
git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@24159 e7fa87d3-cd2b-0410-9028-fcbf551c1848
824 lines
34 KiB
C++
824 lines
34 KiB
C++
//
|
|
//Copyright (C) 2013 LunarG, Inc.
|
|
//
|
|
//All rights reserved.
|
|
//
|
|
//Redistribution and use in source and binary forms, with or without
|
|
//modification, are permitted provided that the following conditions
|
|
//are met:
|
|
//
|
|
// Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
//
|
|
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
//POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
|
|
#include "../Include/Common.h"
|
|
#include "reflection.h"
|
|
#include "localintermediate.h"
|
|
|
|
#include "gl_types.h"
|
|
|
|
//
|
|
// Grow the reflection database through a friend traverser class of TReflection and a
|
|
// collection of functions to do a liveness traversal that note what uniforms are used
|
|
// in semantically non-dead code.
|
|
//
|
|
// Can be used multiple times, once per stage, to grow a program reflection.
|
|
//
|
|
// High-level algorithm for one stage:
|
|
//
|
|
// 1. Put main() on list of live functions.
|
|
//
|
|
// 2. Traverse any live function, while skipping if-tests with a compile-time constant
|
|
// condition of false, and while adding any encountered function calls to the live
|
|
// function list.
|
|
//
|
|
// Repeat until the live function list is empty.
|
|
//
|
|
// 3. Add any encountered uniform variables and blocks to the reflection database.
|
|
//
|
|
// Can be attempted with a failed link, but will return false if recursion had been detected, or
|
|
// there wasn't exactly one main.
|
|
//
|
|
|
|
namespace glslang {
|
|
|
|
//
|
|
// The traverser: mostly pass through, except
|
|
// - processing function-call nodes to push live functions onto the stack of functions to process
|
|
// - processing binary nodes to see if they are dereferences of an aggregates to track
|
|
// - processing symbol nodes to see if they are non-aggregate objects to track
|
|
// - processing selection nodes to trim semantically dead code
|
|
//
|
|
// This is in the glslang namespace directly so it can be a friend of TReflection.
|
|
//
|
|
|
|
class TLiveTraverser : public TIntermTraverser {
|
|
public:
|
|
TLiveTraverser(const TIntermediate& i, TReflection& r) : intermediate(i), reflection(r) { }
|
|
|
|
// Track live funtions as well as uniforms, so that we don't visit dead functions
|
|
// and only visit each function once.
|
|
void addFunctionCall(TIntermAggregate* call)
|
|
{
|
|
// just use the map to ensure we process each function at most once
|
|
if (reflection.nameToIndex.find(call->getName()) == reflection.nameToIndex.end()) {
|
|
reflection.nameToIndex[call->getName()] = -1;
|
|
pushFunction(call->getName());
|
|
}
|
|
}
|
|
|
|
// Add a simple reference to a uniform variable to the uniform database, no dereference involved.
|
|
// However, no dereference doesn't mean simple... it could be a complex aggregate.
|
|
void addUniform(const TIntermSymbol& base)
|
|
{
|
|
if (processedDerefs.find(&base) == processedDerefs.end()) {
|
|
processedDerefs.insert(&base);
|
|
|
|
// Use a degenerate (empty) set of dereferences to immediately put as at the end of
|
|
// the dereference change expected by blowUpActiveAggregate.
|
|
TList<TIntermBinary*> derefs;
|
|
blowUpActiveAggregate(base.getType(), base.getName(), derefs, derefs.end(), -1, -1, 0);
|
|
}
|
|
}
|
|
|
|
static const int baseAlignmentVec4Std140;
|
|
|
|
// align a value: if 'value' is not aligned to 'alignment', move it up to a multiple of alignment
|
|
void align(int& value, int alignment)
|
|
{
|
|
int error = value % alignment;
|
|
if (error)
|
|
value += alignment - error;
|
|
}
|
|
|
|
// return the size and alignment of a scalar
|
|
int getBaseAlignmentScalar(const TType& type, int& size)
|
|
{
|
|
switch (type.getBasicType()) {
|
|
case EbtDouble: size = 8; return 8;
|
|
default: size = 4; return 4;
|
|
}
|
|
}
|
|
|
|
// Implement base-alignment and size rules from section 7.6.2.2 Standard Uniform Block Layout
|
|
// Operates recursively.
