// //Copyright (C) 2002-2005 3Dlabs Inc. Ltd. //Copyright (C) 2013 LunarG, Inc. // //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // #ifndef _SYMBOL_TABLE_INCLUDED_ #define _SYMBOL_TABLE_INCLUDED_ // // Symbol table for parsing. Has these design characteristics: // // * Same symbol table can be used to compile many shaders, to preserve // effort of creating and loading with the large numbers of built-in // symbols. // // --> This requires a copy mechanism, so initial pools used to create // the shared information can be popped. Done through "clone" // methods. // // * Name mangling will be used to give each function a unique name // so that symbol table lookups are never ambiguous. This allows // a simpler symbol table structure. // // * Pushing and popping of scope, so symbol table will really be a stack // of symbol tables. Searched from the top, with new inserts going into // the top. // // * Constants: Compile time constant symbols will keep their values // in the symbol table. The parser can substitute constants at parse // time, including doing constant folding and constant propagation. // // * No temporaries: Temporaries made from operations (+, --, .xy, etc.) // are tracked in the intermediate representation, not the symbol table. // #include "../Include/Common.h" #include "../Include/intermediate.h" #include "../Include/InfoSink.h" namespace glslang { // // Symbol base class. (Can build functions or variables out of these...) // class TVariable; class TFunction; class TAnonMember; class TSymbol { public: POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator()) explicit TSymbol(const TString *n) : name(n), numExtensions(0), extensions(0), writable(true) { } virtual TSymbol* clone() const = 0; virtual ~TSymbol() { } // rely on all symbol owned memory coming from the pool virtual const TString& getName() const { return *name; } virtual void changeName(const TString* newName) { name = newName; } virtual const TString& getMangledName() const { return getName(); } virtual TFunction* getAsFunction() { return 0; } virtual const TFunction* getAsFunction() const { return 0; } virtual TVariable* getAsVariable() { return 0; } virtual const TVariable* getAsVariable() const { return 0; } virtual const TAnonMember* getAsAnonMember() const { return 0; } virtual const TType& getType() const = 0; virtual TType& getWritableType() = 0; virtual void setUniqueId(int id) { uniqueId = id; } virtual int getUniqueId() const { return uniqueId; } virtual void setExtensions(int num, const char* const exts[]) { assert(extensions == 0); assert(num > 0); numExtensions = num; extensions = NewPoolObject(exts[0], num); for (int e = 0; e < num; ++e) extensions[e] = exts[e]; } virtual int getNumExtensions() const { return numExtensions; } virtual const char** getExtensions() const { return extensions; } virtual void dump(TInfoSink &infoSink) const = 0; virtual bool isReadOnly() const { return ! writable; } virtual void makeReadOnly() { writable = false; } protected: explicit TSymbol(const TSymbol&); TSymbol& operator=(const TSymbol&); const TString *name; unsigned int uniqueId; // For cross-scope comparing during code generation // For tracking what extensions must be present // (don't use if correct version/profile is present). int numExtensions; const char** extensions; // an array of pointers to existing constant char strings // // N.B.: Non-const functions that will be generally used should assert on this, // to avoid overwriting shared symbol-table information. // bool writable; }; // // Variable class, meaning a symbol that's not a function. // // There could be a separate class hierarchy for Constant variables; // Only one of int, bool, or float, (or none) is correct for // any particular use, but it's easy to do this way, and doesn't // seem worth having separate classes, and "getConst" can't simply return // different values for different types polymorphically, so this is // just simple and pragmatic. // class TVariable : public TSymbol { public: TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), userType(uT), constSubtree(nullptr) { type.shallowCopy(t); } virtual TVariable* clone() const; virtual ~TVariable() { } virtual TVariable* getAsVariable() { return this; } virtual const TVariable* getAsVariable() const { return this; } virtual const TType& getType() const { return type; } virtual TType& getWritableType() { assert(writable); return type; } virtual bool isUserType() const { return userType; } virtual const TConstUnionArray& getConstArray() const { return constArray; } virtual TConstUnionArray& getWritableConstArray() { assert(writable); return constArray; } virtual void setConstArray(const TConstUnionArray& array) { constArray = array; } virtual void setConstSubtree(TIntermTyped* subtree) { constSubtree = subtree; } virtual TIntermTyped* getConstSubtree() const { return constSubtree; } virtual void dump(TInfoSink &infoSink) const; protected: explicit TVariable(const TVariable&); TVariable& operator=(const TVariable&); TType type; bool