7207 lines
		
	
	
		
			296 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			7207 lines
		
	
	
		
			296 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
//
 | 
						|
// Copyright (C) 2016 Google, Inc.
 | 
						|
// Copyright (C) 2016 LunarG, Inc.
 | 
						|
//
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions
 | 
						|
// are met:
 | 
						|
//
 | 
						|
//    Redistributions of source code must retain the above copyright
 | 
						|
//    notice, this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//    Redistributions in binary form must reproduce the above
 | 
						|
//    copyright notice, this list of conditions and the following
 | 
						|
//    disclaimer in the documentation and/or other materials provided
 | 
						|
//    with the distribution.
 | 
						|
//
 | 
						|
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
 | 
						|
//    contributors may be used to endorse or promote products derived
 | 
						|
//    from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
						|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
						|
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
						|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
						|
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
						|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
						|
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
						|
// POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
 | 
						|
#include "hlslParseHelper.h"
 | 
						|
#include "hlslScanContext.h"
 | 
						|
#include "hlslGrammar.h"
 | 
						|
#include "hlslAttributes.h"
 | 
						|
 | 
						|
#include "../glslang/MachineIndependent/Scan.h"
 | 
						|
#include "../glslang/MachineIndependent/preprocessor/PpContext.h"
 | 
						|
 | 
						|
#include "../glslang/OSDependent/osinclude.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
#include <cctype>
 | 
						|
#include <array>
 | 
						|
#include <set>
 | 
						|
 | 
						|
namespace glslang {
 | 
						|
 | 
						|
HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
 | 
						|
                                   int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, TInfoSink& infoSink,
 | 
						|
                                   const TString sourceEntryPointName,
 | 
						|
                                   bool forwardCompatible, EShMessages messages) :
 | 
						|
    TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink, forwardCompatible, messages),
 | 
						|
    contextPragma(true, false),
 | 
						|
    loopNestingLevel(0), annotationNestingLevel(0), structNestingLevel(0), controlFlowNestingLevel(0),
 | 
						|
    postEntryPointReturn(false),
 | 
						|
    limits(resources.limits),
 | 
						|
    builtInIoIndex(nullptr),
 | 
						|
    builtInIoBase(nullptr),
 | 
						|
    nextInLocation(0), nextOutLocation(0),
 | 
						|
    sourceEntryPointName(sourceEntryPointName),
 | 
						|
    entryPointFunction(nullptr),
 | 
						|
    entryPointFunctionBody(nullptr)
 | 
						|
{
 | 
						|
    globalUniformDefaults.clear();
 | 
						|
    globalUniformDefaults.layoutMatrix = ElmRowMajor;
 | 
						|
    globalUniformDefaults.layoutPacking = ElpStd140;
 | 
						|
 | 
						|
    globalBufferDefaults.clear();
 | 
						|
    globalBufferDefaults.layoutMatrix = ElmRowMajor;
 | 
						|
    globalBufferDefaults.layoutPacking = ElpStd430;
 | 
						|
 | 
						|
    globalInputDefaults.clear();
 | 
						|
    globalOutputDefaults.clear();
 | 
						|
 | 
						|
    // "Shaders in the transform
 | 
						|
    // feedback capturing mode have an initial global default of
 | 
						|
    //     layout(xfb_buffer = 0) out;"
 | 
						|
    if (language == EShLangVertex ||
 | 
						|
        language == EShLangTessControl ||
 | 
						|
        language == EShLangTessEvaluation ||
 | 
						|
        language == EShLangGeometry)
 | 
						|
        globalOutputDefaults.layoutXfbBuffer = 0;
 | 
						|
 | 
						|
    if (language == EShLangGeometry)
 | 
						|
        globalOutputDefaults.layoutStream = 0;
 | 
						|
 | 
						|
    if (spvVersion.spv == 0 || spvVersion.vulkan == 0)
 | 
						|
        infoSink.info << "ERROR: HLSL currently only supported when requesting SPIR-V for Vulkan.\n";
 | 
						|
}
 | 
						|
 | 
						|
HlslParseContext::~HlslParseContext()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::initializeExtensionBehavior()
 | 
						|
{
 | 
						|
    TParseContextBase::initializeExtensionBehavior();
 | 
						|
 | 
						|
    // HLSL allows #line by default.
 | 
						|
    extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::setLimits(const TBuiltInResource& r)
 | 
						|
{
 | 
						|
    resources = r;
 | 
						|
    intermediate.setLimits(resources);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Parse an array of strings using the parser in HlslRules.
 | 
						|
//
 | 
						|
// Returns true for successful acceptance of the shader, false if any errors.
 | 
						|
//
 | 
						|
bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
 | 
						|
{
 | 
						|
    currentScanner = &input;
 | 
						|
    ppContext.setInput(input, versionWillBeError);
 | 
						|
 | 
						|
    HlslScanContext scanContext(*this, ppContext);
 | 
						|
    HlslGrammar grammar(scanContext, *this);
 | 
						|
    if (!grammar.parse()) {
 | 
						|
        // Print a message formated such that if you click on the message it will take you right to
 | 
						|
        // the line through most UIs.
 | 
						|
        const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
 | 
						|
        infoSink.info << sourceLoc.name << "(" << sourceLoc.line << "): error at column " << sourceLoc.column << ", HLSL parsing failed.\n";
 | 
						|
        ++numErrors;
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    finish();
 | 
						|
 | 
						|
    return numErrors == 0;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Return true if this l-value node should be converted in some manner.
 | 
						|
// For instance: turning a load aggregate into a store in an l-value.
 | 
						|
//
 | 
						|
bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
 | 
						|
{
 | 
						|
    if (node == nullptr)
 | 
						|
        return false;
 | 
						|
 | 
						|
    const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
 | 
						|
    const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
 | 
						|
 | 
						|
    // If it's a swizzled/indexed aggregate, look at the left node instead.
 | 
						|
    if (lhsAsBinary != nullptr &&
 | 
						|
        (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
 | 
						|
        lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
 | 
						|
 | 
						|
    if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
 | 
						|
        return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::growGlobalUniformBlock(TSourceLoc& loc, TType& memberType, TString& memberName, TTypeList* newTypeList)
 | 
						|
{
 | 
						|
    newTypeList = nullptr;
 | 
						|
    correctUniform(memberType.getQualifier());
 | 
						|
    if (memberType.isStruct()) {
 | 
						|
        auto it = ioTypeMap.find(memberType.getStruct());
 | 
						|
        if (it != ioTypeMap.end() && it->second.uniform)
 | 
						|
            newTypeList = it->second.uniform;
 | 
						|
    }
 | 
						|
    TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Return a TLayoutFormat corresponding to the given texture type.
 | 
						|
//
 | 
						|
TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
 | 
						|
{
 | 
						|
    const int components = txType.getVectorSize();
 | 
						|
 | 
						|
    const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
 | 
						|
        if (intermediate.getNoStorageFormat())
 | 
						|
            return ElfNone;
 | 
						|
 | 
						|
        return components == 1 ? v1 :
 | 
						|
               components == 2 ? v2 : v4;
 | 
						|
    };
 | 
						|
 | 
						|
    switch (txType.getBasicType()) {
 | 
						|
    case EbtFloat: return selectFormat(ElfR32f,  ElfRg32f,  ElfRgba32f);
 | 
						|
    case EbtInt:   return selectFormat(ElfR32i,  ElfRg32i,  ElfRgba32i);
 | 
						|
    case EbtUint:  return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
 | 
						|
    default:
 | 
						|
        error(loc, "unknown basic type in image format", "", "");
 | 
						|
        return ElfNone;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Both test and if necessary, spit out an error, to see if the node is really
 | 
						|
// an l-value that can be operated on this way.
 | 
						|
//
 | 
						|
// Returns true if there was an error.
 | 
						|
//
 | 
						|
bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
 | 
						|
{
 | 
						|
    if (shouldConvertLValue(node)) {
 | 
						|
        // if we're writing to a texture, it must be an RW form.
 | 
						|
 | 
						|
        TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
 | 
						|
        TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
 | 
						|
 | 
						|
        if (!object->getType().getSampler().isImage()) {
 | 
						|
            error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Let the base class check errors
 | 
						|
    return TParseContextBase::lValueErrorCheck(loc, op, node);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// This function handles l-value conversions and verifications.  It uses, but is not synonymous
 | 
						|
// with lValueErrorCheck.  That function accepts an l-value directly, while this one must be
 | 
						|
// given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
 | 
						|
// series of other image operations.
 | 
						|
//
 | 
						|
// Most things are passed through unmodified, except for error checking.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped* node)
 | 
						|
{
 | 
						|
    if (node == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
 | 
						|
    TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
 | 
						|
    TIntermAggregate* sequence = nullptr;
 | 
						|
 | 
						|
    TIntermTyped* lhs = nodeAsUnary  ? nodeAsUnary->getOperand() :
 | 
						|
                        nodeAsBinary ? nodeAsBinary->getLeft() :
 | 
						|
                        nullptr;
 | 
						|
 | 
						|
    // Early bail out if there is no conversion to apply
 | 
						|
    if (!shouldConvertLValue(lhs)) {
 | 
						|
        if (lhs != nullptr)
 | 
						|
            if (lValueErrorCheck(loc, op, lhs))
 | 
						|
                return nullptr;
 | 
						|
        return node;
 | 
						|
    }
 | 
						|
 | 
						|
    // *** If we get here, we're going to apply some conversion to an l-value.
 | 
						|
 | 
						|
    // Helper to create a load.
 | 
						|
    const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
 | 
						|
        TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
 | 
						|
        loadOp->setLoc(loc);
 | 
						|
        loadOp->getSequence().push_back(object);
 | 
						|
        loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
 | 
						|
        loadOp->setType(derefType);
 | 
						|
 | 
						|
        sequence = intermediate.growAggregate(sequence,
 | 
						|
                                              intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
 | 
						|
                                              loc);
 | 
						|
    };
 | 
						|
 | 
						|
    // Helper to create a store.
 | 
						|
    const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
 | 
						|
        TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
 | 
						|
        storeOp->getSequence().push_back(object);
 | 
						|
        storeOp->getSequence().push_back(coord);
 | 
						|
        storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
 | 
						|
        storeOp->setLoc(loc);
 | 
						|
        storeOp->setType(TType(EbtVoid));
 | 
						|
 | 
						|
        sequence = intermediate.growAggregate(sequence, storeOp);
 | 
						|
    };
 | 
						|
 | 
						|
    // Helper to create an assign.
 | 
						|
    const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
 | 
						|
        sequence = intermediate.growAggregate(sequence,
 | 
						|
                                              intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
 | 
						|
                                              loc);
 | 
						|
    };
 | 
						|
 | 
						|
    // Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
 | 
						|
    const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
 | 
						|
        // Add a trailing use of the temp, so the sequence returns the proper value.
 | 
						|
        sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
 | 
						|
        sequence->setOperator(EOpSequence);
 | 
						|
        sequence->setLoc(loc);
 | 
						|
        sequence->setType(derefType);
 | 
						|
 | 
						|
        return sequence;
 | 
						|
    };
 | 
						|
 | 
						|
    // Helper to add unary op
 | 
						|
    const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
 | 
						|
        sequence = intermediate.growAggregate(sequence,
 | 
						|
                                              intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
 | 
						|
                                                                        rhsTmp->getType()),
 | 
						|
                                              loc);
 | 
						|
    };
 | 
						|
 | 
						|
    // Return true if swizzle or index writes all components of the given variable.
 | 
						|
    const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
 | 
						|
        if (swizzle == nullptr)  // not a swizzle or index
 | 
						|
            return true;
 | 
						|
 | 
						|
        // Track which components are being set.
 | 
						|
        std::array<bool, 4> compIsSet;
 | 
						|
        compIsSet.fill(false);
 | 
						|
 | 
						|
        const TIntermConstantUnion* asConst     = swizzle->getRight()->getAsConstantUnion();
 | 
						|
        const TIntermAggregate*     asAggregate = swizzle->getRight()->getAsAggregate();
 | 
						|
 | 
						|
        // This could be either a direct index, or a swizzle.
 | 
						|
        if (asConst) {
 | 
						|
            compIsSet[asConst->getConstArray()[0].getIConst()] = true;
 | 
						|
        } else if (asAggregate) {
 | 
						|
            const TIntermSequence& seq = asAggregate->getSequence();
 | 
						|
            for (int comp=0; comp<int(seq.size()); ++comp)
 | 
						|
                compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
 | 
						|
        } else {
 | 
						|
            assert(0);
 | 
						|
        }
 | 
						|
 | 
						|
        // Return true if all components are being set by the index or swizzle
 | 
						|
        return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
 | 
						|
                           [](bool isSet) { return isSet; } );
 | 
						|
    };
 | 
						|
 | 
						|
    // helper to create a temporary variable
 | 
						|
    const auto addTmpVar = [&](const char* name, const TType& derefType) -> TIntermSymbol* {
 | 
						|
        TVariable* tmpVar = makeInternalVariable(name, derefType);
 | 
						|
        tmpVar->getWritableType().getQualifier().makeTemporary();
 | 
						|
        return intermediate.addSymbol(*tmpVar, loc);
 | 
						|
    };
 | 
						|
 | 
						|
    // Create swizzle matching input swizzle
 | 
						|
    const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
 | 
						|
        if (swizzle)
 | 
						|
            return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
 | 
						|
        else
 | 
						|
            return var;
 | 
						|
    };
 | 
						|
 | 
						|
    TIntermBinary*    lhsAsBinary    = lhs->getAsBinaryNode();
 | 
						|
    TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
 | 
						|
    bool lhsIsSwizzle = false;
 | 
						|
 | 
						|
    // If it's a swizzled L-value, remember the swizzle, and use the LHS.
 | 
						|
    if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
 | 
						|
        lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
 | 
						|
        lhsIsSwizzle = true;
 | 
						|
    }
 | 
						|
 | 
						|
    TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
 | 
						|
    TIntermTyped* coord  = lhsAsAggregate->getSequence()[1]->getAsTyped();
 | 
						|
 | 
						|
    const TSampler& texSampler = object->getType().getSampler();
 | 
						|
 | 
						|
    const TType objDerefType(texSampler.type, EvqTemporary, texSampler.vectorSize);
 | 
						|
 | 
						|
    if (nodeAsBinary) {
 | 
						|
        TIntermTyped* rhs = nodeAsBinary->getRight();
 | 
						|
        const TOperator assignOp = nodeAsBinary->getOp();
 | 
						|
 | 
						|
        bool isModifyOp = false;
 | 
						|
 | 
						|
        switch (assignOp) {
 | 
						|
        case EOpAddAssign:
 | 
						|
        case EOpSubAssign:
 | 
						|
        case EOpMulAssign:
 | 
						|
        case EOpVectorTimesMatrixAssign:
 | 
						|
        case EOpVectorTimesScalarAssign:
 | 
						|
        case EOpMatrixTimesScalarAssign:
 | 
						|
        case EOpMatrixTimesMatrixAssign:
 | 
						|
        case EOpDivAssign:
 | 
						|
        case EOpModAssign:
 | 
						|
        case EOpAndAssign:
 | 
						|
        case EOpInclusiveOrAssign:
 | 
						|
        case EOpExclusiveOrAssign:
 | 
						|
        case EOpLeftShiftAssign:
 | 
						|
        case EOpRightShiftAssign:
 | 
						|
            isModifyOp = true;
 | 
						|
            // fall through...
 | 
						|
        case EOpAssign:
 | 
						|
            {
 | 
						|
                // Since this is an lvalue, we'll convert an image load to a sequence like this (to still provide the value):
 | 
						|
                //   OpSequence
 | 
						|
                //      OpImageStore(object, lhs, rhs)
 | 
						|
                //      rhs
 | 
						|
                // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS, so we'll convert
 | 
						|
                // instead to this:
 | 
						|
                //   OpSequence
 | 
						|
                //      rhsTmp = rhs
 | 
						|
                //      OpImageStore(object, coord, rhsTmp)
 | 
						|
                //      rhsTmp
 | 
						|
                // If this is a read-modify-write op, like +=, we issue:
 | 
						|
                //   OpSequence
 | 
						|
                //      coordtmp = load's param1
 | 
						|
                //      rhsTmp = OpImageLoad(object, coordTmp)
 | 
						|
                //      rhsTmp op= rhs
 | 
						|
                //      OpImageStore(object, coordTmp, rhsTmp)
 | 
						|
                //      rhsTmp
 | 
						|
                //
 | 
						|
                // If the lvalue is swizzled, we apply that when writing the temp variable, like so:
 | 
						|
                //    ...
 | 
						|
                //    rhsTmp.some_swizzle = ...
 | 
						|
                // For partial writes, an error is generated.
 | 
						|
 | 
						|
                TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
 | 
						|
                TIntermTyped* coordTmp = coord;
 | 
						|
 | 
						|
                if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
 | 
						|
                    rhsTmp = addTmpVar("storeTemp", objDerefType);
 | 
						|
 | 
						|
                    // Partial updates not yet supported
 | 
						|
                    if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
 | 
						|
                        error(loc, "unimplemented: partial image updates", "", "");
 | 
						|
                    }
 | 
						|
 | 
						|
                    // Assign storeTemp = rhs
 | 
						|
                    if (isModifyOp) {
 | 
						|
                        // We have to make a temp var for the coordinate, to avoid evaluating it twice.
 | 
						|
                        coordTmp = addTmpVar("coordTemp", coord->getType());
 | 
						|
                        makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
 | 
						|
                        makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
 | 
						|
                    }
 | 
						|
 | 
						|
                    // rhsTmp op= rhs.
 | 
						|
                    makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
 | 
						|
                }
 | 
						|
 | 
						|
                makeStore(object, coordTmp, rhsTmp);         // add a store
 | 
						|
                return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
 | 
						|
            }
 | 
						|
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (nodeAsUnary) {
 | 
						|
        const TOperator assignOp = nodeAsUnary->getOp();
 | 
						|
 | 
						|
        switch (assignOp) {
 | 
						|
        case EOpPreIncrement:
 | 
						|
        case EOpPreDecrement:
 | 
						|
            {
 | 
						|
                // We turn this into:
 | 
						|
                //   OpSequence
 | 
						|
                //      coordtmp = load's param1
 | 
						|
                //      rhsTmp = OpImageLoad(object, coordTmp)
 | 
						|
                //      rhsTmp op
 | 
						|
                //      OpImageStore(object, coordTmp, rhsTmp)
 | 
						|
                //      rhsTmp
 | 
						|
 | 
						|
                TIntermSymbol* rhsTmp = addTmpVar("storeTemp", objDerefType);
 | 
						|
                TIntermTyped* coordTmp = addTmpVar("coordTemp", coord->getType());
 | 
						|
 | 
						|
                makeBinary(EOpAssign, coordTmp, coord);           // coordtmp = load[param1]
 | 
						|
                makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
 | 
						|
                makeUnary(assignOp, rhsTmp);                      // op rhsTmp
 | 
						|
                makeStore(object, coordTmp, rhsTmp);              // OpImageStore(object, coordTmp, rhsTmp)
 | 
						|
                return finishSequence(rhsTmp, objDerefType);      // return rhsTmp from sequence
 | 
						|
            }
 | 
						|
 | 
						|
        case EOpPostIncrement:
 | 
						|
        case EOpPostDecrement:
 | 
						|
            {
 | 
						|
                // We turn this into:
 | 
						|
                //   OpSequence
 | 
						|
                //      coordtmp = load's param1
 | 
						|
                //      rhsTmp1 = OpImageLoad(object, coordTmp)
 | 
						|
                //      rhsTmp2 = rhsTmp1
 | 
						|
                //      rhsTmp2 op
 | 
						|
                //      OpImageStore(object, coordTmp, rhsTmp2)
 | 
						|
                //      rhsTmp1 (pre-op value)
 | 
						|
                TIntermSymbol* rhsTmp1 = addTmpVar("storeTempPre",  objDerefType);
 | 
						|
                TIntermSymbol* rhsTmp2 = addTmpVar("storeTempPost", objDerefType);
 | 
						|
                TIntermTyped* coordTmp = addTmpVar("coordTemp", coord->getType());
 | 
						|
 | 
						|
                makeBinary(EOpAssign, coordTmp, coord);            // coordtmp = load[param1]
 | 
						|
                makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
 | 
						|
                makeBinary(EOpAssign, rhsTmp2, rhsTmp1);           // rhsTmp2 = rhsTmp1
 | 
						|
                makeUnary(assignOp, rhsTmp2);                      // rhsTmp op
 | 
						|
                makeStore(object, coordTmp, rhsTmp2);              // OpImageStore(object, coordTmp, rhsTmp2)
 | 
						|
                return finishSequence(rhsTmp1, objDerefType);      // return rhsTmp from sequence
 | 
						|
            }
 | 
						|
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (lhs)
 | 
						|
        if (lValueErrorCheck(loc, op, lhs))
 | 
						|
            return nullptr;
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
 | 
						|
{
 | 
						|
    if (pragmaCallback)
 | 
						|
        pragmaCallback(loc.line, tokens);
 | 
						|
 | 
						|
    if (tokens.size() == 0)
 | 
						|
        return;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Look at a '.' matrix selector string and change it into components
 | 
						|
// for a matrix. There are two types:
 | 
						|
//
 | 
						|
//   _21    second row, first column (one based)
 | 
						|
//   _m21   third row, second column (zero based)
 | 
						|
//
 | 
						|
// Returns true if there is no error.
 | 
						|
//
 | 
						|
bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
 | 
						|
                                                  TSwizzleSelectors<TMatrixSelector>& components)
 | 
						|
{
 | 
						|
    int startPos[MaxSwizzleSelectors];
 | 
						|
    int numComps = 0;
 | 
						|
    TString compString = fields;
 | 
						|
 | 
						|
    // Find where each component starts,
 | 
						|
    // recording the first character position after the '_'.
 | 
						|
    for (size_t c = 0; c < compString.size(); ++c) {
 | 
						|
        if (compString[c] == '_') {
 | 
						|
            if (numComps >= MaxSwizzleSelectors) {
 | 
						|
                error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (c > compString.size() - 3 ||
 | 
						|
                    ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
 | 
						|
                error(loc, "matrix component swizzle missing", compString.c_str(), "");
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            startPos[numComps++] = (int)c + 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Process each component
 | 
						|
    for (int i = 0; i < numComps; ++i) {
 | 
						|
        int pos = startPos[i];
 | 
						|
        int bias = -1;
 | 
						|
        if (compString[pos] == 'm' || compString[pos] == 'M') {
 | 
						|
            bias = 0;
 | 
						|
            ++pos;
 | 
						|
        }
 | 
						|
        TMatrixSelector comp;
 | 
						|
        comp.coord1 = compString[pos+0] - '0' + bias;
 | 
						|
        comp.coord2 = compString[pos+1] - '0' + bias;
 | 
						|
        if (comp.coord1 < 0 || comp.coord1 >= cols) {
 | 
						|
            error(loc, "matrix row component out of range", compString.c_str(), "");
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        if (comp.coord2 < 0 || comp.coord2 >= rows) {
 | 
						|
            error(loc, "matrix column component out of range", compString.c_str(), "");
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        components.push_back(comp);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
// If the 'comps' express a column of a matrix,
 | 
						|
// return the column.  Column means the first coords all match.
 | 
						|
//
 | 
						|
// Otherwise, return -1.
 | 
						|
//
 | 
						|
int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
 | 
						|
{
 | 
						|
    int col = -1;
 | 
						|
 | 
						|
    // right number of comps?
 | 
						|
    if (selector.size() != rows)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    // all comps in the same column?
 | 
						|
    // rows in order?
 | 
						|
    col = selector[0].coord1;
 | 
						|
    for (int i = 0; i < rows; ++i) {
 | 
						|
        if (col != selector[i].coord1)
 | 
						|
            return -1;
 | 
						|
        if (i != selector[i].coord2)
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return col;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing a variable identifier in the grammar.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string)
 | 
						|
{
 | 
						|
    if (symbol == nullptr)
 | 
						|
        symbol = symbolTable.find(*string);
 | 
						|
    if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
 | 
						|
        error(loc, "expected symbol, not user-defined type", string->c_str(), "");
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Error check for requiring specific extensions present.
 | 
						|
    if (symbol && symbol->getNumExtensions())
 | 
						|
        requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str());
 | 
						|
 | 
						|
    const TVariable* variable;
 | 
						|
    const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
 | 
						|
    TIntermTyped* node = nullptr;
 | 
						|
    if (anon) {
 | 
						|
        // It was a member of an anonymous container.
 | 
						|
 | 
						|
        // Create a subtree for its dereference.
 | 
						|
        variable = anon->getAnonContainer().getAsVariable();
 | 
						|
        TIntermTyped* container = intermediate.addSymbol(*variable, loc);
 | 
						|
        TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
 | 
						|
        node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
 | 
						|
 | 
						|
        node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
 | 
						|
        if (node->getType().hiddenMember())
 | 
						|
            error(loc, "member of nameless block was not redeclared", string->c_str(), "");
 | 
						|
    } else {
 | 
						|
        // Not a member of an anonymous container.
 | 
						|
 | 
						|
        // The symbol table search was done in the lexical phase.
 | 
						|
        // See if it was a variable.
 | 
						|
        variable = symbol ? symbol->getAsVariable() : nullptr;
 | 
						|
        if (variable) {
 | 
						|
            if ((variable->getType().getBasicType() == EbtBlock ||
 | 
						|
                variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
 | 
						|
                error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
 | 
						|
                variable = nullptr;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (symbol)
 | 
						|
                error(loc, "variable name expected", string->c_str(), "");
 | 
						|
        }
 | 
						|
 | 
						|
        // Recovery, if it wasn't found or was not a variable.
 | 
						|
        if (! variable) {
 | 
						|
            error(loc, "unknown variable", string->c_str(), "");
 | 
						|
            variable = new TVariable(string, TType(EbtVoid));
 | 
						|
        }
 | 
						|
 | 
						|
        if (variable->getType().getQualifier().isFrontEndConstant())
 | 
						|
            node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
 | 
						|
        else
 | 
						|
            node = intermediate.addSymbol(*variable, loc);
 | 
						|
    }
 | 
						|
 | 
						|
    if (variable->getType().getQualifier().isIo())
 | 
						|
        intermediate.addIoAccessed(*string);
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle operator[] on any objects it applies to.  Currently:
 | 
						|
//    Textures
 | 
						|
//    Buffers
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
 | 
						|
{
 | 
						|
    // handle r-value operator[] on textures and images.  l-values will be processed later.
 | 
						|
    if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
 | 
						|
        const TSampler& sampler = base->getType().getSampler();
 | 
						|
        if (sampler.isImage() || sampler.isTexture()) {
 | 
						|
            TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
 | 
						|
 | 
						|
            load->setType(TType(sampler.type, EvqTemporary, sampler.vectorSize));
 | 
						|
            load->setLoc(loc);
 | 
						|
            load->getSequence().push_back(base);
 | 
						|
            load->getSequence().push_back(index);
 | 
						|
 | 
						|
            // Textures need a MIP.  First indirection is always to mip 0.  If there's another, we'll add it
 | 
						|
            // later.
 | 
						|
            if (sampler.isTexture())
 | 
						|
                load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
 | 
						|
 | 
						|
            return load;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing a base[index] dereference in the grammar.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
 | 
						|
{
 | 
						|
    TIntermTyped* result = handleBracketOperator(loc, base, index);
 | 
						|
 | 
						|
    if (result != nullptr)
 | 
						|
        return result;  // it was handled as an operator[]
 | 
						|
 | 
						|
    bool flattened = false;
 | 
						|
    int indexValue = 0;
 | 
						|
    if (index->getQualifier().storage == EvqConst) {
 | 
						|
        indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
 | 
						|
        checkIndex(loc, base->getType(), indexValue);
 | 
						|
    }
 | 
						|
 | 
						|
    variableCheck(base);
 | 
						|
    if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
 | 
						|
        if (base->getAsSymbolNode())
 | 
						|
            error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), "");
 | 
						|
        else
 | 
						|
            error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
 | 
						|
    } else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
 | 
						|
        return intermediate.foldDereference(base, indexValue, loc);
 | 
						|
    else {
 | 
						|
        // at least one of base and index is variable...
 | 
						|
 | 
						|
        if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlattenUniform(base->getType()))) {
 | 
						|
            if (index->getQualifier().storage != EvqConst)
 | 
						|
                error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
 | 
						|
 | 
						|
            result = flattenAccess(base, indexValue);
 | 
						|
            flattened = (result != base);
 | 
						|
        } else {
 | 
						|
            splitAccessArray(loc, base, index);
 | 
						|
 | 
						|
            if (index->getQualifier().storage == EvqConst) {
 | 
						|
                if (base->getType().isImplicitlySizedArray())
 | 
						|
                    updateImplicitArraySize(loc, base, indexValue);
 | 
						|
                result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
 | 
						|
            } else {
 | 
						|
                result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (result == nullptr) {
 | 
						|
        // Insert dummy error-recovery result
 | 
						|
        result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
 | 
						|
    } else {
 | 
						|
        // If the array reference was flattened, it has the correct type.  E.g, if it was
 | 
						|
        // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
 | 
						|
        // In that case, we preserve the qualifiers.
 | 
						|
        if (!flattened) {
 | 
						|
            // Insert valid dereferenced result
 | 
						|
            TType newType(base->getType(), 0);  // dereferenced type
 | 
						|
            if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
 | 
						|
                newType.getQualifier().storage = EvqConst;
 | 
						|
            else
 | 
						|
                newType.getQualifier().storage = EvqTemporary;
 | 
						|
            result->setType(newType);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::checkIndex(const TSourceLoc& /*loc*/, const TType& /*type*/, int& /*index*/)
 | 
						|
{
 | 
						|
    // HLSL todo: any rules for index fixups?
 | 
						|
}
 | 
						|
 | 
						|
// Handle seeing a binary node with a math operation.
 | 
						|
TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right)
 | 
						|
{
 | 
						|
    TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
 | 
						|
    if (! result)
 | 
						|
        binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
// Handle seeing a unary node with a math operation.
 | 
						|
TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode)
 | 
						|
{
 | 
						|
    TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
 | 
						|
 | 
						|
    if (result)
 | 
						|
        return result;
 | 
						|
    else
 | 
						|
        unaryOpError(loc, str, childNode->getCompleteString());
 | 
						|
 | 
						|
    return childNode;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing a base.field dereference in the grammar.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
 | 
						|
{
 | 
						|
    variableCheck(base);
 | 
						|
 | 
						|
    //
 | 
						|
    // methods can't be resolved until we later see the function-calling syntax.
 | 
						|
    // Save away the name in the AST for now.  Processing is completed in
 | 
						|
    // handleLengthMethod(), etc.
 | 
						|
    //
 | 
						|
    if (field == "length") {
 | 
						|
        return intermediate.addMethod(base, TType(EbtInt), &field, loc);
 | 
						|
    } else if (field == "CalculateLevelOfDetail"          ||
 | 
						|
               field == "CalculateLevelOfDetailUnclamped" ||
 | 
						|
               field == "Gather"                          ||
 | 
						|
               field == "GatherRed"                       ||
 | 
						|
               field == "GatherGreen"                     ||
 | 
						|
               field == "GatherBlue"                      ||
 | 
						|
               field == "GatherAlpha"                     ||
 | 
						|
               field == "GatherCmp"                       ||
 | 
						|
               field == "GatherCmpRed"                    ||
 | 
						|
               field == "GatherCmpGreen"                  ||
 | 
						|
               field == "GatherCmpBlue"                   ||
 | 
						|
               field == "GatherCmpAlpha"                  ||
 | 
						|
               field == "GetDimensions"                   ||
 | 
						|
               field == "GetSamplePosition"               ||
 | 
						|
               field == "Load"                            ||
 | 
						|
               field == "Sample"                          ||
 | 
						|
               field == "SampleBias"                      ||
 | 
						|
               field == "SampleCmp"                       ||
 | 
						|
               field == "SampleCmpLevelZero"              ||
 | 
						|
               field == "SampleGrad"                      ||
 | 
						|
               field == "SampleLevel") {
 | 
						|
        // If it's not a method on a sampler object, we fall through in case it is a struct member.
 | 
						|
        if (base->getType().getBasicType() == EbtSampler) {
 | 
						|
            const TSampler& sampler = base->getType().getSampler();
 | 
						|
            if (! sampler.isPureSampler()) {
 | 
						|
                const int vecSize = sampler.isShadow() ? 1 : 4; // TODO: handle arbitrary sample return sizes
 | 
						|
                return intermediate.addMethod(base, TType(sampler.type, EvqTemporary, vecSize), &field, loc);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (field == "Append" ||
 | 
						|
               field == "RestartStrip") {
 | 
						|
        // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
 | 
						|
        // the code is around in the shader source.
 | 
						|
        return intermediate.addMethod(base, TType(EbtVoid), &field, loc);
 | 
						|
    }
 | 
						|
 | 
						|
    // It's not .length() if we get to here.
 | 
						|
 | 
						|
    if (base->isArray()) {
 | 
						|
        error(loc, "cannot apply to an array:", ".", field.c_str());
 | 
						|
 | 
						|
        return base;
 | 
						|
    }
 | 
						|
 | 
						|
    // It's neither an array nor .length() if we get here,
 | 
						|
    // leaving swizzles and struct/block dereferences.
 | 
						|
 | 
						|
    TIntermTyped* result = base;
 | 
						|
    if (base->isVector() || base->isScalar()) {
 | 
						|
        TSwizzleSelectors<TVectorSelector> selectors;
 | 
						|
        parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
 | 
						|
 | 
						|
        if (base->isScalar()) {
 | 
						|
            if (selectors.size() == 1)
 | 
						|
                return result;
 | 
						|
            else {
 | 
						|
                TType type(base->getBasicType(), EvqTemporary, selectors.size());
 | 
						|
                return addConstructor(loc, base, type);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (base->getVectorSize() == 1) {
 | 
						|
            TType scalarType(base->getBasicType(), EvqTemporary, 1);
 | 
						|
            if (selectors.size() == 1)
 | 
						|
                return addConstructor(loc, base, scalarType);
 | 
						|
            else {
 | 
						|
                TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
 | 
						|
                return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (base->getType().getQualifier().isFrontEndConstant())
 | 
						|
            result = intermediate.foldSwizzle(base, selectors, loc);
 | 
						|
        else {
 | 
						|
            if (selectors.size() == 1) {
 | 
						|
                TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
 | 
						|
                result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
 | 
						|
                result->setType(TType(base->getBasicType(), EvqTemporary));
 | 
						|
            } else {
 | 
						|
                TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
 | 
						|
                result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
 | 
						|
                result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, selectors.size()));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (base->isMatrix()) {
 | 
						|
        TSwizzleSelectors<TMatrixSelector> selectors;
 | 
						|
        if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
 | 
						|
            return result;
 | 
						|
 | 
						|
        if (selectors.size() == 1) {
 | 
						|
            // Representable by m[c][r]
 | 
						|
            if (base->getType().getQualifier().isFrontEndConstant()) {
 | 
						|
                result = intermediate.foldDereference(base, selectors[0].coord1, loc);
 | 
						|
                result = intermediate.foldDereference(result, selectors[0].coord2, loc);
 | 
						|
            } else {
 | 
						|
                result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(selectors[0].coord1, loc), loc);
 | 
						|
                TType dereferencedCol(base->getType(), 0);
 | 
						|
                result->setType(dereferencedCol);
 | 
						|
                result = intermediate.addIndex(EOpIndexDirect, result, intermediate.addConstantUnion(selectors[0].coord2, loc), loc);
 | 
						|
                TType dereferenced(dereferencedCol, 0);
 | 
						|
                result->setType(dereferenced);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
 | 
						|
            if (column >= 0) {
 | 
						|
                // Representable by m[c]
 | 
						|
                if (base->getType().getQualifier().isFrontEndConstant())
 | 
						|
                    result = intermediate.foldDereference(base, column, loc);
 | 
						|
                else {
 | 
						|
                    result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc), loc);
 | 
						|
                    TType dereferenced(base->getType(), 0);
 | 
						|
                    result->setType(dereferenced);
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                // general case, not a column, not a single component
 | 
						|
                TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
 | 
						|
                result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
 | 
						|
                result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, selectors.size()));
 | 
						|
           }
 | 
						|
        }
 | 
						|
    } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
 | 
						|
        const TTypeList* fields = base->getType().getStruct();
 | 
						|
        bool fieldFound = false;
 | 
						|
        int member;
 | 
						|
        for (member = 0; member < (int)fields->size(); ++member) {
 | 
						|
            if ((*fields)[member].type->getFieldName() == field) {
 | 
						|
                fieldFound = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (fieldFound) {
 | 
						|
            if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlattenUniform(base->getType()))) {
 | 
						|
                result = flattenAccess(base, member);
 | 
						|
            } else {
 | 
						|
                // Update the base and member to access if this was a split structure.