|
|
// If std140 is true, it does the rounding up to vec4 size required by std140,
|
|
// otherwise it does not, yielding std430 rules.
|
|
//
|
|
// Returns the size of the type.
|
|
int getBaseAlignment(const TType& type, int& size, bool std140)
|
|
{
|
|
int alignment;
|
|
|
|
// rules 4, 6, and 8
|
|
if (type.isArray()) {
|
|
TType derefType(type, 0);
|
|
alignment = getBaseAlignment(derefType, size, std140);
|
|
if (std140)
|
|
alignment = std::max(baseAlignmentVec4Std140, alignment);
|
|
align(size, alignment);
|
|
size *= type.getArraySize();
|
|
return alignment;
|
|
}
|
|
|
|
// rule 9
|
|
if (type.getBasicType() == EbtStruct) {
|
|
const TTypeList& memberList = *type.getStruct();
|
|
|
|
size = 0;
|
|
int maxAlignment = std140 ? baseAlignmentVec4Std140 : 0;
|
|
for (size_t m = 0; m < memberList.size(); ++m) {
|
|
int memberSize;
|
|
int memberAlignment = getBaseAlignment(*memberList[m].type, memberSize, std140);
|
|
maxAlignment = std::max(maxAlignment, memberAlignment);
|
|
align(size, memberAlignment);
|
|
size += memberSize;
|
|
}
|
|
|
|
return maxAlignment;
|
|
}
|
|
|
|
// rule 1
|
|
if (type.isScalar())
|
|
return getBaseAlignmentScalar(type, size);
|
|
|
|
// rules 2 and 3
|
|
if (type.isVector()) {
|
|
int scalarAlign = getBaseAlignmentScalar(type, size);
|
|
switch (type.getVectorSize()) {
|
|
case 2:
|
|
size *= 2;
|
|
return 2 * scalarAlign;
|
|
default:
|
|
size *= type.getVectorSize();
|
|
return 4 * scalarAlign;
|
|
}
|
|
}
|
|
|
|
// rules 5 and 7
|
|
if (type.isMatrix()) {
|
|
TType derefType(type, 0);
|
|
|
|
// rule 5: deref to row, not to column, meaning the size of vector is num columns instead of num rows
|
|
if (type.getQualifier().layoutMatrix == ElmRowMajor)
|
|
derefType.setElementType(derefType.getBasicType(), type.getMatrixCols(), 0, 0, 0);
|
|
|
|
alignment = getBaseAlignment(derefType, size, std140);
|
|
if (std140)
|
|
alignment = std::max(baseAlignmentVec4Std140, alignment);
|
|
align(size, alignment);
|
|
if (type.getQualifier().layoutMatrix == ElmRowMajor)
|
|
size *= type.getMatrixRows();
|
|
else
|
|
size *= type.getMatrixCols();
|
|
|
|
return alignment;
|
|
}
|
|
|
|
assert(0); // all cases should be covered above
|
|
size = baseAlignmentVec4Std140;
|
|
return baseAlignmentVec4Std140;
|
|
}
|
|
|
|
// Calculate the offset of a block member, using the recursively defined
|
|
// block offset rules.
|
|
int getBlockMemberOffset(const TType& blockType, int index)
|
|
{
|
|
// TODO: reflection performance: cache intermediate results instead of recomputing them
|
|
|
|
int offset = 0;
|
|
const TTypeList& memberList = *blockType.getStruct();
|
|
int memberSize;
|
|
for (int m = 0; m < index; ++m) {
|
|
int memberAlignment = getBaseAlignment(*memberList[m].type, memberSize, blockType.getQualifier().layoutPacking == ElpStd140);
|
|
align(offset, memberAlignment);
|
|
offset += memberSize;
|
|
}
|
|
int memberAlignment = getBaseAlignment(*memberList[index].type, memberSize, blockType.getQualifier().layoutPacking == ElpStd140);
|
|
align(offset, memberAlignment);
|
|
|
|
return offset;
|
|
}
|
|
|
|
// Calculate the block data size.
