563 lines
24 KiB
C++

//
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
//Copyright (C) 2012-2013 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
#include "localintermediate.h"
//
// Two purposes:
// 1. Show an example of how to iterate tree. Functions can
// also directly call Traverse() on children themselves to
// have finer grained control over the process than shown here.
// See the last function for how to get started.
// 2. Print out a text based description of the tree.
//
//
// Use this class to carry along data from node to node in
// the traversal
//
class TOutputTraverser : public TIntermTraverser {
public:
TOutputTraverser(TInfoSink& i) : infoSink(i) { }
TInfoSink& infoSink;
};
//
// Helper functions for printing, not part of traversing.
//
void OutputTreeText(TInfoSink& infoSink, TIntermNode* node, const int depth)
{
int i;
infoSink.debug << FormatSourceLoc(node->getLine());
for (i = 0; i < depth; ++i)
infoSink.debug << " ";
}
//
// The rest of the file are the traversal functions. The last one
// is the one that starts the traversal.
//
// Return true from interior nodes to have the external traversal
// continue on to children. If you process children yourself,
// return false.
//
void OutputSymbol(TIntermSymbol* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
OutputTreeText(oit->infoSink, node, oit->depth);
const int maxSize = GlslangMaxTypeLength + GlslangMaxTokenLength;
char buf[maxSize];
snprintf(buf, maxSize, "'%s' (%s)\n",
node->getName().c_str(),
node->getCompleteString().c_str());
oit->infoSink.debug << buf;
}
bool OutputBinary(bool /* preVisit */, TIntermBinary* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
OutputTreeText(out, node, oit->depth);
switch (node->getOp()) {
case EOpAssign: out.debug << "move second child to first child"; break;
case EOpAddAssign: out.debug << "add second child into first child"; break;
case EOpSubAssign: out.debug << "subtract second child into first child"; break;
case EOpMulAssign: out.debug << "multiply second child into first child"; break;
case EOpVectorTimesMatrixAssign: out.debug << "matrix mult second child into first child"; break;
case EOpVectorTimesScalarAssign: out.debug << "vector scale second child into first child"; break;
case EOpMatrixTimesScalarAssign: out.debug << "matrix scale second child into first child"; break;
case EOpMatrixTimesMatrixAssign: out.debug << "matrix mult second child into first child"; break;
case EOpDivAssign: out.debug << "divide second child into first child"; break;
case EOpModAssign: out.debug << "mod second child into first child"; break;
case EOpAndAssign: out.debug << "and second child into first child"; break;
case EOpInclusiveOrAssign: out.debug << "or second child into first child"; break;
case EOpExclusiveOrAssign: out.debug << "exclusive or second child into first child"; break;
case EOpLeftShiftAssign: out.debug << "left shift second child into first child"; break;
case EOpRightShiftAssign: out.debug << "right shift second child into first child"; break;
case EOpIndexDirect: out.debug << "direct index"; break;
case EOpIndexIndirect: out.debug << "indirect index"; break;
case EOpIndexDirectStruct:
out.debug << (*node->getLeft()->getType().getStruct())[node->getRight()->getAsConstantUnion()->getUnionArrayPointer()->getIConst()].type->getFieldName();
out.debug << ": direct index for structure"; break;
case EOpVectorSwizzle: out.debug << "vector swizzle"; break;
case EOpAdd: out.debug << "add"; break;
case EOpSub: out.debug << "subtract"; break;
case EOpMul: out.debug << "component-wise multiply"; break;
case EOpDiv: out.debug << "divide"; break;