 | 
						|
                result = splitAccessStruct(loc, base, member);
 | 
						|
                fields = base->getType().getStruct();
 | 
						|
 | 
						|
                if (result == nullptr) {
 | 
						|
                    if (base->getType().getQualifier().storage == EvqConst)
 | 
						|
                        result = intermediate.foldDereference(base, member, loc);
 | 
						|
                    else {
 | 
						|
                        TIntermTyped* index = intermediate.addConstantUnion(member, loc);
 | 
						|
                        result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
 | 
						|
                        result->setType(*(*fields)[member].type);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else
 | 
						|
            error(loc, "no such field in structure", field.c_str(), "");
 | 
						|
    } else
 | 
						|
        error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
// Split the type of the given node into two structs:
 | 
						|
//   1. interstage IO
 | 
						|
//   2. everything else
 | 
						|
// IO members are put into the ioStruct.  The type is modified to remove them.
 | 
						|
void HlslParseContext::split(TIntermTyped* node)
 | 
						|
{
 | 
						|
    if (node == nullptr)
 | 
						|
        return;
 | 
						|
 | 
						|
    TIntermSymbol* symNode = node->getAsSymbolNode();
 | 
						|
 | 
						|
    if (symNode == nullptr)
 | 
						|
        return;
 | 
						|
 | 
						|
    // Create a new variable:
 | 
						|
    TType& splitType = split(*symNode->getType().clone(), symNode->getName());
 | 
						|
 | 
						|
    splitIoVars[symNode->getId()] = makeInternalVariable(symNode->getName(), splitType);
 | 
						|
}
 | 
						|
 | 
						|
// Split the type of the given variable into two structs:
 | 
						|
void HlslParseContext::split(const TVariable& variable)
 | 
						|
{
 | 
						|
    const TType& type = variable.getType();
 | 
						|
 | 
						|
    TString name = variable.getName();
 | 
						|
 | 
						|
    // Create a new variable:
 | 
						|
    TType& splitType = split(*type.clone(), name);
 | 
						|
 | 
						|
    splitIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
 | 
						|
}
 | 
						|
 | 
						|
// Recursive implementation of split(const TVariable& variable).
 | 
						|
// Returns reference to the modified type.
 | 
						|
TType& HlslParseContext::split(TType& type, TString name, const TType* outerStructType)
 | 
						|
{
 | 
						|
    const TArraySizes* arraySizes = nullptr;
 | 
						|
 | 
						|
    // At the outer-most scope, remember the struct type so we can examine its storage class
 | 
						|
    // at deeper levels.
 | 
						|
    if (outerStructType == nullptr)
 | 
						|
        outerStructType = &type;
 | 
						|
 | 
						|
    if (type.isArray())
 | 
						|
        arraySizes = &type.getArraySizes();
 | 
						|
 | 
						|
    // We can ignore arrayness: it's uninvolved.
 | 
						|
    if (type.isStruct()) {
 | 
						|
        TTypeList* userStructure = type.getWritableStruct();
 | 
						|
 | 
						|
        // Get iterator to (now at end) set of builtin interstage IO members
 | 
						|
        const auto firstIo = std::stable_partition(userStructure->begin(), userStructure->end(),
 | 
						|
                                                   [this](const TTypeLoc& t) {return !t.type->isBuiltInInterstageIO(language);});
 | 
						|
 | 
						|
        // Move those to the builtin IO.  However, we also propagate arrayness (just one level is handled
 | 
						|
        // now) to this variable.
 | 
						|
        for (auto ioType = firstIo; ioType != userStructure->end(); ++ioType) {
 | 
						|
            const TType& memberType = *ioType->type;
 | 
						|
            TVariable* ioVar = makeInternalVariable(name + (name.empty() ? "" : "_") + memberType.getFieldName(), memberType);
 | 
						|
 | 
						|
            if (arraySizes)
 | 
						|
                ioVar->getWritableType().newArraySizes(*arraySizes);
 | 
						|
 | 
						|
            interstageBuiltInIo[tInterstageIoData(memberType, *outerStructType)] = ioVar;
 | 
						|
 | 
						|
            // Merge qualifier from the user structure
 | 
						|
            mergeQualifiers(ioVar->getWritableType().getQualifier(), outerStructType->getQualifier());
 | 
						|
        }
 | 
						|
 | 
						|
        // Erase the IO vars from the user structure.
 | 
						|
        userStructure->erase(firstIo, userStructure->end());
 | 
						|
 | 
						|
        // Recurse further into the members.
 | 
						|
        for (unsigned int i = 0; i < userStructure->size(); ++i)
 | 
						|
            split(*(*userStructure)[i].type,
 | 
						|
                  name + (name.empty() ? "" : "_") + (*userStructure)[i].type->getFieldName(),
 | 
						|
                  outerStructType);
 | 
						|
    }
 | 
						|
 | 
						|
    return type;
 | 
						|
}
 | 
						|
 | 
						|
// Is this a uniform array which should be flattened?
 | 
						|
bool HlslParseContext::shouldFlattenUniform(const TType& type) const
 | 
						|
{
 | 
						|
    const TStorageQualifier qualifier = type.getQualifier().storage;
 | 
						|
 | 
						|
    return qualifier == EvqUniform &&
 | 
						|
        ((type.isArray() && intermediate.getFlattenUniformArrays()) || type.isStruct()) &&
 | 
						|
        type.containsOpaque();
 | 
						|
}
 | 
						|
 | 
						|
// Top level variable flattening: construct data
 | 
						|
void HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable)
 | 
						|
{
 | 
						|
    const TType& type = variable.getType();
 | 
						|
 | 
						|
    auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
 | 
						|
                                                  TFlattenData(type.getQualifier().layoutBinding)));
 | 
						|
 | 
						|
    // the item is a map pair, so first->second is the TFlattenData itself.
 | 
						|
    flatten(loc, variable, type, entry.first->second, "");
 | 
						|
}
 | 
						|
 | 
						|
// Recursively flatten the given variable at the provided type, building the flattenData as we go.
 | 
						|
//
 | 
						|
// This is mutually recursive with flattenStruct and flattenArray.
 | 
						|
// We are going to flatten an arbitrarily nested composite structure into a linear sequence of
 | 
						|
// members, and later on, we want to turn a path through the tree structure into a final
 | 
						|
// location in this linear sequence.
 | 
						|
//
 | 
						|
// If the tree was N-ary, that can be directly calculated.  However, we are dealing with
 | 
						|
// arbitrary numbers - perhaps a struct of 7 members containing an array of 3.  Thus, we must
 | 
						|
// build a data structure to allow the sequence of bracket and dot operators on arrays and
 | 
						|
// structs to arrive at the proper member.
 | 
						|
//
 | 
						|
// To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
 | 
						|
// The leaves are the indexes into the flattened member array.
 | 
						|
// Each level will have the next location for the Nth item stored sequentially, so for instance:
 | 
						|
//
 | 
						|
// struct { float2 a[2]; int b; float4 c[3] };
 | 
						|
//
 | 
						|
// This will produce the following flattened tree:
 | 
						|
// Pos: 0  1   2    3  4    5  6   7     8   9  10   11  12 13
 | 
						|
//     (3, 7,  8,   5, 6,   0, 1,  2,   11, 12, 13,   3,  4, 5}
 | 
						|
//
 | 
						|
// Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
 | 
						|
//   (0+2) = 8  -->  (8+1) = 12 -->   12 = 4
 | 
						|
//
 | 
						|
// so the 4th flattened member in traversal order is ours.
 | 
						|
//
 | 
						|
int HlslParseContext::flatten(const TSourceLoc& loc, const TVariable& variable, const TType& type,
 | 
						|
                              TFlattenData& flattenData, TString name)
 | 
						|
{
 | 
						|
    // If something is an arrayed struct, the array flattener will recursively call flatten()
 | 
						|
    // to then flatten the struct, so this is an "if else": we don't do both.
 | 
						|
    if (type.isArray())
 | 
						|
        return flattenArray(loc, variable, type, flattenData, name);
 | 
						|
    else if (type.isStruct())
 | 
						|
        return flattenStruct(loc, variable, type, flattenData, name);
 | 
						|
    else {
 | 
						|
        assert(0); // should never happen
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Add a single flattened member to the flattened data being tracked for the composite
 | 
						|
// Returns true for the final flattening level.
 | 
						|
int HlslParseContext::addFlattenedMember(const TSourceLoc& loc,
 | 
						|
                                         const TVariable& variable, const TType& type, TFlattenData& flattenData,
 | 
						|
                                         const TString& memberName, bool track)
 | 
						|
{
 | 
						|
    if (isFinalFlattening(type)) {
 | 
						|
        // This is as far as we flatten.  Insert the variable.
 | 
						|
        TVariable* memberVariable = makeInternalVariable(memberName, type);
 | 
						|
        mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
 | 
						|
 | 
						|
        if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
 | 
						|
            memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
 | 
						|
 | 
						|
        flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
 | 
						|
        flattenData.members.push_back(memberVariable);
 | 
						|
 | 
						|
        if (track)
 | 
						|
            trackLinkage(*memberVariable);
 | 
						|
 | 
						|
        return static_cast<int>(flattenData.offsets.size())-1; // location of the member reference
 | 
						|
    } else {
 | 
						|
        // Further recursion required
 | 
						|
        return flatten(loc, variable, type, flattenData, memberName);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Figure out the mapping between an aggregate's top members and an
 | 
						|
// equivalent set of individual variables.
 | 
						|
//
 | 
						|
// Assumes shouldFlatten() or equivalent was called first.
 | 
						|
int HlslParseContext::flattenStruct(const TSourceLoc& loc, const TVariable& variable, const TType& type,
 | 
						|
                                    TFlattenData& flattenData, TString name)
 | 
						|
{
 | 
						|
    assert(type.isStruct());
 | 
						|
 | 
						|
    auto members = *type.getStruct();
 | 
						|
 | 
						|
    // Reserve space for this tree level.
 | 
						|
    int start = static_cast<int>(flattenData.offsets.size());
 | 
						|
    int pos   = start;
 | 
						|
    flattenData.offsets.resize(int(pos + members.size()), -1);
 | 
						|
 | 
						|
    for (int member = 0; member < (int)members.size(); ++member) {
 | 
						|
        TType& dereferencedType = *members[member].type;
 | 
						|
        const TString memberName = name + (name.empty() ? "" : ".") + dereferencedType.getFieldName();
 | 
						|
 | 
						|
        const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData, memberName, false);
 | 
						|
        flattenData.offsets[pos++] = mpos;
 | 
						|
    }
 | 
						|
 | 
						|
    return start;
 | 
						|
}
 | 
						|
 | 
						|
// Figure out mapping between an array's members and an
 | 
						|
// equivalent set of individual variables.
 | 
						|
//
 | 
						|
// Assumes shouldFlatten() or equivalent was called first.
 | 
						|
int HlslParseContext::flattenArray(const TSourceLoc& loc, const TVariable& variable, const TType& type,
 | 
						|
                                   TFlattenData& flattenData, TString name)
 | 
						|
{
 | 
						|
    assert(type.isArray());
 | 
						|
 | 
						|
    if (type.isImplicitlySizedArray())
 | 
						|
        error(loc, "cannot flatten implicitly sized array", variable.getName().c_str(), "");
 | 
						|
 | 
						|
    const int size = type.getOuterArraySize();
 | 
						|
    const TType dereferencedType(type, 0);
 | 
						|
 | 
						|
    if (name.empty())
 | 
						|
        name = variable.getName();
 | 
						|
 | 
						|
    // Reserve space for this tree level.
 | 
						|
    int start = static_cast<int>(flattenData.offsets.size());
 | 
						|
    int pos   = start;
 | 
						|
    flattenData.offsets.resize(int(pos + size), -1);
 | 
						|
 | 
						|
    for (int element=0; element < size; ++element) {
 | 
						|
        char elementNumBuf[20];  // sufficient for MAXINT
 | 
						|
        snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
 | 
						|
        const int mpos = addFlattenedMember(loc, variable, dereferencedType, flattenData,
 | 
						|
                                            name + elementNumBuf, true);
 | 
						|
 | 
						|
        flattenData.offsets[pos++] = mpos;
 | 
						|
    }
 | 
						|
 | 
						|
    return start;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if we have flattened this node.
 | 
						|
bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
 | 
						|
{
 | 
						|
    return node != nullptr && node->getAsSymbolNode() != nullptr &&
 | 
						|
        wasFlattened(node->getAsSymbolNode()->getId());
 | 
						|
}
 | 
						|
 | 
						|
// Return true if we have split this structure
 | 
						|
bool HlslParseContext::wasSplit(const TIntermTyped* node) const
 | 
						|
{
 | 
						|
    return node != nullptr && node->getAsSymbolNode() != nullptr &&
 | 
						|
        wasSplit(node->getAsSymbolNode()->getId());
 | 
						|
}
 | 
						|
 | 
						|
// Turn an access into an aggregate that was flattened to instead be
 | 
						|
// an access to the individual variable the member was flattened to.
 | 
						|
// Assumes shouldFlatten() or equivalent was called first.
 | 
						|
TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
 | 
						|
{
 | 
						|
    const TType dereferencedType(base->getType(), member);  // dereferenced type
 | 
						|
 | 
						|
    const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
 | 
						|
 | 
						|
    const auto flattenData = flattenMap.find(symbolNode.getId());
 | 
						|
 | 
						|
    if (flattenData == flattenMap.end())
 | 
						|
        return base;
 | 
						|
 | 
						|
    // Calculate new cumulative offset from the packed tree
 | 
						|
    flattenOffset.back() = flattenData->second.offsets[flattenOffset.back() + member];
 | 
						|
 | 
						|
    if (isFinalFlattening(dereferencedType)) {
 | 
						|
        // Finished flattening: create symbol for variable
 | 
						|
        member = flattenData->second.offsets[flattenOffset.back()];
 | 
						|
        const TVariable* memberVariable = flattenData->second.members[member];
 | 
						|
        return intermediate.addSymbol(*memberVariable);
 | 
						|
    } else {
 | 
						|
        // If this is not the final flattening, accumulate the position and return
 | 
						|
        // an object of the partially dereferenced type.
 | 
						|
        return new TIntermSymbol(symbolNode.getId(), "flattenShadow", dereferencedType);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Find and return the split IO TVariable for id, or nullptr if none.
 | 
						|
TVariable* HlslParseContext::getSplitIoVar(int id) const
 | 
						|
{
 | 
						|
    const auto splitIoVar = splitIoVars.find(id);
 | 
						|
 | 
						|
    if (splitIoVar == splitIoVars.end())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    return splitIoVar->second;
 | 
						|
}
 | 
						|
 | 
						|
// Find and return the split IO TVariable for variable, or nullptr if none.
 | 
						|
TVariable* HlslParseContext::getSplitIoVar(const TVariable* var) const
 | 
						|
{
 | 
						|
    if (var == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    return getSplitIoVar(var->getUniqueId());
 | 
						|
}
 | 
						|
 | 
						|
// Find and return the split IO TVariable for symbol in this node, or nullptr if none.
 | 
						|
TVariable* HlslParseContext::getSplitIoVar(const TIntermTyped* node) const
 | 
						|
{
 | 
						|
    if (node == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    const TIntermSymbol* symbolNode = node->getAsSymbolNode();
 | 
						|
 | 
						|
    if (symbolNode == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    return getSplitIoVar(symbolNode->getId());
 | 
						|
}
 | 
						|
 | 
						|
// Remember the index used to dereference into this structure, in case it has to be moved to a
 | 
						|
// split-off builtin IO member.
 | 
						|
void HlslParseContext::splitAccessArray(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
 | 
						|
{
 | 
						|
    const TVariable* splitIoVar = getSplitIoVar(base);
 | 
						|
 | 
						|
    // Not a split structure
 | 
						|
    if (splitIoVar == nullptr)
 | 
						|
        return;
 | 
						|
 | 
						|
    if (builtInIoBase) {
 | 
						|
        error(loc, "only one array dimension supported for builtIn IO variable", "", "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    builtInIoBase  = base;
 | 
						|
    builtInIoIndex = index;
 | 
						|
}
 | 
						|
 | 
						|
// Turn an access into an struct that was split to instead be an
 | 
						|
// access to either the modified structure, or a direct reference to
 | 
						|
// one of the split member variables.
 | 
						|
TIntermTyped* HlslParseContext::splitAccessStruct(const TSourceLoc& loc, TIntermTyped*& base, int& member)
 | 
						|
{
 | 
						|
    // nothing to do
 | 
						|
    if (base == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    // We have a pending bracket reference to an outer struct that we may want to move to an inner member.
 | 
						|
    if (builtInIoBase)
 | 
						|
        base = builtInIoBase;
 | 
						|
 | 
						|
    const TVariable* splitIoVar = getSplitIoVar(base);
 | 
						|
 | 
						|
    if (splitIoVar == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    const TTypeList& members = *base->getType().getStruct();
 | 
						|
 | 
						|
    const TType& memberType = *members[member].type;
 | 
						|
 | 
						|
    if (memberType.isBuiltInInterstageIO(language)) {
 | 
						|
        // It's one of the interstage IO variables we split off.
 | 
						|
        TIntermTyped* builtIn = intermediate.addSymbol(*interstageBuiltInIo[tInterstageIoData(memberType, base->getType())], loc);
 | 
						|
 | 
						|
        // If there's an array reference to an outer split struct, we re-apply it here.
 | 
						|
        if (builtInIoIndex != nullptr) {
 | 
						|
            if (builtInIoIndex->getQualifier().storage == EvqConst)
 | 
						|
                builtIn = intermediate.addIndex(EOpIndexDirect, builtIn, builtInIoIndex, loc);
 | 
						|
            else
 | 
						|
                builtIn = intermediate.addIndex(EOpIndexIndirect, builtIn, builtInIoIndex, loc);
 | 
						|
 | 
						|
            builtIn->setType(memberType);
 | 
						|
 | 
						|
            builtInIoIndex = nullptr;
 | 
						|
            builtInIoBase  = nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        return builtIn;
 | 
						|
    } else {
 | 
						|
        // It's not an IO variable.  Find the equivalent index into the new variable.
 | 
						|
        base = intermediate.addSymbol(*splitIoVar, loc);
 | 
						|
 | 
						|
        int newMember = 0;
 | 
						|
        for (int m=0; m<member; ++m)
 | 
						|
            if (!members[m].type->isBuiltInInterstageIO(language))
 | 
						|
                ++newMember;
 | 
						|
 | 
						|
        member = newMember;
 | 
						|
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Pass through to base class after remembering builtin mappings.
 | 
						|
void HlslParseContext::trackLinkage(TSymbol& symbol)
 | 
						|
{
 | 
						|
    TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
 | 
						|
    if (biType != EbvNone)
 | 
						|
        builtInLinkageSymbols[biType] = symbol.clone();
 | 
						|
 | 
						|
    TParseContextBase::trackLinkage(symbol);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Variables that correspond to the user-interface in and out of a stage
 | 
						|
// (not the built-in interface) are assigned locations and
 | 
						|
// registered as a linkage node (part of the stage's external interface).
 | 
						|
//
 | 
						|
// Assumes it is called in the order in which locations should be assigned.
 | 
						|
void HlslParseContext::assignLocations(TVariable& variable)
 | 
						|
{
 | 
						|
    const auto assignLocation = [&](TVariable& variable) {
 | 
						|
        const TQualifier& qualifier = variable.getType().getQualifier();
 | 
						|
        if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
 | 
						|
            if (qualifier.builtIn == EbvNone) {
 | 
						|
                if (qualifier.storage == EvqVaryingIn) {
 | 
						|
                    variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
 | 
						|
                    nextInLocation += intermediate.computeTypeLocationSize(variable.getType());
 | 
						|
                } else {
 | 
						|
                    variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
 | 
						|
                    nextOutLocation += intermediate.computeTypeLocationSize(variable.getType());
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            trackLinkage(variable);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    if (wasFlattened(variable.getUniqueId())) {
 | 
						|
        auto& memberList = flattenMap[variable.getUniqueId()].members;
 | 
						|
        for (auto member = memberList.begin(); member != memberList.end(); ++member)
 | 
						|
            assignLocation(**member);
 | 
						|
    } else if (wasSplit(variable.getUniqueId())) {
 | 
						|
        TVariable* splitIoVar = getSplitIoVar(&variable);
 | 
						|
        const TTypeList* structure = splitIoVar->getType().getStruct();
 | 
						|
        // Struct splitting can produce empty structures if the only members of the
 | 
						|
        // struct were builtin interstage IO types.  Only assign locations if it
 | 
						|
        // isn't a struct, or is a non-empty struct.
 | 
						|
        if (structure == nullptr || !structure->empty())
 | 
						|
            assignLocation(*splitIoVar);
 | 
						|
    } else {
 | 
						|
        assignLocation(variable);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing a function declarator in the grammar.  This is the precursor
 | 
						|
// to recognizing a function prototype or function definition.
 | 
						|
//
 | 
						|
TFunction& HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Multiple declarations of the same function name are allowed.
 | 
						|
    //
 | 
						|
    // If this is a definition, the definition production code will check for redefinitions
 | 
						|
    // (we don't know at this point if it's a definition or not).
 | 
						|
    //
 | 
						|
    bool builtIn;
 | 
						|
    TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
 | 
						|
    const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
 | 
						|
 | 
						|
    if (prototype) {
 | 
						|
        // All built-in functions are defined, even though they don't have a body.
 | 
						|
        // Count their prototype as a definition instead.
 | 
						|
        if (symbolTable.atBuiltInLevel())
 | 
						|
            function.setDefined();
 | 
						|
        else {
 | 
						|
            if (prevDec && ! builtIn)
 | 
						|
                symbol->getAsFunction()->setPrototyped();  // need a writable one, but like having prevDec as a const
 | 
						|
            function.setPrototyped();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // This insert won't actually insert it if it's a duplicate signature, but it will still check for
 | 
						|
    // other forms of name collisions.
 | 
						|
    if (! symbolTable.insert(function))
 | 
						|
        error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
 | 
						|
 | 
						|
    //
 | 
						|
    // If this is a redeclaration, it could also be a definition,
 | 
						|
    // in which case, we need to use the parameter names from this one, and not the one that's
 | 
						|
    // being redeclared.  So, pass back this declaration, not the one in the symbol table.
 | 
						|
    //
 | 
						|
    return function;
 | 
						|
}
 | 
						|
 | 
						|
// Add interstage IO variables to the linkage in canonical order.
 | 
						|
void HlslParseContext::addInterstageIoToLinkage()
 | 
						|
{
 | 
						|
    TSourceLoc loc;
 | 
						|
    loc.init();
 | 
						|
 | 
						|
    std::vector<tInterstageIoData> io;
 | 
						|
    io.reserve(interstageBuiltInIo.size());
 | 
						|
 | 
						|
    for (auto ioVar = interstageBuiltInIo.begin(); ioVar != interstageBuiltInIo.end(); ++ioVar)
 | 
						|
        io.push_back(ioVar->first);
 | 
						|
 | 
						|
    // Our canonical order is the TBuiltInVariable numeric order.
 | 
						|
    std::sort(io.begin(), io.end());
 | 
						|
 | 
						|
    // We have to (potentially) track two IO blocks, one in, one out.  E.g, a GS may have a
 | 
						|
    // PerVertex block in both directions, possibly with different members.
 | 
						|
    for (int idx = 0; idx < int(io.size()); ++idx) {
 | 
						|
        TVariable* var = interstageBuiltInIo[io[idx]];
 | 
						|
 | 
						|
        // Add the loose interstage IO to the linkage
 | 
						|
        if (var->getType().isLooseAndBuiltIn(language))
 | 
						|
            trackLinkage(*var);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing the function prototype in front of a function definition in the grammar.
 | 
						|
// The body is handled after this function returns.
 | 
						|
//
 | 
						|
TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
 | 
						|
                                                             const TAttributeMap& attributes, TIntermNode*& entryPointTree)
 | 
						|
{
 | 
						|
    currentCaller = function.getMangledName();
 | 
						|
    TSymbol* symbol = symbolTable.find(function.getMangledName());
 | 
						|
    TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
 | 
						|
 | 
						|
    if (! prevDec)
 | 
						|
        error(loc, "can't find function", function.getName().c_str(), "");
 | 
						|
    // Note:  'prevDec' could be 'function' if this is the first time we've seen function
 | 
						|
    // as it would have just been put in the symbol table.  Otherwise, we're looking up
 | 
						|
    // an earlier occurrence.
 | 
						|
 | 
						|
    if (prevDec && prevDec->isDefined()) {
 | 
						|
        // Then this function already has a body.
 | 
						|
        error(loc, "function already has a body", function.getName().c_str(), "");
 | 
						|
    }
 | 
						|
    if (prevDec && ! prevDec->isDefined()) {
 | 
						|
        prevDec->setDefined();
 | 
						|
 | 
						|
        // Remember the return type for later checking for RETURN statements.
 | 
						|
        currentFunctionType = &(prevDec->getType());
 | 
						|
    } else
 | 
						|
        currentFunctionType = new TType(EbtVoid);
 | 
						|
    functionReturnsValue = false;
 | 
						|
 | 
						|
    // Entry points need different I/O and other handling, transform it so the
 | 
						|
    // rest of this function doesn't care.
 | 
						|
    entryPointTree = transformEntryPoint(loc, function, attributes);
 | 
						|
 | 
						|
    // Insert the $Global constant buffer.
 | 
						|
    // TODO: this design fails if new members are declared between function definitions.
 | 
						|
    if (! insertGlobalUniformBlock())
 | 
						|
        error(loc, "failed to insert the global constant buffer", "uniform", "");
 | 
						|
 | 
						|
    //
 | 
						|
    // New symbol table scope for body of function plus its arguments
 | 
						|
    //
 | 
						|
    pushScope();
 | 
						|
 | 
						|
    //
 | 
						|
    // Insert parameters into the symbol table.
 | 
						|
    // If the parameter has no name, it's not an error, just don't insert it
 | 
						|
    // (could be used for unused args).
 | 
						|
    //
 | 
						|
    // Also, accumulate the list of parameters into the AST, so lower level code
 | 
						|
    // knows where to find parameters.
 | 
						|
    //
 | 
						|
    TIntermAggregate* paramNodes = new TIntermAggregate;
 | 
						|
    for (int i = 0; i < function.getParamCount(); i++) {
 | 
						|
        TParameter& param = function[i];
 | 
						|
        if (param.name != nullptr) {
 | 
						|
            TVariable *variable = new TVariable(param.name, *param.type);
 | 
						|
 | 
						|
            // Insert the parameters with name in the symbol table.
 | 
						|
            if (! symbolTable.insert(*variable))
 | 
						|
                error(loc, "redefinition", variable->getName().c_str(), "");
 | 
						|
            else {
 | 
						|
                // Add the parameter to the AST
 | 
						|
                paramNodes = intermediate.growAggregate(paramNodes,
 | 
						|
                                                        intermediate.addSymbol(*variable, loc),
 | 
						|
                                                        loc);
 | 
						|
            }
 | 
						|
        } else
 | 
						|
            paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
 | 
						|
    }
 | 
						|
 | 
						|
    intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
 | 
						|
    loopNestingLevel = 0;
 | 
						|
    controlFlowNestingLevel = 0;
 | 
						|
    postEntryPointReturn = false;
 | 
						|
 | 
						|
    return paramNodes;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Do all special handling for the entry point, including wrapping
 | 
						|
// the shader's entry point with the official entry point that will call it.
 | 
						|
//
 | 
						|
// The following:
 | 
						|
//
 | 
						|
//    retType shaderEntryPoint(args...) // shader declared entry point
 | 
						|
//    { body }
 | 
						|
//
 | 
						|
// Becomes
 | 
						|
//
 | 
						|
//    out retType ret;
 | 
						|
//    in iargs<that are input>...;
 | 
						|
//    out oargs<that are output> ...;
 | 
						|
//
 | 
						|
//    void shaderEntryPoint()    // synthesized, but official, entry point
 | 
						|
//    {
 | 
						|
//        args<that are input> = iargs...;
 | 
						|
//        ret = @shaderEntryPoint(args...);
 | 
						|
//        oargs = args<that are output>...;
 | 
						|
//    }
 | 
						|
//
 | 
						|
// The symbol table will still map the original entry point name to the
 | 
						|
// the modified function and it's new name:
 | 
						|
//
 | 
						|
//    symbol table:  shaderEntryPoint  ->   @shaderEntryPoint
 | 
						|
//
 | 
						|
// Returns nullptr if no entry-point tree was built, otherwise, returns
 | 
						|
// a subtree that creates the entry point.
 | 
						|
//
 | 
						|
TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction, const TAttributeMap& attributes)
 | 
						|
{
 | 
						|
    // if we aren't in the entry point, fix the IO as such and exit
 | 
						|
    if (userFunction.getName().compare(intermediate.getEntryPointName().c_str()) != 0) {
 | 
						|
        remapNonEntryPointIO(userFunction);
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    entryPointFunction = &userFunction; // needed in finish()
 | 
						|
 | 
						|
    // entry point logic...
 | 
						|
 | 
						|
    // Handle entry-point function attributes
 | 
						|
    const TIntermAggregate* numThreads = attributes[EatNumThreads];
 | 
						|
    if (numThreads != nullptr) {
 | 
						|
        const TIntermSequence& sequence = numThreads->getSequence();
 | 
						|
 | 
						|
        for (int lid = 0; lid < int(sequence.size()); ++lid)
 | 
						|
            intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
 | 
						|
    }
 | 
						|
 | 
						|
    // MaxVertexCount
 | 
						|
    const TIntermAggregate* maxVertexCount = attributes[EatMaxVertexCount];
 | 
						|
    if (maxVertexCount != nullptr) {
 | 
						|
        if (! intermediate.setVertices(maxVertexCount->getSequence()[0]->getAsConstantUnion()->getConstArray()[0].getIConst())) {
 | 
						|
            error(loc, "cannot change previously set maxvertexcount attribute", "", "");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle [patchconstantfunction("...")]
 | 
						|
    const TIntermAggregate* pcfAttr = attributes[EatPatchConstantFunc]; 
 | 
						|
    if (pcfAttr != nullptr) {
 | 
						|
        const TConstUnion& pcfName = pcfAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
 | 
						|
 | 
						|
        if (pcfName.getType() != EbtString) {
 | 
						|
            error(loc, "invalid patch constant function", "", "");
 | 
						|
        } else {
 | 
						|
            patchConstantFunctionName = *pcfName.getSConst();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle [domain("...")]
 | 
						|
    const TIntermAggregate* domainAttr = attributes[EatDomain]; 
 | 
						|
    if (domainAttr != nullptr) {
 | 
						|
        const TConstUnion& domainType = domainAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
 | 
						|
        if (domainType.getType() != EbtString) {
 | 
						|
            error(loc, "invalid domain", "", "");
 | 
						|
        } else {
 | 
						|
            TString domainStr = *domainType.getSConst();
 | 
						|
            std::transform(domainStr.begin(), domainStr.end(), domainStr.begin(), ::tolower);
 | 
						|
 | 
						|
            TLayoutGeometry domain = ElgNone;
 | 
						|
 | 
						|
            if (domainStr == "tri") {
 | 
						|
                domain = ElgTriangles;
 | 
						|
            } else if (domainStr == "quad") {
 | 
						|
                domain = ElgQuads;
 | 
						|
            } else if (domainStr == "isoline") {
 | 
						|
                domain = ElgIsolines;
 | 
						|
            } else {
 | 
						|
                error(loc, "unsupported domain type", domainStr.c_str(), "");
 | 
						|
            }
 | 
						|
 | 
						|
            if (! intermediate.setInputPrimitive(domain)) {
 | 
						|
                error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle [outputtoplogy("...")]
 | 
						|
    const TIntermAggregate* topologyAttr = attributes[EatOutputTopology];
 | 
						|
    if (topologyAttr != nullptr) {
 | 
						|
        const TConstUnion& topoType = topologyAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
 | 
						|
        if (topoType.getType() != EbtString) {
 | 
						|
            error(loc, "invalid outputtoplogy", "", "");
 | 
						|
        } else {
 | 
						|
            TString topologyStr = *topoType.getSConst();
 | 
						|
            std::transform(topologyStr.begin(), topologyStr.end(), topologyStr.begin(), ::tolower);
 | 
						|
 | 
						|
            TVertexOrder topology = EvoNone;
 | 
						|
                
 | 
						|
            if (topologyStr == "point") {
 | 
						|
                topology = EvoNone;
 | 
						|
            } else if (topologyStr == "line") {
 | 
						|
                topology = EvoNone;
 | 
						|
            } else if (topologyStr == "triangle_cw") {
 | 
						|
                topology = EvoCw;
 | 
						|
            } else if (topologyStr == "triangle_ccw") {
 | 
						|
                topology = EvoCcw;
 | 
						|
            } else {
 | 
						|
                error(loc, "unsupported outputtoplogy type", topologyStr.c_str(), "");
 | 
						|
            }
 | 
						|
 | 
						|
            if (topology != EvoNone) {
 | 
						|
                if (! intermediate.setVertexOrder(topology)) {
 | 
						|
                    error(loc, "cannot change previously set outputtopology", TQualifier::getVertexOrderString(topology), "");
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle [partitioning("...")]
 | 
						|
    const TIntermAggregate* partitionAttr = attributes[EatPartitioning]; 
 | 
						|
    if (partitionAttr != nullptr) {
 | 
						|
        const TConstUnion& partType = partitionAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
 | 
						|
        if (partType.getType() != EbtString) {
 | 
						|
            error(loc, "invalid partitioning", "", "");
 | 
						|
        } else {
 | 
						|
            TString partitionStr = *partType.getSConst();
 | 
						|
            std::transform(partitionStr.begin(), partitionStr.end(), partitionStr.begin(), ::tolower);
 | 
						|
 | 
						|
            TVertexSpacing partitioning = EvsNone;
 | 
						|
                
 | 
						|
            if (partitionStr == "integer") {
 | 
						|
                partitioning = EvsEqual;
 | 
						|
            } else if (partitionStr == "fractional_even") {
 | 
						|
                partitioning = EvsFractionalEven;
 | 
						|
            } else if (partitionStr == "fractional_odd") {
 | 
						|
                partitioning = EvsFractionalOdd;
 | 
						|
                //} else if (partition == "pow2") { // TODO: currently nothing to map this to.
 | 
						|
            } else {
 | 
						|
                error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
 | 
						|
            }
 | 
						|
 | 
						|
            if (! intermediate.setVertexSpacing(partitioning))
 | 
						|
                error(loc, "cannot change previously set partitioning", TQualifier::getVertexSpacingString(partitioning), "");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle [outputcontrolpoints("...")]
