Merge pull request #621 from steve-lunarg/recursive-flattening

HLSL: Recursive composite flattening
This commit is contained in:
John Kessenich 2016-12-08 11:18:07 -07:00 committed by GitHub
commit e795cc915c
10 changed files with 724 additions and 204 deletions

View File

@ -0,0 +1,197 @@
hlsl.structarray.flatten.frag
Shader version: 450
gl_FragCoord origin is upper left
0:? Sequence
0:23 Function Definition: main(struct-PS_OUTPUT-vf41; (temp void)
0:23 Function Parameters:
0:23 'ps_output' (out structure{temp 4-component vector of float color})
0:? Sequence
0:24 move second child to first child (temp 4-component vector of float)
0:? 'color' (layout(location=0 ) out 4-component vector of float)
0:26 add (temp 4-component vector of float)
0:25 add (temp 4-component vector of float)
0:25 texture (temp 4-component vector of float)
0:25 Construct combined texture-sampler (temp sampler1D)
0:? 'tex' (uniform texture1D)
0:? 'samp' (uniform sampler)
0:25 Constant:
0:25 0.500000
0:26 texture (temp 4-component vector of float)
0:26 Construct combined texture-sampler (temp sampler1D)
0:? 'g_texdata_array[1].tex' (uniform texture1D)
0:? 'g_texdata_array[1].samp' (uniform sampler)
0:26 Constant:
0:26 0.400000
0:27 texture (temp 4-component vector of float)
0:27 Construct combined texture-sampler (temp sampler1D)
0:? 'g_texdata_array2[1].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[1].samp[0]' (uniform sampler)
0:27 Constant:
0:27 0.300000
0:? Linker Objects
0:? 'color' (layout(location=0 ) out 4-component vector of float)
0:? 'g_samp' (uniform sampler)
0:? 'g_tex' (uniform texture1D)
0:? 'g_texdata_array2[0].samp[0]' (uniform sampler)
0:? 'g_texdata_array2[0].samp[1]' (uniform sampler)
0:? 'g_texdata_array2[0].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[0].tex[1]' (uniform texture1D)
0:? 'g_texdata_array2[1].samp[0]' (uniform sampler)
0:? 'g_texdata_array2[1].samp[1]' (uniform sampler)
0:? 'g_texdata_array2[1].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[1].tex[1]' (uniform texture1D)
0:? 'g_texdata_array2[2].samp[0]' (uniform sampler)
0:? 'g_texdata_array2[2].samp[1]' (uniform sampler)
0:? 'g_texdata_array2[2].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[2].tex[1]' (uniform texture1D)
Linked fragment stage:
Shader version: 450
gl_FragCoord origin is upper left
0:? Sequence
0:23 Function Definition: main(struct-PS_OUTPUT-vf41; (temp void)
0:23 Function Parameters:
0:23 'ps_output' (out structure{temp 4-component vector of float color})
0:? Sequence
0:24 move second child to first child (temp 4-component vector of float)
0:? 'color' (layout(location=0 ) out 4-component vector of float)
0:26 add (temp 4-component vector of float)
0:25 add (temp 4-component vector of float)
0:25 texture (temp 4-component vector of float)
0:25 Construct combined texture-sampler (temp sampler1D)
0:? 'tex' (uniform texture1D)
0:? 'samp' (uniform sampler)
0:25 Constant:
0:25 0.500000
0:26 texture (temp 4-component vector of float)
0:26 Construct combined texture-sampler (temp sampler1D)
0:? 'g_texdata_array[1].tex' (uniform texture1D)
0:? 'g_texdata_array[1].samp' (uniform sampler)
0:26 Constant:
0:26 0.400000
0:27 texture (temp 4-component vector of float)
0:27 Construct combined texture-sampler (temp sampler1D)
0:? 'g_texdata_array2[1].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[1].samp[0]' (uniform sampler)
0:27 Constant:
0:27 0.300000
0:? Linker Objects
0:? 'color' (layout(location=0 ) out 4-component vector of float)
0:? 'g_samp' (uniform sampler)
0:? 'g_tex' (uniform texture1D)
0:? 'g_texdata_array2[0].samp[0]' (uniform sampler)
0:? 'g_texdata_array2[0].samp[1]' (uniform sampler)
0:? 'g_texdata_array2[0].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[0].tex[1]' (uniform texture1D)
0:? 'g_texdata_array2[1].samp[0]' (uniform sampler)
0:? 'g_texdata_array2[1].samp[1]' (uniform sampler)
0:? 'g_texdata_array2[1].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[1].tex[1]' (uniform texture1D)
0:? 'g_texdata_array2[2].samp[0]' (uniform sampler)
0:? 'g_texdata_array2[2].samp[1]' (uniform sampler)
0:? 'g_texdata_array2[2].tex[0]' (uniform texture1D)
0:? 'g_texdata_array2[2].tex[1]' (uniform texture1D)
// Module Version 10000
// Generated by (magic number): 80001
// Id's are bound by 50
Capability Shader
Capability Sampled1D
1: ExtInstImport "GLSL.std.450"
MemoryModel Logical GLSL450
EntryPoint Fragment 4 "main" 9
ExecutionMode 4 OriginUpperLeft
Name 4 "main"
Name 9 "color"
Name 12 "tex"
Name 16 "samp"
Name 22 "g_texdata_array[1].tex"
Name 24 "g_texdata_array[1].samp"
Name 30 "g_texdata_array2[1].tex[0]"
Name 32 "g_texdata_array2[1].samp[0]"
Name 38 "g_samp"
Name 39 "g_tex"
Name 40 "g_texdata_array2[0].samp[0]"
Name 41 "g_texdata_array2[0].samp[1]"
Name 42 "g_texdata_array2[0].tex[0]"
Name 43 "g_texdata_array2[0].tex[1]"
Name 44 "g_texdata_array2[1].samp[1]"
Name 45 "g_texdata_array2[1].tex[1]"
Name 46 "g_texdata_array2[2].samp[0]"
Name 47 "g_texdata_array2[2].samp[1]"
Name 48 "g_texdata_array2[2].tex[0]"
Name 49 "g_texdata_array2[2].tex[1]"
Decorate 9(color) Location 0
Decorate 12(tex) DescriptorSet 0
Decorate 16(samp) DescriptorSet 0
Decorate 22(g_texdata_array[1].tex) DescriptorSet 0
Decorate 24(g_texdata_array[1].samp) DescriptorSet 0
Decorate 30(g_texdata_array2[1].tex[0]) DescriptorSet 0
Decorate 32(g_texdata_array2[1].samp[0]) DescriptorSet 0
Decorate 38(g_samp) DescriptorSet 0
Decorate 39(g_tex) DescriptorSet 0
Decorate 40(g_texdata_array2[0].samp[0]) DescriptorSet 0
Decorate 41(g_texdata_array2[0].samp[1]) DescriptorSet 0
Decorate 42(g_texdata_array2[0].tex[0]) DescriptorSet 0
Decorate 43(g_texdata_array2[0].tex[1]) DescriptorSet 0
Decorate 44(g_texdata_array2[1].samp[1]) DescriptorSet 0
Decorate 45(g_texdata_array2[1].tex[1]) DescriptorSet 0
Decorate 46(g_texdata_array2[2].samp[0]) DescriptorSet 0
Decorate 47(g_texdata_array2[2].samp[1]) DescriptorSet 0
Decorate 48(g_texdata_array2[2].tex[0]) DescriptorSet 0
Decorate 49(g_texdata_array2[2].tex[1]) DescriptorSet 0
2: TypeVoid
3: TypeFunction 2
6: TypeFloat 32
7: TypeVector 6(float) 4
8: TypePointer Output 7(fvec4)
9(color): 8(ptr) Variable Output
10: TypeImage 6(float) 1D sampled format:Unknown
11: TypePointer UniformConstant 10
12(tex): 11(ptr) Variable UniformConstant
14: TypeSampler
15: TypePointer UniformConstant 14
16(samp): 15(ptr) Variable UniformConstant
18: TypeSampledImage 10
20: 6(float) Constant 1056964608
22(g_texdata_array[1].tex): 11(ptr) Variable UniformConstant
24(g_texdata_array[1].samp): 15(ptr) Variable UniformConstant
27: 6(float) Constant 1053609165
30(g_texdata_array2[1].tex[0]): 11(ptr) Variable UniformConstant
32(g_texdata_array2[1].samp[0]): 15(ptr) Variable UniformConstant
35: 6(float) Constant 1050253722
38(g_samp): 15(ptr) Variable UniformConstant
39(g_tex): 11(ptr) Variable UniformConstant
40(g_texdata_array2[0].samp[0]): 15(ptr) Variable UniformConstant
41(g_texdata_array2[0].samp[1]): 15(ptr) Variable UniformConstant
42(g_texdata_array2[0].tex[0]): 11(ptr) Variable UniformConstant
43(g_texdata_array2[0].tex[1]): 11(ptr) Variable UniformConstant
44(g_texdata_array2[1].samp[1]): 15(ptr) Variable UniformConstant
45(g_texdata_array2[1].tex[1]): 11(ptr) Variable UniformConstant
46(g_texdata_array2[2].samp[0]): 15(ptr) Variable UniformConstant
47(g_texdata_array2[2].samp[1]): 15(ptr) Variable UniformConstant
48(g_texdata_array2[2].tex[0]): 11(ptr) Variable UniformConstant
49(g_texdata_array2[2].tex[1]): 11(ptr) Variable UniformConstant
4(main): 2 Function None 3
5: Label
13: 10 Load 12(tex)
17: 14 Load 16(samp)
19: 18 SampledImage 13 17
21: 7(fvec4) ImageSampleImplicitLod 19 20
23: 10 Load 22(g_texdata_array[1].tex)
25: 14 Load 24(g_texdata_array[1].samp)
26: 18 SampledImage 23 25
28: 7(fvec4) ImageSampleImplicitLod 26 27
29: 7(fvec4) FAdd 21 28
31: 10 Load 30(g_texdata_array2[1].tex[0])
33: 14 Load 32(g_texdata_array2[1].samp[0])
34: 18 SampledImage 31 33
36: 7(fvec4) ImageSampleImplicitLod 34 35
37: 7(fvec4) FAdd 29 36
Store 9(color) 37
Return
FunctionEnd