case EOpMod: out.debug << "mod"; break;
case EOpRightShift: out.debug << "right-shift"; break;
case EOpLeftShift: out.debug << "left-shift"; break;
case EOpAnd: out.debug << "bitwise and"; break;
case EOpInclusiveOr: out.debug << "inclusive-or"; break;
case EOpExclusiveOr: out.debug << "exclusive-or"; break;
case EOpEqual: out.debug << "Compare Equal"; break;
case EOpNotEqual: out.debug << "Compare Not Equal"; break;
case EOpLessThan: out.debug << "Compare Less Than"; break;
case EOpGreaterThan: out.debug << "Compare Greater Than"; break;
case EOpLessThanEqual: out.debug << "Compare Less Than or Equal"; break;
case EOpGreaterThanEqual: out.debug << "Compare Greater Than or Equal"; break;
case EOpVectorTimesScalar: out.debug << "vector-scale"; break;
case EOpVectorTimesMatrix: out.debug << "vector-times-matrix"; break;
case EOpMatrixTimesVector: out.debug << "matrix-times-vector"; break;
case EOpMatrixTimesScalar: out.debug << "matrix-scale"; break;
case EOpMatrixTimesMatrix: out.debug << "matrix-multiply"; break;
case EOpLogicalOr: out.debug << "logical-or"; break;
case EOpLogicalXor: out.debug << "logical-xor"; break;
case EOpLogicalAnd: out.debug << "logical-and"; break;
default: out.debug << "<unknown op>";
}
out.debug << " (" << node->getCompleteString() << ")";
out.debug << "\n";
return true;
}
bool OutputUnary(bool /* preVisit */, TIntermUnary* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
OutputTreeText(out, node, oit->depth);
switch (node->getOp()) {
case EOpNegative: out.debug << "Negate value"; break;
case EOpVectorLogicalNot:
case EOpLogicalNot: out.debug << "Negate conditional"; break;
case EOpBitwiseNot: out.debug << "Bitwise not"; break;
case EOpPostIncrement: out.debug << "Post-Increment"; break;
case EOpPostDecrement: out.debug << "Post-Decrement"; break;
case EOpPreIncrement: out.debug << "Pre-Increment"; break;
case EOpPreDecrement: out.debug << "Pre-Decrement"; break;
case EOpConvIntToBool: out.debug << "Convert int to bool"; break;
case EOpConvUintToBool: out.debug << "Convert uint to bool"; break;
case EOpConvFloatToBool: out.debug << "Convert float to bool"; break;
case EOpConvDoubleToBool: out.debug << "Convert double to bool"; break;
case EOpConvIntToFloat: out.debug << "Convert int to float"; break;
case EOpConvUintToFloat: out.debug << "Convert uint to float"; break;
case EOpConvDoubleToFloat: out.debug << "Convert double to float"; break;
case EOpConvBoolToFloat: out.debug << "Convert bool to float"; break;
case EOpConvUintToInt: out.debug << "Convert uint to int"; break;
case EOpConvFloatToInt: out.debug << "Convert float to int"; break;
case EOpConvDoubleToInt: out.debug << "Convert double to int"; break;
case EOpConvBoolToInt: out.debug << "Convert bool to int"; break;
case EOpConvIntToUint: out.debug << "Convert int to uint"; break;
case EOpConvFloatToUint: out.debug << "Convert float to uint"; break;
case EOpConvDoubleToUint: out.debug << "Convert double to uint"; break;
case EOpConvBoolToUint: out.debug << "Convert bool to uint"; break;
case EOpConvIntToDouble: out.debug << "Convert int to double"; break;
case EOpConvUintToDouble: out.debug << "Convert uint to double"; break;
case EOpConvFloatToDouble: out.debug << "Convert float to double"; break;
case EOpConvBoolToDouble: out.debug << "Convert bool to double"; break;
case EOpRadians: out.debug << "radians"; break;
case EOpDegrees: out.debug << "degrees"; break;
case EOpSin: out.debug << "sine"; break;
case EOpCos: out.debug << "cosine"; break;
case EOpTan: out.debug << "tangent"; break;
case EOpAsin: out.debug << "arc sine"; break;
case EOpAcos: out.debug << "arc cosine"; break;