 | 
						|
    const TIntermAggregate* outputControlPoints = attributes[EatOutputControlPoints]; 
 | 
						|
    if (outputControlPoints != nullptr) {
 | 
						|
        const TConstUnion& ctrlPointConst = outputControlPoints->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
 | 
						|
        if (ctrlPointConst.getType() != EbtInt) {
 | 
						|
            error(loc, "invalid outputcontrolpoints", "", "");
 | 
						|
        } else {
 | 
						|
            const int ctrlPoints = ctrlPointConst.getIConst();
 | 
						|
            if (! intermediate.setVertices(ctrlPoints)) {
 | 
						|
                error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Move parameters and return value to shader in/out
 | 
						|
    TVariable* entryPointOutput; // gets created in remapEntryPointIO
 | 
						|
    TVector<TVariable*> inputs;
 | 
						|
    TVector<TVariable*> outputs;
 | 
						|
    remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
 | 
						|
 | 
						|
    // Further this return/in/out transform by flattening, splitting, and assigning locations
 | 
						|
    const auto makeVariableInOut = [&](TVariable& variable) {
 | 
						|
        if (variable.getType().isStruct()) {
 | 
						|
            const TStorageQualifier qualifier = variable.getType().getQualifier().storage;
 | 
						|
            // struct inputs to the vertex stage and outputs from the fragment stage must be flattened
 | 
						|
            if ((language == EShLangVertex   && qualifier == EvqVaryingIn) ||
 | 
						|
                (language == EShLangFragment && qualifier == EvqVaryingOut))
 | 
						|
                flatten(loc, variable);
 | 
						|
            // Mixture of IO and non-IO must be split
 | 
						|
            else if (variable.getType().containsBuiltInInterstageIO(language))
 | 
						|
                split(variable);
 | 
						|
        }
 | 
						|
        assignLocations(variable);
 | 
						|
    };
 | 
						|
    if (entryPointOutput)
 | 
						|
        makeVariableInOut(*entryPointOutput);
 | 
						|
    for (auto it = inputs.begin(); it != inputs.end(); ++it)
 | 
						|
        makeVariableInOut(*(*it));
 | 
						|
    for (auto it = outputs.begin(); it != outputs.end(); ++it)
 | 
						|
        makeVariableInOut(*(*it));
 | 
						|
 | 
						|
    // Synthesize the call
 | 
						|
 | 
						|
    pushScope(); // matches the one in handleFunctionBody()
 | 
						|
 | 
						|
    // new signature
 | 
						|
    TType voidType(EbtVoid);
 | 
						|
    TFunction synthEntryPoint(&userFunction.getName(), voidType);
 | 
						|
    TIntermAggregate* synthParams = new TIntermAggregate();
 | 
						|
    intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
 | 
						|
    intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
 | 
						|
    intermediate.incrementEntryPointCount();
 | 
						|
    TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
 | 
						|
 | 
						|
    // change original name
 | 
						|
    userFunction.addPrefix("@");                         // change the name in the function, but not in the symbol table
 | 
						|
 | 
						|
    // Copy inputs (shader-in -> calling arg), while building up the call node
 | 
						|
    TVector<TVariable*> argVars;
 | 
						|
    TIntermAggregate* synthBody = new TIntermAggregate();
 | 
						|
    auto inputIt = inputs.begin();
 | 
						|
    TIntermTyped* callingArgs = nullptr;
 | 
						|
    for (int i = 0; i < userFunction.getParamCount(); i++) {
 | 
						|
        TParameter& param = userFunction[i];
 | 
						|
        argVars.push_back(makeInternalVariable(*param.name, *param.type));
 | 
						|
        argVars.back()->getWritableType().getQualifier().makeTemporary();
 | 
						|
        TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
 | 
						|
        handleFunctionArgument(&callee, callingArgs, arg);
 | 
						|
        if (param.type->getQualifier().isParamInput()) {
 | 
						|
            intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
 | 
						|
                                                               intermediate.addSymbol(**inputIt)));
 | 
						|
            inputIt++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Call
 | 
						|
    currentCaller = synthEntryPoint.getMangledName();
 | 
						|
    TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
 | 
						|
    currentCaller = userFunction.getMangledName();
 | 
						|
 | 
						|
    // Return value
 | 
						|
    if (entryPointOutput)
 | 
						|
        intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
 | 
						|
                                                           intermediate.addSymbol(*entryPointOutput), callReturn));
 | 
						|
    else
 | 
						|
        intermediate.growAggregate(synthBody, callReturn);
 | 
						|
 | 
						|
    // Output copies
 | 
						|
    auto outputIt = outputs.begin();
 | 
						|
    for (int i = 0; i < userFunction.getParamCount(); i++) {
 | 
						|
        TParameter& param = userFunction[i];
 | 
						|
        if (param.type->getQualifier().isParamOutput()) {
 | 
						|
            intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
 | 
						|
                                                               intermediate.addSymbol(**outputIt),
 | 
						|
                                                               intermediate.addSymbol(*argVars[i])));
 | 
						|
            outputIt++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Put the pieces together to form a full function subtree
 | 
						|
    // for the synthesized entry point.
 | 
						|
    synthBody->setOperator(EOpSequence);
 | 
						|
    TIntermNode* synthFunctionDef = synthParams;
 | 
						|
    handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
 | 
						|
 | 
						|
    entryPointFunctionBody = synthBody;
 | 
						|
 | 
						|
    return synthFunctionDef;
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody, TIntermNode*& node)
 | 
						|
{
 | 
						|
    node = intermediate.growAggregate(node, functionBody);
 | 
						|
    intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
 | 
						|
    node->getAsAggregate()->setName(function.getMangledName().c_str());
 | 
						|
 | 
						|
    popScope();
 | 
						|
 | 
						|
    if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
 | 
						|
        error(loc, "function does not return a value:", "", function.getName().c_str());
 | 
						|
}
 | 
						|
 | 
						|
// AST I/O is done through shader globals declared in the 'in' or 'out'
 | 
						|
// storage class.  An HLSL entry point has a return value, input parameters
 | 
						|
// and output parameters.  These need to get remapped to the AST I/O.
 | 
						|
void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
 | 
						|
    TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
 | 
						|
{
 | 
						|
    // Do the actual work to make a type be a shader input or output variable,
 | 
						|
    // and clear the original to be non-IO (for use as a normal function parameter/return).
 | 
						|
    const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) {
 | 
						|
        TVariable* ioVariable = makeInternalVariable(name, type);
 | 
						|
        clearUniformInputOutput(type.getQualifier());
 | 
						|
        if (type.getStruct() != nullptr) {
 | 
						|
            auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
 | 
						|
            if (newLists != ioTypeMap.end()) {
 | 
						|
                if (storage == EvqVaryingIn && newLists->second.input)
 | 
						|
                    ioVariable->getWritableType().setStruct(newLists->second.input);
 | 
						|
                else if (storage == EvqVaryingOut && newLists->second.output)
 | 
						|
                    ioVariable->getWritableType().setStruct(newLists->second.output);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (storage == EvqVaryingIn)
 | 
						|
            correctInput(ioVariable->getWritableType().getQualifier());
 | 
						|
        else
 | 
						|
            correctOutput(ioVariable->getWritableType().getQualifier());
 | 
						|
        ioVariable->getWritableType().getQualifier().storage = storage;
 | 
						|
        return ioVariable;
 | 
						|
    };
 | 
						|
 | 
						|
    // return value is actually a shader-scoped output (out)
 | 
						|
    if (function.getType().getBasicType() == EbtVoid)
 | 
						|
        returnValue = nullptr;
 | 
						|
    else
 | 
						|
        returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
 | 
						|
 | 
						|
    // parameters are actually shader-scoped inputs and outputs (in or out)
 | 
						|
    for (int i = 0; i < function.getParamCount(); i++) {
 | 
						|
        TType& paramType = *function[i].type;
 | 
						|
        if (paramType.getQualifier().isParamInput()) {
 | 
						|
            TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
 | 
						|
            inputs.push_back(argAsGlobal);
 | 
						|
        }
 | 
						|
        if (paramType.getQualifier().isParamOutput()) {
 | 
						|
            TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
 | 
						|
            outputs.push_back(argAsGlobal);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// An HLSL function that looks like an entry point, but is not,
 | 
						|
// declares entry point IO built-ins, but these have to be undone.
 | 
						|
void HlslParseContext::remapNonEntryPointIO(TFunction& function)
 | 
						|
{
 | 
						|
    // return value
 | 
						|
    if (function.getType().getBasicType() != EbtVoid)
 | 
						|
        clearUniformInputOutput(function.getWritableType().getQualifier());
 | 
						|
 | 
						|
    // parameters
 | 
						|
    for (int i = 0; i < function.getParamCount(); i++)
 | 
						|
        clearUniformInputOutput(function[i].type->getQualifier());
 | 
						|
}
 | 
						|
 | 
						|
// Handle function returns, including type conversions to the function return type
 | 
						|
// if necessary.
 | 
						|
TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
 | 
						|
{
 | 
						|
    functionReturnsValue = true;
 | 
						|
 | 
						|
    if (currentFunctionType->getBasicType() == EbtVoid) {
 | 
						|
        error(loc, "void function cannot return a value", "return", "");
 | 
						|
        return intermediate.addBranch(EOpReturn, loc);
 | 
						|
    } else if (*currentFunctionType != value->getType()) {
 | 
						|
        value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
 | 
						|
        if (value && *currentFunctionType != value->getType())
 | 
						|
            value = intermediate.addShapeConversion(EOpReturn, *currentFunctionType, value);
 | 
						|
        if (value == nullptr) {
 | 
						|
            error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
 | 
						|
            return value;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return intermediate.addBranch(EOpReturn, value, loc);
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::handleFunctionArgument(TFunction* function,
 | 
						|
                                              TIntermTyped*& arguments, TIntermTyped* newArg)
 | 
						|
{
 | 
						|
    TParameter param = { 0, new TType, nullptr };
 | 
						|
    param.type->shallowCopy(newArg->getType());
 | 
						|
 | 
						|
    function->addParameter(param);
 | 
						|
    if (arguments)
 | 
						|
        arguments = intermediate.growAggregate(arguments, newArg);
 | 
						|
    else
 | 
						|
        arguments = newArg;
 | 
						|
}
 | 
						|
 | 
						|
// Some simple source assignments need to be flattened to a sequence
 | 
						|
// of AST assignments. Catch these and flatten, otherwise, pass through
 | 
						|
// to intermediate.addAssign().
 | 
						|
//
 | 
						|
// Also, assignment to matrix swizzles requires multiple component assignments,
 | 
						|
// intercept those as well.
 | 
						|
TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right)
 | 
						|
{
 | 
						|
    if (left == nullptr || right == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
 | 
						|
        return handleAssignToMatrixSwizzle(loc, op, left, right);
 | 
						|
 | 
						|
    const bool isSplitLeft    = wasSplit(left);
 | 
						|
    const bool isSplitRight   = wasSplit(right);
 | 
						|
 | 
						|
    const bool isFlattenLeft  = wasFlattened(left);
 | 
						|
    const bool isFlattenRight = wasFlattened(right);
 | 
						|
 | 
						|
    // OK to do a single assign if both are split, or both are unsplit.  But if one is and the other
 | 
						|
    // isn't, we fall back to a member-wise copy.
 | 
						|
    if (! isFlattenLeft && ! isFlattenRight && !isSplitLeft && !isSplitRight)
 | 
						|
        return intermediate.addAssign(op, left, right, loc);
 | 
						|
 | 
						|
    TIntermAggregate* assignList = nullptr;
 | 
						|
    const TVector<TVariable*>* leftVariables = nullptr;
 | 
						|
    const TVector<TVariable*>* rightVariables = nullptr;
 | 
						|
 | 
						|
    // A temporary to store the right node's value, so we don't keep indirecting into it
 | 
						|
    // if it's not a simple symbol.
 | 
						|
    TVariable*     rhsTempVar   = nullptr;
 | 
						|
 | 
						|
    // If the RHS is a simple symbol node, we'll copy it for each member.
 | 
						|
    TIntermSymbol* cloneSymNode = nullptr;
 | 
						|
 | 
						|
    int memberCount = 0;
 | 
						|
 | 
						|
    // Track how many items there are to copy.
 | 
						|
    if (left->getType().isStruct())
 | 
						|
        memberCount = (int)left->getType().getStruct()->size();
 | 
						|
    if (left->getType().isArray())
 | 
						|
        memberCount = left->getType().getCumulativeArraySize();
 | 
						|
 | 
						|
    if (isFlattenLeft)
 | 
						|
        leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members;
 | 
						|
 | 
						|
    if (isFlattenRight) {
 | 
						|
        rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members;
 | 
						|
    } else {
 | 
						|
        // The RHS is not flattened.  There are several cases:
 | 
						|
        // 1. 1 item to copy:  Use the RHS directly.
 | 
						|
        // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
 | 
						|
        // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
 | 
						|
 | 
						|
        if (memberCount <= 1) {
 | 
						|
            // case 1: we'll use the symbol directly below.  Nothing to do.
 | 
						|
        } else {
 | 
						|
            if (right->getAsSymbolNode() != nullptr) {
 | 
						|
                // case 2: we'll copy the symbol per iteration below.
 | 
						|
                cloneSymNode = right->getAsSymbolNode();
 | 
						|
            } else {
 | 
						|
                // case 3: assign to a temp, and indirect into that.
 | 
						|
                rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
 | 
						|
                rhsTempVar->getWritableType().getQualifier().makeTemporary();
 | 
						|
                TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
 | 
						|
 | 
						|
                // Add this to the aggregate being built.
 | 
						|
                assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    int memberIdx = 0;
 | 
						|
 | 
						|
    // When dealing with split arrayed structures of builtins, the arrayness is moved to the extracted builtin
 | 
						|
    // variables, which is awkward when copying between split and unsplit structures.  This variable tracks
 | 
						|
    // array indirections so they can be percolated from outer structs to inner variables.
 | 
						|
    std::vector <int> arrayElement;
 | 
						|
 | 
						|
    // We track the outer-most aggregate, so that we can use its storage class later.
 | 
						|
    const TIntermTyped* outerLeft  = left;
 | 
						|
    const TIntermTyped* outerRight = right;
 | 
						|
 | 
						|
    const auto getMember = [&](bool isLeft, TIntermTyped* node, int member, TIntermTyped* splitNode, int splitMember) -> TIntermTyped * {
 | 
						|
        TIntermTyped* subTree;
 | 
						|
 | 
						|
        const bool flattened      = isLeft ? isFlattenLeft : isFlattenRight;
 | 
						|
        const bool split          = isLeft ? isSplitLeft : isSplitRight;
 | 
						|
        const TIntermTyped* outer = isLeft ? outerLeft   : outerRight;
 | 
						|
        const TVector<TVariable*>& flatVariables      = isLeft ? *leftVariables : *rightVariables;
 | 
						|
        const TOperator op = node->getType().isArray() ? EOpIndexDirect : EOpIndexDirectStruct;
 | 
						|
        const TType derefType(node->getType(), member);
 | 
						|
 | 
						|
        if (split && derefType.isBuiltInInterstageIO(language)) {
 | 
						|
            // copy from interstage IO builtin if needed
 | 
						|
            subTree = intermediate.addSymbol(*interstageBuiltInIo.find(tInterstageIoData(derefType, outer->getType()))->second);
 | 
						|
 | 
						|
            // Arrayness of builtIn symbols isn't handled by the normal recursion: it's been extracted and moved to the builtin.
 | 
						|
            if (subTree->getType().isArray() && !arrayElement.empty()) {
 | 
						|
                const TType splitDerefType(subTree->getType(), arrayElement.back());
 | 
						|
                subTree = intermediate.addIndex(EOpIndexDirect, subTree, intermediate.addConstantUnion(arrayElement.back(), loc), loc);
 | 
						|
                subTree->setType(splitDerefType);
 | 
						|
            }
 | 
						|
        } else if (flattened && isFinalFlattening(derefType)) {
 | 
						|
            subTree = intermediate.addSymbol(*flatVariables[memberIdx++]);
 | 
						|
        } else {
 | 
						|
            const TType splitDerefType(splitNode->getType(), splitMember);
 | 
						|
 | 
						|
            subTree = intermediate.addIndex(op, splitNode, intermediate.addConstantUnion(splitMember, loc), loc);
 | 
						|
            subTree->setType(splitDerefType);
 | 
						|
        }
 | 
						|
 | 
						|
        return subTree;
 | 
						|
    };
 | 
						|
 | 
						|
    // Use the proper RHS node: a new symbol from a TVariable, copy
 | 
						|
    // of an TIntermSymbol node, or sometimes the right node directly.
 | 
						|
    right = rhsTempVar   ? intermediate.addSymbol(*rhsTempVar, loc) :
 | 
						|
            cloneSymNode ? intermediate.addSymbol(*cloneSymNode) :
 | 
						|
            right;
 | 
						|
 | 
						|
    // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
 | 
						|
    // whole thing.  So, we'll resort to an explicit type via std::function.
 | 
						|
    const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight)>
 | 
						|
    traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight) -> void {
 | 
						|
        // If we get here, we are assigning to or from a whole array or struct that must be
 | 
						|
        // flattened, so have to do member-by-member assignment:
 | 
						|
 | 
						|
        if (left->getType().isArray()) {
 | 
						|
            const TType dereferencedType(left->getType(), 0);
 | 
						|
 | 
						|
            // array case
 | 
						|
            for (int element=0; element < left->getType().getOuterArraySize(); ++element) {
 | 
						|
                arrayElement.push_back(element);
 | 
						|
 | 
						|
                // Add a new AST symbol node if we have a temp variable holding a complex RHS.
 | 
						|
                TIntermTyped* subLeft  = getMember(true,  left,  element, left, element);
 | 
						|
                TIntermTyped* subRight = getMember(false, right, element, right, element);
 | 
						|
 | 
						|
                TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left,  element, splitLeft, element) : subLeft;
 | 
						|
                TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right, element, splitRight, element) : subRight; 
 | 
						|
 | 
						|
                if (isFinalFlattening(dereferencedType))
 | 
						|
                    assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subLeft, subRight, loc), loc);
 | 
						|
                else
 | 
						|
                    traverse(subLeft, subRight, subSplitLeft, subSplitRight);
 | 
						|
 | 
						|
                arrayElement.pop_back();
 | 
						|
            }
 | 
						|
        } else if (left->getType().isStruct()) {
 | 
						|
            // struct case
 | 
						|
            const auto& membersL = *left->getType().getStruct();
 | 
						|
            const auto& membersR = *right->getType().getStruct();
 | 
						|
 | 
						|
            // These track the members in the split structures corresponding to the same in the unsplit structures,
 | 
						|
            // which we traverse in parallel.
 | 
						|
            int memberL = 0;
 | 
						|
            int memberR = 0;
 | 
						|
 | 
						|
            for (int member = 0; member < int(membersL.size()); ++member) {
 | 
						|
                const TType& typeL = *membersL[member].type;
 | 
						|
                const TType& typeR = *membersR[member].type;
 | 
						|
 | 
						|
                TIntermTyped* subLeft  = getMember(true,  left, member, left, member);
 | 
						|
                TIntermTyped* subRight = getMember(false, right, member, right, member);
 | 
						|
 | 
						|
                // If there is no splitting, use the same values to avoid inefficiency.
 | 
						|
                TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left,  member, splitLeft, memberL) : subLeft;
 | 
						|
                TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right, member, splitRight, memberR) : subRight;
 | 
						|
 | 
						|
                // If this is the final flattening (no nested types below to flatten) we'll copy the member, else
 | 
						|
                // recurse into the type hierarchy.  However, if splitting the struct, that means we can copy a whole
 | 
						|
                // subtree here IFF it does not itself contain any interstage built-in IO variables, so we only have to
 | 
						|
                // recurse into it if there's something for splitting to do.  That can save a lot of AST verbosity for
 | 
						|
                // a bunch of memberwise copies.
 | 
						|
                if (isFinalFlattening(typeL) || (!isFlattenLeft && !isFlattenRight &&
 | 
						|
                                                 !typeL.containsBuiltInInterstageIO(language) && !typeR.containsBuiltInInterstageIO(language))) {
 | 
						|
                    assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, subSplitLeft, subSplitRight, loc), loc);
 | 
						|
                } else {
 | 
						|
                    traverse(subLeft, subRight, subSplitLeft, subSplitRight);
 | 
						|
                }
 | 
						|
 | 
						|
                memberL += (typeL.isBuiltInInterstageIO(language) ? 0 : 1);
 | 
						|
                memberR += (typeR.isBuiltInInterstageIO(language) ? 0 : 1);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            assert(0);  // we should never be called on a non-flattenable thing, because
 | 
						|
                        // that case bails out above to a simple copy.
 | 
						|
        }
 | 
						|
 | 
						|
    };
 | 
						|
 | 
						|
    TIntermTyped* splitLeft  = left;
 | 
						|
    TIntermTyped* splitRight = right;
 | 
						|
 | 
						|
    // If either left or right was a split structure, we must read or write it, but still have to
 | 
						|
    // parallel-recurse through the unsplit structure to identify the builtin IO vars.
 | 
						|
    if (isSplitLeft)
 | 
						|
        splitLeft = intermediate.addSymbol(*getSplitIoVar(left), loc);
 | 
						|
 | 
						|
    if (isSplitRight)
 | 
						|
        splitRight = intermediate.addSymbol(*getSplitIoVar(right), loc);
 | 
						|
 | 
						|
    // This makes the whole assignment, recursing through subtypes as needed.
 | 
						|
    traverse(left, right, splitLeft, splitRight);
 | 
						|
 | 
						|
    assert(assignList != nullptr);
 | 
						|
    assignList->setOperator(EOpSequence);
 | 
						|
 | 
						|
    return assignList;
 | 
						|
}
 | 
						|
 | 
						|
// An assignment to matrix swizzle must be decomposed into individual assignments.
 | 
						|
// These must be selected component-wise from the RHS and stored component-wise
 | 
						|
// into the LHS.
 | 
						|
TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right)
 | 
						|
{
 | 
						|
    assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
 | 
						|
 | 
						|
    if (op != EOpAssign)
 | 
						|
        error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
 | 
						|
 | 
						|
    // isolate the matrix and swizzle nodes
 | 
						|
    TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
 | 
						|
    const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
 | 
						|
 | 
						|
    // if the RHS isn't already a simple vector, let's store into one
 | 
						|
    TIntermSymbol* vector = right->getAsSymbolNode();
 | 
						|
    TIntermTyped* vectorAssign = nullptr;
 | 
						|
    if (vector == nullptr) {
 | 
						|
        // create a new intermediate vector variable to assign to
 | 
						|
        TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
 | 
						|
        vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
 | 
						|
 | 
						|
        // assign the right to the new vector
 | 
						|
        vectorAssign = handleAssign(loc, op, vector, right);
 | 
						|
    }
 | 
						|
 | 
						|
    // Assign the vector components to the matrix components.
 | 
						|
    // Store this as a sequence, so a single aggregate node represents this
 | 
						|
    // entire operation.
 | 
						|
    TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
 | 
						|
    TType columnType(matrix->getType(), 0);
 | 
						|
    TType componentType(columnType, 0);
 | 
						|
    TType indexType(EbtInt);
 | 
						|
    for (int i = 0; i < (int)swizzle.size(); i += 2) {
 | 
						|
        // the right component, single index into the RHS vector
 | 
						|
        TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
 | 
						|
                                    intermediate.addConstantUnion(i/2, loc), loc);
 | 
						|
 | 
						|
        // the left component, double index into the LHS matrix
 | 
						|
        TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
 | 
						|
                                    intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
 | 
						|
                                                                  indexType, loc),
 | 
						|
                                    loc);
 | 
						|
        leftComp->setType(columnType);
 | 
						|
        leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
 | 
						|
                                    intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
 | 
						|
                                                                  indexType, loc),
 | 
						|
                                    loc);
 | 
						|
        leftComp->setType(componentType);
 | 
						|
 | 
						|
        // Add the assignment to the aggregate
 | 
						|
        result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
 | 
						|
    }
 | 
						|
 | 
						|
    result->setOp(EOpSequence);
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// HLSL atomic operations have slightly different arguments than
 | 
						|
// GLSL/AST/SPIRV.  The semantics are converted below in decomposeIntrinsic.
 | 
						|
// This provides the post-decomposition equivalent opcode.
 | 
						|
//
 | 
						|
TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
 | 
						|
{
 | 
						|
    switch (op) {
 | 
						|
    case EOpInterlockedAdd:             return isImage ? EOpImageAtomicAdd      : EOpAtomicAdd;
 | 
						|
    case EOpInterlockedAnd:             return isImage ? EOpImageAtomicAnd      : EOpAtomicAnd;
 | 
						|
    case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
 | 
						|
    case EOpInterlockedMax:             return isImage ? EOpImageAtomicMax      : EOpAtomicMax;
 | 
						|
    case EOpInterlockedMin:             return isImage ? EOpImageAtomicMin      : EOpAtomicMin;
 | 
						|
    case EOpInterlockedOr:              return isImage ? EOpImageAtomicOr       : EOpAtomicOr;
 | 
						|
    case EOpInterlockedXor:             return isImage ? EOpImageAtomicXor      : EOpAtomicXor;
 | 
						|
    case EOpInterlockedExchange:        return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
 | 
						|
    case EOpInterlockedCompareStore:  // TODO: ...
 | 
						|
    default:
 | 
						|
        error(loc, "unknown atomic operation", "unknown op", "");
 | 
						|
        return EOpNull;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Create a combined sampler/texture from separate sampler and texture.
 | 
						|
//
 | 
						|
TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex, TIntermTyped* argSampler)
 | 
						|
{
 | 
						|
    TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
 | 
						|
 | 
						|
    txcombine->getSequence().push_back(argTex);
 | 
						|
    txcombine->getSequence().push_back(argSampler);
 | 
						|
 | 
						|
    TSampler samplerType = argTex->getType().getSampler();
 | 
						|
    samplerType.combined = true;
 | 
						|
    samplerType.shadow   = argSampler->getType().getSampler().shadow;
 | 
						|
 | 
						|
    txcombine->setType(TType(samplerType, EvqTemporary));
 | 
						|
    txcombine->setLoc(loc);
 | 
						|
 | 
						|
    return txcombine;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Decompose DX9 and DX10 sample intrinsics & object methods into AST
 | 
						|
//
 | 
						|
void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
 | 
						|
{
 | 
						|
    if (!node || !node->getAsOperator())
 | 
						|
        return;
 | 
						|
 | 
						|
    const auto clampReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
 | 
						|
        // Sampler return must always be a vec4, but we can construct a shorter vector
 | 
						|
        result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
 | 
						|
 | 
						|
        if (sampler.vectorSize < (unsigned)node->getVectorSize()) {
 | 
						|
            // Too many components.  Construct shorter vector from it.
 | 
						|
            const TType clampedType(result->getType().getBasicType(), EvqTemporary, sampler.vectorSize);
 | 
						|
 | 
						|
            const TOperator op = intermediate.mapTypeToConstructorOp(clampedType);
 | 
						|
 | 
						|
            result = constructBuiltIn(clampedType, op, result, loc, false);
 | 
						|
        }
 | 
						|
 | 
						|
        result->setLoc(loc);
 | 
						|
        return result;
 | 
						|
    };
 | 
						|
 | 
						|
    const TOperator op  = node->getAsOperator()->getOp();
 | 
						|
    const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | 
						|
 | 
						|
    switch (op) {
 | 
						|
    // **** DX9 intrinsics: ****
 | 
						|
    case EOpTexture:
 | 
						|
        {
 | 
						|
            // Texture with ddx & ddy is really gradient form in HLSL
 | 
						|
            if (argAggregate->getSequence().size() == 4)
 | 
						|
                node->getAsAggregate()->setOperator(EOpTextureGrad);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpTextureBias:
 | 
						|
        {
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // sampler
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // coord
 | 
						|
 | 
						|
            // HLSL puts bias in W component of coordinate.  We extract it and add it to
 | 
						|
            // the argument list, instead
 | 
						|
            TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
 | 
						|
            TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
 | 
						|
 | 
						|
            TOperator constructOp = EOpNull;
 | 
						|
            const TSampler& sampler = arg0->getType().getSampler();
 | 
						|
 | 
						|
            switch (sampler.dim) {
 | 
						|
            case Esd1D:   constructOp = EOpConstructFloat; break; // 1D
 | 
						|
            case Esd2D:   constructOp = EOpConstructVec2;  break; // 2D
 | 
						|
            case Esd3D:   constructOp = EOpConstructVec3;  break; // 3D
 | 
						|
            case EsdCube: constructOp = EOpConstructVec3;  break; // also 3D
 | 
						|
            default: break;
 | 
						|
            }
 | 
						|
 | 
						|
            TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
 | 
						|
            constructCoord->getSequence().push_back(arg1);
 | 
						|
            constructCoord->setLoc(loc);
 | 
						|
 | 
						|
            // The input vector should never be less than 2, since there's always a bias.
 | 
						|
            // The max is for safety, and should be a no-op.
 | 
						|
            constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
 | 
						|
 | 
						|
            TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
 | 
						|
            tex->getSequence().push_back(arg0);           // sampler
 | 
						|
            tex->getSequence().push_back(constructCoord); // coordinate
 | 
						|
            tex->getSequence().push_back(bias);           // bias
 | 
						|
 | 
						|
            node = clampReturn(tex, sampler);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    // **** DX10 methods: ****
 | 
						|
    case EOpMethodSample:     // fall through
 | 
						|
    case EOpMethodSampleBias: // ...
 | 
						|
        {
 | 
						|
            TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
            TIntermTyped* argBias   = nullptr;
 | 
						|
            TIntermTyped* argOffset = nullptr;
 | 
						|
            const TSampler& sampler = argTex->getType().getSampler();
 | 
						|
 | 
						|
            int nextArg = 3;
 | 
						|
 | 
						|
            if (op == EOpMethodSampleBias)  // SampleBias has a bias arg
 | 
						|
                argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
 | 
						|
 | 
						|
            TOperator textureOp = EOpTexture;
 | 
						|
 | 
						|
            if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
 | 
						|
                textureOp = EOpTextureOffset;
 | 
						|
                argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
 | 
						|
            }
 | 
						|
 | 
						|
            TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | 
						|
 | 
						|
            TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | 
						|
            txsample->getSequence().push_back(txcombine);
 | 
						|
            txsample->getSequence().push_back(argCoord);
 | 
						|
 | 
						|
            if (argBias != nullptr)
 | 
						|
                txsample->getSequence().push_back(argBias);
 | 
						|
 | 
						|
            if (argOffset != nullptr)
 | 
						|
                txsample->getSequence().push_back(argOffset);
 | 
						|
 | 
						|
            node = clampReturn(txsample, sampler);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodSampleGrad: // ...
 | 
						|
        {
 | 
						|
            TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
            TIntermTyped* argDDX    = argAggregate->getSequence()[3]->getAsTyped();
 | 
						|
            TIntermTyped* argDDY    = argAggregate->getSequence()[4]->getAsTyped();
 | 
						|
            TIntermTyped* argOffset = nullptr;
 | 
						|
            const TSampler& sampler = argTex->getType().getSampler();
 | 
						|
 | 
						|
            TOperator textureOp = EOpTextureGrad;
 | 
						|
 | 
						|
            if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
 | 
						|
                textureOp = EOpTextureGradOffset;
 | 
						|
                argOffset = argAggregate->getSequence()[5]->getAsTyped();
 | 
						|
            }
 | 
						|
 | 
						|
            TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | 
						|
 | 
						|
            TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | 
						|
            txsample->getSequence().push_back(txcombine);
 | 
						|
            txsample->getSequence().push_back(argCoord);
 | 
						|
            txsample->getSequence().push_back(argDDX);
 | 
						|
            txsample->getSequence().push_back(argDDY);
 | 
						|
 | 
						|
            if (argOffset != nullptr)
 | 
						|
                txsample->getSequence().push_back(argOffset);
 | 
						|
 | 
						|
            node = clampReturn(txsample, sampler);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodGetDimensions:
 | 
						|
        {
 | 
						|
            // AST returns a vector of results, which we break apart component-wise into
 | 
						|
            // separate values to assign to the HLSL method's outputs, ala:
 | 
						|
            //  tx . GetDimensions(width, height);
 | 
						|
            //      float2 sizeQueryTemp = EOpTextureQuerySize
 | 
						|
            //      width = sizeQueryTemp.X;
 | 
						|
            //      height = sizeQueryTemp.Y;
 | 
						|
 | 
						|
            TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            const TType& texType = argTex->getType();
 | 
						|
 | 
						|
            assert(texType.getBasicType() == EbtSampler);
 | 
						|
 | 
						|
            const TSampler& sampler = texType.getSampler();
 | 
						|
            const TSamplerDim dim = sampler.dim;
 | 
						|
            const bool isImage = sampler.isImage();
 | 
						|
            const int numArgs = (int)argAggregate->getSequence().size();
 | 
						|
 | 
						|
            int numDims = 0;
 | 
						|
 | 
						|
            switch (dim) {
 | 
						|
            case Esd1D:     numDims = 1; break; // W
 | 
						|
            case Esd2D:     numDims = 2; break; // W, H
 | 
						|
            case Esd3D:     numDims = 3; break; // W, H, D
 | 
						|
            case EsdCube:   numDims = 2; break; // W, H (cube)
 | 
						|
            case EsdBuffer: numDims = 1; break; // W (buffers)
 | 
						|
            default:
 | 
						|
                assert(0 && "unhandled texture dimension");
 | 
						|
            }
 | 
						|
 | 
						|
            // Arrayed adds another dimension for the number of array elements
 | 
						|
            if (sampler.isArrayed())
 | 
						|
                ++numDims;
 | 
						|
 | 
						|
            // Establish whether we're querying mip levels
 | 
						|
            const bool mipQuery = (numArgs > (numDims + 1)) && (!sampler.isMultiSample());
 | 
						|
 | 
						|
            // AST assumes integer return.  Will be converted to float if required.
 | 
						|
            TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
 | 
						|
            sizeQuery->getSequence().push_back(argTex);
 | 
						|
            // If we're querying an explicit LOD, add the LOD, which is always arg #1
 | 
						|
            if (mipQuery) {
 | 
						|
                TIntermTyped* queryLod = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
                sizeQuery->getSequence().push_back(queryLod);
 | 
						|
            }
 | 
						|
            sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
 | 
						|
            sizeQuery->setLoc(loc);
 | 
						|
 | 
						|
            // Return value from size query
 | 
						|
            TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
 | 
						|
            tempArg->getWritableType().getQualifier().makeTemporary();
 | 
						|
            TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
 | 
						|
                                                                   intermediate.addSymbol(*tempArg, loc),
 | 
						|
                                                                   sizeQuery, loc);
 | 
						|
 | 
						|
            // Compound statement for assigning outputs
 | 
						|
            TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
 | 
						|
            // Index of first output parameter
 | 
						|
            const int outParamBase = mipQuery ? 2 : 1;
 | 
						|
 | 
						|
            for (int compNum = 0; compNum < numDims; ++compNum) {
 | 
						|
                TIntermTyped* indexedOut = nullptr;
 | 
						|
                TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
 | 
						|
 | 
						|
                if (numDims > 1) {
 | 
						|
                    TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
 | 
						|
                    indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
 | 
						|
                    indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
 | 
						|
                    indexedOut->setLoc(loc);
 | 
						|
                } else {
 | 
						|
                    indexedOut = sizeQueryReturn;
 | 
						|
                }
 | 
						|
 | 
						|
                TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
 | 
						|
                TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
 | 
						|
 | 
						|
                compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
 | 
						|
            }
 | 
						|
 | 
						|
            // handle mip level parameter
 | 
						|
            if (mipQuery) {
 | 
						|
                TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
 | 
						|
 | 
						|
                TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
 | 
						|
                levelsQuery->getSequence().push_back(argTex);
 | 
						|
                levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
 | 
						|
                levelsQuery->setLoc(loc);
 | 
						|
 | 
						|
                TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
 | 
						|
                compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
 | 
						|
            }
 | 
						|
 | 
						|
            // 2DMS formats query # samples, which needs a different query op
 | 
						|
            if (sampler.isMultiSample()) {
 | 
						|
                TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
 | 
						|
 | 
						|
                TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
 | 
						|
                samplesQuery->getSequence().push_back(argTex);
 | 
						|
                samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
 | 
						|
                samplesQuery->setLoc(loc);
 | 
						|
 | 
						|
                TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
 | 
						|
                compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
 | 
						|
            }
 | 
						|
 | 
						|
            compoundStatement->setOperator(EOpSequence);
 | 
						|
            compoundStatement->setLoc(loc);
 | 
						|
            compoundStatement->setType(TType(EbtVoid));
 | 
						|
 | 
						|
            node = compoundStatement;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodSampleCmp:  // fall through...
 | 
						|
    case EOpMethodSampleCmpLevelZero:
 | 
						|
        {
 | 
						|
            TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
            TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
 | 
						|
            TIntermTyped* argOffset = nullptr;
 | 
						|
 | 
						|
            // optional offset value
 | 
						|
            if (argAggregate->getSequence().size() > 4)
 | 
						|
                argOffset = argAggregate->getSequence()[4]->getAsTyped();
 | 
						|
 | 
						|
            const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
 | 
						|
 | 
						|
            // AST wants comparison value as one of the texture coordinates
 | 
						|
            TOperator constructOp = EOpNull;
 | 
						|
            switch (coordDimWithCmpVal) {
 | 
						|
            // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
 | 
						|
            case 2: constructOp = EOpConstructVec2;  break;
 | 
						|
            case 3: constructOp = EOpConstructVec3;  break;
 | 
						|
            case 4: constructOp = EOpConstructVec4;  break;
 | 
						|
            case 5: constructOp = EOpConstructVec4;  break; // cubeArrayShadow, cmp value is separate arg.
 | 
						|
            default: assert(0); break;
 | 
						|
            }
 | 
						|
 | 
						|
            TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
 | 
						|
            coordWithCmp->getSequence().push_back(argCoord);
 | 
						|
            if (coordDimWithCmpVal != 5) // cube array shadow is special.
