Previously if a non-void function implictly returned, a dummy variable was created as return value. Now instead it returns the result of the OpUndef instruction. This better conveys the presence of undefined behavior to SPIR-V consuming tools (and humans). It also saves one ID per occurrence...
		
			
				
	
	
		
			2276 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			2276 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
//
 | 
						|
//Copyright (C) 2014 LunarG, Inc.
 | 
						|
//
 | 
						|
//All rights reserved.
 | 
						|
//
 | 
						|
//Redistribution and use in source and binary forms, with or without
 | 
						|
//modification, are permitted provided that the following conditions
 | 
						|
//are met:
 | 
						|
//
 | 
						|
//    Redistributions of source code must retain the above copyright
 | 
						|
//    notice, this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//    Redistributions in binary form must reproduce the above
 | 
						|
//    copyright notice, this list of conditions and the following
 | 
						|
//    disclaimer in the documentation and/or other materials provided
 | 
						|
//    with the distribution.
 | 
						|
//
 | 
						|
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
 | 
						|
//    contributors may be used to endorse or promote products derived
 | 
						|
//    from this software without specific prior written permission.
 | 
						|
//
 | 
						|
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
						|
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
						|
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
						|
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
						|
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
						|
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
						|
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
						|
//POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
//
 | 
						|
// Author: John Kessenich, LunarG
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
// Helper for making SPIR-V IR.  Generally, this is documented in the header
 | 
						|
// SpvBuilder.h.
 | 
						|
//
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
 | 
						|
#include <unordered_set>
 | 
						|
 | 
						|
#include "SpvBuilder.h"
 | 
						|
 | 
						|
#ifndef _WIN32
 | 
						|
    #include <cstdio>
 | 
						|
#endif
 | 
						|
 | 
						|
namespace spv {
 | 
						|
 | 
						|
const int SpvBuilderMagic = 0xBB;
 | 
						|
 | 
						|
Builder::Builder(unsigned int userNumber) :
 | 
						|
    source(SourceLanguageUnknown),
 | 
						|
    sourceVersion(0),
 | 
						|
    addressModel(AddressingModelLogical),
 | 
						|
    memoryModel(MemoryModelGLSL450),
 | 
						|
    builderNumber(userNumber << 16 | SpvBuilderMagic),
 | 
						|
    buildPoint(0),
 | 
						|
    uniqueId(0),
 | 
						|
    mainFunction(0),
 | 
						|
    stageExit(0)
 | 
						|
{
 | 
						|
    clearAccessChain();
 | 
						|
}
 | 
						|
 | 
						|
Builder::~Builder()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::import(const char* name)
 | 
						|
{
 | 
						|
    Instruction* import = new Instruction(getUniqueId(), NoType, OpExtInstImport);
 | 
						|
    import->addStringOperand(name);
 | 
						|
    
 | 
						|
    imports.push_back(import);
 | 
						|
    return import->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// For creating new groupedTypes (will return old type if the requested one was already made).
 | 
						|
Id Builder::makeVoidType()
 | 
						|
{
 | 
						|
    Instruction* type;
 | 
						|
    if (groupedTypes[OpTypeVoid].size() == 0) {
 | 
						|
        type = new Instruction(getUniqueId(), NoType, OpTypeVoid);
 | 
						|
        groupedTypes[OpTypeVoid].push_back(type);
 | 
						|
        constantsTypesGlobals.push_back(type);
 | 
						|
        module.mapInstruction(type);
 | 
						|
    } else
 | 
						|
        type = groupedTypes[OpTypeVoid].back();
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeBoolType()
 | 
						|
{
 | 
						|
    Instruction* type;
 | 
						|
    if (groupedTypes[OpTypeBool].size() == 0) {
 | 
						|
        type = new Instruction(getUniqueId(), NoType, OpTypeBool);
 | 
						|
        groupedTypes[OpTypeBool].push_back(type);
 | 
						|
        constantsTypesGlobals.push_back(type);
 | 
						|
        module.mapInstruction(type);
 | 
						|
    } else
 | 
						|
        type = groupedTypes[OpTypeBool].back();
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makePointer(StorageClass storageClass, Id pointee)
 | 
						|
{
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypePointer][t];
 | 
						|
        if (type->getImmediateOperand(0) == (unsigned)storageClass &&
 | 
						|
            type->getIdOperand(1) == pointee)
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypePointer);
 | 
						|
    type->addImmediateOperand(storageClass);
 | 
						|
    type->addIdOperand(pointee);
 | 
						|
    groupedTypes[OpTypePointer].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeIntegerType(int width, bool hasSign)
 | 
						|
{
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeInt].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeInt][t];
 | 
						|
        if (type->getImmediateOperand(0) == (unsigned)width &&
 | 
						|
            type->getImmediateOperand(1) == (hasSign ? 1u : 0u))
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeInt);
 | 
						|
    type->addImmediateOperand(width);
 | 
						|
    type->addImmediateOperand(hasSign ? 1 : 0);
 | 
						|
    groupedTypes[OpTypeInt].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeFloatType(int width)
 | 
						|
{
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeFloat].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeFloat][t];
 | 
						|
        if (type->getImmediateOperand(0) == (unsigned)width)
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeFloat);
 | 
						|
    type->addImmediateOperand(width);
 | 
						|
    groupedTypes[OpTypeFloat].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeStructType(std::vector<Id>& members, const char* name)
 | 
						|
{
 | 
						|
    // not found, make it
 | 
						|
    Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeStruct);
 | 
						|
    for (int op = 0; op < (int)members.size(); ++op)
 | 
						|
        type->addIdOperand(members[op]);
 | 
						|
    groupedTypes[OpTypeStruct].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
    addName(type->getResultId(), name);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeVectorType(Id component, int size)
 | 
						|
{
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeVector].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeVector][t];
 | 
						|
        if (type->getIdOperand(0) == component &&
 | 
						|
            type->getImmediateOperand(1) == (unsigned)size)