userType; // we are assuming that Pool Allocator will free the memory allocated to unionArray // when this object is destroyed // TODO: these two should be a union // A variable could be a compile-time constant, or a specialization // constant, or neither, but never both. TConstUnionArray constArray; // for compile-time constant value TIntermTyped* constSubtree; // for specialization constant computation }; // // The function sub-class of symbols and the parser will need to // share this definition of a function parameter. // struct TParameter { TString *name; TType* type; void copyParam(const TParameter& param) { if (param.name) name = NewPoolTString(param.name->c_str()); else name = 0; type = param.type->clone(); } }; // // The function sub-class of a symbol. // class TFunction : public TSymbol { public: explicit TFunction(TOperator o) : TSymbol(0), op(o), defined(false), prototyped(false) { } TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull) : TSymbol(name), mangledName(*name + '('), op(tOp), defined(false), prototyped(false) { returnType.shallowCopy(retType); } virtual TFunction* clone() const; virtual ~TFunction(); virtual TFunction* getAsFunction() { return this; } virtual const TFunction* getAsFunction() const { return this; } virtual void addParameter(TParameter& p) { assert(writable); parameters.push_back(p); p.type->appendMangledName(mangledName); } virtual const TString& getMangledName() const { return mangledName; } virtual const TType& getType() const { return returnType; } virtual TType& getWritableType() { return returnType; } virtual void relateToOperator(TOperator o) { assert(writable); op = o; } virtual TOperator getBuiltInOp() const { return op; } virtual void setDefined() { assert(writable); defined = true; } virtual bool isDefined() const { return defined; } virtual void setPrototyped() { assert(writable); prototyped = true; } virtual bool isPrototyped() const { return prototyped; } virtual int getParamCount() const { return static_cast(parameters.size()); } virtual TParameter& operator[](int i) { assert(writable); return parameters[i]; } virtual const TParameter& operator[](int i) const { return parameters[i]; } virtual void dump(TInfoSink &infoSink) const; protected: explicit TFunction(const TFunction&); TFunction& operator=(const TFunction&); typedef TVector TParamList; TParamList parameters; TType returnType; TString mangledName; TOperator op; bool defined; bool prototyped; }; // // Members of anonymous blocks are a kind of TSymbol. They are not hidden in // the symbol table behind a container; rather they are visible and point to // their anonymous container. (The anonymous container is found through the // member, not the other way around.) // class TAnonMember : public TSymbol { public: TAnonMember(const TString* n, unsigned int m, const TVariable& a, int an) : TSymbol(n), anonContainer(a), memberNumber(m), anonId(an) { } virtual TAnonMember* clone() const; virtual ~TAnonMember() { } virtual const TAnonMember* getAsAnonMember() const { return this; } virtual const TVariable& getAnonContainer() const { return anonContainer; } virtual unsigned int getMemberNumber() const { return memberNumber; } virtual const TType& getType() const { const TTypeList& types = *anonContainer.getType().getStruct(); return *types[memberNumber].type; } virtual TType& getWritableType() { assert(writable); const TTypeList& types = *anonContainer.getType().getStruct(); return *types[memberNumber].type; } virtual int getAnonId() const { return anonId; } virtual void dump(TInfoSink &infoSink) const; protected: explicit TAnonMember(const TAnonMember&); TAnonMember& operator=(const TAnonMember&); const TVariable& anonContainer; unsigned int memberNumber; int anonId; }; class TSymbolTableLevel { public: POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator()) TSymbolTableLevel() : defaultPrecision(0), anonId(0) { } ~TSymbolTableLevel(); bool insert(TSymbol& symbol, bool separateNameSpaces) { // // returning true means symbol was added to the table with no semantic errors // tInsertResult result; const TString& name = symbol.getName(); if (name == "") { // An empty name means an anonymous container, exposing its members to the external scope. // Give it a name and insert its members in the symbol table, pointing to the container. char buf[20]; snprintf(buf, 20, "%s%d", AnonymousPrefix, anonId); symbol.changeName(NewPoolTString(buf)); bool isOkay = true; const TTypeList& types = *symbol.getAsVariable()->getType().getStruct(); for (unsigned int m = 0; m < types.size(); ++m) { TAnonMember* member = new TAnonMember(&types[m].type->getFieldName(), m, *symbol.getAsVariable(), anonId); result = level.insert(tLevelPair(member->getMangledName(), member)); if (! result.second) isOkay = false; } ++anonId; return isOkay; } else { // Check for redefinition errors: // - STL itself will tell us if there is a direct name collision, with name mangling, at this level // - additionally, check for function-redefining-variable name collisions const TString& insertName = symbol.getMangledName(); if (symbol.getAsFunction()) { // make sure there isn't a variable of this name if (! separateNameSpaces && level.find(name) != level.end()) return false; // insert, and whatever happens is okay level.insert(tLevelPair(insertName, &symbol)); return true; } else { result = level.insert(tLevelPair(insertName, &symbol)); return result.second; } } } TSymbol* find(const TString& name) const { tLevel::const_iterator it = level.find(name); if (it == level.end()) return 0; else return (*it).second; } void findFunctionNameList(const TString& name, TVector& list) { size_t parenAt = name.find_first_of('('); TString base(name, 0, parenAt + 1); tLevel::const_iterator begin = level.lower_bound(base); base[parenAt] = ')'; // assume ')' is lexically after '(' tLevel::const_iterator end = level.upper_bound(base); for (tLevel::const_iterator it = begin; it != end; ++it) list.push_back(it->second->getAsFunction()); } // See if there is already a function in the table having the given non-function-style name. bool hasFunctionName(const TString& name) const { tLevel::const_iterator candidate = level.lower_bound(name); if (candidate != level.end()) { const TString& candidateName = (*candidate).first; TString::size_type parenAt = candidateName.find_first_of('('); if (parenAt != candidateName.npos && candidateName.compare(0, parenAt, name) == 0) return true; } return false; } // See if there is a variable at this level having the given non-function-style name. // Return true if name is found, and set variable to true if the name was a variable. bool findFunctionVariableName(const TString& name, bool& variable) const { tLevel::const_iterator candidate = level.lower_bound(name); if (candidate != level.end()) { const TString& candidateName = (*candidate).first; TString::size_type parenAt = candidateName.find_first_of('('); if (parenAt == candidateName.npos) { // not a mangled name if (candidateName == name) { // found a variable name match variable = true; return true; } } else { // a mangled name if (candidateName.compare(0, parenAt, name) == 0) { // found a function name match variable = false; return true; } } } return false; } // Use this to do a lazy 'push' of precision defaults the first time // a precision statement is seen in a new scope. Leave it at 0 for // when no push was needed. Thus, it is not the current defaults, // it is what to restore the defaults to when popping a level. void setPreviousDefaultPrecisions(const TPrecisionQualifier *p) { // can call multiple times at one scope, will only latch on first call, // as we're tracking the previous scope's values, not the current values if (defaultPrecision != 0) return; defaultPrecision = new TPrecisionQualifier[EbtNumTypes]; for (int t = 0; t < EbtNumTypes; ++t) defaultPrecision[t] = p[t]; } void getPreviousDefaultPrecisions(TPrecisionQualifier *p) { // can be called for table level pops that didn't set the // defaults if (defaultPrecision == 0 || p == 0) return; for (int t = 0; t < EbtNumTypes; ++t) p[t] = defaultPrecision[t]; } void relateToOperator(const char* name, TOperator op); void setFunctionExtensions(const char* name, int num, const char* const extensions[]); void dump(TInfoSink &infoSink) const; TSymbolTableLevel* clone() const; void readOnly(); protected: explicit TSymbolTableLevel(TSymbolTableLevel&); TSymbolTableLevel& operator=(TSymbolTableLevel&); typedef std::map, pool_allocator > > tLevel; typedef const tLevel::value_type tLevelPair; typedef std::pair tInsertResult; tLevel level; // named mappings TPrecisionQualifier *defaultPrecision; int anonId; }; class TSymbolTable { public: TSymbolTable() : uniqueId(0), noBuiltInRedeclarations(false), separateNameSpaces(false), adoptedLevels(0) { // // This symbol table cannot be used until push() is called. // } ~TSymbolTable() { // this can be called explicitly; safest to code it so it can be called multiple times // don't deallocate levels passed in from elsewhere while (table.size() > adoptedLevels) pop(0); } void adoptLevels(TSymbolTable& symTable) { for (unsigned int level = 0; level < symTable.table.size(); ++level) { table.push_back(symTable.table[level]); ++adoptedLevels; } uniqueId = symTable.uniqueId; noBuiltInRedeclarations = symTable.noBuiltInRedeclarations; separateNameSpaces = symTable.separateNameSpaces; } // // While level adopting is generic, the methods below enact a the following // convention for levels: // 0: common built-ins shared across all stages, all compiles, only one copy for all symbol tables // 1: per-stage built-ins, shared across all compiles, but a different copy per stage // 2: built-ins specific to a compile, like resources that are context-dependent, or redeclared built-ins // 3: user-shader globals // protected: static const int globalLevel = 3; bool isSharedLevel(int level) { return level <= 1; } // exclude all per-compile levels bool isBuiltInLevel(int level) { return level <= 2; } // exclude user globals bool isGlobalLevel(int level) { return level <= globalLevel; } // include user