|
|
// Arrayness is not taken into account, each element is backed by a separate buffer.
|
|
int getBlockSize(const TType& blockType)
|
|
{
|
|
int size = 0;
|
|
const TTypeList& memberList = *blockType.getStruct();
|
|
int memberSize;
|
|
for (size_t m = 0; m < memberList.size(); ++m) {
|
|
int memberAlignment = getBaseAlignment(*memberList[m].type, memberSize, blockType.getQualifier().layoutPacking == ElpStd140);
|
|
align(size, memberAlignment);
|
|
size += memberSize;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
// Traverse the provided deref chain, including the base, and
|
|
// - build a full reflection-granularity name, array size, etc. entry out of it, if it goes down to that granularity
|
|
// - recursively expand any variable array index in the middle of that traversal
|
|
// - recursively expand what's left at the end if the deref chain did not reach down to reflection granularity
|
|
//
|
|
// arraySize tracks, just for the final dereference in the chain, if there was a specific known size.
|
|
// A value of 0 for arraySize will mean to use the full array's size.
|
|
void blowUpActiveAggregate(const TType& baseType, const TString& baseName, const TList<TIntermBinary*>& derefs,
|
|
TList<TIntermBinary*>::const_iterator deref, int offset, int blockIndex, int arraySize)
|
|
{
|
|
TString name = baseName;
|
|
const TType* terminalType = &baseType;
|
|
for (; deref != derefs.end(); ++deref) {
|
|
TIntermBinary* visitNode = *deref;
|
|
terminalType = &visitNode->getType();
|
|
int index;
|
|
switch (visitNode->getOp()) {
|
|
case EOpIndexIndirect:
|
|
// Visit all the indices of this array, and for each one, then add on the remaining dereferencing
|
|
for (int i = 0; i < visitNode->getLeft()->getType().getArraySize(); ++i) {
|
|
TString newBaseName = name;
|
|
newBaseName.append(TString("[") + String(i) + "]");
|
|
TList<TIntermBinary*>::const_iterator nextDeref = deref;
|
|
++nextDeref;
|
|
TType derefType(*terminalType, 0);
|
|
blowUpActiveAggregate(derefType, newBaseName, derefs, nextDeref, offset, blockIndex, arraySize);
|
|
}
|
|
|
|
// it was all completed in the recursive calls above
|
|
return;
|
|
case EOpIndexDirect:
|
|
index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
|
|
name.append(TString("[") + String(index) + "]");
|
|
break;
|
|
case EOpIndexDirectStruct:
|
|
index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
|
|
if (offset >= 0)
|
|
offset += getBlockMemberOffset(visitNode->getLeft()->getType(), index);
|
|
if (name.size() > 0)
|
|
name.append(".");
|
|
name.append((*visitNode->getLeft()->getType().getStruct())[index].type->getFieldName());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// if the terminalType is still too coarse a granularity, this is still an aggregate to expand, expand it...
|
|
if (! isReflectionGranularity(*terminalType)) {
|
|
if (terminalType->isArray()) {
|
|
// Visit all the indices of this array, and for each one,
|
|
// fully explode the remaining aggregate to dereference
|
|
for (int i = 0; i < terminalType->getArraySize(); ++i) {
|
|
TString newBaseName = name;
|
|
newBaseName.append(TString("[") + String(i) + "]");
|
|
TType derefType(*terminalType, 0);
|
|
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0);
|
|
}
|
|
} else {
|
|
// Visit all members of this aggregate, and for each one,
|
|
// fully explode the remaining aggregate to dereference
|
|
const TTypeList& typeList = *terminalType->getStruct();
|
|
for (size_t i = 0; i < typeList.size(); ++i) {
|
|
TString newBaseName = name;
|
|
newBaseName.append(TString(".") + typeList[i].type->getFieldName());
|
|
TType derefType(*terminalType, i);
|
|
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0);
|
|
}
|
|
}
|
|
|
|
// it was all completed in the recursive calls above
|
|
return;
|
|
}
|
|
|
|
// Finally, add a full string to the reflection database, and update the array size if necessary.