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeVector);
 | 
						|
    type->addIdOperand(component);
 | 
						|
    type->addImmediateOperand(size);
 | 
						|
    groupedTypes[OpTypeVector].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeMatrixType(Id component, int cols, int rows)
 | 
						|
{
 | 
						|
    assert(cols <= maxMatrixSize && rows <= maxMatrixSize);
 | 
						|
 | 
						|
    Id column = makeVectorType(component, rows);
 | 
						|
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeMatrix].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeMatrix][t];
 | 
						|
        if (type->getIdOperand(0) == column &&
 | 
						|
            type->getImmediateOperand(1) == (unsigned)cols)
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeMatrix);
 | 
						|
    type->addIdOperand(column);
 | 
						|
    type->addImmediateOperand(cols);
 | 
						|
    groupedTypes[OpTypeMatrix].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeArrayType(Id element, unsigned size)
 | 
						|
{
 | 
						|
    // First, we need a constant instruction for the size
 | 
						|
    Id sizeId = makeUintConstant(size);
 | 
						|
 | 
						|
    // try to find existing type
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeArray].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeArray][t];
 | 
						|
        if (type->getIdOperand(0) == element &&
 | 
						|
            type->getIdOperand(1) == sizeId)
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeArray);
 | 
						|
    type->addIdOperand(element);
 | 
						|
    type->addIdOperand(sizeId);
 | 
						|
    groupedTypes[OpTypeArray].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeFunctionType(Id returnType, std::vector<Id>& paramTypes)
 | 
						|
{
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeFunction].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeFunction][t];
 | 
						|
        if (type->getIdOperand(0) != returnType || (int)paramTypes.size() != type->getNumOperands() - 1)
 | 
						|
            continue;
 | 
						|
        bool mismatch = false;
 | 
						|
        for (int p = 0; p < (int)paramTypes.size(); ++p) {
 | 
						|
            if (paramTypes[p] != type->getIdOperand(p + 1)) {
 | 
						|
                mismatch = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (! mismatch)
 | 
						|
            return type->getResultId();            
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeFunction);
 | 
						|
    type->addIdOperand(returnType);
 | 
						|
    for (int p = 0; p < (int)paramTypes.size(); ++p)
 | 
						|
        type->addIdOperand(paramTypes[p]);
 | 
						|
    groupedTypes[OpTypeFunction].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeImageType(Id sampledType, Dim dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format)
 | 
						|
{
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeImage].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeImage][t];
 | 
						|
        if (type->getIdOperand(0) == sampledType &&
 | 
						|
            type->getImmediateOperand(1) == (unsigned int)dim &&
 | 
						|
            type->getImmediateOperand(2) == (  depth ? 1u : 0u) &&
 | 
						|
            type->getImmediateOperand(3) == (arrayed ? 1u : 0u) &&
 | 
						|
            type->getImmediateOperand(4) == (     ms ? 1u : 0u) &&
 | 
						|
            type->getImmediateOperand(5) == sampled &&
 | 
						|
            type->getImmediateOperand(6) == (unsigned int)format)
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeImage);
 | 
						|
    type->addIdOperand(sampledType);
 | 
						|
    type->addImmediateOperand(   dim);
 | 
						|
    type->addImmediateOperand(  depth ? 1 : 0);
 | 
						|
    type->addImmediateOperand(arrayed ? 1 : 0);
 | 
						|
    type->addImmediateOperand(     ms ? 1 : 0);
 | 
						|
    type->addImmediateOperand(sampled);
 | 
						|
    type->addImmediateOperand((unsigned int)format);
 | 
						|
 | 
						|
    groupedTypes[OpTypeImage].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeSampledImageType(Id imageType)
 | 
						|
{
 | 
						|
    // try to find it
 | 
						|
    Instruction* type;
 | 
						|
    for (int t = 0; t < (int)groupedTypes[OpTypeSampledImage].size(); ++t) {
 | 
						|
        type = groupedTypes[OpTypeSampledImage][t];
 | 
						|
        if (type->getIdOperand(0) == imageType)
 | 
						|
            return type->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    // not found, make it
 | 
						|
    type = new Instruction(getUniqueId(), NoType, OpTypeSampledImage);
 | 
						|
    type->addIdOperand(imageType);
 | 
						|
 | 
						|
    groupedTypes[OpTypeSampledImage].push_back(type);
 | 
						|
    constantsTypesGlobals.push_back(type);
 | 
						|
    module.mapInstruction(type);
 | 
						|
 | 
						|
    return type->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::getDerefTypeId(Id resultId) const
 | 
						|
{
 | 
						|
    Id typeId = getTypeId(resultId);
 | 
						|
    assert(isPointerType(typeId));
 | 
						|
 | 
						|
    return module.getInstruction(typeId)->getImmediateOperand(1);
 | 
						|
}
 | 
						|
 | 
						|
Op Builder::getMostBasicTypeClass(Id typeId) const
 | 
						|
{
 | 
						|
    Instruction* instr = module.getInstruction(typeId);
 | 
						|
 | 
						|
    Op typeClass = instr->getOpCode();
 | 
						|
    switch (typeClass)
 | 
						|
    {
 | 
						|
    case OpTypeVoid:
 | 
						|
    case OpTypeBool:
 | 
						|
    case OpTypeInt:
 | 
						|
    case OpTypeFloat:
 | 
						|
    case OpTypeStruct:
 | 
						|
        return typeClass;
 | 
						|
    case OpTypeVector:
 | 
						|
    case OpTypeMatrix:
 | 
						|
    case OpTypeArray:
 | 
						|
    case OpTypeRuntimeArray:
 | 
						|
        return getMostBasicTypeClass(instr->getIdOperand(0));
 | 
						|
    case OpTypePointer:
 | 
						|
        return getMostBasicTypeClass(instr->getIdOperand(1));
 | 
						|
    default:
 | 
						|
        MissingFunctionality("getMostBasicTypeClass");
 | 
						|
        return OpTypeFloat;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int Builder::getNumTypeComponents(Id typeId) const
 | 
						|
{
 | 
						|
    Instruction* instr = module.getInstruction(typeId);
 | 
						|
 | 
						|
    switch (instr->getOpCode())
 | 
						|
    {
 | 
						|
    case OpTypeBool:
 | 
						|
    case OpTypeInt:
 | 
						|
    case OpTypeFloat:
 | 
						|
        return 1;
 | 
						|
    case OpTypeVector:
 | 
						|
    case OpTypeMatrix:
 | 
						|
        return instr->getImmediateOperand(1);
 | 
						|
    default:
 | 
						|
        MissingFunctionality("getNumTypeComponents on non bool/int/float/vector/matrix");
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Return the lowest-level type of scalar that an homogeneous composite is made out of.