globals public: bool isEmpty() { return table.size() == 0; } bool atBuiltInLevel() { return isBuiltInLevel(currentLevel()); } bool atGlobalLevel() { return isGlobalLevel(currentLevel()); } void setNoBuiltInRedeclarations() { noBuiltInRedeclarations = true; } void setSeparateNameSpaces() { separateNameSpaces = true; } void push() { table.push_back(new TSymbolTableLevel); } void pop(TPrecisionQualifier *p) { table[currentLevel()]->getPreviousDefaultPrecisions(p); delete table.back(); table.pop_back(); } // // Insert a visible symbol into the symbol table so it can // be found later by name. // // Returns false if the was a name collision. // bool insert(TSymbol& symbol) { symbol.setUniqueId(++uniqueId); // make sure there isn't a function of this variable name if (! separateNameSpaces && ! symbol.getAsFunction() && table[currentLevel()]->hasFunctionName(symbol.getName())) return false; // check for not overloading or redefining a built-in function if (noBuiltInRedeclarations) { if (atGlobalLevel() && currentLevel() > 0) { if (table[0]->hasFunctionName(symbol.getName())) return false; if (currentLevel() > 1 && table[1]->hasFunctionName(symbol.getName())) return false; } } return table[currentLevel()]->insert(symbol, separateNameSpaces); } // // To allocate an internal temporary, which will need to be uniquely // identified by the consumer of the AST, but never need to // found by doing a symbol table search by name, hence allowed an // arbitrary name in the symbol with no worry of collision. // void makeInternalVariable(TSymbol& symbol) { symbol.setUniqueId(++uniqueId); } // // Copy a variable or anonymous member's structure from a shared level so that // it can be added (soon after return) to the symbol table where it can be // modified without impacting other users of the shared table. // TSymbol* copyUpDeferredInsert(TSymbol* shared) { if (shared->getAsVariable()) { TSymbol* copy = shared->clone(); copy->setUniqueId(shared->getUniqueId()); return copy; } else { const TAnonMember* anon = shared->getAsAnonMember(); assert(anon); TVariable* container = anon->getAnonContainer().clone(); container->changeName(NewPoolTString("")); container->setUniqueId(anon->getAnonContainer().getUniqueId()); return container; } } TSymbol* copyUp(TSymbol* shared) { TSymbol* copy = copyUpDeferredInsert(shared); table[globalLevel]->insert(*copy, separateNameSpaces); if (shared->getAsVariable()) return copy; else { // return the copy of the anonymous member return table[globalLevel]->find(shared->getName()); } } TSymbol* find(const TString& name, bool* builtIn = 0, bool *currentScope = 0) { int level = currentLevel(); TSymbol* symbol; do { symbol = table[level]->find(name); --level; } while (symbol == 0 && level >= 0); level++; if (builtIn) *builtIn = isBuiltInLevel(level); if (currentScope) *currentScope = isGlobalLevel(currentLevel()) || level == currentLevel(); // consider shared levels as "current scope" WRT user globals return symbol; } bool isFunctionNameVariable(const TString& name) const { if (separateNameSpaces) return false; int level = currentLevel(); do { bool variable; bool found = table[level]->findFunctionVariableName(name, variable); if (found) return variable; --level; } while (level >= 0); return false; } void findFunctionNameList(const TString& name, TVector& list, bool& builtIn) { // For user levels, return the set found in the first scope with a match builtIn = false; int level = currentLevel(); do { table[level]->findFunctionNameList(name, list); --level; } while (list.empty() && level >= globalLevel); if (! list.empty()) return; // Gather across all built-in levels; they don't hide each other builtIn = true; do { table[level]->findFunctionNameList(name, list); --level; } while (level >= 0); } void relateToOperator(const char* name, TOperator op) { for (unsigned int level = 0; level < table.size(); ++level) table[level]->relateToOperator(name, op); } void setFunctionExtensions(const char* name, int num, const char* const extensions[]) { for (unsigned int level = 0; level < table.size(); ++level) table[level]->setFunctionExtensions(name, num, extensions); } void setVariableExtensions(const char* name, int num, const char* const extensions[]) { TSymbol* symbol = find(TString(name)); if (symbol) symbol->setExtensions(num, extensions); } int getMaxSymbolId() { return uniqueId; } void dump(TInfoSink &infoSink) const; void copyTable(const TSymbolTable& copyOf); void setPreviousDefaultPrecisions(TPrecisionQualifier *p) { table[currentLevel()]->setPreviousDefaultPrecisions(p); } void readOnly() { for (unsigned int level = 0; level < table.size(); ++level) table[level]->readOnly(); } protected: TSymbolTable(TSymbolTable&); TSymbolTable& operator=(TSymbolTableLevel&); int currentLevel() const { return static_cast(table.size()) - 1; } std::vector table; int uniqueId; // for unique identification in code generation bool noBuiltInRedeclarations; bool separateNameSpaces; unsigned int adoptedLevels; }; } // end namespace glslang #endif // _SYMBOL_TABLE_INCLUDED_