 | 
						|
                coordWithCmp->getSequence().push_back(argCmpVal);
 | 
						|
            coordWithCmp->setLoc(loc);
 | 
						|
            coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
 | 
						|
 | 
						|
            TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
 | 
						|
            if (argOffset != nullptr)
 | 
						|
                textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
 | 
						|
 | 
						|
            // Create combined sampler & texture op
 | 
						|
            TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | 
						|
            TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | 
						|
            txsample->getSequence().push_back(txcombine);
 | 
						|
            txsample->getSequence().push_back(coordWithCmp);
 | 
						|
 | 
						|
            if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
 | 
						|
                txsample->getSequence().push_back(argCmpVal);
 | 
						|
 | 
						|
            // the LevelZero form uses 0 as an explicit LOD
 | 
						|
            if (op == EOpMethodSampleCmpLevelZero)
 | 
						|
                txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
 | 
						|
 | 
						|
            // Add offset if present
 | 
						|
            if (argOffset != nullptr)
 | 
						|
                txsample->getSequence().push_back(argOffset);
 | 
						|
 | 
						|
            txsample->setType(node->getType());
 | 
						|
            txsample->setLoc(loc);
 | 
						|
            node = txsample;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodLoad:
 | 
						|
        {
 | 
						|
            TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord  = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* argOffset = nullptr;
 | 
						|
            TIntermTyped* lodComponent = nullptr;
 | 
						|
            TIntermTyped* coordSwizzle = nullptr;
 | 
						|
 | 
						|
            const TSampler& sampler = argTex->getType().getSampler();
 | 
						|
            const bool isMS = sampler.isMultiSample();
 | 
						|
            const bool isBuffer = sampler.dim == EsdBuffer;
 | 
						|
            const bool isImage = sampler.isImage();
 | 
						|
            const TBasicType coordBaseType = argCoord->getType().getBasicType();
 | 
						|
 | 
						|
            // Last component of coordinate is the mip level, for non-MS.  we separate them here:
 | 
						|
            if (isMS || isBuffer || isImage) {
 | 
						|
                // MS, Buffer, and Image have no LOD
 | 
						|
                coordSwizzle = argCoord;
 | 
						|
            } else {
 | 
						|
                // Extract coordinate
 | 
						|
                int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
 | 
						|
                TSwizzleSelectors<TVectorSelector> coordFields;
 | 
						|
                for (int i = 0; i < swizzleSize; ++i)
 | 
						|
                    coordFields.push_back(i);
 | 
						|
                TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
 | 
						|
                coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
 | 
						|
                coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
 | 
						|
 | 
						|
                // Extract LOD
 | 
						|
                TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
 | 
						|
                lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
 | 
						|
                lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
 | 
						|
            }
 | 
						|
 | 
						|
            const int numArgs    = (int)argAggregate->getSequence().size();
 | 
						|
            const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
 | 
						|
 | 
						|
            // Create texel fetch
 | 
						|
            const TOperator fetchOp = (isImage   ? EOpImageLoad :
 | 
						|
                                       hasOffset ? EOpTextureFetchOffset :
 | 
						|
                                       EOpTextureFetch);
 | 
						|
            TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
 | 
						|
 | 
						|
            // Build up the fetch
 | 
						|
            txfetch->getSequence().push_back(argTex);
 | 
						|
            txfetch->getSequence().push_back(coordSwizzle);
 | 
						|
 | 
						|
            if (isMS) {
 | 
						|
                // add 2DMS sample index
 | 
						|
                TIntermTyped* argSampleIdx  = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
                txfetch->getSequence().push_back(argSampleIdx);
 | 
						|
            } else if (isBuffer) {
 | 
						|
                // Nothing else to do for buffers.
 | 
						|
            } else if (isImage) {
 | 
						|
                // Nothing else to do for images.
 | 
						|
            } else {
 | 
						|
                // 2DMS and buffer have no LOD, but everything else does.
 | 
						|
                txfetch->getSequence().push_back(lodComponent);
 | 
						|
            }
 | 
						|
 | 
						|
            // Obtain offset arg, if there is one.
 | 
						|
            if (hasOffset) {
 | 
						|
                const int offsetPos  = (isMS ? 3 : 2);
 | 
						|
                argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
 | 
						|
                txfetch->getSequence().push_back(argOffset);
 | 
						|
            }
 | 
						|
 | 
						|
            node = clampReturn(txfetch, sampler);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodSampleLevel:
 | 
						|
        {
 | 
						|
            TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
            TIntermTyped* argLod    = argAggregate->getSequence()[3]->getAsTyped();
 | 
						|
            TIntermTyped* argOffset = nullptr;
 | 
						|
            const TSampler& sampler = argTex->getType().getSampler();
 | 
						|
 | 
						|
            const int  numArgs = (int)argAggregate->getSequence().size();
 | 
						|
 | 
						|
            if (numArgs == 5) // offset, if present
 | 
						|
                argOffset = argAggregate->getSequence()[4]->getAsTyped();
 | 
						|
 | 
						|
            const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
 | 
						|
            TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | 
						|
 | 
						|
            TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | 
						|
 | 
						|
            txsample->getSequence().push_back(txcombine);
 | 
						|
            txsample->getSequence().push_back(argCoord);
 | 
						|
            txsample->getSequence().push_back(argLod);
 | 
						|
 | 
						|
            if (argOffset != nullptr)
 | 
						|
                txsample->getSequence().push_back(argOffset);
 | 
						|
 | 
						|
            node = clampReturn(txsample, sampler);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodGather:
 | 
						|
        {
 | 
						|
            TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
            TIntermTyped* argOffset = nullptr;
 | 
						|
 | 
						|
            // Offset is optional
 | 
						|
            if (argAggregate->getSequence().size() > 3)
 | 
						|
                argOffset = argAggregate->getSequence()[3]->getAsTyped();
 | 
						|
 | 
						|
            const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
 | 
						|
            TIntermAggregate* txgather = new TIntermAggregate(textureOp);
 | 
						|
 | 
						|
            TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | 
						|
 | 
						|
            txgather->getSequence().push_back(txcombine);
 | 
						|
            txgather->getSequence().push_back(argCoord);
 | 
						|
            // Offset if not given is implicitly channel 0 (red)
 | 
						|
 | 
						|
            if (argOffset != nullptr)
 | 
						|
                txgather->getSequence().push_back(argOffset);
 | 
						|
 | 
						|
            txgather->setType(node->getType());
 | 
						|
            txgather->setLoc(loc);
 | 
						|
            node = txgather;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodGatherRed:      // fall through...
 | 
						|
    case EOpMethodGatherGreen:    // ...
 | 
						|
    case EOpMethodGatherBlue:     // ...
 | 
						|
    case EOpMethodGatherAlpha:    // ...
 | 
						|
    case EOpMethodGatherCmpRed:   // ...
 | 
						|
    case EOpMethodGatherCmpGreen: // ...
 | 
						|
    case EOpMethodGatherCmpBlue:  // ...
 | 
						|
    case EOpMethodGatherCmpAlpha: // ...
 | 
						|
        {
 | 
						|
            int channel = 0;    // the channel we are gathering
 | 
						|
            int cmpValues = 0;  // 1 if there is a compare value (handier than a bool below)
 | 
						|
 | 
						|
            switch (op) {
 | 
						|
            case EOpMethodGatherCmpRed:   cmpValues = 1;  // fall through
 | 
						|
            case EOpMethodGatherRed:      channel = 0; break;
 | 
						|
            case EOpMethodGatherCmpGreen: cmpValues = 1;  // fall through
 | 
						|
            case EOpMethodGatherGreen:    channel = 1; break;
 | 
						|
            case EOpMethodGatherCmpBlue:  cmpValues = 1;  // fall through
 | 
						|
            case EOpMethodGatherBlue:     channel = 2; break;
 | 
						|
            case EOpMethodGatherCmpAlpha: cmpValues = 1;  // fall through
 | 
						|
            case EOpMethodGatherAlpha:    channel = 3; break;
 | 
						|
            default:                      assert(0);   break;
 | 
						|
            }
 | 
						|
 | 
						|
            // For now, we have nothing to map the component-wise comparison forms
 | 
						|
            // to, because neither GLSL nor SPIR-V has such an opcode.  Issue an
 | 
						|
            // unimplemented error instead.  Most of the machinery is here if that
 | 
						|
            // should ever become available.
 | 
						|
            if (cmpValues) {
 | 
						|
                error(loc, "unimplemented: component-level gather compare", "", "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            int arg = 0;
 | 
						|
 | 
						|
            TIntermTyped* argTex        = argAggregate->getSequence()[arg++]->getAsTyped();
 | 
						|
            TIntermTyped* argSamp       = argAggregate->getSequence()[arg++]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord      = argAggregate->getSequence()[arg++]->getAsTyped();
 | 
						|
            TIntermTyped* argOffset     = nullptr;
 | 
						|
            TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
 | 
						|
            // TIntermTyped* argStatus     = nullptr; // TODO: residency
 | 
						|
            TIntermTyped* argCmp        = nullptr;
 | 
						|
 | 
						|
            const TSamplerDim dim = argTex->getType().getSampler().dim;
 | 
						|
 | 
						|
            const int  argSize = (int)argAggregate->getSequence().size();
 | 
						|
            bool hasStatus     = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
 | 
						|
            bool hasOffset1    = false;
 | 
						|
            bool hasOffset4    = false;
 | 
						|
 | 
						|
            // Only 2D forms can have offsets.  Discover if we have 0, 1 or 4 offsets.
 | 
						|
            if (dim == Esd2D) {
 | 
						|
                hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
 | 
						|
                hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
 | 
						|
            }
 | 
						|
 | 
						|
            assert(!(hasOffset1 && hasOffset4));
 | 
						|
 | 
						|
            TOperator textureOp = EOpTextureGather;
 | 
						|
 | 
						|
            // Compare forms have compare value
 | 
						|
            if (cmpValues != 0)
 | 
						|
                argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
 | 
						|
 | 
						|
            // Some forms have single offset
 | 
						|
            if (hasOffset1) {
 | 
						|
                textureOp = EOpTextureGatherOffset;   // single offset form
 | 
						|
                argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
 | 
						|
            }
 | 
						|
 | 
						|
            // Some forms have 4 gather offsets
 | 
						|
            if (hasOffset4) {
 | 
						|
                textureOp = EOpTextureGatherOffsets;  // note plural, for 4 offset form
 | 
						|
                for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
 | 
						|
                    argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
 | 
						|
            }
 | 
						|
 | 
						|
            // Residency status
 | 
						|
            if (hasStatus) {
 | 
						|
                // argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
 | 
						|
                error(loc, "unimplemented: residency status", "", "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            TIntermAggregate* txgather = new TIntermAggregate(textureOp);
 | 
						|
            TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | 
						|
 | 
						|
            TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
 | 
						|
 | 
						|
            txgather->getSequence().push_back(txcombine);
 | 
						|
            txgather->getSequence().push_back(argCoord);
 | 
						|
 | 
						|
            // AST wants an array of 4 offsets, where HLSL has separate args.  Here
 | 
						|
            // we construct an array from the separate args.
 | 
						|
            if (hasOffset4) {
 | 
						|
                TType arrayType(EbtInt, EvqTemporary, 2);
 | 
						|
                TArraySizes arraySizes;
 | 
						|
                arraySizes.addInnerSize(4);
 | 
						|
                arrayType.newArraySizes(arraySizes);
 | 
						|
 | 
						|
                TIntermAggregate* initList = new TIntermAggregate(EOpNull);
 | 
						|
 | 
						|
                for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
 | 
						|
                    initList->getSequence().push_back(argOffsets[offsetNum]);
 | 
						|
 | 
						|
                argOffset = addConstructor(loc, initList, arrayType);
 | 
						|
            }
 | 
						|
 | 
						|
            // Add comparison value if we have one
 | 
						|
            if (argTex->getType().getSampler().isShadow())
 | 
						|
                txgather->getSequence().push_back(argCmp);
 | 
						|
 | 
						|
            // Add offset (either 1, or an array of 4) if we have one
 | 
						|
            if (argOffset != nullptr)
 | 
						|
                txgather->getSequence().push_back(argOffset);
 | 
						|
 | 
						|
            txgather->getSequence().push_back(argChannel);
 | 
						|
 | 
						|
            txgather->setType(node->getType());
 | 
						|
            txgather->setLoc(loc);
 | 
						|
            node = txgather;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodCalculateLevelOfDetail:
 | 
						|
    case EOpMethodCalculateLevelOfDetailUnclamped:
 | 
						|
        {
 | 
						|
            TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
 | 
						|
            TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
 | 
						|
 | 
						|
            TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | 
						|
            txquerylod->getSequence().push_back(txcombine);
 | 
						|
            txquerylod->getSequence().push_back(argCoord);
 | 
						|
 | 
						|
            TIntermTyped* lodComponent = intermediate.addConstantUnion(0, loc, true);
 | 
						|
            TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
 | 
						|
            lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
 | 
						|
 | 
						|
            node = lodComponentIdx;
 | 
						|
 | 
						|
            // We cannot currently obtain the unclamped LOD
 | 
						|
            if (op == EOpMethodCalculateLevelOfDetailUnclamped)
 | 
						|
                error(loc, "unimplemented: CalculateLevelOfDetailUnclamped", "", "");
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpMethodGetSamplePosition:
 | 
						|
        {
 | 
						|
            error(loc, "unimplemented: GetSamplePosition", "", "");
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    default:
 | 
						|
        break; // most pass through unchanged
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Decompose geometry shader methods
 | 
						|
//
 | 
						|
void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
 | 
						|
{
 | 
						|
    if (!node || !node->getAsOperator())
 | 
						|
        return;
 | 
						|
 | 
						|
    const TOperator op  = node->getAsOperator()->getOp();
 | 
						|
    const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | 
						|
 | 
						|
    switch (op) {
 | 
						|
    case EOpMethodAppend:
 | 
						|
        if (argAggregate) {
 | 
						|
            TIntermAggregate* sequence = nullptr;
 | 
						|
            TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
 | 
						|
 | 
						|
            emit->setLoc(loc);
 | 
						|
            emit->setType(TType(EbtVoid));
 | 
						|
 | 
						|
            sequence = intermediate.growAggregate(sequence,
 | 
						|
                                                  handleAssign(loc, EOpAssign,
 | 
						|
                                                               argAggregate->getSequence()[0]->getAsTyped(),
 | 
						|
                                                               argAggregate->getSequence()[1]->getAsTyped()),
 | 
						|
                                                  loc);
 | 
						|
 | 
						|
            sequence = intermediate.growAggregate(sequence, emit);
 | 
						|
 | 
						|
            sequence->setOperator(EOpSequence);
 | 
						|
            sequence->setLoc(loc);
 | 
						|
            sequence->setType(TType(EbtVoid));
 | 
						|
            node = sequence;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpMethodRestartStrip:
 | 
						|
        {
 | 
						|
            TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
 | 
						|
            cut->setLoc(loc);
 | 
						|
            cut->setType(TType(EbtVoid));
 | 
						|
            node = cut;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        break; // most pass through unchanged
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Optionally decompose intrinsics to AST opcodes.
 | 
						|
//
 | 
						|
void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
 | 
						|
{
 | 
						|
    // Helper to find image data for image atomics:
 | 
						|
    // OpImageLoad(image[idx])
 | 
						|
    // We take the image load apart and add its params to the atomic op aggregate node
 | 
						|
    const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
 | 
						|
        TIntermAggregate* loadOp = load->getAsAggregate();
 | 
						|
        if (loadOp == nullptr) {
 | 
						|
            error(loc, "unknown image type in atomic operation", "", "");
 | 
						|
            node = nullptr;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        atomic->getSequence().push_back(loadOp->getSequence()[0]);
 | 
						|
        atomic->getSequence().push_back(loadOp->getSequence()[1]);
 | 
						|
    };
 | 
						|
 | 
						|
    // Return true if this is an imageLoad, which we will change to an image atomic.
 | 
						|
    const auto isImageParam = [](TIntermTyped* image) -> bool {
 | 
						|
        TIntermAggregate* imageAggregate = image->getAsAggregate();
 | 
						|
        return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
 | 
						|
    };
 | 
						|
 | 
						|
    // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
 | 
						|
    // opcodes for compatibility with existing software stacks.
 | 
						|
    static const bool decomposeHlslIntrinsics = true;
 | 
						|
 | 
						|
    if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
 | 
						|
        return;
 | 
						|
 | 
						|
    const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | 
						|
    TIntermUnary* fnUnary = node->getAsUnaryNode();
 | 
						|
    const TOperator op  = node->getAsOperator()->getOp();
 | 
						|
 | 
						|
    switch (op) {
 | 
						|
    case EOpGenMul:
 | 
						|
        {
 | 
						|
            // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
 | 
						|
            // Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
 | 
						|
            // we must reverse the operand order here.  Hence, arg0 gets sequence[1], etc.
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
 | 
						|
            if (arg0->isVector() && arg1->isVector()) {  // vec * vec
 | 
						|
                node->getAsAggregate()->setOperator(EOpDot);
 | 
						|
            } else {
 | 
						|
                node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpRcp:
 | 
						|
        {
 | 
						|
            // rcp(a) -> 1 / a
 | 
						|
            TIntermTyped* arg0 = fnUnary->getOperand();
 | 
						|
            TBasicType   type0 = arg0->getBasicType();
 | 
						|
            TIntermTyped* one  = intermediate.addConstantUnion(1, type0, loc, true);
 | 
						|
            node  = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpSaturate:
 | 
						|
        {
 | 
						|
            // saturate(a) -> clamp(a,0,1)
 | 
						|
            TIntermTyped* arg0 = fnUnary->getOperand();
 | 
						|
            TBasicType   type0 = arg0->getBasicType();
 | 
						|
            TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
 | 
						|
 | 
						|
            clamp->getSequence().push_back(arg0);
 | 
						|
            clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
 | 
						|
            clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
 | 
						|
            clamp->setLoc(loc);
 | 
						|
            clamp->setType(node->getType());
 | 
						|
            clamp->getWritableType().getQualifier().makeTemporary();
 | 
						|
            node = clamp;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpSinCos:
 | 
						|
        {
 | 
						|
            // sincos(a,b,c) -> b = sin(a), c = cos(a)
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
 | 
						|
            TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
 | 
						|
            TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
 | 
						|
            TIntermTyped* sinAssign    = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
 | 
						|
            TIntermTyped* cosAssign    = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
 | 
						|
 | 
						|
            TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
 | 
						|
            compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
 | 
						|
            compoundStatement->setOperator(EOpSequence);
 | 
						|
            compoundStatement->setLoc(loc);
 | 
						|
            compoundStatement->setType(TType(EbtVoid));
 | 
						|
 | 
						|
            node = compoundStatement;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpClip:
 | 
						|
        {
 | 
						|
            // clip(a) -> if (any(a<0)) discard;
 | 
						|
            TIntermTyped*  arg0 = fnUnary->getOperand();
 | 
						|
            TBasicType     type0 = arg0->getBasicType();
 | 
						|
            TIntermTyped*  compareNode = nullptr;
 | 
						|
 | 
						|
            // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
 | 
						|
            if (!arg0->isScalar()) {
 | 
						|
                // component-wise compare: a < 0
 | 
						|
                TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
 | 
						|
                less->getSequence().push_back(arg0);
 | 
						|
                less->setLoc(loc);
 | 
						|
 | 
						|
                // make vec or mat of bool matching dimensions of input
 | 
						|
                less->setType(TType(EbtBool, EvqTemporary,
 | 
						|
                                    arg0->getType().getVectorSize(),
 | 
						|
                                    arg0->getType().getMatrixCols(),
 | 
						|
                                    arg0->getType().getMatrixRows(),
 | 
						|
                                    arg0->getType().isVector()));
 | 
						|
 | 
						|
                // calculate # of components for comparison const
 | 
						|
                const int constComponentCount =
 | 
						|
                    std::max(arg0->getType().getVectorSize(), 1) *
 | 
						|
                    std::max(arg0->getType().getMatrixCols(), 1) *
 | 
						|
                    std::max(arg0->getType().getMatrixRows(), 1);
 | 
						|
 | 
						|
                TConstUnion zero;
 | 
						|
                zero.setDConst(0.0);
 | 
						|
                TConstUnionArray zeros(constComponentCount, zero);
 | 
						|
 | 
						|
                less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
 | 
						|
 | 
						|
                compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
 | 
						|
            } else {
 | 
						|
                TIntermTyped* zero = intermediate.addConstantUnion(0, type0, loc, true);
 | 
						|
                compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
 | 
						|
            }
 | 
						|
 | 
						|
            TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
 | 
						|
 | 
						|
            node = new TIntermSelection(compareNode, killNode, nullptr);
 | 
						|
            node->setLoc(loc);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpLog10:
 | 
						|
        {
 | 
						|
            // log10(a) -> log2(a) * 0.301029995663981  (== 1/log2(10))
 | 
						|
            TIntermTyped* arg0 = fnUnary->getOperand();
 | 
						|
            TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
 | 
						|
            TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
 | 
						|
 | 
						|
            node  = handleBinaryMath(loc, "mul", EOpMul, log2, base);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpDst:
 | 
						|
        {
 | 
						|
            // dest.x = 1;
 | 
						|
            // dest.y = src0.y * src1.y;
 | 
						|
            // dest.z = src0.z;
 | 
						|
            // dest.w = src1.w;
 | 
						|
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
 | 
						|
            TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
 | 
						|
            TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
 | 
						|
            TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
 | 
						|
 | 
						|
            TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
 | 
						|
            TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
 | 
						|
            TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
 | 
						|
            TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
 | 
						|
 | 
						|
            TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
 | 
						|
 | 
						|
            dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
 | 
						|
            dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
 | 
						|
            dst->getSequence().push_back(src0z);
 | 
						|
            dst->getSequence().push_back(src1w);
 | 
						|
            dst->setType(TType(EbtFloat, EvqTemporary, 4));
 | 
						|
            dst->setLoc(loc);
 | 
						|
            node = dst;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
 | 
						|
    case EOpInterlockedMin: // ...
 | 
						|
    case EOpInterlockedMax: // ...
 | 
						|
    case EOpInterlockedAnd: // ...
 | 
						|
    case EOpInterlockedOr:  // ...
 | 
						|
    case EOpInterlockedXor: // ...
 | 
						|
    case EOpInterlockedExchange: // always has output arg
 | 
						|
        {
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // value
 | 
						|
            TIntermTyped* arg2 = nullptr;
 | 
						|
 | 
						|
            if (argAggregate->getSequence().size() > 2)
 | 
						|
                arg2 = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
 | 
						|
            const bool isImage = isImageParam(arg0);
 | 
						|
            const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
 | 
						|
            TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
 | 
						|
            atomic->setType(arg0->getType());
 | 
						|
            atomic->getWritableType().getQualifier().makeTemporary();
 | 
						|
            atomic->setLoc(loc);
 | 
						|
 | 
						|
            if (isImage) {
 | 
						|
                // orig_value = imageAtomicOp(image, loc, data)
 | 
						|
                imageAtomicParams(atomic, arg0);
 | 
						|
                atomic->getSequence().push_back(arg1);
 | 
						|
 | 
						|
                if (argAggregate->getSequence().size() > 2) {
 | 
						|
                    node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
 | 
						|
                } else {
 | 
						|
                    node = atomic; // no assignment needed, as there was no out var.
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                // Normal memory variable:
 | 
						|
                // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
 | 
						|
                if (argAggregate->getSequence().size() > 2) {
 | 
						|
                    // optional output param is present.  return value goes to arg2.
 | 
						|
                    atomic->getSequence().push_back(arg0);
 | 
						|
                    atomic->getSequence().push_back(arg1);
 | 
						|
 | 
						|
                    node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
 | 
						|
                } else {
 | 
						|
                    // Set the matching operator.  Since output is absent, this is all we need to do.
 | 
						|
                    node->getAsAggregate()->setOperator(atomicOp);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpInterlockedCompareExchange:
 | 
						|
        {
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // cmp
 | 
						|
            TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();  // value
 | 
						|
            TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped();  // orig
 | 
						|
 | 
						|
            const bool isImage = isImageParam(arg0);
 | 
						|
            TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
 | 
						|
            atomic->setLoc(loc);
 | 
						|
            atomic->setType(arg2->getType());
 | 
						|
            atomic->getWritableType().getQualifier().makeTemporary();
 | 
						|
 | 
						|
            if (isImage) {
 | 
						|
                imageAtomicParams(atomic, arg0);
 | 
						|
            } else {
 | 
						|
                atomic->getSequence().push_back(arg0);
 | 
						|
            }
 | 
						|
 | 
						|
            atomic->getSequence().push_back(arg1);
 | 
						|
            atomic->getSequence().push_back(arg2);
 | 
						|
            node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpEvaluateAttributeSnapped:
 | 
						|
        {
 | 
						|
            // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
 | 
						|
            // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
 | 
						|
            //   iU = (iU<<28)>>28
 | 
						|
            //   fU = ((float)iU)/16
 | 
						|
            // Targets might handle this natively, in which case they can disable
 | 
						|
            // decompositions.
 | 
						|
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // value
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // offset
 | 
						|
 | 
						|
            TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
 | 
						|
            TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
 | 
						|
                                                handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
 | 
						|
                                                i28);
 | 
						|
 | 
						|
            TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
 | 
						|
            TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
 | 
						|
                                                         intermediate.addConversion(EOpConstructFloat,
 | 
						|
                                                                                    TType(EbtFloat, EvqTemporary, 2), iU),
 | 
						|
                                                         recip16);
 | 
						|
 | 
						|
            TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
 | 
						|
            interp->getSequence().push_back(arg0);
 | 
						|
            interp->getSequence().push_back(floatOffset);
 | 
						|
            interp->setLoc(loc);
 | 
						|
            interp->setType(arg0->getType());
 | 
						|
            interp->getWritableType().getQualifier().makeTemporary();
 | 
						|
 | 
						|
            node = interp;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpLit:
 | 
						|
        {
 | 
						|
            TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
            TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
 | 
						|
 | 
						|
            TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
 | 
						|
 | 
						|
            // Ambient
 | 
						|
            dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
 | 
						|
 | 
						|
            // Diffuse:
 | 
						|
            TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
 | 
						|
            TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
 | 
						|
            diffuse->getSequence().push_back(n_dot_l);
 | 
						|
            diffuse->getSequence().push_back(zero);
 | 
						|
            diffuse->setLoc(loc);
 | 
						|
            diffuse->setType(TType(EbtFloat));
 | 
						|
            dst->getSequence().push_back(diffuse);
 | 
						|
 | 
						|
            // Specular:
 | 
						|
            TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
 | 
						|
            min_ndot->getSequence().push_back(n_dot_l);
 | 
						|
            min_ndot->getSequence().push_back(n_dot_h);
 | 
						|
            min_ndot->setLoc(loc);
 | 
						|
            min_ndot->setType(TType(EbtFloat));
 | 
						|
 | 
						|
            TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
 | 
						|
            TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m);  // n_dot_h * m
 | 
						|
 | 
						|
            dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
 | 
						|
 | 
						|
            // One:
 | 
						|
            dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
 | 
						|
 | 
						|
            dst->setLoc(loc);
 | 
						|
            dst->setType(TType(EbtFloat, EvqTemporary, 4));
 | 
						|
            node = dst;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpAsDouble:
 | 
						|
        {
 | 
						|
            // asdouble accepts two 32 bit ints.  we can use EOpUint64BitsToDouble, but must
 | 
						|
            // first construct a uint64.
 | 
						|
            TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
 | 
						|
            TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
 | 
						|
 | 
						|
            if (arg0->getType().isVector()) { // TODO: ...
 | 
						|
                error(loc, "double2 conversion not implemented", "asdouble", "");
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
 | 
						|
 | 
						|
            uint64->getSequence().push_back(arg0);
 | 
						|
            uint64->getSequence().push_back(arg1);
 | 
						|
            uint64->setType(TType(EbtUint, EvqTemporary, 2));  // convert 2 uints to a uint2
 | 
						|
            uint64->setLoc(loc);
 | 
						|
 | 
						|
            // bitcast uint2 to a double
 | 
						|
            TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
 | 
						|
            convert->getAsUnaryNode()->setOperand(uint64);
 | 
						|
            convert->setLoc(loc);
 | 
						|
            convert->setType(TType(EbtDouble, EvqTemporary));
 | 
						|
            node = convert;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpF16tof32:
 | 
						|
    case EOpF32tof16:
 | 
						|
        {
 | 
						|
            // Temporary until decomposition is available.
 | 
						|
            error(loc, "unimplemented intrinsic: handle natively", "f32tof16", "");
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    case EOpD3DCOLORtoUBYTE4:
 | 
						|
        {
 | 
						|
            // ivec4 ( x.zyxw * 255.001953 );
 | 
						|
            TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
 | 
						|
            TSwizzleSelectors<TVectorSelector> selectors;
 | 
						|
            selectors.push_back(2);
 | 
						|
            selectors.push_back(1);
 | 
						|
            selectors.push_back(0);
 | 
						|
            selectors.push_back(3);
 | 
						|
            TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
 | 
						|
            TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
 | 
						|
            swizzled->setType(arg0->getType());
 | 
						|
            swizzled->getWritableType().getQualifier().makeTemporary();
 | 
						|
 | 
						|
            TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
 | 
						|
            TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
 | 
						|
            rangeConverted->setType(arg0->getType());
 | 
						|
            rangeConverted->getWritableType().getQualifier().makeTemporary();
 | 
						|
 | 
						|
            node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
 | 
						|
            node->setLoc(loc);
 | 
						|
            node->setType(TType(EbtInt, EvqTemporary, 4));
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
    default:
 | 
						|
        break; // most pass through unchanged
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing function call syntax in the grammar, which could be any of
 | 
						|
//  - .length() method
 | 
						|
//  - constructor
 | 
						|
//  - a call to a built-in function mapped to an operator
 | 
						|
//  - a call to a built-in function that will remain a function call (e.g., texturing)
 | 
						|
//  - user function
 | 
						|
//  - subroutine call (not implemented yet)
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
 | 
						|
{
 | 
						|
    TIntermTyped* result = nullptr;
 | 
						|
 | 
						|
    TOperator op = function->getBuiltInOp();
 | 
						|
    if (op == EOpArrayLength)
 | 
						|
        result = handleLengthMethod(loc, function, arguments);
 | 
						|
    else if (op != EOpNull) {
 | 
						|
        //
 | 
						|
        // Then this should be a constructor.
 | 
						|
        // Don't go through the symbol table for constructors.
 | 
						|
        // Their parameters will be verified algorithmically.
 | 
						|
        //
 | 
						|
        TType type(EbtVoid);  // use this to get the type back
 | 
						|
        if (! constructorError(loc, arguments, *function, op, type)) {
 | 
						|
            //
 | 
						|
            // It's a constructor, of type 'type'.
 | 
						|
            //
 | 
						|
            result = addConstructor(loc, arguments, type);
 | 
						|
            if (result == nullptr)
 | 
						|
                error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        //
 | 
						|
        // Find it in the symbol table.
 | 
						|
        //
 | 
						|
        const TFunction* fnCandidate;
 | 
						|
        bool builtIn;
 | 
						|
        fnCandidate = findFunction(loc, *function, builtIn, arguments);
 | 
						|
        if (fnCandidate) {
 | 
						|
            // This is a declared function that might map to
 | 
						|
            //  - a built-in operator,
 | 
						|
            //  - a built-in function not mapped to an operator, or
 | 
						|
            //  - a user function.
 | 
						|
 | 
						|
            // Error check for a function requiring specific extensions present.
 | 
						|
            if (builtIn && fnCandidate->getNumExtensions())
 | 
						|
                requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str());
 | 
						|
 | 
						|
            // Convert 'in' arguments
 | 
						|
            if (arguments)
 | 
						|
                addInputArgumentConversions(*fnCandidate, arguments);
 | 
						|
 | 
						|
            op = fnCandidate->getBuiltInOp();
 | 
						|
            if (builtIn && op != EOpNull) {
 | 
						|
                // A function call mapped to a built-in operation.
 | 
						|
                result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, fnCandidate->getType());
 | 
						|
                if (result == nullptr)  {
 | 
						|
                    error(arguments->getLoc(), " wrong operand type", "Internal Error",
 | 
						|
                        "built in unary operator function.  Type: %s",
 | 
						|
                        static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
 | 
						|
                } else if (result->getAsOperator()) {
 | 
						|
                    builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                // This is a function call not mapped to built-in operator.
 | 
						|
                // It could still be a built-in function, but only if PureOperatorBuiltins == false.
 | 
						|
                result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
 | 
						|
                TIntermAggregate* call = result->getAsAggregate();
 | 
						|
                call->setName(fnCandidate->getMangledName());
 | 
						|
 | 
						|
                // this is how we know whether the given function is a built-in function or a user-defined function
 | 
						|
                // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
 | 
						|
                // if builtIn == true, it's definitely a built-in function with EOpNull
 | 
						|
                if (! builtIn) {
 | 
						|
                    call->setUserDefined();
 | 
						|
                    intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName());
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // for decompositions, since we want to operate on the function node, not the aggregate holding
 | 
						|
            // output conversions.
 | 
						|
            const TIntermTyped* fnNode = result;
 | 
						|
 | 
						|
            decomposeIntrinsic(loc, result, arguments);       // HLSL->AST intrinsic decompositions
 | 
						|
            decomposeSampleMethods(loc, result, arguments);   // HLSL->AST sample method decompositions
 | 
						|
            decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
 | 
						|
 | 
						|
            // Convert 'out' arguments.  If it was a constant folded built-in, it won't be an aggregate anymore.
 | 
						|
            // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
 | 
						|
            // Also, build the qualifier list for user function calls, which are always called with an aggregate.
 | 
						|
            // We don't do this is if there has been a decomposition, which will have added its own conversions
 | 
						|
            // for output parameters.
 | 
						|
            if (result == fnNode && result->getAsAggregate()) {
 | 
						|
                TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
 | 
						|
                for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
 | 
						|
                    TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
 | 
						|
                    qualifierList.push_back(qual);
 | 
						|
                }
 | 
						|
                result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // generic error recovery
 | 
						|
    // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades
 | 
						|
    if (result == nullptr)
 | 
						|
        result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
// Finish processing object.length(). This started earlier in handleDotDereference(), where
 | 
						|
// the ".length" part was recognized and semantically checked, and finished here where the
 | 
						|
// function syntax "()" is recognized.
 | 
						|
//
 | 
						|
// Return resulting tree node.
 | 
						|
TIntermTyped* HlslParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode)
 | 
						|
{
 | 
						|
    int length = 0;
 | 
						|
 | 
						|
    if (function->getParamCount() > 0)
 | 
						|
        error(loc, "method does not accept any arguments", function->getName().c_str(), "");
 | 
						|
    else {
 | 
						|
        const TType& type = intermNode->getAsTyped()->getType();
 | 
						|
        if (type.isArray()) {
 | 
						|
            if (type.isRuntimeSizedArray()) {
 | 
						|
                // Create a unary op and let the back end handle it
 | 
						|
                return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt));
 | 
						|
            } else
 | 
						|
                length = type.getOuterArraySize();
 | 
						|
        } else if (type.isMatrix())
 | 
						|
            length = type.getMatrixCols();
 | 
						|
        else if (type.isVector())
 | 
						|
            length = type.getVectorSize();
 | 
						|
        else {
 | 
						|
            // we should not get here, because earlier semantic checking should have prevented this path
 | 
						|
            error(loc, ".length()", "unexpected use of .length()", "");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (length == 0)
 | 
						|
        length = 1;
 | 
						|
 | 
						|
    return intermediate.addConstantUnion(length, loc);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Add any needed implicit conversions for function-call arguments to input parameters.
 | 
						|
//
 | 
						|
void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
 | 
						|
{
 | 
						|
    TIntermAggregate* aggregate = arguments->getAsAggregate();
 | 
						|
    const auto setArg = [&](int argNum, TIntermTyped* arg) {
 | 
						|
        if (function.getParamCount() == 1)
 | 
						|
            arguments = arg;
 | 
						|
        else {
 | 
						|
            if (aggregate)
 | 
						|
                aggregate->getSequence()[argNum] = arg;
 | 
						|
            else
 | 
						|
                arguments = arg;
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    // Process each argument's conversion
 | 
						|
    for (int i = 0; i < function.getParamCount(); ++i) {
 | 
						|
        if (! function[i].type->getQualifier().isParamInput())
 | 
						|
            continue;
 | 
						|
 | 
						|
        // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
 | 
						|
        // is the single argument itself or its children are the arguments.  Only one argument
 | 
						|
        // means take 'arguments' itself as the one argument.
 | 
						|
        TIntermTyped* arg = function.getParamCount() == 1
 | 
						|
                                   ? arguments->getAsTyped()
 | 
						|
                                   : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped());
 | 
						|
        if (*function[i].type != arg->getType()) {
 | 
						|
            // In-qualified arguments just need an extra node added above the argument to
 | 
						|
            // convert to the correct type.