|
|
// If the derefenced entity to record is an array, compute the size and update the maximum size.
|
|
|
|
// there might not be a final array dereference, it could have been copied as an array object
|
|
if (arraySize == 0)
|
|
arraySize = mapToGlArraySize(*terminalType);
|
|
|
|
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name);
|
|
if (it == reflection.nameToIndex.end()) {
|
|
reflection.nameToIndex[name] = reflection.indexToUniform.size();
|
|
reflection.indexToUniform.push_back(TObjectReflection(name, offset, mapToGlType(*terminalType), arraySize, blockIndex));
|
|
} else if (arraySize > 1) {
|
|
int& reflectedArraySize = reflection.indexToUniform[it->second].size;
|
|
reflectedArraySize = std::max(arraySize, reflectedArraySize);
|
|
}
|
|
}
|
|
|
|
// Add a uniform dereference where blocks/struct/arrays are involved in the access.
|
|
// Handles the situation where the left node is at the correct or too coarse a
|
|
// granularity for reflection. (That is, further dereferences up the tree will be
|
|
// skipped.) Earlier dereferences, down the tree, will be handled
|
|
// at the same time, and logged to prevent reprocessing as the tree is traversed.
|
|
//
|
|
// Note: Other things like the following must be caught elsewhere:
|
|
// - a simple non-array, non-struct variable (no dereference even conceivable)
|
|
// - an aggregrate consumed en masse, without a dereference
|
|
//
|
|
// So, this code is for cases like
|
|
// - a struct/block dereferencing a member (whether the member is array or not)
|
|
// - an array of struct
|
|
// - structs/arrays containing the above
|
|
//
|
|
void addDereferencedUniform(TIntermBinary* topNode)
|
|
{
|
|
// See if too fine-grained to process (wait to get further down the tree)
|
|
const TType& leftType = topNode->getLeft()->getType();
|
|
if ((leftType.isVector() || leftType.isMatrix()) && ! leftType.isArray())
|
|
return;
|
|
|
|
// We have an array or structure or block dereference, see if it's a uniform
|
|
// based dereference (if not, skip it).
|
|
TIntermSymbol* base = findBase(topNode);
|
|
if (! base || base->getQualifier().storage != EvqUniform)
|
|
return;
|
|
|
|
// See if we've already processed this (e.g., in the middle of something
|
|
// we did earlier), and if so skip it
|
|
if (processedDerefs.find(topNode) != processedDerefs.end())
|
|
return;
|
|
|
|
// Process this uniform dereference
|
|
|
|
int offset = -1;
|
|
int blockIndex = -1;
|
|
bool anonymous = false;
|
|
|
|
// See if we need to record the block itself
|
|
bool block = base->getBasicType() == EbtBlock;
|
|
if (block) {
|
|
// TODO: how is an array of blocks handled differently?