 | 
						|
// Typically, this is just to find out if something is made out of ints or floats.
 | 
						|
// However, it includes returning a structure, if say, it is an array of structure.
 | 
						|
Id Builder::getScalarTypeId(Id typeId) const
 | 
						|
{
 | 
						|
    Instruction* instr = module.getInstruction(typeId);
 | 
						|
 | 
						|
    Op typeClass = instr->getOpCode();
 | 
						|
    switch (typeClass)
 | 
						|
    {
 | 
						|
    case OpTypeVoid:
 | 
						|
    case OpTypeBool:
 | 
						|
    case OpTypeInt:
 | 
						|
    case OpTypeFloat:
 | 
						|
    case OpTypeStruct:
 | 
						|
        return instr->getResultId();
 | 
						|
    case OpTypeVector:
 | 
						|
    case OpTypeMatrix:
 | 
						|
    case OpTypeArray:
 | 
						|
    case OpTypeRuntimeArray:
 | 
						|
    case OpTypePointer:
 | 
						|
        return getScalarTypeId(getContainedTypeId(typeId));
 | 
						|
    default:
 | 
						|
        MissingFunctionality("getScalarTypeId");
 | 
						|
        return NoResult;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Return the type of 'member' of a composite.
 | 
						|
Id Builder::getContainedTypeId(Id typeId, int member) const
 | 
						|
{
 | 
						|
    Instruction* instr = module.getInstruction(typeId);
 | 
						|
 | 
						|
    Op typeClass = instr->getOpCode();
 | 
						|
    switch (typeClass)
 | 
						|
    {
 | 
						|
    case OpTypeVector:
 | 
						|
    case OpTypeMatrix:
 | 
						|
    case OpTypeArray:
 | 
						|
    case OpTypeRuntimeArray:
 | 
						|
        return instr->getIdOperand(0);
 | 
						|
    case OpTypePointer:
 | 
						|
        return instr->getIdOperand(1);
 | 
						|
    case OpTypeStruct:
 | 
						|
        return instr->getIdOperand(member);
 | 
						|
    default:
 | 
						|
        MissingFunctionality("getContainedTypeId");
 | 
						|
        return NoResult;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Return the immediately contained type of a given composite type.
 | 
						|
Id Builder::getContainedTypeId(Id typeId) const
 | 
						|
{
 | 
						|
    return getContainedTypeId(typeId, 0);
 | 
						|
}
 | 
						|
 | 
						|
// See if a scalar constant of this type has already been created, so it
 | 
						|
// can be reused rather than duplicated.  (Required by the specification).
 | 
						|
Id Builder::findScalarConstant(Op typeClass, Id typeId, unsigned value) const
 | 
						|
{
 | 
						|
    Instruction* constant;
 | 
						|
    for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
 | 
						|
        constant = groupedConstants[typeClass][i];
 | 
						|
        if (constant->getNumOperands() == 1 &&
 | 
						|
            constant->getTypeId() == typeId &&
 | 
						|
            constant->getImmediateOperand(0) == value)
 | 
						|
            return constant->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
// Version of findScalarConstant (see above) for scalars that take two operands (e.g. a 'double').