 | 
						|
            TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg);
 | 
						|
            if (convArg != nullptr)
 | 
						|
                convArg = intermediate.addShapeConversion(EOpFunctionCall, *function[i].type, convArg);
 | 
						|
            if (convArg != nullptr)
 | 
						|
                setArg(i, convArg);
 | 
						|
            else
 | 
						|
                error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", i);
 | 
						|
        } else {
 | 
						|
            if (wasFlattened(arg) || wasSplit(arg)) {
 | 
						|
                // Will make a two-level subtree.
 | 
						|
                // The deepest will copy member-by-member to build the structure to pass.
 | 
						|
                // The level above that will be a two-operand EOpComma sequence that follows the copy by the
 | 
						|
                // object itself.
 | 
						|
                TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[i].type);
 | 
						|
                internalAggregate->getWritableType().getQualifier().makeTemporary();
 | 
						|
                TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
 | 
						|
                                                                      internalAggregate->getName(),
 | 
						|
                                                                      internalAggregate->getType());
 | 
						|
                internalSymbolNode->setLoc(arg->getLoc());
 | 
						|
                // This makes the deepest level, the member-wise copy
 | 
						|
                TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign, internalSymbolNode, arg)->getAsAggregate();
 | 
						|
 | 
						|
                // Now, pair that with the resulting aggregate.
 | 
						|
                assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
 | 
						|
                assignAgg->setOperator(EOpComma);
 | 
						|
                assignAgg->setType(internalAggregate->getType());
 | 
						|
                setArg(i, assignAgg);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Add any needed implicit output conversions for function-call arguments.  This
 | 
						|
// can require a new tree topology, complicated further by whether the function
 | 
						|
// has a return value.
 | 
						|
//
 | 
						|
// Returns a node of a subtree that evaluates to the return value of the function.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
 | 
						|
{
 | 
						|
    assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
 | 
						|
 | 
						|
    const TSourceLoc& loc = intermNode.getLoc();
 | 
						|
 | 
						|
    TIntermSequence argSequence; // temp sequence for unary node args
 | 
						|
 | 
						|
    if (intermNode.getAsUnaryNode())
 | 
						|
        argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
 | 
						|
 | 
						|
    TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
 | 
						|
 | 
						|
    const auto needsConversion = [&](int argNum) {
 | 
						|
        return function[argNum].type->getQualifier().isParamOutput() &&
 | 
						|
               (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
 | 
						|
                shouldConvertLValue(arguments[argNum]) ||
 | 
						|
                wasFlattened(arguments[argNum]->getAsTyped()));
 | 
						|
    };
 | 
						|
 | 
						|
    // Will there be any output conversions?
 | 
						|
    bool outputConversions = false;
 | 
						|
    for (int i = 0; i < function.getParamCount(); ++i) {
 | 
						|
        if (needsConversion(i)) {
 | 
						|
            outputConversions = true;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (! outputConversions)
 | 
						|
        return &intermNode;
 | 
						|
 | 
						|
    // Setup for the new tree, if needed:
 | 
						|
    //
 | 
						|
    // Output conversions need a different tree topology.
 | 
						|
    // Out-qualified arguments need a temporary of the correct type, with the call
 | 
						|
    // followed by an assignment of the temporary to the original argument:
 | 
						|
    //     void: function(arg, ...)  ->        (          function(tempArg, ...), arg = tempArg, ...)
 | 
						|
    //     ret = function(arg, ...)  ->  ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
 | 
						|
    // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
 | 
						|
    TIntermTyped* conversionTree = nullptr;
 | 
						|
    TVariable* tempRet = nullptr;
 | 
						|
    if (intermNode.getBasicType() != EbtVoid) {
 | 
						|
        // do the "tempRet = function(...), " bit from above
 | 
						|
        tempRet = makeInternalVariable("tempReturn", intermNode.getType());
 | 
						|
        TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
 | 
						|
        conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
 | 
						|
    } else
 | 
						|
        conversionTree = &intermNode;
 | 
						|
 | 
						|
    conversionTree = intermediate.makeAggregate(conversionTree);
 | 
						|
 | 
						|
    // Process each argument's conversion
 | 
						|
    for (int i = 0; i < function.getParamCount(); ++i) {
 | 
						|
        if (needsConversion(i)) {
 | 
						|
            // Out-qualified arguments needing conversion need to use the topology setup above.
 | 
						|
            // Do the " ...(tempArg, ...), arg = tempArg" bit from above.
 | 
						|
 | 
						|
            // Make a temporary for what the function expects the argument to look like.
 | 
						|
            TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
 | 
						|
            tempArg->getWritableType().getQualifier().makeTemporary();
 | 
						|
            TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
 | 
						|
 | 
						|
            // This makes the deepest level, the member-wise copy
 | 
						|
            TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(), tempArgNode);
 | 
						|
            tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
 | 
						|
            conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
 | 
						|
 | 
						|
            // replace the argument with another node for the same tempArg variable
 | 
						|
            arguments[i] = intermediate.addSymbol(*tempArg, loc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finalize the tree topology (see bigger comment above).
 | 
						|
    if (tempRet) {
 | 
						|
        // do the "..., tempRet" bit from above
 | 
						|
        TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
 | 
						|
        conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
 | 
						|
    }
 | 
						|
 | 
						|
    conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
 | 
						|
 | 
						|
    return conversionTree;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Do additional checking of built-in function calls that is not caught
 | 
						|
// by normal semantic checks on argument type, extension tagging, etc.
 | 
						|
//
 | 
						|
// Assumes there has been a semantically correct match to a built-in function prototype.
 | 
						|
//
 | 
						|
void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
 | 
						|
{
 | 
						|
    // Set up convenience accessors to the argument(s).  There is almost always
 | 
						|
    // multiple arguments for the cases below, but when there might be one,
 | 
						|
    // check the unaryArg first.
 | 
						|
    const TIntermSequence* argp = nullptr;   // confusing to use [] syntax on a pointer, so this is to help get a reference
 | 
						|
    const TIntermTyped* unaryArg = nullptr;
 | 
						|
    const TIntermTyped* arg0 = nullptr;
 | 
						|
    if (callNode.getAsAggregate()) {
 | 
						|
        argp = &callNode.getAsAggregate()->getSequence();
 | 
						|
        if (argp->size() > 0)
 | 
						|
            arg0 = (*argp)[0]->getAsTyped();
 | 
						|
    } else {
 | 
						|
        assert(callNode.getAsUnaryNode());
 | 
						|
        unaryArg = callNode.getAsUnaryNode()->getOperand();
 | 
						|
        arg0 = unaryArg;
 | 
						|
    }
 | 
						|
    const TIntermSequence& aggArgs = *argp;  // only valid when unaryArg is nullptr
 | 
						|
 | 
						|
    switch (callNode.getOp()) {
 | 
						|
    case EOpTextureGather:
 | 
						|
    case EOpTextureGatherOffset:
 | 
						|
    case EOpTextureGatherOffsets:
 | 
						|
    {
 | 
						|
        // Figure out which variants are allowed by what extensions,
 | 
						|
        // and what arguments must be constant for which situations.
 | 
						|
 | 
						|
        TString featureString = fnCandidate.getName() + "(...)";
 | 
						|
        const char* feature = featureString.c_str();
 | 
						|
        int compArg = -1;  // track which argument, if any, is the constant component argument
 | 
						|
        switch (callNode.getOp()) {
 | 
						|
        case EOpTextureGather:
 | 
						|
            // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
 | 
						|
            // otherwise, need GL_ARB_texture_gather.
 | 
						|
            if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) {
 | 
						|
                if (! fnCandidate[0].type->getSampler().shadow)
 | 
						|
                    compArg = 2;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case EOpTextureGatherOffset:
 | 
						|
            // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
 | 
						|
            if (! fnCandidate[0].type->getSampler().shadow)
 | 
						|
                compArg = 3;
 | 
						|
            break;
 | 
						|
        case EOpTextureGatherOffsets:
 | 
						|
            if (! fnCandidate[0].type->getSampler().shadow)
 | 
						|
                compArg = 3;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
 | 
						|
            if (aggArgs[compArg]->getAsConstantUnion()) {
 | 
						|
                int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
 | 
						|
                if (value < 0 || value > 3)
 | 
						|
                    error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
 | 
						|
            } else
 | 
						|
                error(loc, "must be a compile-time constant:", feature, "component argument");
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    case EOpTextureOffset:
 | 
						|
    case EOpTextureFetchOffset:
 | 
						|
    case EOpTextureProjOffset:
 | 
						|
    case EOpTextureLodOffset:
 | 
						|
    case EOpTextureProjLodOffset:
 | 
						|
    case EOpTextureGradOffset:
 | 
						|
    case EOpTextureProjGradOffset:
 | 
						|
    {
 | 
						|
        // Handle texture-offset limits checking
 | 
						|
        // Pick which argument has to hold constant offsets
 | 
						|
        int arg = -1;
 | 
						|
        switch (callNode.getOp()) {
 | 
						|
        case EOpTextureOffset:          arg = 2;  break;
 | 
						|
        case EOpTextureFetchOffset:     arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
 | 
						|
        case EOpTextureProjOffset:      arg = 2;  break;
 | 
						|
        case EOpTextureLodOffset:       arg = 3;  break;
 | 
						|
        case EOpTextureProjLodOffset:   arg = 3;  break;
 | 
						|
        case EOpTextureGradOffset:      arg = 4;  break;
 | 
						|
        case EOpTextureProjGradOffset:  arg = 4;  break;
 | 
						|
        default:
 | 
						|
            assert(0);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (arg > 0) {
 | 
						|
            if (! aggArgs[arg]->getAsConstantUnion())
 | 
						|
                error(loc, "argument must be compile-time constant", "texel offset", "");
 | 
						|
            else {
 | 
						|
                const TType& type = aggArgs[arg]->getAsTyped()->getType();
 | 
						|
                for (int c = 0; c < type.getVectorSize(); ++c) {
 | 
						|
                    int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
 | 
						|
                    if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
 | 
						|
                        error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    case EOpTextureQuerySamples:
 | 
						|
    case EOpImageQuerySamples:
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpImageAtomicAdd:
 | 
						|
    case EOpImageAtomicMin:
 | 
						|
    case EOpImageAtomicMax:
 | 
						|
    case EOpImageAtomicAnd:
 | 
						|
    case EOpImageAtomicOr:
 | 
						|
    case EOpImageAtomicXor:
 | 
						|
    case EOpImageAtomicExchange:
 | 
						|
    case EOpImageAtomicCompSwap:
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpInterpolateAtCentroid:
 | 
						|
    case EOpInterpolateAtSample:
 | 
						|
    case EOpInterpolateAtOffset:
 | 
						|
        // Make sure the first argument is an interpolant, or an array element of an interpolant
 | 
						|
        if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
 | 
						|
            // It might still be an array element.
 | 
						|
            //
 | 
						|
            // We could check more, but the semantics of the first argument are already met; the
 | 
						|
            // only way to turn an array into a float/vec* is array dereference and swizzle.
 | 
						|
            //
 | 
						|
            // ES and desktop 4.3 and earlier:  swizzles may not be used
 | 
						|
            // desktop 4.4 and later: swizzles may be used
 | 
						|
            const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
 | 
						|
            if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
 | 
						|
                error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), "");
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing a built-in constructor in a grammar production.
 | 
						|
//
 | 
						|
TFunction* HlslParseContext::handleConstructorCall(const TSourceLoc& loc, const TType& type)
 | 
						|
{
 | 
						|
    TOperator op = intermediate.mapTypeToConstructorOp(type);
 | 
						|
 | 
						|
    if (op == EOpNull) {
 | 
						|
        error(loc, "cannot construct this type", type.getBasicString(), "");
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    TString empty("");
 | 
						|
 | 
						|
    return new TFunction(&empty, type, op);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing a "COLON semantic" at the end of a type declaration,
 | 
						|
// by updating the type according to the semantic.
 | 
						|
//
 | 
						|
void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, const TString& semantic)
 | 
						|
{
 | 
						|
    // TODO: need to know if it's an input or an output
 | 
						|
    // The following sketches what needs to be done, but can't be right
 | 
						|
    // without taking into account stage and input/output.
 | 
						|
 | 
						|
    TString semanticUpperCase = semantic;
 | 
						|
    std::transform(semanticUpperCase.begin(), semanticUpperCase.end(), semanticUpperCase.begin(), ::toupper);
 | 
						|
    // in DX9, all outputs had to have a semantic associated with them, that was either consumed
 | 
						|
    // by the system or was a specific register assignment
 | 
						|
    // in DX10+, only semantics with the SV_ prefix have any meaning beyond decoration
 | 
						|
    // Fxc will only accept DX9 style semantics in compat mode
 | 
						|
    // Also, in DX10 if a SV value is present as the input of a stage, but isn't appropriate for that
 | 
						|
    // stage, it would just be ignored as it is likely there as part of an output struct from one stage
 | 
						|
    // to the next
 | 
						|
 | 
						|
    bool bParseDX9 = false;
 | 
						|
    if (bParseDX9) {
 | 
						|
        if (semanticUpperCase == "PSIZE")
 | 
						|
            qualifier.builtIn = EbvPointSize;
 | 
						|
        else if (semantic == "FOG")
 | 
						|
            qualifier.builtIn = EbvFogFragCoord;
 | 
						|
        else if (semanticUpperCase == "DEPTH")
 | 
						|
            qualifier.builtIn = EbvFragDepth;
 | 
						|
        else if (semanticUpperCase == "VFACE")
 | 
						|
            qualifier.builtIn = EbvFace;
 | 
						|
        else if (semanticUpperCase == "VPOS")
 | 
						|
            qualifier.builtIn = EbvFragCoord;
 | 
						|
    }
 | 
						|
 | 
						|
    // SV Position has a different meaning in vertex vs fragment
 | 
						|
    if (semanticUpperCase == "SV_POSITION" && language != EShLangFragment)
 | 
						|
        qualifier.builtIn = EbvPosition;
 | 
						|
    else if (semanticUpperCase == "SV_POSITION" && language == EShLangFragment)
 | 
						|
        qualifier.builtIn = EbvFragCoord;
 | 
						|
    else if (semanticUpperCase == "SV_CLIPDISTANCE")
 | 
						|
        qualifier.builtIn = EbvClipDistance;
 | 
						|
    else if (semanticUpperCase == "SV_CULLDISTANCE")
 | 
						|
        qualifier.builtIn = EbvCullDistance;
 | 
						|
    else if (semanticUpperCase == "SV_VERTEXID")
 | 
						|
        qualifier.builtIn = EbvVertexIndex;
 | 
						|
    else if (semanticUpperCase == "SV_VIEWPORTARRAYINDEX")
 | 
						|
        qualifier.builtIn = EbvViewportIndex;
 | 
						|
    else if (semanticUpperCase == "SV_TESSFACTOR")
 | 
						|
        qualifier.builtIn = EbvTessLevelOuter;
 | 
						|
 | 
						|
    // Targets are defined 0-7
 | 
						|
    else if (semanticUpperCase == "SV_TARGET") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 0;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET0") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 0;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET1") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 1;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET2") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 2;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET3") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 3;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET4") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 4;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET5") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 5;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET6") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 6;
 | 
						|
    } else if (semanticUpperCase == "SV_TARGET7") {
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
        // qualifier.layoutLocation = 7;
 | 
						|
    } else if (semanticUpperCase == "SV_SAMPLEINDEX")
 | 
						|
        qualifier.builtIn = EbvSampleId;
 | 
						|
    else if (semanticUpperCase == "SV_RENDERTARGETARRAYINDEX")
 | 
						|
        qualifier.builtIn = EbvLayer;
 | 
						|
    else if (semanticUpperCase == "SV_PRIMITIVEID")
 | 
						|
        qualifier.builtIn = EbvPrimitiveId;
 | 
						|
    else if (semanticUpperCase == "SV_OUTPUTCONTROLPOINTID")
 | 
						|
        qualifier.builtIn = EbvInvocationId;
 | 
						|
    else if (semanticUpperCase == "SV_ISFRONTFACE")
 | 
						|
        qualifier.builtIn = EbvFace;
 | 
						|
    else if (semanticUpperCase == "SV_INSTANCEID")
 | 
						|
        qualifier.builtIn = EbvInstanceIndex;
 | 
						|
    else if (semanticUpperCase == "SV_INSIDETESSFACTOR")
 | 
						|
        qualifier.builtIn = EbvTessLevelInner;
 | 
						|
    else if (semanticUpperCase == "SV_GSINSTANCEID")
 | 
						|
        qualifier.builtIn = EbvInvocationId;
 | 
						|
    else if (semanticUpperCase == "SV_DISPATCHTHREADID")
 | 
						|
        qualifier.builtIn = EbvGlobalInvocationId;
 | 
						|
    else if (semanticUpperCase == "SV_GROUPTHREADID")
 | 
						|
        qualifier.builtIn = EbvLocalInvocationId;
 | 
						|
    else if (semanticUpperCase == "SV_GROUPINDEX")
 | 
						|
        qualifier.builtIn = EbvLocalInvocationIndex;
 | 
						|
    else if (semanticUpperCase == "SV_GROUPID")
 | 
						|
        qualifier.builtIn = EbvWorkGroupId;
 | 
						|
    else if (semanticUpperCase == "SV_DOMAINLOCATION")
 | 
						|
        qualifier.builtIn = EbvTessCoord;
 | 
						|
    else if (semanticUpperCase == "SV_DEPTH")
 | 
						|
        qualifier.builtIn = EbvFragDepth;
 | 
						|
    else if( semanticUpperCase == "SV_COVERAGE")
 | 
						|
        qualifier.builtIn = EbvSampleMask;
 | 
						|
 | 
						|
    // TODO, these need to get refined to be more specific
 | 
						|
    else if( semanticUpperCase == "SV_DEPTHGREATEREQUAL")
 | 
						|
        qualifier.builtIn = EbvFragDepthGreater;
 | 
						|
    else if( semanticUpperCase == "SV_DEPTHLESSEQUAL")
 | 
						|
        qualifier.builtIn = EbvFragDepthLesser;
 | 
						|
    else if( semanticUpperCase == "SV_STENCILREF")
 | 
						|
        error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
 | 
						|
//
 | 
						|
// 'location' has the "c[Subcomponent]" part.
 | 
						|
// 'component' points to the "component" part, or nullptr if not present.
 | 
						|
//
 | 
						|
void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
 | 
						|
                                        const glslang::TString* component)
 | 
						|
{
 | 
						|
    if (location.size() == 0 || location[0] != 'c') {
 | 
						|
        error(loc, "expected 'c'", "packoffset", "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (location.size() == 1)
 | 
						|
        return;
 | 
						|
    if (! isdigit(location[1])) {
 | 
						|
        error(loc, "expected number after 'c'", "packoffset", "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
 | 
						|
    if (component != nullptr) {
 | 
						|
        int componentOffset = 0;
 | 
						|
        switch ((*component)[0]) {
 | 
						|
        case 'x': componentOffset =  0; break;
 | 
						|
        case 'y': componentOffset =  4; break;
 | 
						|
        case 'z': componentOffset =  8; break;
 | 
						|
        case 'w': componentOffset = 12; break;
 | 
						|
        default:
 | 
						|
            componentOffset = -1;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (componentOffset < 0 || component->size() > 1) {
 | 
						|
            error(loc, "expected {x, y, z, w} for component", "packoffset", "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        qualifier.layoutOffset += componentOffset;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
 | 
						|
//
 | 
						|
// 'profile' points to the shader_profile part, or nullptr if not present.
 | 
						|
// 'desc' is the type# part.
 | 
						|
//
 | 
						|
void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
 | 
						|
                                      const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
 | 
						|
{
 | 
						|
    if (profile != nullptr)
 | 
						|
        warn(loc, "ignoring shader_profile", "register", "");
 | 
						|
 | 
						|
    if (desc.size() < 1) {
 | 
						|
        error(loc, "expected register type", "register", "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    int regNumber = 0;
 | 
						|
    if (desc.size() > 1) {
 | 
						|
        if (isdigit(desc[1]))
 | 
						|
            regNumber = atoi(desc.substr(1, desc.size()).c_str());
 | 
						|
        else {
 | 
						|
            error(loc, "expected register number after register type", "register", "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: learn what all these really mean and how they interact with regNumber and subComponent
 | 
						|
    switch (std::tolower(desc[0])) {
 | 
						|
    case 'b':
 | 
						|
    case 't':
 | 
						|
    case 'c':
 | 
						|
    case 's':
 | 
						|
    case 'u':
 | 
						|
        qualifier.layoutBinding = regNumber + subComponent;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // space
 | 
						|
    unsigned int setNumber;
 | 
						|
    const auto crackSpace = [&]() -> bool {
 | 
						|
        const int spaceLen = 5;
 | 
						|
        if (spaceDesc->size() < spaceLen + 1)
 | 
						|
            return false;
 | 
						|
        if (spaceDesc->compare(0, spaceLen, "space") != 0)
 | 
						|
            return false;
 | 
						|
        if (! isdigit((*spaceDesc)[spaceLen]))
 | 
						|
            return false;
 | 
						|
        setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
 | 
						|
        return true;
 | 
						|
    };
 | 
						|
 | 
						|
    if (spaceDesc) {
 | 
						|
        if (! crackSpace()) {
 | 
						|
            error(loc, "expected spaceN", "register", "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        qualifier.layoutSet = setNumber;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Same error message for all places assignments don't work.
 | 
						|
//
 | 
						|
void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
 | 
						|
{
 | 
						|
    error(loc, "", op, "cannot convert from '%s' to '%s'",
 | 
						|
        right.c_str(), left.c_str());
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Same error message for all places unary operations don't work.
 | 
						|
//
 | 
						|
void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
 | 
						|
{
 | 
						|
    error(loc, " wrong operand type", op,
 | 
						|
        "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
 | 
						|
        op, operand.c_str());
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Same error message for all binary operations don't work.
 | 
						|
//
 | 
						|
void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
 | 
						|
{
 | 
						|
    error(loc, " wrong operand types:", op,
 | 
						|
        "no operation '%s' exists that takes a left-hand operand of type '%s' and "
 | 
						|
        "a right operand of type '%s' (or there is no acceptable conversion)",
 | 
						|
        op, left.c_str(), right.c_str());
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// A basic type of EbtVoid is a key that the name string was seen in the source, but
 | 
						|
// it was not found as a variable in the symbol table.  If so, give the error
 | 
						|
// message and insert a dummy variable in the symbol table to prevent future errors.
 | 
						|
//
 | 
						|
void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
 | 
						|
{
 | 
						|
    TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
 | 
						|
    if (! symbol)
 | 
						|
        return;
 | 
						|
 | 
						|
    if (symbol->getType().getBasicType() == EbtVoid) {
 | 
						|
        error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
 | 
						|
 | 
						|
        // Add to symbol table to prevent future error messages on the same name
 | 
						|
        if (symbol->getName().size() > 0) {
 | 
						|
            TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
 | 
						|
            symbolTable.insert(*fakeVariable);
 | 
						|
 | 
						|
            // substitute a symbol node for this new variable
 | 
						|
            nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Both test, and if necessary spit out an error, to see if the node is really
 | 
						|
// a constant.
 | 
						|
//
 | 
						|
void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
 | 
						|
{
 | 
						|
    if (node->getQualifier().storage != EvqConst)
 | 
						|
        error(node->getLoc(), "constant expression required", token, "");
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Both test, and if necessary spit out an error, to see if the node is really
 | 
						|
// an integer.
 | 
						|
//
 | 
						|
void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
 | 
						|
{
 | 
						|
    if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
 | 
						|
        return;
 | 
						|
 | 
						|
    error(node->getLoc(), "scalar integer expression required", token, "");
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Both test, and if necessary spit out an error, to see if we are currently
 | 
						|
// globally scoped.
 | 
						|
//
 | 
						|
void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
 | 
						|
{
 | 
						|
    if (! symbolTable.atGlobalLevel())
 | 
						|
        error(loc, "not allowed in nested scope", token, "");
 | 
						|
}
 | 
						|
 | 
						|
bool HlslParseContext::builtInName(const TString& /*identifier*/)
 | 
						|
{
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Make sure there is enough data and not too many arguments provided to the
 | 
						|
// constructor to build something of the type of the constructor.  Also returns
 | 
						|
// the type of the constructor.
 | 
						|
//
 | 
						|
// Returns true if there was an error in construction.
 | 
						|
//
 | 
						|
bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
 | 
						|
                                        TOperator op, TType& type)
 | 
						|
{
 | 
						|
    type.shallowCopy(function.getType());
 | 
						|
 | 
						|
    bool constructingMatrix = false;
 | 
						|
    switch (op) {
 | 
						|
    case EOpConstructTextureSampler:
 | 
						|
        return constructorTextureSamplerError(loc, function);
 | 
						|
    case EOpConstructMat2x2:
 | 
						|
    case EOpConstructMat2x3:
 | 
						|
    case EOpConstructMat2x4:
 | 
						|
    case EOpConstructMat3x2:
 | 
						|
    case EOpConstructMat3x3:
 | 
						|
    case EOpConstructMat3x4:
 | 
						|
    case EOpConstructMat4x2:
 | 
						|
    case EOpConstructMat4x3:
 | 
						|
    case EOpConstructMat4x4:
 | 
						|
    case EOpConstructDMat2x2:
 | 
						|
    case EOpConstructDMat2x3:
 | 
						|
    case EOpConstructDMat2x4:
 | 
						|
    case EOpConstructDMat3x2:
 | 
						|
    case EOpConstructDMat3x3:
 | 
						|
    case EOpConstructDMat3x4:
 | 
						|
    case EOpConstructDMat4x2:
 | 
						|
    case EOpConstructDMat4x3:
 | 
						|
    case EOpConstructDMat4x4:
 | 
						|
        constructingMatrix = true;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Walk the arguments for first-pass checks and collection of information.
 | 
						|
    //
 | 
						|
 | 
						|
    int size = 0;
 | 
						|
    bool constType = true;
 | 
						|
    bool full = false;
 | 
						|
    bool overFull = false;
 | 
						|
    bool matrixInMatrix = false;
 | 
						|
    bool arrayArg = false;
 | 
						|
    for (int arg = 0; arg < function.getParamCount(); ++arg) {
 | 
						|
        if (function[arg].type->isArray()) {
 | 
						|
            if (! function[arg].type->isExplicitlySizedArray()) {
 | 
						|
                // Can't construct from an unsized array.
 | 
						|
                error(loc, "array argument must be sized", "constructor", "");
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            arrayArg = true;
 | 
						|
        }
 | 
						|
        if (constructingMatrix && function[arg].type->isMatrix())
 | 
						|
            matrixInMatrix = true;
 | 
						|
 | 
						|
        // 'full' will go to true when enough args have been seen.  If we loop
 | 
						|
        // again, there is an extra argument.
 | 
						|
        if (full) {
 | 
						|
            // For vectors and matrices, it's okay to have too many components
 | 
						|
            // available, but not okay to have unused arguments.
 | 
						|
            overFull = true;
 | 
						|
        }
 | 
						|
 | 
						|
        size += function[arg].type->computeNumComponents();
 | 
						|
        if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
 | 
						|
            full = true;
 | 
						|
 | 
						|
        if (function[arg].type->getQualifier().storage != EvqConst)
 | 
						|
            constType = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (constType)
 | 
						|
        type.getQualifier().storage = EvqConst;
 | 
						|
 | 
						|
    if (type.isArray()) {
 | 
						|
        if (function.getParamCount() == 0) {
 | 
						|
            error(loc, "array constructor must have at least one argument", "constructor", "");
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (type.isImplicitlySizedArray()) {
 | 
						|
            // auto adapt the constructor type to the number of arguments
 | 
						|
            type.changeOuterArraySize(function.getParamCount());
 | 
						|
        } else if (type.getOuterArraySize() != function.getParamCount()) {
 | 
						|
            error(loc, "array constructor needs one argument per array element", "constructor", "");
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (type.isArrayOfArrays()) {
 | 
						|
            // Types have to match, but we're still making the type.
 | 
						|
            // Finish making the type, and the comparison is done later
 | 
						|
            // when checking for conversion.
 | 
						|
            TArraySizes& arraySizes = type.getArraySizes();
 | 
						|
 | 
						|
            // At least the dimensionalities have to match.
 | 
						|
            if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) {
 | 
						|
                error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
 | 
						|
            if (arraySizes.isInnerImplicit()) {
 | 
						|
                // "Arrays of arrays ..., and the size for any dimension is optional"
 | 
						|
                // That means we need to adopt (from the first argument) the other array sizes into the type.
 | 
						|
                for (int d = 1; d < arraySizes.getNumDims(); ++d) {
 | 
						|
                    if (arraySizes.getDimSize(d) == UnsizedArraySize) {
 | 
						|
                        arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
 | 
						|
        error(loc, "constructing non-array constituent from array argument", "constructor", "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (matrixInMatrix && ! type.isArray()) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (overFull) {
 | 
						|
        error(loc, "too many arguments", "constructor", "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (op == EOpConstructStruct && ! type.isArray() && isZeroConstructor(node))
 | 
						|
        return false;
 | 
						|
 | 
						|
    if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) {
 | 
						|
        error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
 | 
						|
        (op == EOpConstructStruct && size < type.computeNumComponents())) {
 | 
						|
        error(loc, "not enough data provided for construction", "constructor", "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool HlslParseContext::isZeroConstructor(const TIntermNode* node)
 | 
						|
{
 | 
						|
    return node->getAsTyped()->isScalar() && node->getAsConstantUnion() &&
 | 
						|
           node->getAsConstantUnion()->getConstArray()[0].getIConst() == 0;
 | 
						|
}
 | 
						|
 | 
						|
// Verify all the correct semantics for constructing a combined texture/sampler.
 | 
						|
// Return true if the semantics are incorrect.
 | 
						|
bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function)
 | 
						|
{
 | 
						|
    TString constructorName = function.getType().getBasicTypeString();  // TODO: performance: should not be making copy; interface needs to change
 | 
						|
    const char* token = constructorName.c_str();
 | 
						|
 | 
						|
    // exactly two arguments needed
 | 
						|
    if (function.getParamCount() != 2) {
 | 
						|
        error(loc, "sampler-constructor requires two arguments", token, "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // For now, not allowing arrayed constructors, the rest of this function
 | 
						|
    // is set up to allow them, if this test is removed:
 | 
						|
    if (function.getType().isArray()) {
 | 
						|
        error(loc, "sampler-constructor cannot make an array of samplers", token, "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // first argument
 | 
						|
    //  * the constructor's first argument must be a texture type
 | 
						|
    //  * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array)
 | 
						|
    //    of the texture type must match that of the constructed sampler type
 | 
						|
    //    (that is, the suffixes of the type of the first argument and the
 | 
						|
    //    type of the constructor will be spelled the same way)
 | 
						|
    if (function[0].type->getBasicType() != EbtSampler ||
 | 
						|
        ! function[0].type->getSampler().isTexture() ||
 | 
						|
        function[0].type->isArray()) {
 | 
						|
        error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=()
 | 
						|
    TSampler texture = function.getType().getSampler();
 | 
						|
    texture.combined = false;
 | 
						|
    texture.shadow = false;
 | 
						|
    if (texture != function[0].type->getSampler()) {
 | 
						|
        error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // second argument
 | 
						|
    //   * the constructor's second argument must be a scalar of type
 | 
						|
    //     *sampler* or *samplerShadow*
 | 
						|
    //   * the presence or absence of depth comparison (Shadow) must match
 | 
						|
    //     between the constructed sampler type and the type of the second argument
 | 
						|
    if (function[1].type->getBasicType() != EbtSampler ||
 | 
						|
        ! function[1].type->getSampler().isPureSampler() ||
 | 
						|
        function[1].type->isArray()) {
 | 
						|
        error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) {
 | 
						|
        error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks to see if a void variable has been declared and raise an error message for such a case
 | 
						|
//
 | 
						|
// returns true in case of an error
 | 
						|
//
 | 
						|
bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
 | 
						|
{
 | 
						|
    if (basicType == EbtVoid) {
 | 
						|
        error(loc, "illegal use of type 'void'", identifier.c_str(), "");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks to see if the node (for the expression) contains a scalar boolean expression or not
 | 
						|
void HlslParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type)
 | 
						|
{
 | 
						|
    if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
 | 
						|
        error(loc, "boolean expression expected", "", "");
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
 | 
						|
//
 | 
						|
void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
 | 
						|
{
 | 
						|
    // move from parameter/unknown qualifiers to pipeline in/out qualifiers
 | 
						|
    switch (qualifier.storage) {
 | 
						|
    case EvqIn:
 | 
						|
        qualifier.storage = EvqVaryingIn;
 | 
						|
        break;
 | 
						|
    case EvqOut:
 | 
						|
        qualifier.storage = EvqVaryingOut;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Merge characteristics of the 'src' qualifier into the 'dst'.
 | 
						|
// If there is duplication, issue error messages, unless 'force'
 | 
						|
// is specified, which means to just override default settings.
 | 
						|
//
 | 
						|
// Also, when force is false, it will be assumed that 'src' follows
 | 
						|
// 'dst', for the purpose of error checking order for versions
 | 
						|
// that require specific orderings of qualifiers.
 | 
						|
//
 | 
						|
void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
 | 
						|
{
 | 
						|
    // Storage qualification
 | 
						|
    if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
 | 
						|
        dst.storage = src.storage;
 | 
						|
    else if ((dst.storage == EvqIn  && src.storage == EvqOut) ||
 | 
						|
             (dst.storage == EvqOut && src.storage == EvqIn))
 | 
						|
        dst.storage = EvqInOut;
 | 
						|
    else if ((dst.storage == EvqIn    && src.storage == EvqConst) ||
 | 
						|
             (dst.storage == EvqConst && src.storage == EvqIn))
 | 
						|
        dst.storage = EvqConstReadOnly;
 | 
						|
 | 
						|
    // Layout qualifiers
 | 
						|
    mergeObjectLayoutQualifiers(dst, src, false);
 | 
						|
 | 
						|
    // individual qualifiers
 | 
						|
    bool repeated = false;
 | 
						|
#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
 | 
						|
    MERGE_SINGLETON(invariant);
 | 
						|
    MERGE_SINGLETON(noContraction);
 | 
						|
    MERGE_SINGLETON(centroid);
 | 
						|
    MERGE_SINGLETON(smooth);
 | 
						|
    MERGE_SINGLETON(flat);
 | 
						|
    MERGE_SINGLETON(nopersp);
 | 
						|
    MERGE_SINGLETON(patch);
 | 
						|
    MERGE_SINGLETON(sample);
 | 
						|
    MERGE_SINGLETON(coherent);
 | 
						|
    MERGE_SINGLETON(volatil);
 | 
						|
    MERGE_SINGLETON(restrict);
 | 
						|
    MERGE_SINGLETON(readonly);
 | 
						|
    MERGE_SINGLETON(writeonly);
 | 
						|
    MERGE_SINGLETON(specConstant);
 | 
						|
}
 | 
						|
 | 
						|
// used to flatten the sampler type space into a single dimension
 | 
						|
// correlates with the declaration of defaultSamplerPrecision[]
 | 
						|
int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
 | 
						|
{
 | 
						|
    int arrayIndex = sampler.arrayed ? 1 : 0;
 | 
						|
    int shadowIndex = sampler.shadow ? 1 : 0;
 | 
						|
    int externalIndex = sampler.external ? 1 : 0;
 | 
						|
 | 
						|
    return EsdNumDims * (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Do size checking for an array type's size.
 | 
						|
//
 | 
						|
void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
 | 
						|
{
 | 
						|
    bool isConst = false;
 | 
						|
    sizePair.size = 1;
 | 
						|
    sizePair.node = nullptr;
 | 
						|
 | 
						|
    TIntermConstantUnion* constant = expr->getAsConstantUnion();
 | 
						|
    if (constant) {
 | 
						|
        // handle true (non-specialization) constant
 | 
						|
        sizePair.size = constant->getConstArray()[0].getIConst();
 | 
						|
        isConst = true;
 | 
						|
    } else {
 | 
						|
        // see if it's a specialization constant instead
 | 
						|
        if (expr->getQualifier().isSpecConstant()) {
 | 
						|
            isConst = true;
 | 
						|
            sizePair.node = expr;
 | 
						|
            TIntermSymbol* symbol = expr->getAsSymbolNode();
 | 
						|
            if (symbol && symbol->getConstArray().size() > 0)
 | 
						|
                sizePair.size = symbol->getConstArray()[0].getIConst();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
 | 
						|
        error(loc, "array size must be a constant integer expression", "", "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (sizePair.size <= 0) {
 | 
						|
        error(loc, "array size must be a positive integer", "", "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Require array to be completely sized
 | 
						|
//
 | 
						|
void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
 | 
						|
{
 | 
						|
    if (arraySizes.isImplicit())
 | 
						|
        error(loc, "array size required", "", "");
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
 | 
						|
{
 | 
						|
    const TTypeList& structure = *type.getStruct();
 | 
						|
    for (int m = 0; m < (int)structure.size(); ++m) {
 | 
						|
        const TType& member = *structure[m].type;
 | 
						|
        if (member.isArray())
 | 
						|
            arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Merge array dimensions listed in 'sizes' onto the type's array dimensions.