|
|
anonymous = base->getName().compare(0, 6, "__anon") == 0;
|
|
const TString& blockName = anonymous ? base->getType().getTypeName() : base->getType().getTypeName();
|
|
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(blockName);
|
|
if (it == reflection.nameToIndex.end()) {
|
|
if (base->getType().isArray()) {
|
|
assert(! anonymous);
|
|
for (int e = 0; e < base->getType().getArraySize(); ++e) {
|
|
TString elementName = blockName + "[" + String(e) + "]";
|
|
blockIndex = reflection.indexToUniformBlock.size();
|
|
reflection.nameToIndex[elementName] = blockIndex;
|
|
reflection.indexToUniformBlock.push_back(TObjectReflection(elementName, offset, -1, getBlockSize(base->getType()), -1));
|
|
}
|
|
} else {
|
|
blockIndex = reflection.indexToUniformBlock.size();
|
|
reflection.nameToIndex[blockName] = blockIndex;
|
|
reflection.indexToUniformBlock.push_back(TObjectReflection(blockName, offset, -1, getBlockSize(base->getType()), -1));
|
|
}
|
|
} else
|
|
blockIndex = it->second;
|
|
offset = 0;
|
|
}
|
|
|
|
// Process the dereference chain, backward, accumulating the pieces for later forward traversal.
|
|
// If the topNode is a reflection-granularity-array dereference, don't include that last dereference.
|
|
TList<TIntermBinary*> derefs;
|
|
for (TIntermBinary* visitNode = topNode; visitNode; visitNode = visitNode->getLeft()->getAsBinaryNode()) {
|
|
if (isReflectionGranularity(visitNode->getLeft()->getType()))
|
|
continue;
|
|
|
|
derefs.push_front(visitNode);
|
|
processedDerefs.insert(visitNode);
|
|
}
|
|
processedDerefs.insert(base);
|
|
|
|
// See if we have a specific array size to stick to while enumerating the explosion of the aggregate
|
|
int arraySize = 0;
|
|
if (isReflectionGranularity(topNode->getLeft()->getType()) && topNode->getLeft()->isArray()) {
|
|
if (topNode->getOp() == EOpIndexDirect)
|
|
arraySize = topNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst() + 1;
|
|
}
|
|
|
|
// Put the dereference chain together, forward
|
|
TString baseName;
|
|
if (! anonymous)
|
|
baseName = base->getName();
|
|
blowUpActiveAggregate(base->getType(), baseName, derefs, derefs.begin(), offset, blockIndex, arraySize);
|
|
}
|
|
|
|
//
|
|
// Given a function name, find its subroot in the tree, and push it onto the stack of
|
|
// functions left to process.
|
|
//
|
|
void pushFunction(const TString& name)
|
|
{
|
|
TIntermSequence& globals = intermediate.getTreeRoot()->getAsAggregate()->getSequence();
|
|
for (unsigned int f = 0; f < globals.size(); ++f) {
|
|
TIntermAggregate* candidate = globals[f]->getAsAggregate();
|
|
if (candidate && candidate->getOp() == EOpFunction && candidate->getName() == name) {
|
|
functions.push_back(candidate);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Are we at a level in a dereference chain at which individual active uniform queries are made?
|
|
bool isReflectionGranularity(const TType& type)
|
|
{
|
|
return type.getBasicType() != EbtBlock && type.getBasicType() != EbtStruct;
|
|
}
|
|
|
|
// For a binary operation indexing into an aggregate, chase down the base of the aggregate.
|
|
// Return 0 if the topology does not fit this situation.
|
|
TIntermSymbol* findBase(const TIntermBinary* node)
|
|
{
|
|
TIntermSymbol *base = node->getLeft()->getAsSymbolNode();
|
|
if (base)
|
|
return base;
|
|
TIntermBinary* left = node->getLeft()->getAsBinaryNode();
|
|
if (! left)
|
|
return 0;
|
|
|
|
return findBase(left);
|
|
}
|
|
|
|
//
|
|
// Translate a glslang sampler type into the GL API #define number.
|
|
//
|
|
int mapSamplerToGlType(TSampler sampler)
|
|
{
|
|
if (! sampler.image) {
|
|
// a sampler...