View File

@ -0,0 +1,100 @@
hlsl.structarray.flatten.geom
ERROR: 0:10: 'vin' : recursive type not yet supported in GS input
ERROR: 1 compilation errors. No code generated.
Shader version: 450
invocations = -1
max_vertices = 4
input primitive = lines
output primitive = triangle_strip
ERROR: node is still EOpNull!
0:10 Function Definition: main(struct-VertexData-vf4-vf4-vf21[2];struct-VertexData-vf4-vf4-vf21; (temp void)
0:10 Function Parameters:
0:10 'vin' (in 2-element array of structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:10 'outStream' (out structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:? Sequence
0:13 move second child to first child (temp 4-component vector of float)
0:13 color: direct index for structure (temp 4-component vector of float)
0:13 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:13 Constant:
0:13 1 (const int)
0:? 'vin[0].color' (layout(location=1 ) in 4-component vector of float)
0:14 move second child to first child (temp 2-component vector of float)
0:14 uv: direct index for structure (temp 2-component vector of float)
0:14 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:14 Constant:
0:14 2 (const int)
0:? 'vin[0].uv' (layout(location=2 ) in 2-component vector of float)
0:15 move second child to first child (temp 4-component vector of float)
0:15 position: direct index for structure (temp 4-component vector of float)
0:15 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:15 Constant:
0:15 0 (const int)
0:? 'vin[0].position' (layout(location=0 ) in 4-component vector of float)
0:16 Sequence
0:16 move second child to first child (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:16 'outStream' (out structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:16 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:16 EmitVertex (temp void)
0:? Linker Objects
0:? 'vin[0].position' (layout(location=0 ) in 4-component vector of float)
0:? 'vin[0].color' (layout(location=1 ) in 4-component vector of float)
0:? 'vin[0].uv' (layout(location=2 ) in 2-component vector of float)
0:? 'vin[1].position' (layout(location=3 ) in 4-component vector of float)
0:? 'vin[1].color' (layout(location=4 ) in 4-component vector of float)
0:? 'vin[1].uv' (layout(location=5 ) in 2-component vector of float)
0:? 'position' (layout(location=0 ) out 4-component vector of float)
0:? 'color' (layout(location=1 ) out 4-component vector of float)
0:? 'uv' (layout(location=2 ) out 2-component vector of float)
Linked geometry stage:
Shader version: 450
invocations = 1
max_vertices = 4
input primitive = lines
output primitive = triangle_strip
ERROR: node is still EOpNull!
0:10 Function Definition: main(struct-VertexData-vf4-vf4-vf21[2];struct-VertexData-vf4-vf4-vf21; (temp void)
0:10 Function Parameters:
0:10 'vin' (in 2-element array of structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:10 'outStream' (out structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:? Sequence
0:13 move second child to first child (temp 4-component vector of float)
0:13 color: direct index for structure (temp 4-component vector of float)
0:13 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:13 Constant:
0:13 1 (const int)
0:? 'vin[0].color' (layout(location=1 ) in 4-component vector of float)
0:14 move second child to first child (temp 2-component vector of float)
0:14 uv: direct index for structure (temp 2-component vector of float)
0:14 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:14 Constant:
0:14 2 (const int)
0:? 'vin[0].uv' (layout(location=2 ) in 2-component vector of float)
0:15 move second child to first child (temp 4-component vector of float)
0:15 position: direct index for structure (temp 4-component vector of float)
0:15 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:15 Constant:
0:15 0 (const int)
0:? 'vin[0].position' (layout(location=0 ) in 4-component vector of float)
0:16 Sequence
0:16 move second child to first child (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:16 'outStream' (out structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:16 'vout' (temp structure{temp 4-component vector of float position, temp 4-component vector of float color, temp 2-component vector of float uv})
0:16 EmitVertex (temp void)
0:? Linker Objects
0:? 'vin[0].position' (layout(location=0 ) in 4-component vector of float)
0:? 'vin[0].color' (layout(location=1 ) in 4-component vector of float)
0:? 'vin[0].uv' (layout(location=2 ) in 2-component vector of float)
0:? 'vin[1].position' (layout(location=3 ) in 4-component vector of float)
0:? 'vin[1].color' (layout(location=4 ) in 4-component vector of float)
0:? 'vin[1].uv' (layout(location=5 ) in 2-component vector of float)
0:? 'position' (layout(location=0 ) out 4-component vector of float)
0:? 'color' (layout(location=1 ) out 4-component vector of float)
0:? 'uv' (layout(location=2 ) out 2-component vector of float)
SPIR-V is not generated for failed compile or link