 | 
						|
//
 | 
						|
// From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4"
 | 
						|
//
 | 
						|
// That means, the 'sizes' go in front of the 'type' as outermost sizes.
 | 
						|
// 'type' is the type part of the declaration (to the left)
 | 
						|
// 'sizes' is the arrayness tagged on the identifier (to the right)
 | 
						|
//
 | 
						|
void HlslParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes)
 | 
						|
{
 | 
						|
    if (sizes)
 | 
						|
        type.addArrayOuterSizes(*sizes);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Do all the semantic checking for declaring or redeclaring an array, with and
 | 
						|
// without a size, and make the right changes to the symbol table.
 | 
						|
//
 | 
						|
void HlslParseContext::declareArray(const TSourceLoc& loc, TString& identifier, const TType& type, TSymbol*& symbol, bool track)
 | 
						|
{
 | 
						|
    if (! symbol) {
 | 
						|
        bool currentScope;
 | 
						|
        symbol = symbolTable.find(identifier, nullptr, ¤tScope);
 | 
						|
 | 
						|
        if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
 | 
						|
            // bad shader (errors already reported) trying to redeclare a built-in name as an array
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (symbol == nullptr || ! currentScope) {
 | 
						|
            //
 | 
						|
            // Successfully process a new definition.
 | 
						|
            // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
 | 
						|
            //
 | 
						|
            symbol = new TVariable(&identifier, type);
 | 
						|
            symbolTable.insert(*symbol);
 | 
						|
            if (track && symbolTable.atGlobalLevel())
 | 
						|
                trackLinkage(*symbol);
 | 
						|
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (symbol->getAsAnonMember()) {
 | 
						|
            error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
 | 
						|
            symbol = nullptr;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Process a redeclaration.
 | 
						|
    //
 | 
						|
 | 
						|
    if (! symbol) {
 | 
						|
        error(loc, "array variable name expected", identifier.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // redeclareBuiltinVariable() should have already done the copyUp()
 | 
						|
    TType& existingType = symbol->getWritableType();
 | 
						|
 | 
						|
    if (existingType.isExplicitlySizedArray()) {
 | 
						|
        // be more lenient for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    existingType.updateArraySizes(type);
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index)
 | 
						|
{
 | 
						|
    // maybe there is nothing to do...
 | 
						|
    TIntermTyped* typedNode = node->getAsTyped();
 | 
						|
    if (typedNode->getType().getImplicitArraySize() > index)
 | 
						|
        return;
 | 
						|
 | 
						|
    // something to do...
 | 
						|
 | 
						|
    // Figure out what symbol to lookup, as we will use its type to edit for the size change,
 | 
						|
    // as that type will be shared through shallow copies for future references.
 | 
						|
    TSymbol* symbol = nullptr;
 | 
						|
    int blockIndex = -1;
 | 
						|
    const TString* lookupName = nullptr;
 | 
						|
    if (node->getAsSymbolNode())
 | 
						|
        lookupName = &node->getAsSymbolNode()->getName();
 | 
						|
    else if (node->getAsBinaryNode()) {
 | 
						|
        const TIntermBinary* deref = node->getAsBinaryNode();
 | 
						|
        // This has to be the result of a block dereference, unless it's bad shader code
 | 
						|
        // If it's a uniform block, then an error will be issued elsewhere, but
 | 
						|
        // return early now to avoid crashing later in this function.
 | 
						|
        if (! deref->getLeft()->getAsSymbolNode() || deref->getLeft()->getBasicType() != EbtBlock ||
 | 
						|
            deref->getLeft()->getType().getQualifier().storage == EvqUniform ||
 | 
						|
            deref->getRight()->getAsConstantUnion() == nullptr)
 | 
						|
            return;
 | 
						|
 | 
						|
        blockIndex = deref->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
 | 
						|
 | 
						|
        lookupName = &deref->getLeft()->getAsSymbolNode()->getName();
 | 
						|
        if (IsAnonymous(*lookupName))
 | 
						|
            lookupName = &(*deref->getLeft()->getType().getStruct())[blockIndex].type->getFieldName();
 | 
						|
    }
 | 
						|
 | 
						|
    // Lookup the symbol, should only fail if shader code is incorrect
 | 
						|
    symbol = symbolTable.find(*lookupName);
 | 
						|
    if (symbol == nullptr)
 | 
						|
        return;
 | 
						|
 | 
						|
    if (symbol->getAsFunction()) {
 | 
						|
        error(loc, "array variable name expected", symbol->getName().c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    symbol->getWritableType().setImplicitArraySize(index + 1);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Enforce non-initializer type/qualifier rules.
 | 
						|
//
 | 
						|
void HlslParseContext::fixConstInit(const TSourceLoc& loc, TString& identifier, TType& type, TIntermTyped*& initializer)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Make the qualifier make sense, given that there is an initializer.
 | 
						|
    //
 | 
						|
    if (initializer == nullptr) {
 | 
						|
        if (type.getQualifier().storage == EvqConst ||
 | 
						|
            type.getQualifier().storage == EvqConstReadOnly) {
 | 
						|
            initializer = intermediate.makeAggregate(loc);
 | 
						|
            warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// See if the identifier is a built-in symbol that can be redeclared, and if so,
 | 
						|
// copy the symbol table's read-only built-in variable to the current
 | 
						|
// global level, where it can be modified based on the passed in type.
 | 
						|
//
 | 
						|
// Returns nullptr if no redeclaration took place; meaning a normal declaration still
 | 
						|
// needs to occur for it, not necessarily an error.
 | 
						|
//
 | 
						|
// Returns a redeclared and type-modified variable if a redeclared occurred.
 | 
						|
//
 | 
						|
TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
 | 
						|
                                                    const TQualifier& /*qualifier*/,
 | 
						|
                                                    const TShaderQualifiers& /*publicType*/)
 | 
						|
{
 | 
						|
    if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Either redeclare the requested block, or give an error message why it can't be done.
 | 
						|
//
 | 
						|
// TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size
 | 
						|
void HlslParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes)
 | 
						|
{
 | 
						|
    // Redeclaring a built-in block...
 | 
						|
 | 
						|
    // Blocks with instance names are easy to find, lookup the instance name,
 | 
						|
    // Anonymous blocks need to be found via a member.
 | 
						|
    bool builtIn;
 | 
						|
    TSymbol* block;
 | 
						|
    if (instanceName)
 | 
						|
        block = symbolTable.find(*instanceName, &builtIn);
 | 
						|
    else
 | 
						|
        block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn);
 | 
						|
 | 
						|
    // If the block was not found, this must be a version/profile/stage
 | 
						|
    // that doesn't have it, or the instance name is wrong.
 | 
						|
    const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str();
 | 
						|
    if (! block) {
 | 
						|
        error(loc, "no declaration found for redeclaration", errorName, "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    // Built-in blocks cannot be redeclared more than once, which if happened,
 | 
						|
    // we'd be finding the already redeclared one here, rather than the built in.
 | 
						|
    if (! builtIn) {
 | 
						|
        error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Copy the block to make a writable version, to insert into the block table after editing.
 | 
						|
    block = symbolTable.copyUpDeferredInsert(block);
 | 
						|
 | 
						|
    if (block->getType().getBasicType() != EbtBlock) {
 | 
						|
        error(loc, "cannot redeclare a non block as a block", errorName, "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Edit and error check the container against the redeclaration
 | 
						|
    //  - remove unused members
 | 
						|
    //  - ensure remaining qualifiers/types match
 | 
						|
    TType& type = block->getWritableType();
 | 
						|
    TTypeList::iterator member = type.getWritableStruct()->begin();
 | 
						|
    size_t numOriginalMembersFound = 0;
 | 
						|
    while (member != type.getStruct()->end()) {
 | 
						|
        // look for match
 | 
						|
        bool found = false;
 | 
						|
        TTypeList::const_iterator newMember;
 | 
						|
        TSourceLoc memberLoc;
 | 
						|
        memberLoc.init();
 | 
						|
        for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) {
 | 
						|
            if (member->type->getFieldName() == newMember->type->getFieldName()) {
 | 
						|
                found = true;
 | 
						|
                memberLoc = newMember->loc;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (found) {
 | 
						|
            ++numOriginalMembersFound;
 | 
						|
            // - ensure match between redeclared members' types
 | 
						|
            // - check for things that can't be changed
 | 
						|
            // - update things that can be changed
 | 
						|
            TType& oldType = *member->type;
 | 
						|
            const TType& newType = *newMember->type;
 | 
						|
            if (! newType.sameElementType(oldType))
 | 
						|
                error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), "");
 | 
						|
            if (oldType.isArray() != newType.isArray())
 | 
						|
                error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), "");
 | 
						|
            else if (! oldType.sameArrayness(newType) && oldType.isExplicitlySizedArray())
 | 
						|
                error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), "");
 | 
						|
            if (newType.getQualifier().isMemory())
 | 
						|
                error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
 | 
						|
            if (newType.getQualifier().hasLayout())
 | 
						|
                error(memberLoc, "cannot add layout to redeclared block member", member->type->getFieldName().c_str(), "");
 | 
						|
            if (newType.getQualifier().patch)
 | 
						|
                error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), "");
 | 
						|
            oldType.getQualifier().centroid = newType.getQualifier().centroid;
 | 
						|
            oldType.getQualifier().sample = newType.getQualifier().sample;
 | 
						|
            oldType.getQualifier().invariant = newType.getQualifier().invariant;
 | 
						|
            oldType.getQualifier().noContraction = newType.getQualifier().noContraction;
 | 
						|
            oldType.getQualifier().smooth = newType.getQualifier().smooth;
 | 
						|
            oldType.getQualifier().flat = newType.getQualifier().flat;
 | 
						|
            oldType.getQualifier().nopersp = newType.getQualifier().nopersp;
 | 
						|
 | 
						|
            // go to next member
 | 
						|
            ++member;
 | 
						|
        } else {
 | 
						|
            // For missing members of anonymous blocks that have been redeclared,
 | 
						|
            // hide the original (shared) declaration.
 | 
						|
            // Instance-named blocks can just have the member removed.
 | 
						|
            if (instanceName)
 | 
						|
                member = type.getWritableStruct()->erase(member);
 | 
						|
            else {
 | 
						|
                member->type->hideMember();
 | 
						|
                ++member;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (numOriginalMembersFound < newTypeList.size())
 | 
						|
        error(loc, "block redeclaration has extra members", blockName.c_str(), "");
 | 
						|
    if (type.isArray() != (arraySizes != nullptr))
 | 
						|
        error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), "");
 | 
						|
    else if (type.isArray()) {
 | 
						|
        if (type.isExplicitlySizedArray() && arraySizes->getOuterSize() == UnsizedArraySize)
 | 
						|
            error(loc, "block already declared with size, can't redeclare as implicitly-sized", blockName.c_str(), "");
 | 
						|
        else if (type.isExplicitlySizedArray() && type.getArraySizes() != *arraySizes)
 | 
						|
            error(loc, "cannot change array size of redeclared block", blockName.c_str(), "");
 | 
						|
        else if (type.isImplicitlySizedArray() && arraySizes->getOuterSize() != UnsizedArraySize)
 | 
						|
            type.changeOuterArraySize(arraySizes->getOuterSize());
 | 
						|
    }
 | 
						|
 | 
						|
    symbolTable.insert(*block);
 | 
						|
 | 
						|
    // Save it in the AST for linker use.
 | 
						|
    trackLinkage(*block);
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::paramFix(TType& type)
 | 
						|
{
 | 
						|
    switch (type.getQualifier().storage) {
 | 
						|
    case EvqConst:
 | 
						|
        type.getQualifier().storage = EvqConstReadOnly;
 | 
						|
        break;
 | 
						|
    case EvqGlobal:
 | 
						|
    case EvqTemporary:
 | 
						|
        type.getQualifier().storage = EvqIn;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
 | 
						|
{
 | 
						|
    if (type.containsSpecializationSize())
 | 
						|
        error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Layout qualifier stuff.
 | 
						|
//
 | 
						|
 | 
						|
// Put the id's layout qualification into the public type, for qualifiers not having a number set.
 | 
						|
// This is before we know any type information for error checking.
 | 
						|
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
 | 
						|
{
 | 
						|
    std::transform(id.begin(), id.end(), id.begin(), ::tolower);
 | 
						|
 | 
						|
    if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
 | 
						|
        qualifier.layoutMatrix = ElmRowMajor;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
 | 
						|
        qualifier.layoutMatrix = ElmColumnMajor;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (id == "push_constant") {
 | 
						|
        requireVulkan(loc, "push_constant");
 | 
						|
        qualifier.layoutPushConstant = true;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (language == EShLangGeometry || language == EShLangTessEvaluation) {
 | 
						|
        if (id == TQualifier::getGeometryString(ElgTriangles)) {
 | 
						|
            // publicType.shaderQualifiers.geometry = ElgTriangles;
 | 
						|
            warn(loc, "ignored", id.c_str(), "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (language == EShLangGeometry) {
 | 
						|
            if (id == TQualifier::getGeometryString(ElgPoints)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgPoints;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getGeometryString(ElgLineStrip)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgLineStrip;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getGeometryString(ElgLines)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgLines;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgTriangleStrip;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            assert(language == EShLangTessEvaluation);
 | 
						|
 | 
						|
            // input primitive
 | 
						|
            if (id == TQualifier::getGeometryString(ElgTriangles)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgTriangles;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getGeometryString(ElgQuads)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgQuads;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getGeometryString(ElgIsolines)) {
 | 
						|
                // publicType.shaderQualifiers.geometry = ElgIsolines;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            // vertex spacing
 | 
						|
            if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
 | 
						|
                // publicType.shaderQualifiers.spacing = EvsEqual;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
 | 
						|
                // publicType.shaderQualifiers.spacing = EvsFractionalEven;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
 | 
						|
                // publicType.shaderQualifiers.spacing = EvsFractionalOdd;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            // triangle order
 | 
						|
            if (id == TQualifier::getVertexOrderString(EvoCw)) {
 | 
						|
                // publicType.shaderQualifiers.order = EvoCw;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == TQualifier::getVertexOrderString(EvoCcw)) {
 | 
						|
                // publicType.shaderQualifiers.order = EvoCcw;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            // point mode
 | 
						|
            if (id == "point_mode") {
 | 
						|
                // publicType.shaderQualifiers.pointMode = true;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (language == EShLangFragment) {
 | 
						|
        if (id == "origin_upper_left") {
 | 
						|
            // publicType.shaderQualifiers.originUpperLeft = true;
 | 
						|
            warn(loc, "ignored", id.c_str(), "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (id == "pixel_center_integer") {
 | 
						|
            // publicType.shaderQualifiers.pixelCenterInteger = true;
 | 
						|
            warn(loc, "ignored", id.c_str(), "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (id == "early_fragment_tests") {
 | 
						|
            // publicType.shaderQualifiers.earlyFragmentTests = true;
 | 
						|
            warn(loc, "ignored", id.c_str(), "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
 | 
						|
            if (id == TQualifier::getLayoutDepthString(depth)) {
 | 
						|
                // publicType.shaderQualifiers.layoutDepth = depth;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (id.compare(0, 13, "blend_support") == 0) {
 | 
						|
            bool found = false;
 | 
						|
            for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
 | 
						|
                if (id == TQualifier::getBlendEquationString(be)) {
 | 
						|
                    requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
 | 
						|
                    intermediate.addBlendEquation(be);
 | 
						|
                    // publicType.shaderQualifiers.blendEquation = true;
 | 
						|
                    warn(loc, "ignored", id.c_str(), "");
 | 
						|
                    found = true;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (! found)
 | 
						|
                error(loc, "unknown blend equation", "blend_support", "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
 | 
						|
}
 | 
						|
 | 
						|
// Put the id's layout qualifier value into the public type, for qualifiers having a number set.
 | 
						|
// This is before we know any type information for error checking.
 | 
						|
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id, const TIntermTyped* node)
 | 
						|
{
 | 
						|
    const char* feature = "layout-id value";
 | 
						|
    // const char* nonLiteralFeature = "non-literal layout-id value";
 | 
						|
 | 
						|
    integerCheck(node, feature);
 | 
						|
    const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
 | 
						|
    int value = 0;
 | 
						|
    if (constUnion) {
 | 
						|
        value = constUnion->getConstArray()[0].getIConst();
 | 
						|
    }
 | 
						|
 | 
						|
    std::transform(id.begin(), id.end(), id.begin(), ::tolower);
 | 
						|
 | 
						|
    if (id == "offset") {
 | 
						|
        qualifier.layoutOffset = value;
 | 
						|
        return;
 | 
						|
    } else if (id == "align") {
 | 
						|
        // "The specified alignment must be a power of 2, or a compile-time error results."
 | 
						|
        if (! IsPow2(value))
 | 
						|
            error(loc, "must be a power of 2", "align", "");
 | 
						|
        else
 | 
						|
            qualifier.layoutAlign = value;
 | 
						|
        return;
 | 
						|
    } else if (id == "location") {
 | 
						|
        if ((unsigned int)value >= TQualifier::layoutLocationEnd)
 | 
						|
            error(loc, "location is too large", id.c_str(), "");
 | 
						|
        else
 | 
						|
            qualifier.layoutLocation = value;
 | 
						|
        return;
 | 
						|
    } else if (id == "set") {
 | 
						|
        if ((unsigned int)value >= TQualifier::layoutSetEnd)
 | 
						|
            error(loc, "set is too large", id.c_str(), "");
 | 
						|
        else
 | 
						|
            qualifier.layoutSet = value;
 | 
						|
        return;
 | 
						|
    } else if (id == "binding") {
 | 
						|
        if ((unsigned int)value >= TQualifier::layoutBindingEnd)
 | 
						|
            error(loc, "binding is too large", id.c_str(), "");
 | 
						|
        else
 | 
						|
            qualifier.layoutBinding = value;
 | 
						|
        return;
 | 
						|
    } else if (id == "component") {
 | 
						|
        if ((unsigned)value >= TQualifier::layoutComponentEnd)
 | 
						|
            error(loc, "component is too large", id.c_str(), "");
 | 
						|
        else
 | 
						|
            qualifier.layoutComponent = value;
 | 
						|
        return;
 | 
						|
    } else if (id.compare(0, 4, "xfb_") == 0) {
 | 
						|
        // "Any shader making any static use (after preprocessing) of any of these
 | 
						|
        // *xfb_* qualifiers will cause the shader to be in a transform feedback
 | 
						|
        // capturing mode and hence responsible for describing the transform feedback
 | 
						|
        // setup."
 | 
						|
        intermediate.setXfbMode();
 | 
						|
        if (id == "xfb_buffer") {
 | 
						|
            // "It is a compile-time error to specify an *xfb_buffer* that is greater than
 | 
						|
            // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
 | 
						|
            if (value >= resources.maxTransformFeedbackBuffers)
 | 
						|
                error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers);
 | 
						|
            if (value >= (int)TQualifier::layoutXfbBufferEnd)
 | 
						|
                error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
 | 
						|
            else
 | 
						|
                qualifier.layoutXfbBuffer = value;
 | 
						|
            return;
 | 
						|
        } else if (id == "xfb_offset") {
 | 
						|
            if (value >= (int)TQualifier::layoutXfbOffsetEnd)
 | 
						|
                error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
 | 
						|
            else
 | 
						|
                qualifier.layoutXfbOffset = value;
 | 
						|
            return;
 | 
						|
        } else if (id == "xfb_stride") {
 | 
						|
            // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
 | 
						|
            // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
 | 
						|
            if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
 | 
						|
                error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents);
 | 
						|
            else if (value >= (int)TQualifier::layoutXfbStrideEnd)
 | 
						|
                error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
 | 
						|
            if (value < (int)TQualifier::layoutXfbStrideEnd)
 | 
						|
                qualifier.layoutXfbStride = value;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (id == "input_attachment_index") {
 | 
						|
        requireVulkan(loc, "input_attachment_index");
 | 
						|
        if (value >= (int)TQualifier::layoutAttachmentEnd)
 | 
						|
            error(loc, "attachment index is too large", id.c_str(), "");
 | 
						|
        else
 | 
						|
            qualifier.layoutAttachment = value;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (id == "constant_id") {
 | 
						|
        requireSpv(loc, "constant_id");
 | 
						|
        if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
 | 
						|
            error(loc, "specialization-constant id is too large", id.c_str(), "");
 | 
						|
        } else {
 | 
						|
            qualifier.layoutSpecConstantId = value;
 | 
						|
            qualifier.specConstant = true;
 | 
						|
            if (! intermediate.addUsedConstantId(value))
 | 
						|
                error(loc, "specialization-constant id already used", id.c_str(), "");
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (language) {
 | 
						|
    case EShLangVertex:
 | 
						|
        break;
 | 
						|
 | 
						|
    case EShLangTessControl:
 | 
						|
        if (id == "vertices") {
 | 
						|
            if (value == 0)
 | 
						|
                error(loc, "must be greater than 0", "vertices", "");
 | 
						|
            else
 | 
						|
                // publicType.shaderQualifiers.vertices = value;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case EShLangTessEvaluation:
 | 
						|
        break;
 | 
						|
 | 
						|
    case EShLangGeometry:
 | 
						|
        if (id == "invocations") {
 | 
						|
            if (value == 0)
 | 
						|
                error(loc, "must be at least 1", "invocations", "");
 | 
						|
            else
 | 
						|
                // publicType.shaderQualifiers.invocations = value;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (id == "max_vertices") {
 | 
						|
            // publicType.shaderQualifiers.vertices = value;
 | 
						|
            warn(loc, "ignored", id.c_str(), "");
 | 
						|
            if (value > resources.maxGeometryOutputVertices)
 | 
						|
                error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (id == "stream") {
 | 
						|
            qualifier.layoutStream = value;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case EShLangFragment:
 | 
						|
        if (id == "index") {
 | 
						|
            qualifier.layoutIndex = value;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case EShLangCompute:
 | 
						|
        if (id.compare(0, 11, "local_size_") == 0) {
 | 
						|
            if (id == "local_size_x") {
 | 
						|
                // publicType.shaderQualifiers.localSize[0] = value;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == "local_size_y") {
 | 
						|
                // publicType.shaderQualifiers.localSize[1] = value;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (id == "local_size_z") {
 | 
						|
                // publicType.shaderQualifiers.localSize[2] = value;
 | 
						|
                warn(loc, "ignored", id.c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (spvVersion.spv != 0) {
 | 
						|
                if (id == "local_size_x_id") {
 | 
						|
                    // publicType.shaderQualifiers.localSizeSpecId[0] = value;
 | 
						|
                    warn(loc, "ignored", id.c_str(), "");
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
                if (id == "local_size_y_id") {
 | 
						|
                    // publicType.shaderQualifiers.localSizeSpecId[1] = value;
 | 
						|
                    warn(loc, "ignored", id.c_str(), "");
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
                if (id == "local_size_z_id") {
 | 
						|
                    // publicType.shaderQualifiers.localSizeSpecId[2] = value;
 | 
						|
                    warn(loc, "ignored", id.c_str(), "");
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
 | 
						|
}
 | 
						|
 | 
						|
// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
 | 
						|
//
 | 
						|
// "More than one layout qualifier may appear in a single declaration.
 | 
						|
// Additionally, the same layout-qualifier-name can occur multiple times
 | 
						|
// within a layout qualifier or across multiple layout qualifiers in the
 | 
						|
// same declaration. When the same layout-qualifier-name occurs
 | 
						|
// multiple times, in a single declaration, the last occurrence overrides
 | 
						|
// the former occurrence(s).  Further, if such a layout-qualifier-name
 | 
						|
// will effect subsequent declarations or other observable behavior, it
 | 
						|
// is only the last occurrence that will have any effect, behaving as if
 | 
						|
// the earlier occurrence(s) within the declaration are not present.
 | 
						|
// This is also true for overriding layout-qualifier-names, where one
 | 
						|
// overrides the other (e.g., row_major vs. column_major); only the last
 | 
						|
// occurrence has any effect."
 | 
						|
//
 | 
						|
void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
 | 
						|
{
 | 
						|
    if (src.hasMatrix())
 | 
						|
        dst.layoutMatrix = src.layoutMatrix;
 | 
						|
    if (src.hasPacking())
 | 
						|
        dst.layoutPacking = src.layoutPacking;
 | 
						|
 | 
						|
    if (src.hasStream())
 | 
						|
        dst.layoutStream = src.layoutStream;
 | 
						|
 | 
						|
    if (src.hasFormat())
 | 
						|
        dst.layoutFormat = src.layoutFormat;
 | 
						|
 | 
						|
    if (src.hasXfbBuffer())
 | 
						|
        dst.layoutXfbBuffer = src.layoutXfbBuffer;
 | 
						|
 | 
						|
    if (src.hasAlign())
 | 
						|
        dst.layoutAlign = src.layoutAlign;
 | 
						|
 | 
						|
    if (! inheritOnly) {
 | 
						|
        if (src.hasLocation())
 | 
						|
            dst.layoutLocation = src.layoutLocation;
 | 
						|
        if (src.hasComponent())
 | 
						|
            dst.layoutComponent = src.layoutComponent;
 | 
						|
        if (src.hasIndex())
 | 
						|
            dst.layoutIndex = src.layoutIndex;
 | 
						|
 | 
						|
        if (src.hasOffset())
 | 
						|
            dst.layoutOffset = src.layoutOffset;
 | 
						|
 | 
						|
        if (src.hasSet())
 | 
						|
            dst.layoutSet = src.layoutSet;
 | 
						|
        if (src.layoutBinding != TQualifier::layoutBindingEnd)
 | 
						|
            dst.layoutBinding = src.layoutBinding;
 | 
						|
 | 
						|
        if (src.hasXfbStride())
 | 
						|
            dst.layoutXfbStride = src.layoutXfbStride;
 | 
						|
        if (src.hasXfbOffset())
 | 
						|
            dst.layoutXfbOffset = src.layoutXfbOffset;
 | 
						|
        if (src.hasAttachment())
 | 
						|
            dst.layoutAttachment = src.layoutAttachment;
 | 
						|
        if (src.hasSpecConstantId())
 | 
						|
            dst.layoutSpecConstantId = src.layoutSpecConstantId;
 | 
						|
 | 
						|
        if (src.layoutPushConstant)
 | 
						|
            dst.layoutPushConstant = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Look up a function name in the symbol table, and make sure it is a function.
 | 
						|
//
 | 
						|
// First, look for an exact match.  If there is none, use the generic selector
 | 
						|
// TParseContextBase::selectFunction() to find one, parameterized by the
 | 
						|
// convertible() and better() predicates defined below.
 | 
						|
//
 | 
						|
// Return the function symbol if found, otherwise nullptr.
 | 
						|
//
 | 
						|
const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn,
 | 
						|
                                                TIntermTyped*& args)
 | 
						|
{
 | 
						|
    // const TFunction* function = nullptr;
 | 
						|
 | 
						|
    if (symbolTable.isFunctionNameVariable(call.getName())) {
 | 
						|
        error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // first, look for an exact match
 | 
						|
    TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
 | 
						|
    if (symbol)
 | 
						|
        return symbol->getAsFunction();
 | 
						|
 | 
						|
    // no exact match, use the generic selector, parameterized by the GLSL rules
 | 
						|
 | 
						|
    // create list of candidates to send
 | 
						|
    TVector<const TFunction*> candidateList;
 | 
						|
    symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
 | 
						|
 | 
						|
    // These builtin ops can accept any type, so we bypass the argument selection
 | 
						|
    if (candidateList.size() == 1 && builtIn &&
 | 
						|
        (candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
 | 
						|
         candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip)) {
 | 
						|
 | 
						|
        return candidateList[0];
 | 
						|
    }
 | 
						|
 | 
						|
    bool allowOnlyUpConversions = true;
 | 
						|
 | 
						|
    // can 'from' convert to 'to'?
 | 
						|
    const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
 | 
						|
        if (from == to)
 | 
						|
            return true;
 | 
						|
 | 
						|
        // no aggregate conversions
 | 
						|
        if (from.isArray()  || to.isArray() ||
 | 
						|
            from.isStruct() || to.isStruct())
 | 
						|
            return false;
 | 
						|
 | 
						|
        switch (op) {
 | 
						|
        case EOpInterlockedAdd:
 | 
						|
        case EOpInterlockedAnd:
 | 
						|
        case EOpInterlockedCompareExchange:
 | 
						|
        case EOpInterlockedCompareStore:
 | 
						|
        case EOpInterlockedExchange:
 | 
						|
        case EOpInterlockedMax:
 | 
						|
        case EOpInterlockedMin:
 | 
						|
        case EOpInterlockedOr:
 | 
						|
        case EOpInterlockedXor:
 | 
						|
            // We do not promote the texture or image type for these ocodes.  Normally that would not
 | 
						|
            // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
 | 
						|
            // stage it's merely e.g, a basic integer type.
 | 
						|
            //
 | 
						|
            // Instead, we want to promote other arguments, but stay within the same family.  In other
 | 
						|
            // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
 | 
						|
            // but it is allowed to promote its other arguments.
 | 
						|
            if (arg == 0)
 | 
						|
                return false;
 | 
						|
            break;
 | 
						|
        case EOpMethodSample:
 | 
						|
        case EOpMethodSampleBias:
 | 
						|
        case EOpMethodSampleCmp:
 | 
						|
        case EOpMethodSampleCmpLevelZero:
 | 
						|
        case EOpMethodSampleGrad:
 | 
						|
        case EOpMethodSampleLevel:
 | 
						|
        case EOpMethodLoad:
 | 
						|
        case EOpMethodGetDimensions:
 | 
						|
        case EOpMethodGetSamplePosition:
 | 
						|
        case EOpMethodGather:
 | 
						|
        case EOpMethodCalculateLevelOfDetail:
 | 
						|
        case EOpMethodCalculateLevelOfDetailUnclamped:
 | 
						|
        case EOpMethodGatherRed:
 | 
						|
        case EOpMethodGatherGreen:
 | 
						|
        case EOpMethodGatherBlue:
 | 
						|
        case EOpMethodGatherAlpha:
 | 
						|
        case EOpMethodGatherCmp:
 | 
						|
        case EOpMethodGatherCmpRed:
 | 
						|
        case EOpMethodGatherCmpGreen:
 | 
						|
        case EOpMethodGatherCmpBlue:
 | 
						|
        case EOpMethodGatherCmpAlpha:
 | 
						|
        case EOpMethodAppend:
 | 
						|
        case EOpMethodRestartStrip:
 | 
						|
            // those are method calls, the object type can not be changed
 | 
						|
            // they are equal if the dim and type match (is dim sufficient?)
 | 
						|
            if (arg == 0)
 | 
						|
                return from.getSampler().type == to.getSampler().type &&
 | 
						|
                       from.getSampler().arrayed == to.getSampler().arrayed &&
 | 
						|
                       from.getSampler().shadow == to.getSampler().shadow &&
 | 
						|
                       from.getSampler().ms == to.getSampler().ms &&
 | 
						|
                       from.getSampler().dim == to.getSampler().dim;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        // basic types have to be convertible
 | 
						|
        if (allowOnlyUpConversions)
 | 
						|
            if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
 | 
						|
                return false;
 | 
						|
 | 
						|
        // shapes have to be convertible
 | 
						|
        if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
 | 
						|
            (from.isScalarOrVec1() && to.isVector())    ||
 | 
						|
            (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
 | 
						|
            return true;
 | 
						|
 | 
						|
        // TODO: what are the matrix rules? they go here
 | 
						|
 | 
						|
        return false;
 | 
						|
    };
 | 
						|
 | 
						|
    // Is 'to2' a better conversion than 'to1'?
 | 
						|
    // Ties should not be considered as better.
 | 
						|
    // Assumes 'convertible' already said true.
 | 
						|
    const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
 | 
						|
        // exact match is always better than mismatch
 | 
						|
        if (from == to2)
 | 
						|
            return from != to1;
 | 
						|
        if (from == to1)
 | 
						|
            return false;
 | 
						|
 | 
						|
        // shape changes are always worse
 | 
						|
        if (from.isScalar() || from.isVector()) {
 | 
						|
            if (from.getVectorSize() == to2.getVectorSize() &&
 | 
						|
                from.getVectorSize() != to1.getVectorSize())
 | 
						|
                return true;
 | 
						|
            if (from.getVectorSize() == to1.getVectorSize() &&
 | 
						|
                from.getVectorSize() != to2.getVectorSize())
 | 
						|
                return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // Handle sampler betterness: An exact sampler match beats a non-exact match.
 | 
						|
        // (If we just looked at basic type, all EbtSamplers would look the same).
 | 
						|
        // If any type is not a sampler, just use the linearize function below.
 | 
						|
        if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
 | 
						|
            // We can ignore the vector size in the comparison.
 | 
						|
            TSampler to1Sampler = to1.getSampler();
 | 
						|
            TSampler to2Sampler = to2.getSampler();
 | 
						|
 | 
						|
            to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
 | 
						|
 | 
						|
            if (from.getSampler() == to2Sampler)
 | 
						|
                return from.getSampler() != to1Sampler;
 | 
						|
            if (from.getSampler() == to1Sampler)
 | 
						|
                return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // Might or might not be changing shape, which means basic type might
 | 
						|
        // or might not match, so within that, the question is how big a
 | 
						|
        // basic-type conversion is being done.
 | 
						|
        //
 | 
						|
        // Use a hierarchy of domains, translated to order of magnitude
 | 
						|
        // in a linearized view:
 | 
						|
        //   - floating-point vs. integer
 | 
						|
        //     - 32 vs. 64 bit (or width in general)
 | 
						|
        //       - bool vs. non bool
 | 
						|
        //         - signed vs. not signed
 | 
						|
        const auto linearize = [](const TBasicType& basicType) -> int {
 | 
						|
            switch (basicType) {
 | 
						|
            case EbtBool:     return 1;
 | 
						|
            case EbtInt:      return 10;
 | 
						|
            case EbtUint:     return 11;
 | 
						|
            case EbtInt64:    return 20;
 | 
						|
            case EbtUint64:   return 21;
 | 
						|
            case EbtFloat:    return 100;
 | 
						|
            case EbtDouble:   return 110;
 | 
						|
            default:          return 0;
 | 
						|
            }
 | 
						|
        };
 | 
						|
 | 
						|
        return std::abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
 | 
						|
               std::abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
 | 
						|
    };
 | 
						|
 | 
						|
    // for ambiguity reporting
 | 
						|
    bool tie = false;
 | 
						|
 | 
						|
    // send to the generic selector
 | 
						|
    const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
 | 
						|
 | 
						|
    if (bestMatch == nullptr) {
 | 
						|
        // If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
 | 
						|
        // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
 | 
						|
        // upconversions possible.
 | 
						|
        allowOnlyUpConversions = false;
 | 
						|
        bestMatch = selectFunction(candidateList, call, convertible, better, tie);
 | 
						|
    }
 | 
						|
 | 
						|
    if (bestMatch == nullptr) {
 | 
						|
        error(loc, "no matching overloaded function found", call.getName().c_str(), "");
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // For builtins, we can convert across the arguments.  This will happen in several steps:
 | 
						|
    // Step 1:  If there's an exact match, use it.
 | 
						|
    // Step 2a: Otherwise, get the operator from the best match and promote arguments:
 | 
						|
    // Step 2b: reconstruct the TFunction based on the new arg types
 | 
						|
    // Step 3:  Re-select after type promotion is applied, to find proper candidate.
 | 
						|
    if (builtIn) {
 | 
						|
        // Step 1: If there's an exact match, use it.
 | 
						|
        if (call.getMangledName() == bestMatch->getMangledName())
 | 
						|
            return bestMatch;
 | 
						|
 | 
						|
        // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
 | 
						|
        // are that kind of operator.
 | 
						|
        if (args != nullptr) {
 | 
						|
            // The arg list can be a unary node, or an aggregate.  We have to handle both.
 | 
						|
            // We will use the normal promote() facilities, which require an interm node.
 | 
						|
            TIntermOperator* promote = nullptr;
 | 
						|
 | 
						|
            if (call.getParamCount() == 1) {
 | 
						|
                promote = new TIntermUnary(bestMatch->getBuiltInOp());
 | 
						|
                promote->getAsUnaryNode()->setOperand(args->getAsTyped());
 | 
						|
            } else {
 | 
						|
                promote = new TIntermAggregate(bestMatch->getBuiltInOp());
 | 
						|
                promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
 | 
						|
            }
 | 
						|
 | 
						|
            if (! intermediate.promote(promote))
 | 
						|
                return nullptr;
 | 
						|
 | 
						|
            // Obtain the promoted arg list.
 | 
						|
            if (call.getParamCount() == 1) {
 | 
						|
                args = promote->getAsUnaryNode()->getOperand();
 | 
						|
            } else {
 | 
						|
                promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Step 2b: reconstruct the TFunction based on the new arg types
 | 
						|
        TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
 | 
						|
 | 
						|
        if (args->getAsAggregate()) {
 | 
						|
            // Handle aggregates: put all args into the new function call
 | 
						|
            for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) {
 | 
						|
                // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
 | 
						|
                TParameter param = { 0, new TType, nullptr };
 | 
						|
                param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
 | 
						|
                convertedCall.addParameter(param);
 | 
						|
            }
 | 
						|
        } else if (args->getAsUnaryNode()) {
 | 
						|
            // Handle unaries: put all args into the new function call
 | 
						|
            TParameter param = { 0, new TType, nullptr };
 | 
						|
            param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
 | 
						|
            convertedCall.addParameter(param);
 | 
						|
        } else if (args->getAsTyped()) {
 | 
						|
            // Handle bare e.g, floats, not in an aggregate.
 | 
						|
            TParameter param = { 0, new TType, nullptr };
 | 
						|
            param.type->shallowCopy(args->getAsTyped()->getType());
 | 
						|
            convertedCall.addParameter(param);
 | 
						|
        } else {
 | 
						|
            assert(0); // unknown argument list.