 | 
						|
Id Builder::findScalarConstant(Op typeClass, Id typeId, unsigned v1, unsigned v2) const
 | 
						|
{
 | 
						|
    Instruction* constant;
 | 
						|
    for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
 | 
						|
        constant = groupedConstants[typeClass][i];
 | 
						|
        if (constant->getNumOperands() == 2 &&
 | 
						|
            constant->getTypeId() == typeId &&
 | 
						|
            constant->getImmediateOperand(0) == v1 &&
 | 
						|
            constant->getImmediateOperand(1) == v2)
 | 
						|
            return constant->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeBoolConstant(bool b)
 | 
						|
{
 | 
						|
    Id typeId = makeBoolType();
 | 
						|
    Instruction* constant;
 | 
						|
 | 
						|
    // See if we already made it
 | 
						|
    Id existing = 0;
 | 
						|
    for (int i = 0; i < (int)groupedConstants[OpTypeBool].size(); ++i) {
 | 
						|
        constant = groupedConstants[OpTypeBool][i];
 | 
						|
        if (constant->getTypeId() == typeId &&
 | 
						|
            (b ? (constant->getOpCode() == OpConstantTrue) : 
 | 
						|
                 (constant->getOpCode() == OpConstantFalse)))
 | 
						|
            existing = constant->getResultId();
 | 
						|
    }
 | 
						|
 | 
						|
    if (existing)
 | 
						|
        return existing;
 | 
						|
 | 
						|
    // Make it
 | 
						|
    Instruction* c = new Instruction(getUniqueId(), typeId, b ? OpConstantTrue : OpConstantFalse);
 | 
						|
    constantsTypesGlobals.push_back(c);
 | 
						|
    groupedConstants[OpTypeBool].push_back(c);
 | 
						|
    module.mapInstruction(c);
 | 
						|
 | 
						|
    return c->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeIntConstant(Id typeId, unsigned value)
 | 
						|
{
 | 
						|
    Id existing = findScalarConstant(OpTypeInt, typeId, value);
 | 
						|
    if (existing)
 | 
						|
        return existing;
 | 
						|
 | 
						|
    Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
 | 
						|
    c->addImmediateOperand(value);
 | 
						|
    constantsTypesGlobals.push_back(c);
 | 
						|
    groupedConstants[OpTypeInt].push_back(c);
 | 
						|
    module.mapInstruction(c);
 | 
						|
 | 
						|
    return c->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeFloatConstant(float f)
 | 
						|
{
 | 
						|
    Id typeId = makeFloatType(32);
 | 
						|
    unsigned value = *(unsigned int*)&f;
 | 
						|
    Id existing = findScalarConstant(OpTypeFloat, typeId, value);
 | 
						|
    if (existing)
 | 
						|
        return existing;
 | 
						|
 | 
						|
    Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
 | 
						|
    c->addImmediateOperand(value);
 | 
						|
    constantsTypesGlobals.push_back(c);
 | 
						|
    groupedConstants[OpTypeFloat].push_back(c);
 | 
						|
    module.mapInstruction(c);
 | 
						|
 | 
						|
    return c->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::makeDoubleConstant(double d)
 | 
						|
{
 | 
						|
    Id typeId = makeFloatType(64);
 | 
						|
    unsigned long long value = *(unsigned long long*)&d;
 | 
						|
    unsigned op1 = value & 0xFFFFFFFF;
 | 
						|
    unsigned op2 = value >> 32;
 | 
						|
    Id existing = findScalarConstant(OpTypeFloat, typeId, op1, op2);
 | 
						|
    if (existing)
 | 
						|
        return existing;
 | 
						|
 | 
						|
    Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
 | 
						|
    c->addImmediateOperand(op1);
 | 
						|
    c->addImmediateOperand(op2);
 | 
						|
    constantsTypesGlobals.push_back(c);
 | 
						|
    groupedConstants[OpTypeFloat].push_back(c);
 | 
						|
    module.mapInstruction(c);
 | 
						|
 | 
						|
    return c->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::findCompositeConstant(Op typeClass, std::vector<Id>& comps) const
 | 
						|
{
 | 
						|
    Instruction* constant = 0;
 | 
						|
    bool found = false;
 | 
						|
    for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
 | 
						|
        constant = groupedConstants[typeClass][i];
 | 
						|
 | 
						|
        // same shape?
 | 
						|
        if (constant->getNumOperands() != (int)comps.size())
 | 
						|
            continue;
 | 
						|
 | 
						|
        // same contents?
 | 
						|
        bool mismatch = false;
 | 
						|
        for (int op = 0; op < constant->getNumOperands(); ++op) {
 | 
						|
            if (constant->getIdOperand(op) != comps[op]) {
 | 
						|
                mismatch = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (! mismatch) {
 | 
						|
            found = true;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return found ? constant->getResultId() : NoResult;
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::makeCompositeConstant(Id typeId, std::vector<Id>& members)
 | 
						|
{
 | 
						|
    assert(typeId);
 | 
						|
    Op typeClass = getTypeClass(typeId);
 | 
						|
 | 
						|
    switch (typeClass) {
 | 
						|
    case OpTypeVector:
 | 
						|
    case OpTypeArray:
 | 
						|
    case OpTypeStruct:
 | 
						|
    case OpTypeMatrix:
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        MissingFunctionality("Constant composite type in Builder");
 | 
						|
        return makeFloatConstant(0.0);
 | 
						|
    }
 | 
						|
 | 
						|
    Id existing = findCompositeConstant(typeClass, members);
 | 
						|
    if (existing)
 | 
						|
        return existing;
 | 
						|
 | 
						|
    Instruction* c = new Instruction(getUniqueId(), typeId, OpConstantComposite);
 | 
						|
    for (int op = 0; op < (int)members.size(); ++op)
 | 
						|
        c->addIdOperand(members[op]);
 | 
						|
    constantsTypesGlobals.push_back(c);
 | 
						|
    groupedConstants[typeClass].push_back(c);
 | 
						|
    module.mapInstruction(c);
 | 
						|
 | 
						|
    return c->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
void Builder::addEntryPoint(ExecutionModel model, Function* function, const char* name)
 | 
						|
{
 | 
						|
    Instruction* entryPoint = new Instruction(OpEntryPoint);
 | 
						|
    entryPoint->addImmediateOperand(model);
 | 
						|
    entryPoint->addIdOperand(function->getId());