View File

@ -16,14 +16,8 @@ Shader version: 450
0:11 add (temp 4-component vector of float) 0:11 add (temp 4-component vector of float)
0:11 add (temp 4-component vector of float) 0:11 add (temp 4-component vector of float)
0:11 add (temp 4-component vector of float) 0:11 add (temp 4-component vector of float)
0:11 direct index (layout(location=1 ) temp 4-component vector of float) 0:? 'm[1]' (layout(location=2 ) in 4-component vector of float)
0:? 'm' (layout(location=1 ) in 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=1 ) in 4-component vector of float)
0:11 Constant:
0:11 1 (const int)
0:11 direct index (layout(location=1 ) temp 4-component vector of float)
0:? 'm' (layout(location=1 ) in 2-element array of 4-component vector of float)
0:11 Constant:
0:11 0 (const int)
0:11 Construct vec4 (temp 4-component vector of float) 0:11 Construct vec4 (temp 4-component vector of float)
0:11 Convert uint to float (temp float) 0:11 Convert uint to float (temp float)
0:11 direct index (temp uint) 0:11 direct index (temp uint)
@ -34,12 +28,24 @@ Shader version: 450
0:11 'e' (layout(location=5 ) in 4-component vector of float) 0:11 'e' (layout(location=5 ) in 4-component vector of float)
0:13 Sequence 0:13 Sequence
0:13 Sequence 0:13 Sequence
0:13 move second child to first child (temp 2-element array of 4-component vector of float) 0:13 move second child to first child (temp 4-component vector of float)
0:? 'm' (layout(location=0 ) out 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=0 ) out 4-component vector of float)
0:13 direct index (temp 4-component vector of float)
0:13 m: direct index for structure (temp 2-element array of 4-component vector of float) 0:13 m: direct index for structure (temp 2-element array of 4-component vector of float)
0:13 'local' (temp structure{temp 2-element array of 4-component vector of float m, temp 2-component vector of uint coord, temp 4-component vector of float b}) 0:13 'local' (temp structure{temp 2-element array of 4-component vector of float m, temp 2-component vector of uint coord, temp 4-component vector of float b})
0:13 Constant: 0:13 Constant:
0:13 0 (const int) 0:13 0 (const int)
0:13 Constant:
0:13 0 (const int)
0:13 move second child to first child (temp 4-component vector of float)
0:? 'm[1]' (layout(location=1 ) out 4-component vector of float)
0:13 direct index (temp 4-component vector of float)
0:13 m: direct index for structure (temp 2-element array of 4-component vector of float)
0:13 'local' (temp structure{temp 2-element array of 4-component vector of float m, temp 2-component vector of uint coord, temp 4-component vector of float b})
0:13 Constant:
0:13 0 (const int)
0:13 Constant:
0:13 1 (const int)
0:13 move second child to first child (temp 2-component vector of uint) 0:13 move second child to first child (temp 2-component vector of uint)
0:? 'coord' (layout(location=2 ) out 2-component vector of uint) 0:? 'coord' (layout(location=2 ) out 2-component vector of uint)
0:13 coord: direct index for structure (temp 2-component vector of uint) 0:13 coord: direct index for structure (temp 2-component vector of uint)
@ -54,14 +60,20 @@ Shader version: 450
0:13 2 (const int) 0:13 2 (const int)
0:13 Branch: Return 0:13 Branch: Return
0:? Linker Objects 0:? Linker Objects
0:? 'm' (layout(location=0 ) out 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=0 ) out 4-component vector of float)
0:? 'm[1]' (layout(location=1 ) out 4-component vector of float)
0:? 'coord' (layout(location=2 ) out 2-component vector of uint) 0:? 'coord' (layout(location=2 ) out 2-component vector of uint)
0:? 'b' (layout(location=3 ) smooth out 4-component vector of float) 0:? 'b' (layout(location=3 ) smooth out 4-component vector of float)
0:? 'd' (layout(location=0 ) in 4-component vector of float) 0:? 'd' (layout(location=0 ) in 4-component vector of float)
0:? 'm' (layout(location=1 ) in 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=1 ) in 4-component vector of float)
0:? 'm[1]' (layout(location=2 ) in 4-component vector of float)
0:? 'coord' (layout(location=3 ) in 2-component vector of uint) 0:? 'coord' (layout(location=3 ) in 2-component vector of uint)
0:? 'b' (layout(location=4 ) in 4-component vector of float) 0:? 'b' (layout(location=4 ) in 4-component vector of float)
0:? 'e' (layout(location=5 ) in 4-component vector of float) 0:? 'e' (layout(location=5 ) in 4-component vector of float)
0:? 'm[0]' (layout(location=0 ) out 4-component vector of float)
0:? 'm[1]' (layout(location=1 ) out 4-component vector of float)
0:? 'm[0]' (layout(location=1 ) in 4-component vector of float)
0:? 'm[1]' (layout(location=2 ) in 4-component vector of float)
Linked vertex stage: Linked vertex stage:
@ -84,14 +96,8 @@ Shader version: 450
0:11 add (temp 4-component vector of float) 0:11 add (temp 4-component vector of float)
0:11 add (temp 4-component vector of float) 0:11 add (temp 4-component vector of float)
0:11 add (temp 4-component vector of float) 0:11 add (temp 4-component vector of float)
0:11 direct index (layout(location=1 ) temp 4-component vector of float) 0:? 'm[1]' (layout(location=2 ) in 4-component vector of float)
0:? 'm' (layout(location=1 ) in 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=1 ) in 4-component vector of float)
0:11 Constant:
0:11 1 (const int)
0:11 direct index (layout(location=1 ) temp 4-component vector of float)
0:? 'm' (layout(location=1 ) in 2-element array of 4-component vector of float)
0:11 Constant:
0:11 0 (const int)
0:11 Construct vec4 (temp 4-component vector of float) 0:11 Construct vec4 (temp 4-component vector of float)
0:11 Convert uint to float (temp float) 0:11 Convert uint to float (temp float)
0:11 direct index (temp uint) 0:11 direct index (temp uint)
@ -102,12 +108,24 @@ Shader version: 450
0:11 'e' (layout(location=5 ) in 4-component vector of float) 0:11 'e' (layout(location=5 ) in 4-component vector of float)
0:13 Sequence 0:13 Sequence
0:13 Sequence 0:13 Sequence
0:13 move second child to first child (temp 2-element array of 4-component vector of float) 0:13 move second child to first child (temp 4-component vector of float)
0:? 'm' (layout(location=0 ) out 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=0 ) out 4-component vector of float)
0:13 direct index (temp 4-component vector of float)
0:13 m: direct index for structure (temp 2-element array of 4-component vector of float) 0:13 m: direct index for structure (temp 2-element array of 4-component vector of float)
0:13 'local' (temp structure{temp 2-element array of 4-component vector of float m, temp 2-component vector of uint coord, temp 4-component vector of float b}) 0:13 'local' (temp structure{temp 2-element array of 4-component vector of float m, temp 2-component vector of uint coord, temp 4-component vector of float b})
0:13 Constant: 0:13 Constant:
0:13 0 (const int) 0:13 0 (const int)
0:13 Constant:
0:13 0 (const int)