case EOpAtan: out.debug << "arc tangent"; break;
case EOpExp: out.debug << "exp"; break;
case EOpLog: out.debug << "log"; break;
case EOpExp2: out.debug << "exp2"; break;
case EOpLog2: out.debug << "log2"; break;
case EOpSqrt: out.debug << "sqrt"; break;
case EOpInverseSqrt: out.debug << "inverse sqrt"; break;
case EOpAbs: out.debug << "Absolute value"; break;
case EOpSign: out.debug << "Sign"; break;
case EOpFloor: out.debug << "Floor"; break;
case EOpTrunc: out.debug << "trunc"; break;
case EOpRound: out.debug << "round"; break;
case EOpRoundEven: out.debug << "roundEven"; break;
case EOpCeil: out.debug << "Ceiling"; break;
case EOpFract: out.debug << "Fraction"; break;
case EOpIsNan: out.debug << "isnan"; break;
case EOpIsInf: out.debug << "isinf"; break;
case EOpFloatBitsToInt: out.debug << "floatBitsToInt"; break;
case EOpFloatBitsToUint:out.debug << "floatBitsToUint"; break;
case EOpIntBitsToFloat: out.debug << "intBitsToFloat"; break;
case EOpUintBitsToFloat:out.debug << "uintBitsToFloat"; break;
case EOpPackSnorm2x16: out.debug << "packSnorm2x16"; break;
case EOpUnpackSnorm2x16:out.debug << "unpackSnorm2x16"; break;
case EOpPackUnorm2x16: out.debug << "packUnorm2x16"; break;
case EOpUnpackUnorm2x16:out.debug << "unpackUnorm2x16"; break;
case EOpPackHalf2x16: out.debug << "packHalf2x16"; break;
case EOpUnpackHalf2x16: out.debug << "unpackHalf2x16"; break;
case EOpLength: out.debug << "length"; break;
case EOpNormalize: out.debug << "normalize"; break;
case EOpDPdx: out.debug << "dPdx"; break;
case EOpDPdy: out.debug << "dPdy"; break;
case EOpFwidth: out.debug << "fwidth"; break;
case EOpDeterminant: out.debug << "determinant"; break;
case EOpMatrixInverse: out.debug << "inverse"; break;
case EOpTranspose: out.debug << "transpose"; break;
case EOpAny: out.debug << "any"; break;
case EOpAll: out.debug << "all"; break;
default: out.debug.message(EPrefixError, "Bad unary op");
}
out.debug << " (" << node->getCompleteString() << ")";
out.debug << "\n";
return true;
}
bool OutputAggregate(bool /* preVisit */, TIntermAggregate* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
if (node->getOp() == EOpNull) {
out.debug.message(EPrefixError, "node is still EOpNull!");
return true;
}
OutputTreeText(out, node, oit->depth);
switch (node->getOp()) {
case EOpSequence: out.debug << "Sequence\n"; return true;
case EOpLinkerObjects: out.debug << "Linker Objects\n"; return true;
case EOpComma: out.debug << "Comma"; break;
case EOpFunction: out.debug << "Function Definition: " << node->getName(); break;
case EOpFunctionCall: out.debug << "Function Call: " << node->getName(); break;
case EOpParameters: out.debug << "Function Parameters: "; break;
case EOpConstructFloat: out.debug << "Construct float"; break;
case EOpConstructVec2: out.debug << "Construct vec2"; break;
case EOpConstructVec3: out.debug << "Construct vec3"; break;
case EOpConstructVec4: out.debug << "Construct vec4"; break;
case EOpConstructBool: out.debug << "Construct bool"; break;
case EOpConstructBVec2: out.debug << "Construct bvec2"; break;
case EOpConstructBVec3: out.debug << "Construct bvec3"; break;
case EOpConstructBVec4: out.debug << "Construct bvec4"; break;
case EOpConstructInt: out.debug << "Construct int"; break;
case EOpConstructIVec2: out.debug << "Construct ivec2"; break;
case EOpConstructIVec3: out.debug << "Construct ivec3"; break;
case EOpConstructIVec4: out.debug << "Construct ivec4"; break;
case EOpConstructUint: out.debug << "Construct uint"; break;
case EOpConstructUVec2: out.debug << "Construct uvec2"; break;
case EOpConstructUVec3: out.debug << "Construct uvec3"; break;