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        // Step 3: Re-select after type promotion, to find proper candidate
 | 
						|
        // send to the generic selector
 | 
						|
        bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
 | 
						|
 | 
						|
        // At this point, there should be no tie.
 | 
						|
    }
 | 
						|
 | 
						|
    if (tie)
 | 
						|
        error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
 | 
						|
 | 
						|
    // Append default parameter values if needed
 | 
						|
    if (!tie && bestMatch != nullptr) {
 | 
						|
        for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
 | 
						|
            handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return bestMatch;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Do everything necessary to handle a typedef declaration, for a single symbol.
 | 
						|
//
 | 
						|
// 'parseType' is the type part of the declaration (to the left)
 | 
						|
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
 | 
						|
//
 | 
						|
void HlslParseContext::declareTypedef(const TSourceLoc& loc, TString& identifier, const TType& parseType)
 | 
						|
{
 | 
						|
    TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
 | 
						|
    if (! symbolTable.insert(*typeSymbol))
 | 
						|
        error(loc, "name already defined", "typedef", identifier.c_str());
 | 
						|
}
 | 
						|
 | 
						|
// Do everything necessary to handle a struct declaration, including
 | 
						|
// making IO aliases because HLSL allows mixed IO in a struct that specializes
 | 
						|
// based on the usage (input, output, uniform, none).
 | 
						|
void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
 | 
						|
{
 | 
						|
    // If it was named, which means the type can be reused later, add
 | 
						|
    // it to the symbol table.  (Unless it's a block, in which
 | 
						|
    // case the name is not a type.)
 | 
						|
    if (type.getBasicType() == EbtBlock || structName.size() == 0)
 | 
						|
        return;
 | 
						|
 | 
						|
    TVariable* userTypeDef = new TVariable(&structName, type, true);
 | 
						|
    if (! symbolTable.insert(*userTypeDef)) {
 | 
						|
        error(loc, "redefinition", structName.c_str(), "struct");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if we need IO aliases for the structure typeList
 | 
						|
 | 
						|
    const auto condAlloc = [](bool pred, TTypeList*& list) {
 | 
						|
        if (pred && list == nullptr)
 | 
						|
            list = new TTypeList;
 | 
						|
    };
 | 
						|
 | 
						|
    tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
 | 
						|
    for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
 | 
						|
        condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
 | 
						|
        condAlloc(  hasInput(member->type->getQualifier()), newLists.input);
 | 
						|
        condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
 | 
						|
 | 
						|
        if (member->type->isStruct()) {
 | 
						|
            auto it = ioTypeMap.find(member->type->getStruct());
 | 
						|
            if (it != ioTypeMap.end()) {
 | 
						|
                condAlloc(it->second.uniform != nullptr, newLists.uniform);
 | 
						|
                condAlloc(it->second.input   != nullptr, newLists.input);
 | 
						|
                condAlloc(it->second.output  != nullptr, newLists.output);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (newLists.uniform == nullptr &&
 | 
						|
        newLists.input   == nullptr &&
 | 
						|
        newLists.output  == nullptr) {
 | 
						|
        // Won't do any IO caching, clear up the type and get out now.
 | 
						|
        for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
 | 
						|
            clearUniformInputOutput(member->type->getQualifier());
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // We have IO involved.
 | 
						|
 | 
						|
    // Make a pure typeList for the symbol table, and cache side copies of IO versions.
 | 
						|
    for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
 | 
						|
        const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
 | 
						|
            if (s != nullptr) {
 | 
						|
                ioMember.type = new TType;
 | 
						|
                ioMember.type->shallowCopy(*member->type);
 | 
						|
                ioMember.type->setStruct(s);
 | 
						|
            }
 | 
						|
        };
 | 
						|
        const auto newMember = [&](TTypeLoc& m) {
 | 
						|
            if (m.type == nullptr) {
 | 
						|
                m.type = new TType;
 | 
						|
                m.type->shallowCopy(*member->type);
 | 
						|
            }
 | 
						|
        };
 | 
						|
 | 
						|
        TTypeLoc newUniformMember = { nullptr, member->loc };
 | 
						|
        TTypeLoc newInputMember   = { nullptr, member->loc };
 | 
						|
        TTypeLoc newOutputMember  = { nullptr, member->loc };
 | 
						|
        if (member->type->isStruct()) {
 | 
						|
            // swap in an IO child if there is one
 | 
						|
            auto it = ioTypeMap.find(member->type->getStruct());
 | 
						|
            if (it != ioTypeMap.end()) {
 | 
						|
                inheritStruct(it->second.uniform, newUniformMember);
 | 
						|
                inheritStruct(it->second.input,   newInputMember);
 | 
						|
                inheritStruct(it->second.output,  newOutputMember);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (newLists.uniform) {
 | 
						|
            newMember(newUniformMember);
 | 
						|
            correctUniform(newUniformMember.type->getQualifier());
 | 
						|
            newLists.uniform->push_back(newUniformMember);
 | 
						|
        }
 | 
						|
        if (newLists.input) {
 | 
						|
            newMember(newInputMember);
 | 
						|
            correctInput(newInputMember.type->getQualifier());
 | 
						|
            newLists.input->push_back(newInputMember);
 | 
						|
        }
 | 
						|
        if (newLists.output) {
 | 
						|
            newMember(newOutputMember);
 | 
						|
            correctOutput(newOutputMember.type->getQualifier());
 | 
						|
            newLists.output->push_back(newOutputMember);
 | 
						|
        }
 | 
						|
 | 
						|
        // make original pure
 | 
						|
        clearUniformInputOutput(member->type->getQualifier());
 | 
						|
    }
 | 
						|
    ioTypeMap[type.getStruct()] = newLists;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Do everything necessary to handle a variable (non-block) declaration.
 | 
						|
// Either redeclaring a variable, or making a new one, updating the symbol
 | 
						|
// table, and all error checking.
 | 
						|
//
 | 
						|
// Returns a subtree node that computes an initializer, if needed.
 | 
						|
// Returns nullptr if there is no code to execute for initialization.
 | 
						|
//
 | 
						|
// 'parseType' is the type part of the declaration (to the left)
 | 
						|
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
 | 
						|
//
 | 
						|
TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, TType& type, TIntermTyped* initializer)
 | 
						|
{
 | 
						|
    if (voidErrorCheck(loc, identifier, type.getBasicType()))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    // make const and initialization consistent
 | 
						|
    fixConstInit(loc, identifier, type, initializer);
 | 
						|
 | 
						|
    // Check for redeclaration of built-ins and/or attempting to declare a reserved name
 | 
						|
    TSymbol* symbol = nullptr;
 | 
						|
 | 
						|
    inheritGlobalDefaults(type.getQualifier());
 | 
						|
 | 
						|
    const bool flattenVar = shouldFlattenUniform(type);
 | 
						|
 | 
						|
    // correct IO in the type
 | 
						|
    switch (type.getQualifier().storage) {
 | 
						|
    case EvqGlobal:
 | 
						|
    case EvqTemporary:
 | 
						|
        clearUniformInputOutput(type.getQualifier());
 | 
						|
        break;
 | 
						|
    case EvqUniform:
 | 
						|
    case EvqBuffer:
 | 
						|
        correctUniform(type.getQualifier());
 | 
						|
        if (type.isStruct()) {
 | 
						|
            auto it = ioTypeMap.find(type.getStruct());
 | 
						|
            if (it != ioTypeMap.end())
 | 
						|
                type.setStruct(it->second.uniform);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Declare the variable
 | 
						|
    if (type.isArray()) {
 | 
						|
        // array case
 | 
						|
        declareArray(loc, identifier, type, symbol, !flattenVar);
 | 
						|
    } else {
 | 
						|
        // non-array case
 | 
						|
        if (! symbol)
 | 
						|
            symbol = declareNonArray(loc, identifier, type, !flattenVar);
 | 
						|
        else if (type != symbol->getType())
 | 
						|
            error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    if (flattenVar)
 | 
						|
        flatten(loc, *symbol->getAsVariable());
 | 
						|
 | 
						|
    if (! symbol)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    // Deal with initializer
 | 
						|
    TIntermNode* initNode = nullptr;
 | 
						|
    if (symbol && initializer) {
 | 
						|
        if (flattenVar)
 | 
						|
            error(loc, "flattened array with initializer list unsupported", identifier.c_str(), "");
 | 
						|
 | 
						|
        TVariable* variable = symbol->getAsVariable();
 | 
						|
        if (! variable) {
 | 
						|
            error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
        initNode = executeInitializer(loc, initializer, variable);
 | 
						|
    }
 | 
						|
 | 
						|
    return initNode;
 | 
						|
}
 | 
						|
 | 
						|
// Pick up global defaults from the provide global defaults into dst.
 | 
						|
void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
 | 
						|
{
 | 
						|
    if (dst.storage == EvqVaryingOut) {
 | 
						|
        if (! dst.hasStream() && language == EShLangGeometry)
 | 
						|
            dst.layoutStream = globalOutputDefaults.layoutStream;
 | 
						|
        if (! dst.hasXfbBuffer())
 | 
						|
            dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Make an internal-only variable whose name is for debug purposes only
 | 
						|
// and won't be searched for.  Callers will only use the return value to use
 | 
						|
// the variable, not the name to look it up.  It is okay if the name
 | 
						|
// is the same as other names; there won't be any conflict.
 | 
						|
//
 | 
						|
TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
 | 
						|
{
 | 
						|
    TString* nameString = NewPoolTString(name);
 | 
						|
    TVariable* variable = new TVariable(nameString, type);
 | 
						|
    symbolTable.makeInternalVariable(*variable);
 | 
						|
 | 
						|
    return variable;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Declare a non-array variable, the main point being there is no redeclaration
 | 
						|
// for resizing allowed.
 | 
						|
//
 | 
						|
// Return the successfully declared variable.
 | 
						|
//
 | 
						|
TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type, bool track)
 | 
						|
{
 | 
						|
    // make a new variable
 | 
						|
    TVariable* variable = new TVariable(&identifier, type);
 | 
						|
 | 
						|
    // add variable to symbol table
 | 
						|
    if (symbolTable.insert(*variable)) {
 | 
						|
        if (track && symbolTable.atGlobalLevel())
 | 
						|
            trackLinkage(*variable);
 | 
						|
        return variable;
 | 
						|
    }
 | 
						|
 | 
						|
    error(loc, "redefinition", variable->getName().c_str(), "");
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Handle all types of initializers from the grammar.
 | 
						|
//
 | 
						|
// Returning nullptr just means there is no code to execute to handle the
 | 
						|
// initializer, which will, for example, be the case for constant initializers.
 | 
						|
//
 | 
						|
TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Identifier must be of type constant, a global, or a temporary, and
 | 
						|
    // starting at version 120, desktop allows uniforms to have initializers.
 | 
						|
    //
 | 
						|
    TStorageQualifier qualifier = variable->getType().getQualifier().storage;
 | 
						|
 | 
						|
    //
 | 
						|
    // If the initializer was from braces { ... }, we convert the whole subtree to a
 | 
						|
    // constructor-style subtree, allowing the rest of the code to operate
 | 
						|
    // identically for both kinds of initializers.
 | 
						|
    //
 | 
						|
    //
 | 
						|
    // Type can't be deduced from the initializer list, so a skeletal type to
 | 
						|
    // follow has to be passed in.  Constness and specialization-constness
 | 
						|
    // should be deduced bottom up, not dictated by the skeletal type.
 | 
						|
    //
 | 
						|
    TType skeletalType;
 | 
						|
    skeletalType.shallowCopy(variable->getType());
 | 
						|
    skeletalType.getQualifier().makeTemporary();
 | 
						|
    if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
 | 
						|
        initializer = convertInitializerList(loc, skeletalType, initializer);
 | 
						|
    if (! initializer) {
 | 
						|
        // error recovery; don't leave const without constant values
 | 
						|
        if (qualifier == EvqConst)
 | 
						|
            variable->getWritableType().getQualifier().storage = EvqTemporary;
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fix outer arrayness if variable is unsized, getting size from the initializer
 | 
						|
    if (initializer->getType().isExplicitlySizedArray() &&
 | 
						|
        variable->getType().isImplicitlySizedArray())
 | 
						|
        variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
 | 
						|
 | 
						|
    // Inner arrayness can also get set by an initializer
 | 
						|
    if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
 | 
						|
        initializer->getType().getArraySizes()->getNumDims() ==
 | 
						|
        variable->getType().getArraySizes()->getNumDims()) {
 | 
						|
        // adopt unsized sizes from the initializer's sizes
 | 
						|
        for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
 | 
						|
            if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize)
 | 
						|
                variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Uniform and global consts require a constant initializer
 | 
						|
    if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
 | 
						|
        error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
 | 
						|
        variable->getWritableType().getQualifier().storage = EvqTemporary;
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
    if (qualifier == EvqConst && symbolTable.atGlobalLevel() && initializer->getType().getQualifier().storage != EvqConst) {
 | 
						|
        error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
 | 
						|
        variable->getWritableType().getQualifier().storage = EvqTemporary;
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Const variables require a constant initializer, depending on version
 | 
						|
    if (qualifier == EvqConst) {
 | 
						|
        if (initializer->getType().getQualifier().storage != EvqConst) {
 | 
						|
            variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
 | 
						|
            qualifier = EvqConstReadOnly;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (qualifier == EvqConst || qualifier == EvqUniform) {
 | 
						|
        // Compile-time tagging of the variable with its constant value...
 | 
						|
 | 
						|
        initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
 | 
						|
        if (! initializer || ! initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) {
 | 
						|
            error(loc, "non-matching or non-convertible constant type for const initializer",
 | 
						|
                variable->getType().getStorageQualifierString(), "");
 | 
						|
            variable->getWritableType().getQualifier().storage = EvqTemporary;
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
 | 
						|
    } else {
 | 
						|
        // normal assigning of a value to a variable...
 | 
						|
        specializationCheck(loc, initializer->getType(), "initializer");
 | 
						|
        TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
 | 
						|
        TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
 | 
						|
        if (! initNode)
 | 
						|
            assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
 | 
						|
 | 
						|
        return initNode;
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Reprocess any initializer-list { ... } parts of the initializer.
 | 
						|
// Need to hierarchically assign correct types and implicit
 | 
						|
// conversions. Will do this mimicking the same process used for
 | 
						|
// creating a constructor-style initializer, ensuring we get the
 | 
						|
// same form.
 | 
						|
//
 | 
						|
// Returns a node representing an expression for the initializer list expressed
 | 
						|
// as the correct type.
 | 
						|
//
 | 
						|
// Returns nullptr if there is an error.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer)
 | 
						|
{
 | 
						|
    // Will operate recursively.  Once a subtree is found that is constructor style,
 | 
						|
    // everything below it is already good: Only the "top part" of the initializer
 | 
						|
    // can be an initializer list, where "top part" can extend for several (or all) levels.
 | 
						|
 | 
						|
    // see if we have bottomed out in the tree within the initializer-list part
 | 
						|
    TIntermAggregate* initList = initializer->getAsAggregate();
 | 
						|
    if (! initList || initList->getOp() != EOpNull) {
 | 
						|
        // We don't have a list, but if it's a scalar and the 'type' is a
 | 
						|
        // composite, we need to lengthen below to make it useful.
 | 
						|
        // Otherwise, this is an already formed object to initialize with.
 | 
						|
        if (type.isScalar() || !initializer->getType().isScalar())
 | 
						|
            return initializer;
 | 
						|
        else
 | 
						|
            initList = intermediate.makeAggregate(initializer);
 | 
						|
    }
 | 
						|
 | 
						|
    // Of the initializer-list set of nodes, need to process bottom up,
 | 
						|
    // so recurse deep, then process on the way up.
 | 
						|
 | 
						|
    // Go down the tree here...
 | 
						|
    if (type.isArray()) {
 | 
						|
        // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
 | 
						|
        // Later on, initializer execution code will deal with array size logic.
 | 
						|
        TType arrayType;
 | 
						|
        arrayType.shallowCopy(type);                     // sharing struct stuff is fine
 | 
						|
        arrayType.newArraySizes(*type.getArraySizes());  // but get a fresh copy of the array information, to edit below
 | 
						|
 | 
						|
        // edit array sizes to fill in unsized dimensions
 | 
						|
        if (type.isImplicitlySizedArray())
 | 
						|
            arrayType.changeOuterArraySize((int)initList->getSequence().size());
 | 
						|
 | 
						|
        // set unsized array dimensions that can be derived from the initializer's first element
 | 
						|
        if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
 | 
						|
            TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
 | 
						|
            if (firstInit->getType().isArray() &&
 | 
						|
                arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
 | 
						|
                for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) {
 | 
						|
                    if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize)
 | 
						|
                        arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // lengthen list to be long enough
 | 
						|
        lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize());
 | 
						|
 | 
						|
        // recursively process each element
 | 
						|
        TType elementType(arrayType, 0); // dereferenced type
 | 
						|
        for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
 | 
						|
            initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped());
 | 
						|
            if (initList->getSequence()[i] == nullptr)
 | 
						|
                return nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        return addConstructor(loc, initList, arrayType);
 | 
						|
    } else if (type.isStruct()) {
 | 
						|
        // lengthen list to be long enough
 | 
						|
        lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()));
 | 
						|
 | 
						|
        if (type.getStruct()->size() != initList->getSequence().size()) {
 | 
						|
            error(loc, "wrong number of structure members", "initializer list", "");
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
        for (size_t i = 0; i < type.getStruct()->size(); ++i) {
 | 
						|
            initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped());
 | 
						|
            if (initList->getSequence()[i] == nullptr)
 | 
						|
                return nullptr;
 | 
						|
        }
 | 
						|
    } else if (type.isMatrix()) {
 | 
						|
        if (type.computeNumComponents() == (int)initList->getSequence().size()) {
 | 
						|
            // This means the matrix is initialized component-wise, rather than as
 | 
						|
            // a series of rows and columns.  We can just use the list directly as
 | 
						|
            // a constructor; no further processing needed.
 | 
						|
        } else {
 | 
						|
            // lengthen list to be long enough
 | 
						|
            lengthenList(loc, initList->getSequence(), type.getMatrixCols());
 | 
						|
 | 
						|
            if (type.getMatrixCols() != (int)initList->getSequence().size()) {
 | 
						|
                error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
 | 
						|
                return nullptr;
 | 
						|
            }
 | 
						|
            TType vectorType(type, 0); // dereferenced type
 | 
						|
            for (int i = 0; i < type.getMatrixCols(); ++i) {
 | 
						|
                initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped());
 | 
						|
                if (initList->getSequence()[i] == nullptr)
 | 
						|
                    return nullptr;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (type.isVector()) {
 | 
						|
        // lengthen list to be long enough
 | 
						|
        lengthenList(loc, initList->getSequence(), type.getVectorSize());
 | 
						|
 | 
						|
        // error check; we're at bottom, so work is finished below
 | 
						|
        if (type.getVectorSize() != (int)initList->getSequence().size()) {
 | 
						|
            error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str());
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
    } else if (type.isScalar()) {
 | 
						|
        // lengthen list to be long enough
 | 
						|
        lengthenList(loc, initList->getSequence(), 1);
 | 
						|
 | 
						|
        if ((int)initList->getSequence().size() != 1) {
 | 
						|
            error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that the subtree is processed, process this node as if the
 | 
						|
    // initializer list is a set of arguments to a constructor.
 | 
						|
    TIntermNode* emulatedConstructorArguments;
 | 
						|
    if (initList->getSequence().size() == 1)
 | 
						|
        emulatedConstructorArguments = initList->getSequence()[0];
 | 
						|
    else
 | 
						|
        emulatedConstructorArguments = initList;
 | 
						|
 | 
						|
    return addConstructor(loc, emulatedConstructorArguments, type);
 | 
						|
}
 | 
						|
 | 
						|
// Lengthen list to be long enough to cover any gap from the current list size
 | 
						|
// to 'size'. If the list is longer, do nothing.
 | 
						|
// The value to lengthen with is the default for short lists.
 | 
						|
void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size)
 | 
						|
{
 | 
						|
    for (int c = (int)list.size(); c < size; ++c)
 | 
						|
        list.push_back(intermediate.addConstantUnion(0, loc));
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Test for the correctness of the parameters passed to various constructor functions
 | 
						|
// and also convert them to the right data type, if allowed and required.
 | 
						|
//
 | 
						|
// Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type)
 | 
						|
{
 | 
						|
    if (node == nullptr || node->getAsTyped() == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    // Handle the idiom "(struct type)0"
 | 
						|
    if (type.isStruct() && isZeroConstructor(node))
 | 
						|
        return convertInitializerList(loc, type, intermediate.makeAggregate(loc));
 | 
						|
 | 
						|
    TIntermAggregate* aggrNode = node->getAsAggregate();
 | 
						|
    TOperator op = intermediate.mapTypeToConstructorOp(type);
 | 
						|
 | 
						|
    // Combined texture-sampler constructors are completely semantic checked
 | 
						|
    // in constructorTextureSamplerError()
 | 
						|
    if (op == EOpConstructTextureSampler)
 | 
						|
        return intermediate.setAggregateOperator(aggrNode, op, type, loc);
 | 
						|
 | 
						|
    TTypeList::const_iterator memberTypes;
 | 
						|
    if (op == EOpConstructStruct)
 | 
						|
        memberTypes = type.getStruct()->begin();
 | 
						|
 | 
						|
    TType elementType;
 | 
						|
    if (type.isArray()) {
 | 
						|
        TType dereferenced(type, 0);
 | 
						|
        elementType.shallowCopy(dereferenced);
 | 
						|
    } else
 | 
						|
        elementType.shallowCopy(type);
 | 
						|
 | 
						|
    bool singleArg;
 | 
						|
    if (aggrNode) {
 | 
						|
        if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
 | 
						|
            singleArg = true;
 | 
						|
        else
 | 
						|
            singleArg = false;
 | 
						|
    } else
 | 
						|
        singleArg = true;
 | 
						|
 | 
						|
    TIntermTyped *newNode;
 | 
						|
    if (singleArg) {
 | 
						|
        // If structure constructor or array constructor is being called
 | 
						|
        // for only one parameter inside the structure, we need to call constructAggregate function once.
 | 
						|
        if (type.isArray())
 | 
						|
            newNode = constructAggregate(node, elementType, 1, node->getLoc());
 | 
						|
        else if (op == EOpConstructStruct)
 | 
						|
            newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
 | 
						|
        else
 | 
						|
            newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false);
 | 
						|
 | 
						|
        if (newNode && (type.isArray() || op == EOpConstructStruct))
 | 
						|
            newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
 | 
						|
 | 
						|
        return newNode;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Handle list of arguments.
 | 
						|
    //
 | 
						|
    TIntermSequence &sequenceVector = aggrNode->getSequence();    // Stores the information about the parameter to the constructor
 | 
						|
    // if the structure constructor contains more than one parameter, then construct
 | 
						|
    // each parameter
 | 
						|
 | 
						|
    int paramCount = 0;  // keeps a track of the constructor parameter number being checked
 | 
						|
 | 
						|
    // for each parameter to the constructor call, check to see if the right type is passed or convert them
 | 
						|
    // to the right type if possible (and allowed).
 | 
						|
    // for structure constructors, just check if the right type is passed, no conversion is allowed.
 | 
						|
 | 
						|
    for (TIntermSequence::iterator p = sequenceVector.begin();
 | 
						|
        p != sequenceVector.end(); p++, paramCount++) {
 | 
						|
        if (type.isArray())
 | 
						|
            newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
 | 
						|
        else if (op == EOpConstructStruct)
 | 
						|
            newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
 | 
						|
        else
 | 
						|
            newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
 | 
						|
 | 
						|
        if (newNode)
 | 
						|
            *p = newNode;
 | 
						|
        else
 | 
						|
            return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
 | 
						|
 | 
						|
    return constructor;
 | 
						|
}
 | 
						|
 | 
						|
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
 | 
						|
// for the parameter to the constructor (passed to this function). Essentially, it converts
 | 
						|
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
 | 
						|
// float, then float is converted to int.
 | 
						|
//
 | 
						|
// Returns nullptr for an error or the constructed node.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset)
 | 
						|
{
 | 
						|
    TIntermTyped* newNode;
 | 
						|
    TOperator basicOp;
 | 
						|
 | 
						|
    //
 | 
						|
    // First, convert types as needed.
 | 
						|
    //
 | 
						|
    switch (op) {
 | 
						|
    case EOpConstructVec2:
 | 
						|
    case EOpConstructVec3:
 | 
						|
    case EOpConstructVec4:
 | 
						|
    case EOpConstructMat2x2:
 | 
						|
    case EOpConstructMat2x3:
 | 
						|
    case EOpConstructMat2x4:
 | 
						|
    case EOpConstructMat3x2:
 | 
						|
    case EOpConstructMat3x3:
 | 
						|
    case EOpConstructMat3x4:
 | 
						|
    case EOpConstructMat4x2:
 | 
						|
    case EOpConstructMat4x3:
 | 
						|
    case EOpConstructMat4x4:
 | 
						|
    case EOpConstructFloat:
 | 
						|
        basicOp = EOpConstructFloat;
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpConstructDVec2:
 | 
						|
    case EOpConstructDVec3:
 | 
						|
    case EOpConstructDVec4:
 | 
						|
    case EOpConstructDMat2x2:
 | 
						|
    case EOpConstructDMat2x3:
 | 
						|
    case EOpConstructDMat2x4:
 | 
						|
    case EOpConstructDMat3x2:
 | 
						|
    case EOpConstructDMat3x3:
 | 
						|
    case EOpConstructDMat3x4:
 | 
						|
    case EOpConstructDMat4x2:
 | 
						|
    case EOpConstructDMat4x3:
 | 
						|
    case EOpConstructDMat4x4:
 | 
						|
    case EOpConstructDouble:
 | 
						|
        basicOp = EOpConstructDouble;
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpConstructIVec2:
 | 
						|
    case EOpConstructIVec3:
 | 
						|
    case EOpConstructIVec4:
 | 
						|
    case EOpConstructInt:
 | 
						|
        basicOp = EOpConstructInt;
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpConstructUVec2:
 | 
						|
    case EOpConstructUVec3:
 | 
						|
    case EOpConstructUVec4:
 | 
						|
    case EOpConstructUint:
 | 
						|
        basicOp = EOpConstructUint;
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpConstructBVec2:
 | 
						|
    case EOpConstructBVec3:
 | 
						|
    case EOpConstructBVec4:
 | 
						|
    case EOpConstructBool:
 | 
						|
        basicOp = EOpConstructBool;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        error(loc, "unsupported construction", "", "");
 | 
						|
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
    newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
 | 
						|
    if (newNode == nullptr) {
 | 
						|
        error(loc, "can't convert", "constructor", "");
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Now, if there still isn't an operation to do the construction, and we need one, add one.
 | 
						|
    //
 | 
						|
 | 
						|
    // Otherwise, skip out early.
 | 
						|
    if (subset || (newNode != node && newNode->getType() == type))
 | 
						|
        return newNode;
 | 
						|
 | 
						|
    // setAggregateOperator will insert a new node for the constructor, as needed.
 | 
						|
    return intermediate.setAggregateOperator(newNode, op, type, loc);
 | 
						|
}
 | 
						|
 | 
						|
// This function tests for the type of the parameters to the structure or array constructor. Raises
 | 
						|
// an error message if the expected type does not match the parameter passed to the constructor.
 | 
						|
//
 | 
						|
// Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
 | 
						|
//
 | 
						|
TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
 | 
						|
    if (! converted || converted->getType() != type) {
 | 
						|
        error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
 | 
						|
            node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
 | 
						|
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return converted;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Do everything needed to add an interface block.
 | 
						|
//
 | 
						|
void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName, TArraySizes* arraySizes)
 | 
						|
{
 | 
						|
    assert(type.getWritableStruct() != nullptr);
 | 
						|
 | 
						|
    // Clean up top-level decorations that don't belong.
 | 
						|
    switch (type.getQualifier().storage) {
 | 
						|
    case EvqUniform:
 | 
						|
    case EvqBuffer:
 | 
						|
        correctUniform(type.getQualifier());
 | 
						|
        break;
 | 
						|
    case EvqVaryingIn:
 | 
						|
        correctInput(type.getQualifier());
 | 
						|
        break;
 | 
						|
    case EvqVaryingOut:
 | 
						|
        correctOutput(type.getQualifier());
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    TTypeList& typeList = *type.getWritableStruct();
 | 
						|
    // fix and check for member storage qualifiers and types that don't belong within a block
 | 
						|
    for (unsigned int member = 0; member < typeList.size(); ++member) {
 | 
						|
        TType& memberType = *typeList[member].type;
 | 
						|
        TQualifier& memberQualifier = memberType.getQualifier();
 | 
						|
        const TSourceLoc& memberLoc = typeList[member].loc;
 | 
						|
        globalQualifierFix(memberLoc, memberQualifier);
 | 
						|
        memberQualifier.storage = type.getQualifier().storage;
 | 
						|
 | 
						|
        if (memberType.isStruct()) {
 | 
						|
            // clean up and pick up the right set of decorations
 | 
						|
            auto it = ioTypeMap.find(memberType.getStruct());
 | 
						|
            switch (type.getQualifier().storage) {
 | 
						|
            case EvqUniform:
 | 
						|
            case EvqBuffer:
 | 
						|
                correctUniform(type.getQualifier());
 | 
						|
                if (it != ioTypeMap.end() && it->second.uniform)
 | 
						|
                    type.setStruct(it->second.uniform);
 | 
						|
                break;
 | 
						|
            case EvqVaryingIn:
 | 
						|
                correctInput(type.getQualifier());
 | 
						|
                if (it != ioTypeMap.end() && it->second.input)
 | 
						|
                    type.setStruct(it->second.input);
 | 
						|
                break;
 | 
						|
            case EvqVaryingOut:
 | 
						|
                correctOutput(type.getQualifier());
 | 
						|
                if (it != ioTypeMap.end() && it->second.output)
 | 
						|
                    type.setStruct(it->second.output);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // This might be a redeclaration of a built-in block.  If so, redeclareBuiltinBlock() will
 | 
						|
    // do all the rest.
 | 
						|
    // if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) {
 | 
						|
    //    redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes);
 | 
						|
    //    return;
 | 
						|
    //}
 | 
						|
 | 
						|
    // Make default block qualification, and adjust the member qualifications
 | 
						|
 | 
						|
    TQualifier defaultQualification;
 | 
						|
    switch (type.getQualifier().storage) {
 | 
						|
    case EvqUniform:    defaultQualification = globalUniformDefaults;    break;
 | 
						|
    case EvqBuffer:     defaultQualification = globalBufferDefaults;     break;
 | 
						|
    case EvqVaryingIn:  defaultQualification = globalInputDefaults;      break;
 | 
						|
    case EvqVaryingOut: defaultQualification = globalOutputDefaults;     break;
 | 
						|
    default:            defaultQualification.clear();                    break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Special case for "push_constant uniform", which has a default of std430,
 | 
						|
    // contrary to normal uniform defaults, and can't have a default tracked for it.
 | 
						|
    if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
 | 
						|
        type.getQualifier().layoutPacking = ElpStd430;
 | 
						|
 | 
						|
    // fix and check for member layout qualifiers
 | 
						|
 | 
						|
    mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
 | 
						|
 | 
						|
    bool memberWithLocation = false;
 | 
						|
    bool memberWithoutLocation = false;
 | 
						|
    for (unsigned int member = 0; member < typeList.size(); ++member) {
 | 
						|
        TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | 
						|
        const TSourceLoc& memberLoc = typeList[member].loc;
 | 
						|
        if (memberQualifier.hasStream()) {
 | 
						|
            if (defaultQualification.layoutStream != memberQualifier.layoutStream)
 | 
						|
                error(memberLoc, "member cannot contradict block", "stream", "");
 | 
						|
        }
 | 
						|
 | 
						|
        // "This includes a block's inheritance of the
 | 
						|
        // current global default buffer, a block member's inheritance of the block's
 | 
						|
        // buffer, and the requirement that any *xfb_buffer* declared on a block
 | 
						|
        // member must match the buffer inherited from the block."
 | 
						|
        if (memberQualifier.hasXfbBuffer()) {
 | 
						|
            if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
 | 
						|
                error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
 | 
						|
        }
 | 
						|
 | 
						|
        if (memberQualifier.hasPacking())
 | 
						|
            error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), "");
 | 
						|
        if (memberQualifier.hasLocation()) {
 | 
						|
            switch (type.getQualifier().storage) {
 | 
						|
            case EvqVaryingIn:
 | 
						|
            case EvqVaryingOut:
 | 
						|
                memberWithLocation = true;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        } else
 | 
						|
            memberWithoutLocation = true;
 | 
						|
        if (memberQualifier.hasAlign()) {
 | 
						|
            if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430)
 | 
						|
                error(memberLoc, "can only be used with std140 or std430 layout packing", "align", "");
 | 
						|
        }
 | 
						|
 | 
						|
        TQualifier newMemberQualification = defaultQualification;
 | 
						|
        mergeQualifiers(newMemberQualification, memberQualifier);
 | 
						|
        memberQualifier = newMemberQualification;
 | 
						|
    }
 | 
						|
 | 
						|
    // Process the members
 | 
						|
    fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
 | 
						|
    fixBlockXfbOffsets(type.getQualifier(), typeList);
 | 
						|
    fixBlockUniformOffsets(type.getQualifier(), typeList);
 | 
						|
 | 
						|
    // reverse merge, so that currentBlockQualifier now has all layout information
 | 
						|
    // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
 | 
						|
    mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
 | 
						|
 | 
						|
    //
 | 
						|
    // Build and add the interface block as a new type named 'blockName'
 | 
						|
    //
 | 
						|
 | 
						|
    // Use the instance name as the interface name if one exists, else the block name.
 | 
						|
    const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
 | 
						|
 | 
						|
    TType blockType(&typeList, interfaceName, type.getQualifier());
 | 
						|
    if (arraySizes)
 | 
						|
        blockType.newArraySizes(*arraySizes);
 | 
						|
 | 
						|
    // Add the variable, as anonymous or named instanceName.
 | 
						|
    // Make an anonymous variable if no name was provided.
 | 
						|
    if (! instanceName)
 | 
						|
        instanceName = NewPoolTString("");
 | 
						|
 | 
						|
    TVariable& variable = *new TVariable(instanceName, blockType);
 | 
						|
    if (! symbolTable.insert(variable)) {
 | 
						|
        if (*instanceName == "")
 | 
						|
            error(loc, "nameless block contains a member that already has a name at global scope", "" /* blockName->c_str() */, "");
 | 
						|
        else
 | 
						|
            error(loc, "block instance name redefinition", variable.getName().c_str(), "");
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Save it in the AST for linker use.