0:13 move second child to first child (temp 4-component vector of float)
0:? 'm[1]' (layout(location=1 ) out 4-component vector of float)
0:13 direct index (temp 4-component vector of float)
0:13 m: direct index for structure (temp 2-element array of 4-component vector of float)
0:13 'local' (temp structure{temp 2-element array of 4-component vector of float m, temp 2-component vector of uint coord, temp 4-component vector of float b})
0:13 Constant:
0:13 0 (const int)
0:13 Constant:
0:13 1 (const int)
0:13 move second child to first child (temp 2-component vector of uint) 0:13 move second child to first child (temp 2-component vector of uint)
0:? 'coord' (layout(location=2 ) out 2-component vector of uint) 0:? 'coord' (layout(location=2 ) out 2-component vector of uint)
0:13 coord: direct index for structure (temp 2-component vector of uint) 0:13 coord: direct index for structure (temp 2-component vector of uint)
@ -122,45 +140,55 @@ Shader version: 450
0:13 2 (const int) 0:13 2 (const int)
0:13 Branch: Return 0:13 Branch: Return
0:? Linker Objects 0:? Linker Objects
0:? 'm' (layout(location=0 ) out 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=0 ) out 4-component vector of float)
0:? 'm[1]' (layout(location=1 ) out 4-component vector of float)
0:? 'coord' (layout(location=2 ) out 2-component vector of uint) 0:? 'coord' (layout(location=2 ) out 2-component vector of uint)
0:? 'b' (layout(location=3 ) smooth out 4-component vector of float) 0:? 'b' (layout(location=3 ) smooth out 4-component vector of float)
0:? 'd' (layout(location=0 ) in 4-component vector of float) 0:? 'd' (layout(location=0 ) in 4-component vector of float)
0:? 'm' (layout(location=1 ) in 2-element array of 4-component vector of float) 0:? 'm[0]' (layout(location=1 ) in 4-component vector of float)
0:? 'm[1]' (layout(location=2 ) in 4-component vector of float)
0:? 'coord' (layout(location=3 ) in 2-component vector of uint) 0:? 'coord' (layout(location=3 ) in 2-component vector of uint)
0:? 'b' (layout(location=4 ) in 4-component vector of float) 0:? 'b' (layout(location=4 ) in 4-component vector of float)
0:? 'e' (layout(location=5 ) in 4-component vector of float) 0:? 'e' (layout(location=5 ) in 4-component vector of float)
0:? 'm[0]' (layout(location=0 ) out 4-component vector of float)
0:? 'm[1]' (layout(location=1 ) out 4-component vector of float)
0:? 'm[0]' (layout(location=1 ) in 4-component vector of float)
0:? 'm[1]' (layout(location=2 ) in 4-component vector of float)
// Module Version 10000 // Module Version 10000
// Generated by (magic number): 80001 // Generated by (magic number): 80001
// Id's are bound by 60 // Id's are bound by 59
Capability Shader Capability Shader
1: ExtInstImport "GLSL.std.450" 1: ExtInstImport "GLSL.std.450"
MemoryModel Logical GLSL450 MemoryModel Logical GLSL450
EntryPoint Vertex 4 "main" 18 28 36 39 45 50 55 59 EntryPoint Vertex 4 "main" 18 20 24 32 35 41 45 50 54 58
Name 4 "main" Name 4 "main"
Name 12 "VI" Name 12 "VI"
MemberName 12(VI) 0 "m" MemberName 12(VI) 0 "m"
MemberName 12(VI) 1 "coord" MemberName 12(VI) 1 "coord"
MemberName 12(VI) 2 "b" MemberName 12(VI) 2 "b"
Name 14 "local" Name 14 "local"
Name 18 "m" Name 18 "m[1]"
Name 28 "coord" Name 20 "m[0]"
Name 36 "d" Name 24 "coord"
Name 39 "e" Name 32 "d"
Name 45 "m" Name 35 "e"
Name 41 "m[0]"
Name 45 "m[1]"
Name 50 "coord" Name 50 "coord"
Name 55 "b" Name 54 "b"
Name 59 "b" Name 58 "b"
Decorate 18(m) Location 1 Decorate 18(m[1]) Location 2
Decorate 28(coord) Location 3 Decorate 20(m[0]) Location 1
Decorate 36(d) Location 0 Decorate 24(coord) Location 3
Decorate 39(e) Location 5 Decorate 32(d) Location 0
Decorate 45(m) Location 0 Decorate 35(e) Location 5
Decorate 41(m[0]) Location 0
Decorate 45(m[1]) Location 1
Decorate 50(coord) Location 2 Decorate 50(coord) Location 2
Decorate 55(b) Location 3 Decorate 54(b) Location 3
Decorate 59(b) Location 4 Decorate 58(b) Location 4
2: TypeVoid 2: TypeVoid
3: TypeFunction 2 3: TypeFunction 2
6: TypeFloat 32 6: TypeFloat 32
@ -173,54 +201,54 @@ Shader version: 450
13: TypePointer Function 12(VI) 13: TypePointer Function 12(VI)
15: TypeInt 32 1 15: TypeInt 32 1
16: 15(int) Constant 2 16: 15(int) Constant 2
17: TypePointer Input 10 17: TypePointer Input 7(fvec4)
18(m): 17(ptr) Variable Input 18(m[1]): 17(ptr) Variable Input
19: 15(int) Constant 1 20(m[0]): 17(ptr) Variable Input
20: TypePointer Input 7(fvec4) 23: TypePointer Input 11(ivec2)
23: 15(int) Constant 0 24(coord): 23(ptr) Variable Input
27: TypePointer Input 11(ivec2) 25: 8(int) Constant 0
28(coord): 27(ptr) Variable Input 26: TypePointer Input 8(int)
29: 8(int) Constant 0 32(d): 17(ptr) Variable Input
30: TypePointer Input 8(int) 35(e): 17(ptr) Variable Input
36(d): 20(ptr) Variable Input 38: TypePointer Function 7(fvec4)
39(e): 20(ptr) Variable Input 40: TypePointer Output 7(fvec4)
42: TypePointer Function 7(fvec4) 41(m[0]): 40(ptr) Variable Output
44: TypePointer Output 10 42: 15(int) Constant 0
45(m): 44(ptr) Variable Output 45(m[1]): 40(ptr) Variable Output
46: TypePointer Function 10 46: 15(int) Constant 1
49: TypePointer Output 11(ivec2) 49: TypePointer Output 11(ivec2)
50(coord): 49(ptr) Variable Output 50(coord): 49(ptr) Variable Output
51: TypePointer Function 11(ivec2) 51: TypePointer Function 11(ivec2)
54: TypePointer Output 7(fvec4) 54(b): 40(ptr) Variable Output
55(b): 54(ptr) Variable Output 58(b): 17(ptr) Variable Input
59(b): 20(ptr) Variable Input
4(main): 2 Function None 3 4(main): 2 Function None 3
5: Label 5: Label
14(local): 13(ptr) Variable Function 14(local): 13(ptr) Variable Function
21: 20(ptr) AccessChain 18(m) 19 19: 7(fvec4) Load 18(m[1])
22: 7(fvec4) Load 21 21: 7(fvec4) Load 20(m[0])
24: 20(ptr) AccessChain 18(m) 23 22: 7(fvec4) FAdd 19 21
25: 7(fvec4) Load 24 27: 26(ptr) AccessChain 24(coord) 25
26: 7(fvec4) FAdd 22 25 28: 8(int) Load 27
31: 30(ptr) AccessChain 28(coord) 29 29: 6(float) ConvertUToF 28
32: 8(int) Load 31 30: 7(fvec4) CompositeConstruct 29 29 29 29
33: 6(float) ConvertUToF 32 31: 7(fvec4) FAdd 22 30
34: 7(fvec4) CompositeConstruct 33 33 33 33 33: 7(fvec4) Load 32(d)
35: 7(fvec4) FAdd 26 34 34: 7(fvec4) FAdd 31 33
37: 7(fvec4) Load 36(d) 36: 7(fvec4) Load 35(e)
38: 7(fvec4) FAdd 35 37 37: 7(fvec4) FAdd 34 36
40: 7(fvec4) Load 39(e) 39: 38(ptr) AccessChain 14(local) 16
41: 7(fvec4) FAdd 38 40 Store 39 37
43: 42(ptr) AccessChain 14(local) 16 43: 38(ptr) AccessChain 14(local) 42 42
Store 43 41 44: 7(fvec4) Load 43
47: 46(ptr) AccessChain 14(local) 23 Store 41(m[0]) 44
48: 10 Load 47 47: 38(ptr) AccessChain 14(local) 42 46
Store 45(m) 48 48: 7(fvec4) Load 47
52: 51(ptr) AccessChain 14(local) 19 Store 45(m[1]) 48
52: 51(ptr) AccessChain 14(local) 46
53: 11(ivec2) Load 52 53: 11(ivec2) Load 52
Store 50(coord) 53 Store 50(coord) 53
56: 42(ptr) AccessChain 14(local) 16 55: 38(ptr) AccessChain 14(local) 16
57: 7(fvec4) Load 56 56: 7(fvec4) Load 55
Store 55(b) 57 Store 54(b) 56
Return Return
FunctionEnd FunctionEnd