case EOpConstructUVec4: out.debug << "Construct uvec4"; break;
case EOpConstructMat2x2: out.debug << "Construct mat2"; break;
case EOpConstructMat2x3: out.debug << "Construct mat2x3"; break;
case EOpConstructMat2x4: out.debug << "Construct mat2x4"; break;
case EOpConstructMat3x2: out.debug << "Construct mat3x2"; break;
case EOpConstructMat3x3: out.debug << "Construct mat3"; break;
case EOpConstructMat3x4: out.debug << "Construct mat3x4"; break;
case EOpConstructMat4x2: out.debug << "Construct mat4x2"; break;
case EOpConstructMat4x3: out.debug << "Construct mat4x3"; break;
case EOpConstructMat4x4: out.debug << "Construct mat4"; break;
case EOpConstructDMat2x2: out.debug << "Construct dmat2"; break;
case EOpConstructDMat2x3: out.debug << "Construct dmat2x3"; break;
case EOpConstructDMat2x4: out.debug << "Construct dmat2x4"; break;
case EOpConstructDMat3x2: out.debug << "Construct dmat3x2"; break;
case EOpConstructDMat3x3: out.debug << "Construct dmat3"; break;
case EOpConstructDMat3x4: out.debug << "Construct dmat3x4"; break;
case EOpConstructDMat4x2: out.debug << "Construct dmat4x2"; break;
case EOpConstructDMat4x3: out.debug << "Construct dmat4x3"; break;
case EOpConstructDMat4x4: out.debug << "Construct dmat4"; break;
case EOpConstructStruct: out.debug << "Construct structure"; break;
case EOpLessThan: out.debug << "Compare Less Than"; break;
case EOpGreaterThan: out.debug << "Compare Greater Than"; break;
case EOpLessThanEqual: out.debug << "Compare Less Than or Equal"; break;
case EOpGreaterThanEqual: out.debug << "Compare Greater Than or Equal"; break;
case EOpVectorEqual: out.debug << "Equal"; break;
case EOpVectorNotEqual: out.debug << "NotEqual"; break;
case EOpMod: out.debug << "mod"; break;
case EOpModf: out.debug << "modf"; break;
case EOpPow: out.debug << "pow"; break;
case EOpAtan: out.debug << "arc tangent"; break;
case EOpMin: out.debug << "min"; break;
case EOpMax: out.debug << "max"; break;
case EOpClamp: out.debug << "clamp"; break;
case EOpMix: out.debug << "mix"; break;
case EOpStep: out.debug << "step"; break;
case EOpSmoothStep: out.debug << "smoothstep"; break;
case EOpDistance: out.debug << "distance"; break;
case EOpDot: out.debug << "dot-product"; break;
case EOpCross: out.debug << "cross-product"; break;
case EOpFaceForward: out.debug << "face-forward"; break;
case EOpReflect: out.debug << "reflect"; break;
case EOpRefract: out.debug << "refract"; break;
case EOpMul: out.debug << "component-wise multiply"; break;
case EOpOuterProduct: out.debug << "outer product"; break;
default: out.debug.message(EPrefixError, "Bad aggregation op");
}
if (node->getOp() != EOpSequence && node->getOp() != EOpParameters)
out.debug << " (" << node->getCompleteString() << ")";
out.debug << "\n";
return true;
}
bool OutputSelection(bool /* preVisit */, TIntermSelection* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
OutputTreeText(out, node, oit->depth);
out.debug << "Test condition and select";
out.debug << " (" << node->getCompleteString() << ")\n";
++oit->depth;
OutputTreeText(oit->infoSink, node, oit->depth);
out.debug << "Condition\n";
node->getCondition()->traverse(it);
OutputTreeText(oit->infoSink, node, oit->depth);
if (node->getTrueBlock()) {
out.debug << "true case\n";
node->getTrueBlock()->traverse(it);
} else
out.debug << "true case is null\n";
if (node->getFalseBlock()) {
OutputTreeText(oit->infoSink, node, oit->depth);
out.debug << "false case\n";
node->getFalseBlock()->traverse(it);
}
--oit->depth;
return false;
}
void OutputConstantUnion(TIntermConstantUnion* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
int size = node->getType().getObjectSize();