 | 
						|
    trackLinkage(variable);
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::finalizeGlobalUniformBlockLayout(TVariable& block)
 | 
						|
{
 | 
						|
    block.getWritableType().getQualifier().layoutPacking = ElpStd140;
 | 
						|
    block.getWritableType().getQualifier().layoutMatrix = ElmRowMajor;
 | 
						|
    fixBlockUniformOffsets(block.getType().getQualifier(), *block.getWritableType().getWritableStruct());
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// "For a block, this process applies to the entire block, or until the first member
 | 
						|
// is reached that has a location layout qualifier. When a block member is declared with a location
 | 
						|
// qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
 | 
						|
// declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
 | 
						|
// until the next member declared with a location qualifier. The values used for locations do not have to be
 | 
						|
// declared in increasing order."
 | 
						|
void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
 | 
						|
{
 | 
						|
    // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
 | 
						|
    // have a location layout qualifier, or a compile-time error results."
 | 
						|
    if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
 | 
						|
        error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
 | 
						|
    else {
 | 
						|
        if (memberWithLocation) {
 | 
						|
            // remove any block-level location and make it per *every* member
 | 
						|
            int nextLocation = 0;  // by the rule above, initial value is not relevant
 | 
						|
            if (qualifier.hasAnyLocation()) {
 | 
						|
                nextLocation = qualifier.layoutLocation;
 | 
						|
                qualifier.layoutLocation = TQualifier::layoutLocationEnd;
 | 
						|
                if (qualifier.hasComponent()) {
 | 
						|
                    // "It is a compile-time error to apply the *component* qualifier to a ... block"
 | 
						|
                    error(loc, "cannot apply to a block", "component", "");
 | 
						|
                }
 | 
						|
                if (qualifier.hasIndex()) {
 | 
						|
                    error(loc, "cannot apply to a block", "index", "");
 | 
						|
                }
 | 
						|
            }
 | 
						|
            for (unsigned int member = 0; member < typeList.size(); ++member) {
 | 
						|
                TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | 
						|
                const TSourceLoc& memberLoc = typeList[member].loc;
 | 
						|
                if (! memberQualifier.hasLocation()) {
 | 
						|
                    if (nextLocation >= (int)TQualifier::layoutLocationEnd)
 | 
						|
                        error(memberLoc, "location is too large", "location", "");
 | 
						|
                    memberQualifier.layoutLocation = nextLocation;
 | 
						|
                    memberQualifier.layoutComponent = 0;
 | 
						|
                }
 | 
						|
                nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(*typeList[member].type);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
 | 
						|
{
 | 
						|
    // "If a block is qualified with xfb_offset, all its
 | 
						|
    // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
 | 
						|
    // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
 | 
						|
    // offsets."
 | 
						|
 | 
						|
    if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
 | 
						|
        return;
 | 
						|
 | 
						|
    int nextOffset = qualifier.layoutXfbOffset;
 | 
						|
    for (unsigned int member = 0; member < typeList.size(); ++member) {
 | 
						|
        TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | 
						|
        bool containsDouble = false;
 | 
						|
        int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble);
 | 
						|
        // see if we need to auto-assign an offset to this member
 | 
						|
        if (! memberQualifier.hasXfbOffset()) {
 | 
						|
            // "if applied to an aggregate containing a double, the offset must also be a multiple of 8"
 | 
						|
            if (containsDouble)
 | 
						|
                RoundToPow2(nextOffset, 8);
 | 
						|
            memberQualifier.layoutXfbOffset = nextOffset;
 | 
						|
        } else
 | 
						|
            nextOffset = memberQualifier.layoutXfbOffset;
 | 
						|
        nextOffset += memberSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // The above gave all block members an offset, so we can take it off the block now,
 | 
						|
    // which will avoid double counting the offset usage.
 | 
						|
    qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate and save the offset of each block member, using the recursively
 | 
						|
// defined block offset rules and the user-provided offset and align.
 | 
						|
//
 | 
						|
// Also, compute and save the total size of the block. For the block's size, arrayness
 | 
						|
// is not taken into account, as each element is backed by a separate buffer.
 | 
						|
//
 | 
						|
void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
 | 
						|
{
 | 
						|
    if (! qualifier.isUniformOrBuffer())
 | 
						|
        return;
 | 
						|
    if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430)
 | 
						|
        return;
 | 
						|
 | 
						|
    int offset = 0;
 | 
						|
    int memberSize;
 | 
						|
    for (unsigned int member = 0; member < typeList.size(); ++member) {
 | 
						|
        TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | 
						|
        const TSourceLoc& memberLoc = typeList[member].loc;
 | 
						|
 | 
						|
        // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
 | 
						|
 | 
						|
        // modify just the children's view of matrix layout, if there is one for this member
 | 
						|
        TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
 | 
						|
        int dummyStride;
 | 
						|
        int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride,
 | 
						|
                                                            qualifier.layoutPacking == ElpStd140,
 | 
						|
                                                            subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor
 | 
						|
                                                                                       : qualifier.layoutMatrix == ElmRowMajor);
 | 
						|
        if (memberQualifier.hasOffset()) {
 | 
						|
            // "The specified offset must be a multiple
 | 
						|
            // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
 | 
						|
            if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
 | 
						|
                error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
 | 
						|
 | 
						|
            // "The offset qualifier forces the qualified member to start at or after the specified
 | 
						|
            // integral-constant expression, which will be its byte offset from the beginning of the buffer.
 | 
						|
            // "The actual offset of a member is computed as
 | 
						|
            // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
 | 
						|
            offset = std::max(offset, memberQualifier.layoutOffset);
 | 
						|
        }
 | 
						|
 | 
						|
        // "The actual alignment of a member will be the greater of the specified align alignment and the standard
 | 
						|
        // (e.g., std140) base alignment for the member's type."
 | 
						|
        if (memberQualifier.hasAlign())
 | 
						|
            memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
 | 
						|
 | 
						|
        // "If the resulting offset is not a multiple of the actual alignment,
 | 
						|
        // increase it to the first offset that is a multiple of
 | 
						|
        // the actual alignment."
 | 
						|
        RoundToPow2(offset, memberAlignment);
 | 
						|
        typeList[member].type->getQualifier().layoutOffset = offset;
 | 
						|
        offset += memberSize;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// For an identifier that is already declared, add more qualification to it.
 | 
						|
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
 | 
						|
{
 | 
						|
    TSymbol* symbol = symbolTable.find(identifier);
 | 
						|
    if (! symbol) {
 | 
						|
        error(loc, "identifier not previously declared", identifier.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (symbol->getAsFunction()) {
 | 
						|
        error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (qualifier.isAuxiliary() ||
 | 
						|
        qualifier.isMemory() ||
 | 
						|
        qualifier.isInterpolation() ||
 | 
						|
        qualifier.hasLayout() ||
 | 
						|
        qualifier.storage != EvqTemporary ||
 | 
						|
        qualifier.precision != EpqNone) {
 | 
						|
        error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // For read-only built-ins, add a new symbol for holding the modified qualifier.
 | 
						|
    // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
 | 
						|
    if (symbol->isReadOnly())
 | 
						|
        symbol = symbolTable.copyUp(symbol);
 | 
						|
 | 
						|
    if (qualifier.invariant) {
 | 
						|
        if (intermediate.inIoAccessed(identifier))
 | 
						|
            error(loc, "cannot change qualification after use", "invariant", "");
 | 
						|
        symbol->getWritableType().getQualifier().invariant = true;
 | 
						|
    } else if (qualifier.noContraction) {
 | 
						|
        if (intermediate.inIoAccessed(identifier))
 | 
						|
            error(loc, "cannot change qualification after use", "precise", "");
 | 
						|
        symbol->getWritableType().getQualifier().noContraction = true;
 | 
						|
    } else if (qualifier.specConstant) {
 | 
						|
        symbol->getWritableType().getQualifier().makeSpecConstant();
 | 
						|
        if (qualifier.hasSpecConstantId())
 | 
						|
            symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
 | 
						|
    } else
 | 
						|
        warn(loc, "unknown requalification", "", "");
 | 
						|
}
 | 
						|
 | 
						|
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
 | 
						|
{
 | 
						|
    for (unsigned int i = 0; i < identifiers.size(); ++i)
 | 
						|
        addQualifierToExisting(loc, qualifier, *identifiers[i]);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Update the intermediate for the given input geometry
 | 
						|
//
 | 
						|
bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
 | 
						|
{
 | 
						|
    switch (geometry) {
 | 
						|
    case ElgPoints:             // fall through
 | 
						|
    case ElgLines:              // ...
 | 
						|
    case ElgTriangles:          // ...
 | 
						|
    case ElgLinesAdjacency:     // ...
 | 
						|
    case ElgTrianglesAdjacency: // ...
 | 
						|
        if (! intermediate.setInputPrimitive(geometry)) {
 | 
						|
            error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Update the intermediate for the given output geometry
 | 
						|
//
 | 
						|
bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
 | 
						|
{
 | 
						|
    switch (geometry) {
 | 
						|
    case ElgPoints:
 | 
						|
    case ElgLineStrip:
 | 
						|
    case ElgTriangleStrip:
 | 
						|
        if (! intermediate.setOutputPrimitive(geometry)) {
 | 
						|
            error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Updating default qualifier for the case of a declaration with just a qualifier,
 | 
						|
// no type, block, or identifier.
 | 
						|
//
 | 
						|
void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
 | 
						|
{
 | 
						|
    if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
 | 
						|
        assert(language == EShLangTessControl || language == EShLangGeometry);
 | 
						|
        // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
 | 
						|
    }
 | 
						|
    if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
 | 
						|
        if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
 | 
						|
            error(loc, "cannot change previously set layout value", "invocations", "");
 | 
						|
    }
 | 
						|
    if (publicType.shaderQualifiers.geometry != ElgNone) {
 | 
						|
        if (publicType.qualifier.storage == EvqVaryingIn) {
 | 
						|
            switch (publicType.shaderQualifiers.geometry) {
 | 
						|
            case ElgPoints:
 | 
						|
            case ElgLines:
 | 
						|
            case ElgLinesAdjacency:
 | 
						|
            case ElgTriangles:
 | 
						|
            case ElgTrianglesAdjacency:
 | 
						|
            case ElgQuads:
 | 
						|
            case ElgIsolines:
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
 | 
						|
            }
 | 
						|
        } else if (publicType.qualifier.storage == EvqVaryingOut) {
 | 
						|
            handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
 | 
						|
        } else
 | 
						|
            error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage));
 | 
						|
    }
 | 
						|
    if (publicType.shaderQualifiers.spacing != EvsNone)
 | 
						|
        intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
 | 
						|
    if (publicType.shaderQualifiers.order != EvoNone)
 | 
						|
        intermediate.setVertexOrder(publicType.shaderQualifiers.order);
 | 
						|
    if (publicType.shaderQualifiers.pointMode)
 | 
						|
        intermediate.setPointMode();
 | 
						|
    for (int i = 0; i < 3; ++i) {
 | 
						|
        if (publicType.shaderQualifiers.localSize[i] > 1) {
 | 
						|
            int max = 0;
 | 
						|
            switch (i) {
 | 
						|
            case 0: max = resources.maxComputeWorkGroupSizeX; break;
 | 
						|
            case 1: max = resources.maxComputeWorkGroupSizeY; break;
 | 
						|
            case 2: max = resources.maxComputeWorkGroupSizeZ; break;
 | 
						|
            default: break;
 | 
						|
            }
 | 
						|
            if (intermediate.getLocalSize(i) > (unsigned int)max)
 | 
						|
                error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
 | 
						|
 | 
						|
            // Fix the existing constant gl_WorkGroupSize with this new information.
 | 
						|
            TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
 | 
						|
            workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
 | 
						|
        }
 | 
						|
        if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
 | 
						|
            intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
 | 
						|
            // Set the workgroup built-in variable as a specialization constant
 | 
						|
            TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
 | 
						|
            workGroupSize->getWritableType().getQualifier().specConstant = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (publicType.shaderQualifiers.earlyFragmentTests)
 | 
						|
        intermediate.setEarlyFragmentTests();
 | 
						|
 | 
						|
    const TQualifier& qualifier = publicType.qualifier;
 | 
						|
 | 
						|
    switch (qualifier.storage) {
 | 
						|
    case EvqUniform:
 | 
						|
        if (qualifier.hasMatrix())
 | 
						|
            globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
 | 
						|
        if (qualifier.hasPacking())
 | 
						|
            globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
 | 
						|
        break;
 | 
						|
    case EvqBuffer:
 | 
						|
        if (qualifier.hasMatrix())
 | 
						|
            globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
 | 
						|
        if (qualifier.hasPacking())
 | 
						|
            globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
 | 
						|
        break;
 | 
						|
    case EvqVaryingIn:
 | 
						|
        break;
 | 
						|
    case EvqVaryingOut:
 | 
						|
        if (qualifier.hasStream())
 | 
						|
            globalOutputDefaults.layoutStream = qualifier.layoutStream;
 | 
						|
        if (qualifier.hasXfbBuffer())
 | 
						|
            globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
 | 
						|
        if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
 | 
						|
            if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
 | 
						|
                error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Take the sequence of statements that has been built up since the last case/default,
 | 
						|
// put it on the list of top-level nodes for the current (inner-most) switch statement,
 | 
						|
// and follow that by the case/default we are on now.  (See switch topology comment on
 | 
						|
// TIntermSwitch.)
 | 
						|
//
 | 
						|
void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
 | 
						|
{
 | 
						|
    TIntermSequence* switchSequence = switchSequenceStack.back();
 | 
						|
 | 
						|
    if (statements) {
 | 
						|
        statements->setOperator(EOpSequence);
 | 
						|
        switchSequence->push_back(statements);
 | 
						|
    }
 | 
						|
    if (branchNode) {
 | 
						|
        // check all previous cases for the same label (or both are 'default')
 | 
						|
        for (unsigned int s = 0; s < switchSequence->size(); ++s) {
 | 
						|
            TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
 | 
						|
            if (prevBranch) {
 | 
						|
                TIntermTyped* prevExpression = prevBranch->getExpression();
 | 
						|
                TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
 | 
						|
                if (prevExpression == nullptr && newExpression == nullptr)
 | 
						|
                    error(branchNode->getLoc(), "duplicate label", "default", "");
 | 
						|
                else if (prevExpression != nullptr &&
 | 
						|
                    newExpression != nullptr &&
 | 
						|
                    prevExpression->getAsConstantUnion() &&
 | 
						|
                    newExpression->getAsConstantUnion() &&
 | 
						|
                    prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
 | 
						|
                    newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
 | 
						|
                    error(branchNode->getLoc(), "duplicated value", "case", "");
 | 
						|
            }
 | 
						|
        }
 | 
						|
        switchSequence->push_back(branchNode);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Turn the top-level node sequence built up of wrapupSwitchSubsequence
 | 
						|
// into a switch node.
 | 
						|
//
 | 
						|
TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements)
 | 
						|
{
 | 
						|
    wrapupSwitchSubsequence(lastStatements, nullptr);
 | 
						|
 | 
						|
    if (expression == nullptr ||
 | 
						|
        (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
 | 
						|
        expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
 | 
						|
        error(loc, "condition must be a scalar integer expression", "switch", "");
 | 
						|
 | 
						|
    // If there is nothing to do, drop the switch but still execute the expression
 | 
						|
    TIntermSequence* switchSequence = switchSequenceStack.back();
 | 
						|
    if (switchSequence->size() == 0)
 | 
						|
        return expression;
 | 
						|
 | 
						|
    if (lastStatements == nullptr) {
 | 
						|
        // emulate a break for error recovery
 | 
						|
        lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
 | 
						|
        lastStatements->setOperator(EOpSequence);
 | 
						|
        switchSequence->push_back(lastStatements);
 | 
						|
    }
 | 
						|
 | 
						|
    TIntermAggregate* body = new TIntermAggregate(EOpSequence);
 | 
						|
    body->getSequence() = *switchSequenceStack.back();
 | 
						|
    body->setLoc(loc);
 | 
						|
 | 
						|
    TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
 | 
						|
    switchNode->setLoc(loc);
 | 
						|
 | 
						|
    return switchNode;
 | 
						|
}
 | 
						|
 | 
						|
// Potentially rename shader entry point function
 | 
						|
void HlslParseContext::renameShaderFunction(TString*& name) const
 | 
						|
{
 | 
						|
    // Replace the entry point name given in the shader with the real entry point name,
 | 
						|
    // if there is a substitution.
 | 
						|
    if (name != nullptr && *name == sourceEntryPointName)
 | 
						|
        name = NewPoolTString(intermediate.getEntryPointName().c_str());
 | 
						|
}
 | 
						|
 | 
						|
// Return true if this has uniform-interface like decorations.
 | 
						|
bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
 | 
						|
{
 | 
						|
    return qualifier.hasUniformLayout() ||
 | 
						|
           qualifier.layoutPushConstant;
 | 
						|
}
 | 
						|
 | 
						|
// Potentially not the opposite of hasUniform(), as if some characteristic is
 | 
						|
// ever used for more than one thing (e.g., uniform or input), hasUniform() should
 | 
						|
// say it exists, but clearUniform() should leave it in place.
 | 
						|
void HlslParseContext::clearUniform(TQualifier& qualifier)
 | 
						|
{
 | 
						|
    qualifier.clearUniformLayout();
 | 
						|
    qualifier.layoutPushConstant = false;
 | 
						|
}
 | 
						|
 | 
						|
// Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
 | 
						|
bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
 | 
						|
{
 | 
						|
    switch (qualifier.builtIn) {
 | 
						|
    case EbvPosition:
 | 
						|
    case EbvPointSize:
 | 
						|
        return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
 | 
						|
    case EbvClipDistance:
 | 
						|
    case EbvCullDistance:
 | 
						|
        return language != EShLangVertex && language != EShLangCompute;
 | 
						|
    case EbvFragCoord:
 | 
						|
    case EbvFace:
 | 
						|
    case EbvHelperInvocation:
 | 
						|
    case EbvLayer:
 | 
						|
    case EbvPointCoord:
 | 
						|
    case EbvSampleId:
 | 
						|
    case EbvSampleMask:
 | 
						|
    case EbvSamplePosition:
 | 
						|
    case EbvViewportIndex:
 | 
						|
        return language == EShLangFragment;
 | 
						|
    case EbvGlobalInvocationId:
 | 
						|
    case EbvLocalInvocationIndex:
 | 
						|
    case EbvLocalInvocationId:
 | 
						|
    case EbvNumWorkGroups:
 | 
						|
    case EbvWorkGroupId:
 | 
						|
    case EbvWorkGroupSize:
 | 
						|
        return language == EShLangCompute;
 | 
						|
    case EbvInvocationId:
 | 
						|
        return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
 | 
						|
    case EbvPatchVertices:
 | 
						|
        return language == EShLangTessControl || language == EShLangTessEvaluation;
 | 
						|
    case EbvInstanceId:
 | 
						|
    case EbvInstanceIndex:
 | 
						|
    case EbvVertexId:
 | 
						|
    case EbvVertexIndex:
 | 
						|
        return language == EShLangVertex;
 | 
						|
    case EbvPrimitiveId:
 | 
						|
        return language == EShLangGeometry || language == EShLangFragment;
 | 
						|
    case EbvTessLevelInner:
 | 
						|
    case EbvTessLevelOuter:
 | 
						|
        return language == EShLangTessEvaluation;
 | 
						|
    default:
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Return true if there are decorations to preserve for input-like storage.
 | 
						|
bool HlslParseContext::hasInput(const TQualifier& qualifier) const
 | 
						|
{
 | 
						|
    if (qualifier.hasAnyLocation())
 | 
						|
        return true;
 | 
						|
 | 
						|
    if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
 | 
						|
        return true;
 | 
						|
 | 
						|
    if (language == EShLangTessEvaluation && qualifier.patch)
 | 
						|
        return true;
 | 
						|
 | 
						|
    if (isInputBuiltIn(qualifier))
 | 
						|
        return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
// Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
 | 
						|
bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
 | 
						|
{
 | 
						|
    switch (qualifier.builtIn) {
 | 
						|
    case EbvPosition:
 | 
						|
    case EbvPointSize:
 | 
						|
    case EbvClipVertex:
 | 
						|
    case EbvClipDistance:
 | 
						|
    case EbvCullDistance:
 | 
						|
        return language != EShLangFragment && language != EShLangCompute;
 | 
						|
    case EbvFragDepth:
 | 
						|
    case EbvFragDepthGreater:
 | 
						|
    case EbvFragDepthLesser:
 | 
						|
    case EbvSampleMask:
 | 
						|
        return language == EShLangFragment;
 | 
						|
    case EbvLayer:
 | 
						|
    case EbvViewportIndex:
 | 
						|
        return language == EShLangGeometry;
 | 
						|
    case EbvPrimitiveId:
 | 
						|
        return language == EShLangGeometry || language == EShLangTessControl || language == EShLangTessEvaluation;
 | 
						|
    case EbvTessLevelInner:
 | 
						|
    case EbvTessLevelOuter:
 | 
						|
        return language == EShLangTessControl;
 | 
						|
    default:
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Return true if there are decorations to preserve for output-like storage.
 | 
						|
bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
 | 
						|
{
 | 
						|
    if (qualifier.hasAnyLocation())
 | 
						|
        return true;
 | 
						|
 | 
						|
    if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
 | 
						|
        return true;
 | 
						|
 | 
						|
    if (language == EShLangTessControl && qualifier.patch)
 | 
						|
        return true;
 | 
						|
 | 
						|
    if (language == EShLangGeometry && qualifier.hasStream())
 | 
						|
        return true;
 | 
						|
 | 
						|
    if (isOutputBuiltIn(qualifier))
 | 
						|
        return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
// Make the IO decorations etc. be appropriate only for an input interface.
 | 
						|
void HlslParseContext::correctInput(TQualifier& qualifier)
 | 
						|
{
 | 
						|
    clearUniform(qualifier);
 | 
						|
    if (language == EShLangVertex)
 | 
						|
        qualifier.clearInterstage();
 | 
						|
    if (language != EShLangTessEvaluation)
 | 
						|
        qualifier.patch = false;
 | 
						|
    if (language != EShLangFragment) {
 | 
						|
        qualifier.clearInterpolation();
 | 
						|
        qualifier.sample = false;
 | 
						|
    }
 | 
						|
 | 
						|
    qualifier.clearStreamLayout();
 | 
						|
    qualifier.clearXfbLayout();
 | 
						|
 | 
						|
    if (! isInputBuiltIn(qualifier))
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
}
 | 
						|
 | 
						|
// Make the IO decorations etc. be appropriate only for an output interface.
 | 
						|
void HlslParseContext::correctOutput(TQualifier& qualifier)
 | 
						|
{
 | 
						|
    clearUniform(qualifier);
 | 
						|
    if (language == EShLangFragment)
 | 
						|
        qualifier.clearInterstage();
 | 
						|
    if (language != EShLangGeometry)
 | 
						|
        qualifier.clearStreamLayout();
 | 
						|
    if (language == EShLangFragment)
 | 
						|
        qualifier.clearXfbLayout();
 | 
						|
    if (language != EShLangTessControl)
 | 
						|
        qualifier.patch = false;
 | 
						|
 | 
						|
    switch (qualifier.builtIn) {
 | 
						|
    case EbvFragDepthGreater:
 | 
						|
        intermediate.setDepth(EldGreater);
 | 
						|
        qualifier.builtIn = EbvFragDepth;
 | 
						|
        break;
 | 
						|
    case EbvFragDepthLesser:
 | 
						|
        intermediate.setDepth(EldLess);
 | 
						|
        qualifier.builtIn = EbvFragDepth;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (! isOutputBuiltIn(qualifier))
 | 
						|
        qualifier.builtIn = EbvNone;
 | 
						|
}
 | 
						|
 | 
						|
// Make the IO decorations etc. be appropriate only for uniform type interfaces.
 | 
						|
void HlslParseContext::correctUniform(TQualifier& qualifier)
 | 
						|
{
 | 
						|
    qualifier.builtIn = EbvNone;
 | 
						|
    qualifier.clearInterstage();
 | 
						|
    qualifier.clearInterstageLayout();
 | 
						|
}
 | 
						|
 | 
						|
// Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
 | 
						|
void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
 | 
						|
{
 | 
						|
    clearUniform(qualifier);
 | 
						|
    correctUniform(qualifier);
 | 
						|
}
 | 
						|
 | 
						|
// Add patch constant function invocation
 | 
						|
void HlslParseContext::addPatchConstantInvocation()
 | 
						|
{
 | 
						|
    TSourceLoc loc;
 | 
						|
    loc.init();
 | 
						|
 | 
						|
    // If there's no patch constant function, or we're not a HS, do nothing.
 | 
						|
    if (patchConstantFunctionName.empty() || language != EShLangTessControl)
 | 
						|
        return;
 | 
						|
 | 
						|
    if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
 | 
						|
        error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const TString mangledName = patchConstantFunctionName + "(";
 | 
						|
 | 
						|
    // create list of PCF candidates
 | 
						|
    TVector<const TFunction*> candidateList;
 | 
						|
    bool builtIn;
 | 
						|
    symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
 | 
						|
    
 | 
						|
    // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
 | 
						|
    // allow any disambiguation of overloads.
 | 
						|
    if (candidateList.empty()) {
 | 
						|
        error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
 | 
						|
    // HLSL picks the last one in shader source order.  Since that isn't yet implemented here, error
 | 
						|
    // out if there is more than one candidate.
 | 
						|
    if (candidateList.size() > 1) {
 | 
						|
        error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Look for builtin variables in a function's parameter list.
 | 
						|
    const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
 | 
						|
        for (int p=0; p<function.getParamCount(); ++p) {
 | 
						|
            const TStorageQualifier storage = function[p].type->getQualifier().storage;
 | 
						|
 | 
						|
            if (function[p].declaredBuiltIn != EbvNone)
 | 
						|
                builtIns.insert(tInterstageIoData(function[p].declaredBuiltIn, storage));
 | 
						|
            else
 | 
						|
                builtIns.insert(tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
 | 
						|
    // If we synthesize a builtin interface variable, we must add it to the linkage.
 | 
						|
    const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
 | 
						|
        if (name == nullptr) {
 | 
						|
            error(loc, "unable to locate patch function parameter name", "", "");
 | 
						|
            return;
 | 
						|
        } else {
 | 
						|
            TVariable& variable = *new TVariable(name, type);
 | 
						|
            if (! symbolTable.insert(variable)) {
 | 
						|
                error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            globalQualifierFix(loc, variable.getWritableType().getQualifier());
 | 
						|
 | 
						|
            if (symbolNode != nullptr)
 | 
						|
                *symbolNode = intermediate.addSymbol(variable);
 | 
						|
 | 
						|
            trackLinkage(variable);
 | 
						|
        }
 | 
						|
    };
 | 
						|
 | 
						|
    // Return a symbol for the linkage variable of the given TBuiltInVariable type
 | 
						|
    const auto findLinkageSymbol = [this](TBuiltInVariable biType) -> TIntermSymbol* {
 | 
						|
        const auto it = builtInLinkageSymbols.find(biType);
 | 
						|
        if (it == builtInLinkageSymbols.end())  // if it wasn't declared by the user, return nullptr
 | 
						|
            return nullptr;
 | 
						|
 | 
						|
        return intermediate.addSymbol(*it->second->getAsVariable());
 | 
						|
    };
 | 
						|
    
 | 
						|
    // We will perform these steps.  Each is in a scoped block for separation: they could
 | 
						|
    // become separate functions to make addPatchConstantInvocation shorter.
 | 
						|
    // 
 | 
						|
    // 1. Union the interfaces, and create builtins for anything present in the PCF and
 | 
						|
    //    declared as a builtin variable that isn't present in the entry point's signature.
 | 
						|
    //
 | 
						|
    // 2. Synthesizes a call to the patchconstfunction using builtin variables from either main,
 | 
						|
    //    or the ones we created.  Matching is based on builtin type.  We may use synthesized
 | 
						|
    //    variables from (1) above.
 | 
						|
    //
 | 
						|
    // 3. Create a return sequence: copy the return value (if any) from the PCF to a
 | 
						|
    //    (non-sanitized) output variable.  In case this may involve multiple copies, such as for
 | 
						|
    //    an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
 | 
						|
    //    indirections into a complex R-value coming from the call to the PCF.
 | 
						|
    //
 | 
						|
    // 4. Add a barrier to the end of the entry point body
 | 
						|
    //
 | 
						|
    // 5. Call the PCF inside an if test for (invocation id == 0).
 | 
						|
 | 
						|
    TFunction& patchConstantFunction = const_cast<TFunction&>(*candidateList[0]);
 | 
						|
    const int pcfParamCount = patchConstantFunction.getParamCount();
 | 
						|
    TIntermSymbol* invocationIdSym = findLinkageSymbol(EbvInvocationId);
 | 
						|
    TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
 | 
						|
 | 
						|
    // ================ Step 1A: Union Interfaces ================
 | 
						|
    // Our patch constant function.
 | 
						|
    {
 | 
						|
        std::set<tInterstageIoData> pcfBuiltIns;  // patch constant function builtins
 | 
						|
        std::set<tInterstageIoData> epfBuiltIns;  // entry point function builtins
 | 
						|
 | 
						|
        assert(entryPointFunction);
 | 
						|
        assert(entryPointFunctionBody);
 | 
						|
 | 
						|
        findBuiltIns(patchConstantFunction, pcfBuiltIns);
 | 
						|
        findBuiltIns(*entryPointFunction,   epfBuiltIns);
 | 
						|
 | 
						|
        // Patchconstantfunction can contain only builtin qualified variables.  (Technically, only HS inputs,
 | 
						|
        // but this test is less assertive than that).
 | 
						|
 | 
						|
        for (auto bi = pcfBuiltIns.begin(); bi != pcfBuiltIns.end(); ++bi) {
 | 
						|
            if (bi->builtIn == EbvNone) {
 | 
						|
                error(loc, "patch constant function invalid parameter", "", "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Find the set of builtins in the PCF that are not present in the entry point.
 | 
						|
        std::set<tInterstageIoData> notInEntryPoint;
 | 
						|
 | 
						|
        notInEntryPoint = pcfBuiltIns;
 | 
						|
 | 
						|
        for (auto bi : epfBuiltIns) // std::set_difference not usable on unordered containers
 | 
						|
            notInEntryPoint.erase(bi);
 | 
						|
 | 
						|
        // Now we'll add those to the entry and to the linkage.
 | 
						|
        for (int p=0; p<pcfParamCount; ++p) {
 | 
						|
            TType* paramType = patchConstantFunction[p].type->clone();
 | 
						|
            const TBuiltInVariable biType   = patchConstantFunction[p].declaredBuiltIn;
 | 
						|
            const TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
 | 
						|
 | 
						|
            // Use the original declaration type for the linkage
 | 
						|
            paramType->getQualifier().builtIn = biType;
 | 
						|
 | 
						|
            if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
 | 
						|
                addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
 | 
						|
        }
 | 
						|
 | 
						|
        // If we didn't find it because the shader made one, add our own.
 | 
						|
        if (invocationIdSym == nullptr) {
 | 
						|
            TType invocationIdType(EbtUint, EvqIn, 1);
 | 
						|
            TString* invocationIdName = NewPoolTString("InvocationId");
 | 
						|
            invocationIdType.getQualifier().builtIn = EbvInvocationId;
 | 
						|
            addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
 | 
						|
        }
 | 
						|
 | 
						|
        assert(invocationIdSym);
 | 
						|
    }
 | 
						|
 | 
						|
    TIntermTyped* pcfArguments = nullptr;
 | 
						|
 | 
						|
    // ================ Step 1B: Argument synthesis ================
 | 
						|
    // Create pcfArguments for synthesis of patchconstantfunction invocation
 | 
						|
    // TODO: handle struct or array inputs
 | 
						|
    {
 | 
						|
        for (int p=0; p<pcfParamCount; ++p) {
 | 
						|
            if (patchConstantFunction[p].type->isArray() ||
 | 
						|
                patchConstantFunction[p].type->isStruct()) {
 | 
						|
                error(loc, "unimplemented array or variable in patch constant function signature", "", "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        
 | 
						|
            // find which builtin it is
 | 
						|
            const TBuiltInVariable biType = patchConstantFunction[p].declaredBuiltIn;
 | 
						|
 | 
						|
            TIntermSymbol* builtIn = findLinkageSymbol(biType);
 | 
						|
        
 | 
						|
            if (builtIn == nullptr) {
 | 
						|
                error(loc, "unable to find patch constant function builtin variable", "", "");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            if (pcfParamCount == 1)
 | 
						|
                pcfArguments = builtIn;
 | 
						|
            else
 | 
						|
                pcfArguments = intermediate.growAggregate(pcfArguments, builtIn);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // ================ Step 2: Synthesize call to PCF ================
 | 
						|
    TIntermTyped* pcfCall = nullptr;
 | 
						|
 | 
						|
    {
 | 
						|
        // Create a function call to the patchconstantfunction
 | 
						|
        if (pcfArguments)
 | 
						|
            addInputArgumentConversions(patchConstantFunction, pcfArguments);
 | 
						|
 | 
						|
        // Synthetic call.
 | 
						|
        pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
 | 
						|
        pcfCall->getAsAggregate()->setUserDefined();
 | 
						|
        pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
 | 
						|
        intermediate.addToCallGraph(infoSink, entryPointFunction->getMangledName(), patchConstantFunction.getMangledName());
 | 
						|
 | 
						|
        if (pcfCall->getAsAggregate()) {
 | 
						|
            TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
 | 
						|
            for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
 | 
						|
                TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
 | 
						|
                qualifierList.push_back(qual);
 | 
						|
            }
 | 
						|
            pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // ================ Step 3: Create return Sequence ================
 | 
						|
    // Return sequence: copy PCF result to a temporary, then to shader output variable.
 | 
						|
    if (pcfCall->getBasicType() != EbtVoid) {
 | 
						|
        const TType* retType = &patchConstantFunction.getType();  // return type from the PCF
 | 
						|
        TType outType; // output type that goes with the return type.
 | 
						|
        outType.shallowCopy(*retType);
 | 
						|
 | 
						|
        // substitute the output type
 | 
						|
        const auto newLists = ioTypeMap.find(retType->getStruct());
 | 
						|
        if (newLists != ioTypeMap.end())
 | 
						|
            outType.setStruct(newLists->second.output);
 | 
						|
 | 
						|
        // Substitute the top level type's builtin type
 | 
						|
        if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
 | 
						|
            outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
 | 
						|
 | 
						|
        TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
 | 
						|
        pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
 | 
						|
 | 
						|
        if (pcfOutput->getType().containsBuiltInInterstageIO(language))
 | 
						|
            split(*pcfOutput);
 | 
						|
 | 
						|
        TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
 | 
						|
 | 
						|
        // The call to the PCF is a complex R-value: we want to store it in a temp to avoid
 | 
						|
        // repeated calls to the PCF:
 | 
						|
        TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
 | 
						|
        pcfCallResult->getWritableType().getQualifier().makeTemporary();
 | 
						|
        TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
 | 
						|
        // sanitizeType(&pcfCall->getWritableType());
 | 
						|
        TIntermNode* pcfResultAssign = intermediate.addAssign(EOpAssign, pcfResultVar, pcfCall, loc);
 | 
						|
 | 
						|
        TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym, intermediate.addSymbol(*pcfCallResult, loc));
 | 
						|
 | 
						|
        TIntermTyped* pcfAggregate = nullptr;
 | 
						|
        pcfAggregate = intermediate.growAggregate(pcfAggregate, pcfResultAssign);
 | 
						|
        pcfAggregate = intermediate.growAggregate(pcfAggregate, pcfResultToOut);
 | 
						|
        pcfAggregate = intermediate.setAggregateOperator(pcfAggregate, EOpSequence, *retType, loc);
 | 
						|
 | 
						|
        pcfCall = pcfAggregate;
 | 
						|
    }
 | 
						|
 | 
						|
    // ================ Step 4: Barrier ================    
 | 
						|
    TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
 | 
						|
    barrier->setLoc(loc);
 | 
						|
    barrier->setType(TType(EbtVoid));
 | 
						|
    epBodySeq.insert(epBodySeq.end(), barrier);
 | 
						|
 | 
						|
    // ================ Step 5: Test on invocation ID ================    
 | 
						|
    TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
 | 
						|
    TIntermTyped* cmp =  intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
 | 
						|
 | 
						|
    // Create if statement
 | 
						|
    TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCall, nullptr);
 | 
						|
    invocationIdTest->setLoc(loc);
 | 
						|
 | 
						|
    // add our test sequence before the return.
 | 
						|
    epBodySeq.insert(epBodySeq.end(), invocationIdTest);
 | 
						|
}
 | 
						|
 | 
						|
// post-processing
 | 
						|
void HlslParseContext::finish()
 | 
						|
{
 | 
						|
    addPatchConstantInvocation();
 | 
						|
    addInterstageIoToLinkage();
 | 
						|
 | 
						|
    TParseContextBase::finish();
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace glslang
 |