 | 
						|
    entryPoint->addStringOperand(name);
 | 
						|
 | 
						|
    entryPoints.push_back(entryPoint);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::addExecutionMode(Function* entryPoint, ExecutionMode mode, int value)
 | 
						|
{
 | 
						|
    // TODO: handle multiple optional arguments
 | 
						|
    Instruction* instr = new Instruction(OpExecutionMode);
 | 
						|
    instr->addIdOperand(entryPoint->getId());
 | 
						|
    instr->addImmediateOperand(mode);
 | 
						|
    if (value >= 0)
 | 
						|
        instr->addImmediateOperand(value);
 | 
						|
 | 
						|
    executionModes.push_back(instr);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::addName(Id id, const char* string)
 | 
						|
{
 | 
						|
    Instruction* name = new Instruction(OpName);
 | 
						|
    name->addIdOperand(id);
 | 
						|
    name->addStringOperand(string);
 | 
						|
 | 
						|
    names.push_back(name);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::addMemberName(Id id, int memberNumber, const char* string)
 | 
						|
{
 | 
						|
    Instruction* name = new Instruction(OpMemberName);
 | 
						|
    name->addIdOperand(id);
 | 
						|
    name->addImmediateOperand(memberNumber);
 | 
						|
    name->addStringOperand(string);
 | 
						|
 | 
						|
    names.push_back(name);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::addLine(Id target, Id fileName, int lineNum, int column)
 | 
						|
{
 | 
						|
    Instruction* line = new Instruction(OpLine);
 | 
						|
    line->addIdOperand(target);
 | 
						|
    line->addIdOperand(fileName);
 | 
						|
    line->addImmediateOperand(lineNum);
 | 
						|
    line->addImmediateOperand(column);
 | 
						|
 | 
						|
    lines.push_back(line);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::addDecoration(Id id, Decoration decoration, int num)
 | 
						|
{
 | 
						|
    Instruction* dec = new Instruction(OpDecorate);
 | 
						|
    dec->addIdOperand(id);
 | 
						|
    dec->addImmediateOperand(decoration);
 | 
						|
    if (num >= 0)
 | 
						|
        dec->addImmediateOperand(num);
 | 
						|
 | 
						|
    decorations.push_back(dec);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, int num)
 | 
						|
{
 | 
						|
    Instruction* dec = new Instruction(OpMemberDecorate);
 | 
						|
    dec->addIdOperand(id);
 | 
						|
    dec->addImmediateOperand(member);
 | 
						|
    dec->addImmediateOperand(decoration);
 | 
						|
    if (num >= 0)
 | 
						|
        dec->addImmediateOperand(num);
 | 
						|
 | 
						|
    decorations.push_back(dec);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Function* Builder::makeMain()
 | 
						|
{
 | 
						|
    assert(! mainFunction);
 | 
						|
 | 
						|
    Block* entry;
 | 
						|
    std::vector<Id> params;
 | 
						|
 | 
						|
    mainFunction = makeFunctionEntry(makeVoidType(), "main", params, &entry);
 | 
						|
    stageExit = new Block(getUniqueId(), *mainFunction);
 | 
						|
 | 
						|
    return mainFunction;
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::closeMain()
 | 
						|
{
 | 
						|
    setBuildPoint(stageExit);
 | 
						|
    stageExit->addInstruction(new Instruction(NoResult, NoType, OpReturn));
 | 
						|
    mainFunction->addBlock(stageExit);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Function* Builder::makeFunctionEntry(Id returnType, const char* name, std::vector<Id>& paramTypes, Block **entry)
 | 
						|
{
 | 
						|
    Id typeId = makeFunctionType(returnType, paramTypes);
 | 
						|
    Id firstParamId = paramTypes.size() == 0 ? 0 : getUniqueIds((int)paramTypes.size());
 | 
						|
    Function* function = new Function(getUniqueId(), returnType, typeId, firstParamId, module);
 | 
						|
 | 
						|
    if (entry) {
 | 
						|
        *entry = new Block(getUniqueId(), *function);
 | 
						|
        function->addBlock(*entry);
 | 
						|
        setBuildPoint(*entry);
 | 
						|
    }
 | 
						|
 | 
						|
    if (name)
 | 
						|
        addName(function->getId(), name);
 | 
						|
 | 
						|
    return function;
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::makeReturn(bool implicit, Id retVal, bool isMain)
 | 
						|
{
 | 
						|
    if (isMain && retVal)
 | 
						|
        MissingFunctionality("return value from main()");
 | 
						|
 | 
						|
    if (isMain)
 | 
						|
        createBranch(stageExit);
 | 
						|
    else if (retVal) {
 | 
						|
        Instruction* inst = new Instruction(NoResult, NoType, OpReturnValue);
 | 
						|
        inst->addIdOperand(retVal);
 | 
						|
        buildPoint->addInstruction(inst);
 | 
						|
    } else
 | 
						|
        buildPoint->addInstruction(new Instruction(NoResult, NoType, OpReturn));
 | 
						|
 | 
						|
    if (! implicit)
 | 
						|
        createAndSetNoPredecessorBlock("post-return");
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::leaveFunction(bool main)
 | 
						|
{
 | 
						|
    Block* block = buildPoint;
 | 
						|
    Function& function = buildPoint->getParent();
 | 
						|
    assert(block);
 | 
						|
 | 
						|
    // If our function did not contain a return, add a return void now.
 | 
						|
    if (! block->isTerminated()) {
 | 
						|
 | 
						|
        // Whether we're in an unreachable (non-entry) block.
 | 
						|
        bool unreachable = function.getEntryBlock() != block && block->getNumPredecessors() == 0;
 | 
						|
 | 
						|
        if (unreachable) {
 | 
						|
            // Given that this block is at the end of a function, it must be right after an
 | 
						|
            // explicit return, just remove it.
 | 
						|
            function.popBlock(block);
 | 
						|
        } else if (main)
 | 
						|
            makeMainReturn(true);
 | 
						|
        else {
 | 
						|
            // We're get a return instruction at the end of the current block,
 | 
						|
            // which for a non-void function is really error recovery (?), as the source
 | 
						|
            // being translated should have had an explicit return, which would have been
 | 
						|
            // followed by an unreachable block, which was handled above.