|
|
switch (sampler.type) {
|
|
case EbtFloat:
|
|
switch (sampler.dim) {
|
|
case Esd1D:
|
|
switch (sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_SAMPLER_1D_ARRAY : GL_SAMPLER_1D;
|
|
case true: return sampler.arrayed ? GL_SAMPLER_1D_ARRAY_SHADOW : GL_SAMPLER_1D_SHADOW;
|
|
}
|
|
case Esd2D:
|
|
switch (sampler.ms) {
|
|
case false:
|
|
switch (sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_SAMPLER_2D_ARRAY : GL_SAMPLER_2D;
|
|
case true: return sampler.arrayed ? GL_SAMPLER_2D_ARRAY_SHADOW : GL_SAMPLER_2D_SHADOW;
|
|
}
|
|
case true: return sampler.arrayed ? GL_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_SAMPLER_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_SAMPLER_3D;
|
|
case EsdCube:
|
|
switch (sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY : GL_SAMPLER_CUBE;
|
|
case true: return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW : GL_SAMPLER_CUBE_SHADOW;
|
|
}
|
|
case EsdRect:
|
|
return sampler.shadow ? GL_SAMPLER_2D_RECT_SHADOW : GL_SAMPLER_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_SAMPLER_BUFFER;
|
|
}
|
|
case EbtInt:
|
|
switch (sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_INT_SAMPLER_1D_ARRAY : GL_INT_SAMPLER_1D;
|
|
case Esd2D:
|
|
switch (sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_INT_SAMPLER_2D_ARRAY : GL_INT_SAMPLER_2D;
|
|
case true: return sampler.arrayed ? GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_INT_SAMPLER_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_INT_SAMPLER_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_INT_SAMPLER_CUBE_MAP_ARRAY : GL_INT_SAMPLER_CUBE;
|
|
case EsdRect:
|
|
return GL_INT_SAMPLER_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_INT_SAMPLER_BUFFER;
|
|
}
|
|
case EbtUint:
|
|
switch (sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_1D_ARRAY : GL_UNSIGNED_INT_SAMPLER_1D;
|
|
case Esd2D:
|
|
switch (sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_ARRAY : GL_UNSIGNED_INT_SAMPLER_2D;
|
|
case true: return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_UNSIGNED_INT_SAMPLER_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_SAMPLER_CUBE;
|
|
case EsdRect:
|
|
return GL_UNSIGNED_INT_SAMPLER_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_UNSIGNED_INT_SAMPLER_BUFFER;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
} else {
|
|
// an image...
|
|
switch (sampler.type) {
|
|
case EbtFloat:
|
|
switch (sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_IMAGE_1D_ARRAY : GL_IMAGE_1D;
|
|
case Esd2D:
|
|
switch (sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_IMAGE_2D_ARRAY : GL_IMAGE_2D;
|
|
case true: return sampler.arrayed ? GL_IMAGE_2D_MULTISAMPLE_ARRAY : GL_IMAGE_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_IMAGE_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_IMAGE_CUBE_MAP_ARRAY : GL_IMAGE_CUBE;
|
|
case EsdRect:
|
|
return GL_IMAGE_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_IMAGE_BUFFER;
|
|
}
|
|
case EbtInt:
|
|
switch (sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_INT_IMAGE_1D_ARRAY : GL_INT_IMAGE_1D;
|
|
case Esd2D:
|
|
switch (sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_INT_IMAGE_2D_ARRAY : GL_INT_IMAGE_2D;
|
|
case true: return sampler.arrayed ? GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY : GL_INT_IMAGE_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_INT_IMAGE_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_INT_IMAGE_CUBE_MAP_ARRAY : GL_INT_IMAGE_CUBE;
|
|
case EsdRect:
|
|
return GL_INT_IMAGE_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_INT_IMAGE_BUFFER;
|
|
}
|
|
case EbtUint:
|
|
switch (sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_1D_ARRAY : GL_UNSIGNED_INT_IMAGE_1D;
|
|
case Esd2D:
|
|
switch (sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_ARRAY : GL_UNSIGNED_INT_IMAGE_2D;
|
|
case true: return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY : GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_UNSIGNED_INT_IMAGE_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_IMAGE_CUBE;
|
|
case EsdRect:
|
|
return GL_UNSIGNED_INT_IMAGE_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_UNSIGNED_INT_IMAGE_BUFFER;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Translate a glslang type into the GL API #define number.