View File

@ -0,0 +1,28 @@
SamplerState g_samp;
Texture1D g_tex;
struct tex_t {
SamplerState samp;
Texture1D tex;
int nonopaque_thing;
};
struct tex_with_arrays_t {
SamplerState samp[2];
Texture1D tex[2];
int nonopaque_thing;
};
uniform tex_t g_texdata;
uniform tex_t g_texdata_array[3];
uniform tex_with_arrays_t g_texdata_array2[3];
struct PS_OUTPUT { float4 color : SV_Target0; };
void main(out PS_OUTPUT ps_output)
{
ps_output.color =
g_texdata.tex.Sample(g_texdata.samp, 0.5) +
g_texdata_array[1].tex.Sample(g_texdata_array[1].samp, 0.4) +
g_texdata_array2[1].tex[0].Sample(g_texdata_array2[1].samp[0], 0.3);
}

View File

@ -0,0 +1,17 @@
struct VertexData {
float4 position : POSITION;
float4 color : COLOR0;
float2 uv : TEXCOORD0;
};
[maxvertexcount(4)]
void main(line VertexData vin[2], inout TriangleStream<VertexData> outStream)
{
VertexData vout;
vout.color = vin[0].color;
vout.uv = vin[0].uv;
vout.position = vin[0].position;
outStream.Append(vout);
}

View File

@ -204,6 +204,8 @@ INSTANTIATE_TEST_CASE_P(
{"hlsl.shapeConvRet.frag", "main"}, {"hlsl.shapeConvRet.frag", "main"},
{"hlsl.stringtoken.frag", "main"}, {"hlsl.stringtoken.frag", "main"},
{"hlsl.string.frag", "main"}, {"hlsl.string.frag", "main"},
{"hlsl.structarray.flatten.frag", "main"},
{"hlsl.structarray.flatten.geom", "main"},
{"hlsl.structin.vert", "main"}, {"hlsl.structin.vert", "main"},
{"hlsl.intrinsics.vert", "VertexShaderFunction"}, {"hlsl.intrinsics.vert", "VertexShaderFunction"},
{"hlsl.matType.frag", "PixelShaderFunction"}, {"hlsl.matType.frag", "PixelShaderFunction"},

View File

@ -389,7 +389,7 @@ bool HlslGrammar::acceptDeclaration(TIntermNode*& node)
else if (variableType.getBasicType() == EbtBlock) else if (variableType.getBasicType() == EbtBlock)
parseContext.declareBlock(idToken.loc, variableType, idToken.string); parseContext.declareBlock(idToken.loc, variableType, idToken.string);
else { else {
if (variableType.getQualifier().storage == EvqUniform && ! variableType.isOpaque()) { if (variableType.getQualifier().storage == EvqUniform && ! variableType.containsOpaque()) {
// this isn't really an individual variable, but a member of the $Global buffer // this isn't really an individual variable, but a member of the $Global buffer
parseContext.growGlobalUniformBlock(idToken.loc, variableType, *idToken.string); parseContext.growGlobalUniformBlock(idToken.loc, variableType, *idToken.string);
} else { } else {
@ -2215,6 +2215,20 @@ bool HlslGrammar::acceptPostfixExpression(TIntermTyped*& node)
return false; return false;
} }
// This is to guarantee we do this no matter how we get out of the stack frame.
// This way there's no bug if an early return forgets to do it.
struct tFinalize {
tFinalize(HlslParseContext& p) : parseContext(p) { }
~tFinalize() { parseContext.finalizeFlattening(); }
HlslParseContext& parseContext;
} finalize(parseContext);
// Initialize the flattening accumulation data, so we can track data across multiple bracket or
// dot operators. This can also be nested, e.g, for [], so we have to track each nesting
// level: hence the init and finalize. Even though in practice these must be
// constants, they are parsed no matter what.
parseContext.initFlattening();
// Something was found, chain as many postfix operations as exist. // Something was found, chain as many postfix operations as exist.
do { do {
TSourceLoc loc = token.loc; TSourceLoc loc = token.loc;
@ -2248,7 +2262,7 @@ bool HlslGrammar::acceptPostfixExpression(TIntermTyped*& node)
node = parseContext.handleDotDereference(field.loc, node, *field.string); node = parseContext.handleDotDereference(field.loc, node, *field.string);
// In the event of a method node, we look for an open paren and accept the function call. // In the event of a method node, we look for an open paren and accept the function call.
if (node->getAsMethodNode() != nullptr && peekTokenClass(EHTokLeftParen)) { if (node != nullptr && node->getAsMethodNode() != nullptr && peekTokenClass(EHTokLeftParen)) {
if (! acceptFunctionCall(field, node, base)) { if (! acceptFunctionCall(field, node, base)) {
expected("function parameters"); expected("function parameters");
return false; return false;