 | 
						|
            if (function.getReturnType() == makeVoidType())
 | 
						|
                makeReturn(true);
 | 
						|
            else {
 | 
						|
                makeReturn(true, createUndefined(function.getReturnType()));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (main)
 | 
						|
        closeMain();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::makeDiscard()
 | 
						|
{
 | 
						|
    buildPoint->addInstruction(new Instruction(OpKill));
 | 
						|
    createAndSetNoPredecessorBlock("post-discard");
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createVariable(StorageClass storageClass, Id type, const char* name)
 | 
						|
{
 | 
						|
    Id pointerType = makePointer(storageClass, type);
 | 
						|
    Instruction* inst = new Instruction(getUniqueId(), pointerType, OpVariable);
 | 
						|
    inst->addImmediateOperand(storageClass);
 | 
						|
 | 
						|
    switch (storageClass) {
 | 
						|
    case StorageClassUniformConstant:
 | 
						|
    case StorageClassUniform:
 | 
						|
    case StorageClassInput:
 | 
						|
    case StorageClassOutput:
 | 
						|
    case StorageClassWorkgroupLocal:
 | 
						|
    case StorageClassPrivateGlobal:
 | 
						|
    case StorageClassWorkgroupGlobal:
 | 
						|
        constantsTypesGlobals.push_back(inst);
 | 
						|
        module.mapInstruction(inst);
 | 
						|
        break;
 | 
						|
 | 
						|
    case StorageClassFunction:
 | 
						|
        // Validation rules require the declaration in the entry block
 | 
						|
        buildPoint->getParent().addLocalVariable(inst);
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        MissingFunctionality("storage class in createVariable");
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (name)
 | 
						|
        addName(inst->getResultId(), name);
 | 
						|
 | 
						|
    return inst->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createUndefined(Id type)
 | 
						|
{
 | 
						|
  Instruction* inst = new Instruction(getUniqueId(), type, OpUndef);
 | 
						|
  buildPoint->addInstruction(inst);
 | 
						|
  return inst->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::createStore(Id rValue, Id lValue)
 | 
						|
{
 | 
						|
    Instruction* store = new Instruction(OpStore);
 | 
						|
    store->addIdOperand(lValue);
 | 
						|
    store->addIdOperand(rValue);
 | 
						|
    buildPoint->addInstruction(store);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createLoad(Id lValue)
 | 
						|
{
 | 
						|
    Instruction* load = new Instruction(getUniqueId(), getDerefTypeId(lValue), OpLoad);
 | 
						|
    load->addIdOperand(lValue);
 | 
						|
    buildPoint->addInstruction(load);
 | 
						|
 | 
						|
    return load->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createAccessChain(StorageClass storageClass, Id base, std::vector<Id>& offsets)
 | 
						|
{
 | 
						|
    // Figure out the final resulting type.
 | 
						|
    spv::Id typeId = getTypeId(base);
 | 
						|
    assert(isPointerType(typeId) && offsets.size() > 0);
 | 
						|
    typeId = getContainedTypeId(typeId);
 | 
						|
    for (int i = 0; i < (int)offsets.size(); ++i) {
 | 
						|
        if (isStructType(typeId)) {
 | 
						|
            assert(isConstantScalar(offsets[i]));
 | 
						|
            typeId = getContainedTypeId(typeId, getConstantScalar(offsets[i]));
 | 
						|
        } else
 | 
						|
            typeId = getContainedTypeId(typeId, offsets[i]);
 | 
						|
    }
 | 
						|
    typeId = makePointer(storageClass, typeId);
 | 
						|
 | 
						|
    // Make the instruction
 | 
						|
    Instruction* chain = new Instruction(getUniqueId(), typeId, OpAccessChain);
 | 
						|
    chain->addIdOperand(base);
 | 
						|
    for (int i = 0; i < (int)offsets.size(); ++i)
 | 
						|
        chain->addIdOperand(offsets[i]);
 | 
						|
    buildPoint->addInstruction(chain);
 | 
						|
 | 
						|
    return chain->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createCompositeExtract(Id composite, Id typeId, unsigned index)
 | 
						|
{
 | 
						|
    Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
 | 
						|
    extract->addIdOperand(composite);
 | 
						|
    extract->addImmediateOperand(index);
 | 
						|
    buildPoint->addInstruction(extract);
 | 
						|
 | 
						|
    return extract->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createCompositeExtract(Id composite, Id typeId, std::vector<unsigned>& indexes)
 | 
						|
{
 | 
						|
    Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
 | 
						|
    extract->addIdOperand(composite);
 | 
						|
    for (int i = 0; i < (int)indexes.size(); ++i)
 | 
						|
        extract->addImmediateOperand(indexes[i]);
 | 
						|
    buildPoint->addInstruction(extract);
 | 
						|
 | 
						|
    return extract->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, unsigned index)
 | 
						|
{
 | 
						|
    Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
 | 
						|
    insert->addIdOperand(object);
 | 
						|
    insert->addIdOperand(composite);
 | 
						|
    insert->addImmediateOperand(index);
 | 
						|
    buildPoint->addInstruction(insert);
 | 
						|
 | 
						|
    return insert->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, std::vector<unsigned>& indexes)
 | 
						|
{
 | 
						|
    Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
 | 
						|
    insert->addIdOperand(object);
 | 
						|
    insert->addIdOperand(composite);
 | 
						|
    for (int i = 0; i < (int)indexes.size(); ++i)
 | 
						|
        insert->addImmediateOperand(indexes[i]);
 | 
						|
    buildPoint->addInstruction(insert);
 | 
						|
 | 
						|
    return insert->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex)
 | 
						|
{
 | 
						|
    Instruction* extract = new Instruction(getUniqueId(), typeId, OpVectorExtractDynamic);
 | 
						|
    extract->addIdOperand(vector);
 | 
						|
    extract->addIdOperand(componentIndex);
 | 
						|
    buildPoint->addInstruction(extract);
 | 
						|
 | 
						|
    return extract->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex)
 | 
						|
{
 | 
						|
    Instruction* insert = new Instruction(getUniqueId(), typeId, OpVectorInsertDynamic);
 | 
						|
    insert->addIdOperand(vector);
 | 
						|
    insert->addIdOperand(component);
 | 
						|
    insert->addIdOperand(componentIndex);
 | 
						|
    buildPoint->addInstruction(insert);
 | 
						|
 | 
						|
    return insert->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// An opcode that has no operands, no result id, and no type
 | 
						|
void Builder::createNoResultOp(Op opCode)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(opCode);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