|
|
// Ignores arrayness.
|
|
//
|
|
int mapToGlType(const TType& type)
|
|
{
|
|
switch (type.getBasicType()) {
|
|
case EbtSampler:
|
|
return mapSamplerToGlType(type.getSampler());
|
|
case EbtStruct:
|
|
case EbtBlock:
|
|
case EbtVoid:
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (type.isVector()) {
|
|
int offset = type.getVectorSize() - 2;
|
|
switch (type.getBasicType()) {
|
|
case EbtFloat: return GL_FLOAT_VEC2 + offset;
|
|
case EbtDouble: return GL_DOUBLE_VEC2 + offset;
|
|
case EbtInt: return GL_INT_VEC2 + offset;
|
|
case EbtUint: return GL_UNSIGNED_INT_VEC2 + offset;
|
|
case EbtBool: return GL_BOOL_VEC2 + offset;
|
|
default: return 0;
|
|
}
|
|
}
|
|
if (type.isMatrix()) {
|
|
switch (type.getBasicType()) {
|
|
case EbtFloat:
|
|
switch (type.getMatrixCols()) {
|
|
case 2:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT_MAT2;
|
|
case 3: return GL_FLOAT_MAT2x3;
|
|
case 4: return GL_FLOAT_MAT2x4;
|
|
default: return 0;
|
|
}
|
|
case 3:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT_MAT3x2;
|
|
case 3: return GL_FLOAT_MAT3;
|
|
case 4: return GL_FLOAT_MAT3x4;
|
|
default: return 0;
|
|
}
|
|
case 4:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT_MAT4x2;
|
|
case 3: return GL_FLOAT_MAT4x3;
|
|
case 4: return GL_FLOAT_MAT4;
|
|
default: return 0;
|
|
}
|
|
}
|
|
case EbtDouble:
|
|
switch (type.getMatrixCols()) {
|
|
case 2:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_DOUBLE_MAT2;
|
|
case 3: return GL_DOUBLE_MAT2x3;
|
|
case 4: return GL_DOUBLE_MAT2x4;
|
|
default: return 0;
|
|
}
|
|
case 3:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_DOUBLE_MAT3x2;
|
|
case 3: return GL_DOUBLE_MAT3;
|
|
case 4: return GL_DOUBLE_MAT3x4;
|
|
default: return 0;
|
|
}
|
|
case 4:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_DOUBLE_MAT4x2;
|
|
case 3: return GL_DOUBLE_MAT4x3;
|
|
case 4: return GL_DOUBLE_MAT4;
|
|
default: return 0;
|
|
}
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
if (type.getVectorSize() == 1) {
|
|
switch (type.getBasicType()) {
|
|
case EbtFloat: return GL_FLOAT;
|
|
case EbtDouble: return GL_DOUBLE;
|
|
case EbtInt: return GL_INT;
|
|
case EbtUint: return GL_UNSIGNED_INT;
|
|
case EbtBool: return GL_BOOL;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mapToGlArraySize(const TType& type)
|
|
{
|
|
return type.isArray() ? type.getArraySize() : 1;
|
|
}
|
|
|
|
typedef std::list<TIntermAggregate*> TFunctionStack;
|
|
TFunctionStack functions;
|
|
const TIntermediate& intermediate;
|
|
TReflection& reflection;
|
|
std::set<const TIntermNode*> processedDerefs;
|
|
};
|
|
|
|
const int TLiveTraverser::baseAlignmentVec4Std140 = 16;
|
|
|
|
namespace {
|
|
|
|
//
|
|
// Implement the traversal functions of interest.
|
|
//
|
|
|
|
// To catch which function calls are not dead, and hence which functions must be visited.