View File

@ -45,6 +45,7 @@
#include "../glslang/OSDependent/osinclude.h" #include "../glslang/OSDependent/osinclude.h"
#include <algorithm> #include <algorithm>
#include <functional>
#include <cctype> #include <cctype>
namespace glslang { namespace glslang {
@ -651,11 +652,11 @@ TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc,
else { else {
// at least one of base and index is variable... // at least one of base and index is variable...
if (base->getAsSymbolNode() && shouldFlatten(base->getType())) { if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType()))) {
if (index->getQualifier().storage != EvqConst) if (index->getQualifier().storage != EvqConst)
error(loc, "Invalid variable index to flattened uniform array", base->getAsSymbolNode()->getName().c_str(), ""); error(loc, "Invalid variable index to flattened uniform array", base->getAsSymbolNode()->getName().c_str(), "");
result = flattenAccess(base, indexValue); result = flattenAccess(loc, base, indexValue);
flattened = (result != base); flattened = (result != base);
} else { } else {
if (index->getQualifier().storage == EvqConst) { if (index->getQualifier().storage == EvqConst) {
@ -831,8 +832,8 @@ TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TInt
} }
} }
if (fieldFound) { if (fieldFound) {
if (base->getAsSymbolNode() && shouldFlatten(base->getType())) if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType())))
result = flattenAccess(base, member); result = flattenAccess(loc, base, member);
else { else {
if (base->getType().getQualifier().storage == EvqConst) if (base->getType().getQualifier().storage == EvqConst)
result = intermediate.foldDereference(base, member, loc); result = intermediate.foldDereference(base, member, loc);
@ -850,6 +851,12 @@ TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TInt
return result; return result;
} }
// Determine whether we should flatten an arbitrary type.
bool HlslParseContext::shouldFlatten(const TType& type) const
{
return shouldFlattenIO(type) || shouldFlattenUniform(type);
}
// Is this an IO variable that can't be passed down the stack? // Is this an IO variable that can't be passed down the stack?
// E.g., pipeline inputs to the vertex stage and outputs from the fragment stage. // E.g., pipeline inputs to the vertex stage and outputs from the fragment stage.
bool HlslParseContext::shouldFlattenIO(const TType& type) const bool HlslParseContext::shouldFlattenIO(const TType& type) const
@ -869,27 +876,98 @@ bool HlslParseContext::shouldFlattenUniform(const TType& type) const
{ {
const TStorageQualifier qualifier = type.getQualifier().storage; const TStorageQualifier qualifier = type.getQualifier().storage;
return type.isArray() && return ((type.isArray() && intermediate.getFlattenUniformArrays()) || type.isStruct()) &&
intermediate.getFlattenUniformArrays() &&
qualifier == EvqUniform && qualifier == EvqUniform &&
type.isOpaque(); type.containsOpaque();
} }
// Top level variable flattening: construct data
void HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable) void HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable)
{ {
const TType& type = variable.getType(); const TType& type = variable.getType();
// Presently, flattening of structure arrays is unimplemented. // emplace gives back a pair whose .first is an iterator to the item...
// We handle one, or the other. auto entry = flattenMap.emplace(variable.getUniqueId(),
if (type.isArray() && type.isStruct()) { TFlattenData(type.getQualifier().layoutBinding));
error(loc, "cannot flatten structure array", variable.getName().c_str(), "");
// ... and the item is a map pair, so first->second is the TFlattenData itself.
flatten(loc, variable, type, entry.first->second, "");
}
// Recursively flatten the given variable at the provided type, building the flattenData as we go.
//
// This is mutually recursive with flattenStruct and flattenArray.
// We are going to flatten an arbitrarily nested composite structure into a linear sequence of
// members, and later on, we want to turn a path through the tree structure into a final
// location in this linear sequence.
//
// If the tree was N-ary, that can be directly calculated. However, we are dealing with
// arbitrary numbers - peraps a struct of 7 members containing an array of 3. Thus, we must
// build a data structure to allow the sequence of bracket and dot operators on arrays and
// structs to arrive at the proper member.
//
// To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
// The leaves are the indexes into the flattened member array.
// Each level will have the next location for the Nth item stored sequentially, so for instance:
//
// struct { float2 a[2]; int b; float4 c[3] };
//
// This will produce the following flattened tree:
// Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
// (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5}
//
// Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
// (0+2) = 8 --> (8+1) = 12 --> 12 = 4
//
// so the 4th flattened member in traversal order is ours.
//
int HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name)
{
// TODO: when struct splitting is in place we can remove this restriction.
if (language == EShLangGeometry) {
const TType derefType(type, 0);
if (!isFinalFlattening(derefType) && type.getQualifier().storage == EvqVaryingIn)
error(loc, "recursive type not yet supported in GS input", variable.getName().c_str(), "");
} }
if (type.isStruct()) // If something is an arrayed struct, the array flattener will recursively call flatten()
flattenStruct(variable); // to then flatten the struct, so this is an "if else": we don't do both.
if (type.isArray()) if (type.isArray())
flattenArray(loc, variable); return flattenArray(loc, variable, type, flattenData, name);
else if (type.isStruct())
return flattenStruct(loc, variable, type, flattenData, name);
else {
assert(0); // should never happen
return -1;
}
}
// Add a single flattened member to the flattened data being tracked for the composite
// Returns true for the final flattening level.
int HlslParseContext::addFlattenedMember(const TSourceLoc& loc,
const TVariable& variable, const TType& type, TFlattenData& flattenData,
const TString& memberName, bool track)
{
if (isFinalFlattening(type)) {
// This is as far as we flatten. Insert the variable.
TVariable* memberVariable = makeInternalVariable(memberName.c_str(), type);
mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
flattenData.offsets.push_back(flattenData.members.size());
flattenData.members.push_back(memberVariable);
if (track)
trackLinkageDeferred(*memberVariable);
return flattenData.offsets.size()-1; // location of the member reference
} else {
// Further recursion required
return flatten(loc, variable, type, flattenData, memberName);
}
} }
// Figure out the mapping between an aggregate's top members and an // Figure out the mapping between an aggregate's top members and an
@ -899,84 +977,103 @@ void HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable)
// effecting a transfer of this information to the flattened variable form. // effecting a transfer of this information to the flattened variable form.
// //
// Assumes shouldFlatten() or equivalent was called first. // Assumes shouldFlatten() or equivalent was called first.
// int HlslParseContext::flattenStruct(const TSourceLoc& loc, const TVariable& variable, const TType& type,
// TODO: generalize this to arbitrary nesting? TFlattenData& flattenData, TString name)
void HlslParseContext::flattenStruct(const TVariable& variable)
{ {
TVector<TVariable*> memberVariables; assert(type.isStruct());
auto members = *type.getStruct();
// Reserve space for this tree level.
int start = flattenData.offsets.size();
int pos = start;
flattenData.offsets.resize(int(pos + members.size()), -1);
auto members = *variable.getType().getStruct();
for (int member = 0; member < (int)members.size(); ++member) { for (int member = 0; member < (int)members.size(); ++member) {
TVariable* memberVariable = makeInternalVariable(members[member].type->getFieldName().c_str(), TType& dereferencedType = *members[member].type;
*members[member].type); const TString memberName = name + (name.empty() ? "" : ".") + dereferencedType.getFieldName();
mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
memberVariables.push_back(memberVariable); const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData, memberName, false);
flattenData.offsets[pos++] = mpos;
// N.B. Erase I/O-related annotations from the source-type member. // N.B. Erase I/O-related annotations from the source-type member.
members[member].type->getQualifier().makeTemporary(); dereferencedType.getQualifier().makeTemporary();
} }
flattenMap[variable.getUniqueId()] = memberVariables; return start;
} }
// Figure out mapping between an array's members and an // Figure out mapping between an array's members and an
// equivalent set of individual variables. // equivalent set of individual variables.
// //
// Assumes shouldFlatten() or equivalent was called first. // Assumes shouldFlatten() or equivalent was called first.
void HlslParseContext::flattenArray(const TSourceLoc& loc, const TVariable& variable) int HlslParseContext::flattenArray(const TSourceLoc& loc, const TVariable& variable, const TType& type,
TFlattenData& flattenData, TString name)
{ {
const TType& type = variable.getType();
assert(type.isArray()); assert(type.isArray());
if (type.isImplicitlySizedArray()) if (type.isImplicitlySizedArray())
error(loc, "cannot flatten implicitly sized array", variable.getName().c_str(), ""); error(loc, "cannot flatten implicitly sized array", variable.getName().c_str(), "");
if (type.getArraySizes()->getNumDims() != 1) const int size = type.getOuterArraySize();
error(loc, "cannot flatten multi-dimensional array", variable.getName().c_str(), "");
const int size = type.getCumulativeArraySize();
TVector<TVariable*> memberVariables;
const TType dereferencedType(type, 0); const TType dereferencedType(type, 0);
int binding = type.getQualifier().layoutBinding;
if (dereferencedType.isStruct() || dereferencedType.isArray()) { if (name.empty())
error(loc, "cannot flatten array of aggregate types", variable.getName().c_str(), ""); name = variable.getName();
}
// Reserve space for this tree level.
int start = flattenData.offsets.size();
int pos = start;
flattenData.offsets.resize(int(pos + size), -1);
for (int element=0; element < size; ++element) { for (int element=0; element < size; ++element) {
char elementNumBuf[20]; // sufficient for MAXINT char elementNumBuf[20]; // sufficient for MAXINT
snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element); snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
const TString memberName = variable.getName() + elementNumBuf; const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData,
name + elementNumBuf, true);
TVariable* memberVariable = makeInternalVariable(memberName.c_str(), dereferencedType); flattenData.offsets[pos++] = mpos;
memberVariable->getWritableType().getQualifier() = variable.getType().getQualifier();
memberVariable->getWritableType().getQualifier().layoutBinding = binding;
if (binding != TQualifier::layoutBindingEnd)
++binding;
memberVariables.push_back(memberVariable);
trackLinkageDeferred(*memberVariable);
} }
flattenMap[variable.getUniqueId()] = memberVariables; return start;
} }
// Return true if we have flattened this node.
bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
{
return node != nullptr &&
node->getAsSymbolNode() != nullptr &&
wasFlattened(node->getAsSymbolNode()->getId());
}