}
 | 
						|
 | 
						|
// An opcode that has one operand, no result id, and no type
 | 
						|
void Builder::createNoResultOp(Op opCode, Id operand)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(opCode);
 | 
						|
    op->addIdOperand(operand);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask semantics)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(OpControlBarrier);
 | 
						|
    op->addImmediateOperand(makeUintConstant(execution));
 | 
						|
    op->addImmediateOperand(makeUintConstant(memory));
 | 
						|
    op->addImmediateOperand(makeUintConstant(semantics));
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::createMemoryBarrier(unsigned executionScope, unsigned memorySemantics)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(OpMemoryBarrier);
 | 
						|
    op->addImmediateOperand(makeUintConstant(executionScope));
 | 
						|
    op->addImmediateOperand(makeUintConstant(memorySemantics));
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
}
 | 
						|
 | 
						|
// An opcode that has one operands, a result id, and a type
 | 
						|
Id Builder::createUnaryOp(Op opCode, Id typeId, Id operand)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | 
						|
    op->addIdOperand(operand);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
 | 
						|
    return op->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createBinOp(Op opCode, Id typeId, Id left, Id right)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | 
						|
    op->addIdOperand(left);
 | 
						|
    op->addIdOperand(right);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
 | 
						|
    return op->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createTriOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | 
						|
    op->addIdOperand(op1);
 | 
						|
    op->addIdOperand(op2);
 | 
						|
    op->addIdOperand(op3);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
 | 
						|
    return op->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createOp(Op opCode, Id typeId, const std::vector<Id>& operands)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | 
						|
    for (auto operand : operands)
 | 
						|
        op->addIdOperand(operand);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
 | 
						|
    return op->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::createFunctionCall(spv::Function* function, std::vector<spv::Id>& args)
 | 
						|
{
 | 
						|
    Instruction* op = new Instruction(getUniqueId(), function->getReturnType(), OpFunctionCall);
 | 
						|
    op->addIdOperand(function->getId());
 | 
						|
    for (int a = 0; a < (int)args.size(); ++a)
 | 
						|
        op->addIdOperand(args[a]);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
 | 
						|
    return op->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createRvalueSwizzle(Id typeId, Id source, std::vector<unsigned>& channels)
 | 
						|
{
 | 
						|
    if (channels.size() == 1)
 | 
						|
        return createCompositeExtract(source, typeId, channels.front());
 | 
						|
 | 
						|
    Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
 | 
						|
    assert(isVector(source));
 | 
						|
    swizzle->addIdOperand(source);
 | 
						|
    swizzle->addIdOperand(source);
 | 
						|
    for (int i = 0; i < (int)channels.size(); ++i)
 | 
						|
        swizzle->addImmediateOperand(channels[i]);
 | 
						|
    buildPoint->addInstruction(swizzle);
 | 
						|
 | 
						|
    return swizzle->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createLvalueSwizzle(Id typeId, Id target, Id source, std::vector<unsigned>& channels)
 | 
						|
{
 | 
						|
    assert(getNumComponents(source) == (int)channels.size());
 | 
						|
    if (channels.size() == 1 && getNumComponents(source) == 1)
 | 
						|
        return createCompositeInsert(source, target, typeId, channels.front());
 | 
						|
 | 
						|
    Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
 | 
						|
    assert(isVector(source));
 | 
						|
    assert(isVector(target));
 | 
						|
    swizzle->addIdOperand(target);
 | 
						|
    swizzle->addIdOperand(source);
 | 
						|
 | 
						|
    // Set up an identity shuffle from the base value to the result value
 | 
						|
    unsigned int components[4];
 | 
						|
    int numTargetComponents = getNumComponents(target);
 | 
						|
    for (int i = 0; i < numTargetComponents; ++i)
 | 
						|
        components[i] = i;
 | 
						|
 | 
						|
    // Punch in the l-value swizzle
 | 
						|
    for (int i = 0; i < (int)channels.size(); ++i)
 | 
						|
        components[channels[i]] = numTargetComponents + i;
 | 
						|
 | 
						|
    // finish the instruction with these components selectors
 | 
						|
    for (int i = 0; i < numTargetComponents; ++i)
 | 
						|
        swizzle->addImmediateOperand(components[i]);
 | 
						|
    buildPoint->addInstruction(swizzle);
 | 
						|
 | 
						|
    return swizzle->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::promoteScalar(Decoration precision, Id& left, Id& right)
 | 
						|
{
 | 
						|
    int direction = getNumComponents(right) - getNumComponents(left);
 | 
						|
 | 
						|
    if (direction > 0)
 | 
						|
        left = smearScalar(precision, left, getTypeId(right));
 | 
						|
    else if (direction < 0)
 | 
						|
        right = smearScalar(precision, right, getTypeId(left));
 | 
						|
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::smearScalar(Decoration /*precision*/, Id scalar, Id vectorType)
 | 
						|
{
 | 
						|
    assert(getNumComponents(scalar) == 1);
 | 
						|
 | 
						|
    int numComponents = getNumTypeComponents(vectorType);
 | 
						|
    if (numComponents == 1)
 | 
						|
        return scalar;
 | 
						|
 | 
						|
    Instruction* smear = new Instruction(getUniqueId(), vectorType, OpCompositeConstruct);
 | 
						|
    for (int c = 0; c < numComponents; ++c)
 | 
						|
        smear->addIdOperand(scalar);
 | 
						|
    buildPoint->addInstruction(smear);
 | 
						|
 | 
						|
    return smear->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createBuiltinCall(Decoration /*precision*/, Id resultType, Id builtins, int entryPoint, std::vector<Id>& args)
 | 
						|
{
 | 
						|
    Instruction* inst = new Instruction(getUniqueId(), resultType, OpExtInst);
 | 
						|
    inst->addIdOperand(builtins);
 | 
						|
    inst->addImmediateOperand(entryPoint);
 | 
						|
    for (int arg = 0; arg < (int)args.size(); ++arg)
 | 
						|
        inst->addIdOperand(args[arg]);
 | 
						|
 | 
						|
    buildPoint->addInstruction(inst);
 | 
						|
    return inst->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Accept all parameters needed to create a texture instruction.
