParam = false);
|
||||
TIntermNode* addLoop(TIntermNode*, TIntermTyped*, TIntermTyped*, bool testFirst, TSourceLoc);
|
||||
TIntermBranch* addBranch(TOperator, TSourceLoc);
|
||||
TIntermBranch* addBranch(TOperator, TIntermTyped*, TSourceLoc);
|
||||
|
||||
@ -40,8 +40,8 @@
|
||||
//
|
||||
class TConstTraverser : public TIntermTraverser {
|
||||
public:
|
||||
TConstTraverser(constUnion* cUnion, bool singleConstParam, TOperator constructType, TInfoSink& sink, TSymbolTable& symTable, TType& t) : unionArray(cUnion), type(t),
|
||||
constructorType(constructType), singleConstantParam(singleConstParam), infoSink(sink), symbolTable(symTable), error(false), isMatrix(false),
|
||||
TConstTraverser(constUnion* cUnion, bool singleConstParam, TOperator constructType, TInfoSink& sink, TType& t) : unionArray(cUnion), type(t),
|
||||
constructorType(constructType), singleConstantParam(singleConstParam), infoSink(sink), error(false), isMatrix(false),
|
||||
matrixCols(0), matrixRows(0) { index = 0; tOp = EOpNull;}
|
||||
int index ;
|
||||
constUnion *unionArray;
|
||||
@ -50,7 +50,6 @@ public:
|
||||
TOperator constructorType;
|
||||
bool singleConstantParam;
|
||||
TInfoSink& infoSink;
|
||||
TSymbolTable& symbolTable;
|
||||
bool error;
|
||||
int size; // size of the constructor ( 4 for vec4)
|
||||
bool isMatrix;
|
||||
@ -256,12 +255,12 @@ bool ParseBranch(bool /* previsit*/, TIntermBranch* node, TIntermTraverser* it)
|
||||
// Individual functions can be initialized to 0 to skip processing of that
|
||||
// type of node. It's children will still be processed.
|
||||
//
|
||||
bool TIntermediate::parseConstTree(TSourceLoc line, TIntermNode* root, constUnion* unionArray, TOperator constructorType, TSymbolTable& symbolTable, TType t, bool singleConstantParam)
|
||||
bool TIntermediate::parseConstTree(TSourceLoc line, TIntermNode* root, constUnion* unionArray, TOperator constructorType, TType t, bool singleConstantParam)
|
||||
{
|
||||
if (root == 0)
|
||||
return false;
|
||||
|
||||
TConstTraverser it(unionArray, singleConstantParam, constructorType, infoSink, symbolTable, t);
|
||||
TConstTraverser it(unionArray, singleConstantParam, constructorType, infoSink, t);
|
||||
|
||||
it.visitAggregate = ParseAggregate;
|
||||
it.visitBinary = ParseBinary;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user