// Turn an access into an aggregate that was flattened to instead be // Turn an access into an aggregate that was flattened to instead be
// an access to the individual variable the member was flattened to. // an access to the individual variable the member was flattened to.
// Assumes shouldFlatten() or equivalent was called first. // Assumes shouldFlatten() or equivalent was called first.
TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member) TIntermTyped* HlslParseContext::flattenAccess(const TSourceLoc&, TIntermTyped* base, int member)
{ {
const TType dereferencedType(base->getType(), member); // dereferenced type
const TIntermSymbol& symbolNode = *base->getAsSymbolNode(); const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
if (flattenMap.find(symbolNode.getId()) == flattenMap.end()) const auto flattenData = flattenMap.find(symbolNode.getId());
if (flattenData == flattenMap.end())
return base; return base;
const TVariable* memberVariable = flattenMap[symbolNode.getId()][member]; // Calculate new cumulative offset from the packed tree
flattenOffset.back() = flattenData->second.offsets[flattenOffset.back() + member];
if (isFinalFlattening(dereferencedType)) {
// Finished flattening: create symbol for variable
member = flattenData->second.offsets[flattenOffset.back()];
const TVariable* memberVariable = flattenData->second.members[member];
return intermediate.addSymbol(*memberVariable); return intermediate.addSymbol(*memberVariable);
} else {
// If this is not the final flattening, accumulate the position and return
// an object of the partially dereferenced type.
return new TIntermSymbol(symbolNode.getId(), "flattenShadow", dereferencedType);
}
} }
// Variables that correspond to the user-interface in and out of a stage // Variables that correspond to the user-interface in and out of a stage
@ -1002,8 +1099,8 @@ void HlslParseContext::assignLocations(TVariable& variable)
} }
}; };
if (shouldFlatten(variable.getType())) { if (wasFlattened(variable.getUniqueId())) {
auto& memberList = flattenMap[variable.getUniqueId()]; auto& memberList = flattenMap[variable.getUniqueId()].members;
for (auto member = memberList.begin(); member != memberList.end(); ++member) for (auto member = memberList.begin(); member != memberList.end(); ++member)
assignLocation(**member); assignLocation(**member);
} else } else
@ -1294,7 +1391,7 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
return nullptr; return nullptr;
const auto mustFlatten = [&](const TIntermTyped& node) { const auto mustFlatten = [&](const TIntermTyped& node) {
return shouldFlatten(node.getType()) && node.getAsSymbolNode() && return wasFlattened(&node) && node.getAsSymbolNode() &&
flattenMap.find(node.getAsSymbolNode()->getId()) != flattenMap.end(); flattenMap.find(node.getAsSymbolNode()->getId()) != flattenMap.end();
}; };
@ -1327,10 +1424,10 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
memberCount = left->getType().getCumulativeArraySize(); memberCount = left->getType().getCumulativeArraySize();
if (flattenLeft) if (flattenLeft)
leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second; leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members;
if (flattenRight) { if (flattenRight) {
rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second; rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members;
} else { } else {
// The RHS is not flattened. There are several cases: // The RHS is not flattened. There are several cases:
// 1. 1 item to copy: Use the RHS directly. // 1. 1 item to copy: Use the RHS directly.
@ -1355,13 +1452,15 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
} }
} }
int memberIdx = 0;
const auto getMember = [&](bool flatten, TIntermTyped* node, const auto getMember = [&](bool flatten, TIntermTyped* node,
const TVector<TVariable*>& memberVariables, int member, const TVector<TVariable*>& memberVariables, int member,
TOperator op, const TType& memberType) -> TIntermTyped * { TOperator op, const TType& memberType) -> TIntermTyped * {
TIntermTyped* subTree; TIntermTyped* subTree;
if (flatten) if (flatten && isFinalFlattening(memberType)) {
subTree = intermediate.addSymbol(*memberVariables[member]); subTree = intermediate.addSymbol(*memberVariables[memberIdx++]);
else { } else {
subTree = intermediate.addIndex(op, node, intermediate.addConstantUnion(member, loc), loc); subTree = intermediate.addIndex(op, node, intermediate.addConstantUnion(member, loc), loc);
subTree->setType(memberType); subTree->setType(memberType);
} }
@ -1369,46 +1468,59 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
return subTree; return subTree;
}; };
// Return the proper RHS node: a new symbol from a TVariable, copy // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
// of an TIntermSymbol node, or sometimes the right node directly. // whole thing. So, we'll resort to an explicit type via std::function.
const auto getRHS = [&]() { const std::function<void(TIntermTyped* left, TIntermTyped* right)>
return rhsTempVar ? intermediate.addSymbol(*rhsTempVar, loc) : traverse = [&](TIntermTyped* left, TIntermTyped* right) -> void {
cloneSymNode ? intermediate.addSymbol(*cloneSymNode) : // If we get here, we are assigning to or from a whole array or struct that must be
right;
};
// Handle struct assignment
if (left->getType().isStruct()) {
// If we get here, we are assigning to or from a whole struct that must be
// flattened, so have to do member-by-member assignment: // flattened, so have to do member-by-member assignment:
const auto& members = *left->getType().getStruct();
for (int member = 0; member < (int)members.size(); ++member) {
TIntermTyped* subRight = getMember(flattenRight, getRHS(), *rightVariables, member,
EOpIndexDirectStruct, *members[member].type);
TIntermTyped* subLeft = getMember(flattenLeft, left, *leftVariables, member,
EOpIndexDirectStruct, *members[member].type);
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc);
}
}
// Handle array assignment
if (left->getType().isArray()) { if (left->getType().isArray()) {
// If we get here, we are assigning to or from a whole array that must be // array case
// flattened, so have to do member-by-member assignment:
const TType dereferencedType(left->getType(), 0); const TType dereferencedType(left->getType(), 0);
for (int element=0; element < memberCount; ++element) { for (int element=0; element < left->getType().getOuterArraySize(); ++element) {
// Add a new AST symbol node if we have a temp variable holding a complex RHS. // Add a new AST symbol node if we have a temp variable holding a complex RHS.
TIntermTyped* subRight = getMember(flattenRight, getRHS(), *rightVariables, element, TIntermTyped* subRight = getMember(flattenRight, right, *rightVariables, element,
EOpIndexDirect, dereferencedType); EOpIndexDirect, dereferencedType);
TIntermTyped* subLeft = getMember(flattenLeft, left, *leftVariables, element, TIntermTyped* subLeft = getMember(flattenLeft, left, *leftVariables, element,
EOpIndexDirect, dereferencedType); EOpIndexDirect, dereferencedType);
if (isFinalFlattening(dereferencedType))
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc); assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc);
else
traverse(subLeft, subRight);
} }
} else if (left->getType().isStruct()) {
// struct case
const auto& members = *left->getType().getStruct();
for (int member = 0; member < (int)members.size(); ++member) {
TIntermTyped* subRight = getMember(flattenRight, right, *rightVariables, member,
EOpIndexDirectStruct, *members[member].type);
TIntermTyped* subLeft = getMember(flattenLeft, left, *leftVariables, member,
EOpIndexDirectStruct, *members[member].type);
if (isFinalFlattening(*members[member].type))
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc);
else
traverse(subLeft, subRight);
} }
} else {
assert(0); // we should never be called on a non-flattenable thing, because
// that case bails out above to a simple copy.
}
};
// Use the proper RHS node: a new symbol from a TVariable, copy
// of an TIntermSymbol node, or sometimes the right node directly.
right = rhsTempVar ? intermediate.addSymbol(*rhsTempVar, loc) :
cloneSymNode ? intermediate.addSymbol(*cloneSymNode) :
right;
// This makes the whole assignment, recursing through subtypes as needed.
traverse(left, right);
assert(assignList != nullptr); assert(assignList != nullptr);
assignList->setOperator(EOpSequence); assignList->setOperator(EOpSequence);
@ -2701,7 +2813,7 @@ void HlslParseContext::addInputArgumentConversions(const TFunction& function, TI
arg = intermediate.addShapeConversion(EOpFunctionCall, *function[i].type, arg); arg = intermediate.addShapeConversion(EOpFunctionCall, *function[i].type, arg);
setArg(i, arg); setArg(i, arg);
} else { } else {
if (shouldFlatten(arg->getType())) { if (wasFlattened(arg)) {
// Will make a two-level subtree. // Will make a two-level subtree.
// The deepest will copy member-by-member to build the structure to pass. // The deepest will copy member-by-member to build the structure to pass.
// The level above that will be a two-operand EOpComma sequence that follows the copy by the // The level above that will be a two-operand EOpComma sequence that follows the copy by the
@ -2749,7 +2861,7 @@ TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& fu
return function[argNum].type->getQualifier().isParamOutput() && return function[argNum].type->getQualifier().isParamOutput() &&
(*function[argNum].type != arguments[argNum]->getAsTyped()->getType() || (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
shouldConvertLValue(arguments[argNum]) || shouldConvertLValue(arguments[argNum]) ||
shouldFlatten(arguments[argNum]->getAsTyped()->getType())); wasFlattened(arguments[argNum]->getAsTyped()));
}; };
// Will there be any output conversions? // Will there be any output conversions?
@ -4623,23 +4735,23 @@ TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, TString& i
inheritGlobalDefaults(type.getQualifier()); inheritGlobalDefaults(type.getQualifier());
bool flattenVar = false; const bool flattenVar = shouldFlatten(type);
// Declare the variable // Declare the variable
if (type.isArray()) { if (type.isArray()) {
// array case // array case
flattenVar = shouldFlatten(type);
declareArray(loc, identifier, type, symbol, !flattenVar); declareArray(loc, identifier, type, symbol, !flattenVar);
if (flattenVar)
flatten(loc, *symbol->getAsVariable());
} else { } else {
// non-array case // non-array case
if (! symbol) if (! symbol)
symbol = declareNonArray(loc, identifier, type); symbol = declareNonArray(loc, identifier, type, !flattenVar);
else if (type != symbol->getType()) else if (type != symbol->getType())
error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
} }
if (flattenVar)
flatten(loc, *symbol->getAsVariable());
if (! symbol) if (! symbol)
return nullptr; return nullptr;
@ -4692,14 +4804,14 @@ TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType&
// //
// Return the successfully declared variable. // Return the successfully declared variable.
// //
TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type) TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type, bool track)
{ {
// make a new variable // make a new variable
TVariable* variable = new TVariable(&identifier, type); TVariable* variable = new TVariable(&identifier, type);
// add variable to symbol table // add variable to symbol table
if (symbolTable.insert(*variable)) { if (symbolTable.insert(*variable)) {
if (symbolTable.atGlobalLevel()) if (track && symbolTable.atGlobalLevel())
trackLinkageDeferred(*variable); trackLinkageDeferred(*variable);
return variable; return variable;
} }