|
|
bool LiveAggregate(bool /* preVisit */, TIntermAggregate* node, TIntermTraverser* it)
|
|
{
|
|
TLiveTraverser* oit = static_cast<TLiveTraverser*>(it);
|
|
|
|
if (node->getOp() == EOpFunctionCall)
|
|
oit->addFunctionCall(node);
|
|
|
|
return true; // traverse this subtree
|
|
}
|
|
|
|
// To catch dereferenced aggregates that must be reflected.
|
|
// This catches them at the highest level possible in the tree.
|
|
bool LiveBinary(bool /* preVisit */, TIntermBinary* node, TIntermTraverser* it)
|
|
{
|
|
TLiveTraverser* oit = static_cast<TLiveTraverser*>(it);
|
|
|
|
switch (node->getOp()) {
|
|
case EOpIndexDirect:
|
|
case EOpIndexIndirect:
|
|
case EOpIndexDirectStruct:
|
|
oit->addDereferencedUniform(node);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// still need to visit everything below, which could contain sub-expressions
|
|
// containing different uniforms
|
|
return true;
|
|
}
|
|
|
|
// To reflect non-dereferenced objects.
|
|
void LiveSymbol(TIntermSymbol* base, TIntermTraverser* it)
|
|
{
|
|
TLiveTraverser* oit = static_cast<TLiveTraverser*>(it);
|
|
|
|
if (base->getQualifier().storage == EvqUniform)
|
|
oit->addUniform(*base);
|
|
}
|
|
|
|
// To prune semantically dead paths.
|
|
bool LiveSelection(bool /* preVisit */, TIntermSelection* node, TIntermTraverser* it)
|
|
{
|
|
TLiveTraverser* oit = static_cast<TLiveTraverser*>(it);
|
|
|
|
TIntermConstantUnion* constant = node->getCondition()->getAsConstantUnion();
|
|
if (constant) {
|
|
// cull the path that is dead
|
|
if (constant->getConstArray()[0].getBConst() == true && node->getTrueBlock())
|
|
node->getTrueBlock()->traverse(it);
|
|
if (constant->getConstArray()[0].getBConst() == false && node->getFalseBlock())
|
|
node->getFalseBlock()->traverse(it);
|
|
|
|
return false; // don't traverse any more, we did it all above
|
|
} else
|
|
return true; // traverse the whole subtree
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
//
|
|
// Implement TReflection methods.
|
|
//
|
|
|
|
// Merge live symbols from 'intermediate' into the existing reflection database.
|
|
//
|
|
// Returns false if the input is too malformed to do this.
|
|
bool TReflection::addStage(EShLanguage, const TIntermediate& intermediate)
|
|
{
|
|
if (intermediate.getNumMains() != 1 || intermediate.isRecursive())
|
|
return false;
|
|
|
|
TLiveTraverser it(intermediate, *this);
|
|
it.visitSymbol = LiveSymbol;
|
|
it.visitSelection = LiveSelection;
|
|
it.visitBinary = LiveBinary;
|
|
it.visitAggregate = LiveAggregate;
|
|
|
|
// put main() on functions to process
|
|
it.pushFunction("main(");
|
|
|
|
// process all the functions
|
|
while (! it.functions.empty()) {
|
|
TIntermNode* function = it.functions.back();
|
|
it.functions.pop_back();
|
|
function->traverse(&it);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void TReflection::dump()
|
|
{
|
|
printf("Uniform reflection:\n");
|
|
for (size_t i = 0; i < indexToUniform.size(); ++i)
|
|
indexToUniform[i].dump();
|
|
printf("\n");
|
|
|
|
printf("Uniform block reflection:\n");
|
|
for (size_t i = 0; i < indexToUniformBlock.size(); ++i)
|
|
indexToUniformBlock[i].dump();
|
|
printf("\n");
|
|
|
|
//printf("Live names\n");
|
|
//for (TNameToIndex::const_iterator it = nameToIndex.begin(); it != nameToIndex.end(); ++it)
|
|
// printf("%s: %d\n", it->first.c_str(), it->second);
|
|
//printf("\n");
|
|
}
|
|
|
|
} // end namespace glslang
|