for (int i = 0; i < size; i++) {
OutputTreeText(out, node, oit->depth);
switch (node->getUnionArrayPointer()[i].getType()) {
case EbtBool:
if (node->getUnionArrayPointer()[i].getBConst())
out.debug << "true";
else
out.debug << "false";
out.debug << " (" << "const bool" << ")";
out.debug << "\n";
break;
case EbtFloat:
case EbtDouble:
{
const int maxSize = 300;
char buf[maxSize];
snprintf(buf, maxSize, "%f", node->getUnionArrayPointer()[i].getDConst());
out.debug << buf << "\n";
}
break;
case EbtInt:
{
const int maxSize = 300;
char buf[maxSize];
snprintf(buf, maxSize, "%d (%s)", node->getUnionArrayPointer()[i].getIConst(), "const int");
out.debug << buf << "\n";
}
break;
case EbtUint:
{
const int maxSize = 300;
char buf[maxSize];
snprintf(buf, maxSize, "%u (%s)", node->getUnionArrayPointer()[i].getUConst(), "const uint");
out.debug << buf << "\n";
}
break;
default:
out.info.message(EPrefixInternalError, "Unknown constant", node->getLine());
break;
}
}
}
bool OutputLoop(bool /* preVisit */, TIntermLoop* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
OutputTreeText(out, node, oit->depth);
out.debug << "Loop with condition ";
if (! node->testFirst())
out.debug << "not ";
out.debug << "tested first\n";
++oit->depth;
OutputTreeText(oit->infoSink, node, oit->depth);
if (node->getTest()) {
out.debug << "Loop Condition\n";
node->getTest()->traverse(it);
} else
out.debug << "No loop condition\n";
OutputTreeText(oit->infoSink, node, oit->depth);
if (node->getBody()) {
out.debug << "Loop Body\n";
node->getBody()->traverse(it);
} else
out.debug << "No loop body\n";
if (node->getTerminal()) {
OutputTreeText(oit->infoSink, node, oit->depth);
out.debug << "Loop Terminal Expression\n";
node->getTerminal()->traverse(it);
}
--oit->depth;
return false;
}
bool OutputBranch(bool /* previsit*/, TIntermBranch* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
OutputTreeText(out, node, oit->depth);
switch (node->getFlowOp()) {
case EOpKill: out.debug << "Branch: Kill"; break;
case EOpBreak: out.debug << "Branch: Break"; break;
case EOpContinue: out.debug << "Branch: Continue"; break;
case EOpReturn: out.debug << "Branch: Return"; break;
case EOpCase: out.debug << "case: "; break;
case EOpDefault: out.debug << "default: "; break;
default: out.debug << "Branch: Unknown Branch"; break;
}
if (node->getExpression()) {
out.debug << " with expression\n";
++oit->depth;
node->getExpression()->traverse(it);
--oit->depth;
} else
out.debug << "\n";
return false;
}
bool OutputSwitch(bool /* preVisit */, TIntermSwitch* node, TIntermTraverser* it)
{
TOutputTraverser* oit = static_cast<TOutputTraverser*>(it);
TInfoSink& out = oit->infoSink;
OutputTreeText(out, node, oit->depth);
out.debug << "switch\n";
OutputTreeText(out, node, oit->depth);
out.debug << "condition\n";
++oit->depth;
node->getCondition()->traverse(it);
--oit->depth;
OutputTreeText(out, node, oit->depth);
out.debug << "body\n";
++oit->depth;
node->getBody()->traverse(it);
--oit->depth;
return false;
}
//
// This function is the one to call externally to start the traversal.
// Individual functions can be initialized to 0 to skip processing of that
// type of node. It's children will still be processed.
//
void TIntermediate::outputTree(TIntermNode* root)
{
if (root == 0)
return;
TOutputTraverser it(infoSink);
it.visitAggregate = OutputAggregate;
it.visitBinary = OutputBinary;
it.visitConstantUnion = OutputConstantUnion;
it.visitSelection = OutputSelection;
it.visitSymbol = OutputSymbol;
it.visitUnary = OutputUnary;
it.visitLoop = OutputLoop;
it.visitBranch = OutputBranch;
it.visitSwitch = OutputSwitch;
root->traverse(&it);
}