View File

@ -169,10 +169,23 @@ public:
// Potentially rename shader entry point function // Potentially rename shader entry point function
void renameShaderFunction(TString*& name) const; void renameShaderFunction(TString*& name) const;
// Reset data for incrementally built referencing of flattened composite structures
void initFlattening() { flattenLevel.push_back(0); flattenOffset.push_back(0); }
void finalizeFlattening() { flattenLevel.pop_back(); flattenOffset.pop_back(); }
protected: protected:
struct TFlattenData {
TFlattenData() : nextBinding(TQualifier::layoutBindingEnd) { }
TFlattenData(int nb) : nextBinding(nb) { }
TVector<TVariable*> members; // individual flattened variables
TVector<int> offsets; // offset to next tree level
int nextBinding; // next binding to use.
};
void inheritGlobalDefaults(TQualifier& dst) const; void inheritGlobalDefaults(TQualifier& dst) const;
TVariable* makeInternalVariable(const char* name, const TType&) const; TVariable* makeInternalVariable(const char* name, const TType&) const;
TVariable* declareNonArray(const TSourceLoc&, TString& identifier, TType&); TVariable* declareNonArray(const TSourceLoc&, TString& identifier, TType&, bool track);
void declareArray(const TSourceLoc&, TString& identifier, const TType&, TSymbol*&, bool track); void declareArray(const TSourceLoc&, TString& identifier, const TType&, TSymbol*&, bool track);
TIntermNode* executeInitializer(const TSourceLoc&, TIntermTyped* initializer, TVariable* variable); TIntermNode* executeInitializer(const TSourceLoc&, TIntermTyped* initializer, TVariable* variable);
TIntermTyped* convertInitializerList(const TSourceLoc&, const TType&, TIntermTyped* initializer); TIntermTyped* convertInitializerList(const TSourceLoc&, const TType&, TIntermTyped* initializer);
@ -183,13 +196,19 @@ protected:
bool shouldConvertLValue(const TIntermNode*) const; bool shouldConvertLValue(const TIntermNode*) const;
// Array and struct flattening // Array and struct flattening
bool shouldFlatten(const TType& type) const { return shouldFlattenIO(type) || shouldFlattenUniform(type); } bool shouldFlatten(const TType& type) const;
TIntermTyped* flattenAccess(TIntermTyped* base, int member); TIntermTyped* flattenAccess(const TSourceLoc&, TIntermTyped* base, int member);
bool shouldFlattenIO(const TType&) const; bool shouldFlattenIO(const TType&) const;
bool shouldFlattenUniform(const TType&) const; bool shouldFlattenUniform(const TType&) const;
bool wasFlattened(const TIntermTyped* node) const;
bool wasFlattened(int id) const { return flattenMap.find(id) != flattenMap.end(); }
int addFlattenedMember(const TSourceLoc& loc, const TVariable&, const TType&, TFlattenData&, const TString& name, bool track);
bool isFinalFlattening(const TType& type) const { return !(type.isStruct() || type.isArray()); }
void flatten(const TSourceLoc& loc, const TVariable& variable); void flatten(const TSourceLoc& loc, const TVariable& variable);
void flattenStruct(const TVariable& variable); int flatten(const TSourceLoc& loc, const TVariable& variable, const TType&, TFlattenData&, TString name);
void flattenArray(const TSourceLoc& loc, const TVariable& variable); int flattenStruct(const TSourceLoc& loc, const TVariable& variable, const TType&, TFlattenData&, TString name);
int flattenArray(const TSourceLoc& loc, const TVariable& variable, const TType&, TFlattenData&, TString name);
// Current state of parsing // Current state of parsing
struct TPragma contextPragma; struct TPragma contextPragma;
@ -252,7 +271,10 @@ protected:
// //
TVector<TSymbol*> ioArraySymbolResizeList; TVector<TSymbol*> ioArraySymbolResizeList;
TMap<int, TVector<TVariable*>> flattenMap; TMap<int, TFlattenData> flattenMap;
TVector<int> flattenLevel; // nested postfix operator level for flattening
TVector<int> flattenOffset; // cumulative offset for flattening
unsigned int nextInLocation; unsigned int nextInLocation;
unsigned int nextOutLocation; unsigned int nextOutLocation;