 | 
						|
// Create the correct instruction based on the inputs, and make the call.
 | 
						|
Id Builder::createTextureCall(Decoration precision, Id resultType, bool proj, const TextureParameters& parameters)
 | 
						|
{
 | 
						|
    static const int maxTextureArgs = 10;
 | 
						|
    Id texArgs[maxTextureArgs] = {};
 | 
						|
 | 
						|
    //
 | 
						|
    // Set up the fixed arguments
 | 
						|
    //
 | 
						|
    int numArgs = 0;
 | 
						|
    bool xplicit = false;
 | 
						|
    texArgs[numArgs++] = parameters.sampler;
 | 
						|
    texArgs[numArgs++] = parameters.coords;
 | 
						|
    if (parameters.Dref)
 | 
						|
        texArgs[numArgs++] = parameters.Dref;
 | 
						|
 | 
						|
    //
 | 
						|
    // Set up the optional arguments
 | 
						|
    //
 | 
						|
    int optArgNum = numArgs;                        // track which operand, if it exists, is the mask of optional arguments
 | 
						|
    ++numArgs;                                      // speculatively make room for the mask operand
 | 
						|
    ImageOperandsMask mask = ImageOperandsMaskNone; // the mask operand
 | 
						|
    if (parameters.bias) {
 | 
						|
        mask = (ImageOperandsMask)(mask | ImageOperandsBiasMask);
 | 
						|
        texArgs[numArgs++] = parameters.bias;
 | 
						|
    }
 | 
						|
    if (parameters.lod) {
 | 
						|
        mask = (ImageOperandsMask)(mask | ImageOperandsLodMask);
 | 
						|
        texArgs[numArgs++] = parameters.lod;
 | 
						|
        xplicit = true;
 | 
						|
    }
 | 
						|
    if (parameters.gradX) {
 | 
						|
        mask = (ImageOperandsMask)(mask | ImageOperandsGradMask);
 | 
						|
        texArgs[numArgs++] = parameters.gradX;
 | 
						|
        texArgs[numArgs++] = parameters.gradY;
 | 
						|
        xplicit = true;
 | 
						|
    }
 | 
						|
    if (parameters.offset) {
 | 
						|
        mask = (ImageOperandsMask)(mask | ImageOperandsOffsetMask);
 | 
						|
        texArgs[numArgs++] = parameters.offset;
 | 
						|
    }
 | 
						|
    // TBD: if Offset is constant, use ImageOperandsConstOffsetMask
 | 
						|
    if (parameters.offsets) {
 | 
						|
        mask = (ImageOperandsMask)(mask | ImageOperandsConstOffsetsMask);
 | 
						|
        texArgs[numArgs++] = parameters.offsets;
 | 
						|
    }
 | 
						|
    if (parameters.sample) {
 | 
						|
        mask = (ImageOperandsMask)(mask | ImageOperandsSampleMask);
 | 
						|
        texArgs[numArgs++] = parameters.sample;
 | 
						|
    }
 | 
						|
    if (mask == ImageOperandsMaskNone)
 | 
						|
        --numArgs;  // undo speculative reservation for the mask argument
 | 
						|
    else
 | 
						|
        texArgs[optArgNum] = mask;
 | 
						|
 | 
						|
    //
 | 
						|
    // Set up the instruction
 | 
						|
    //
 | 
						|
    Op opCode;
 | 
						|
    opCode = OpImageSampleImplicitLod;
 | 
						|
    if (xplicit) {
 | 
						|
        if (parameters.Dref) {
 | 
						|
            if (proj)
 | 
						|
                opCode = OpImageSampleProjDrefExplicitLod;
 | 
						|
            else
 | 
						|
                opCode = OpImageSampleDrefExplicitLod;
 | 
						|
        } else {
 | 
						|
            if (proj)
 | 
						|
                opCode = OpImageSampleProjExplicitLod;
 | 
						|
            else
 | 
						|
                opCode = OpImageSampleExplicitLod;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (parameters.Dref) {
 | 
						|
            if (proj)
 | 
						|
                opCode = OpImageSampleProjDrefImplicitLod;
 | 
						|
            else
 | 
						|
                opCode = OpImageSampleDrefImplicitLod;
 | 
						|
        } else {
 | 
						|
            if (proj)
 | 
						|
                opCode = OpImageSampleProjImplicitLod;
 | 
						|
            else
 | 
						|
                opCode = OpImageSampleImplicitLod;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction* textureInst = new Instruction(getUniqueId(), resultType, opCode);
 | 
						|
    for (int op = 0; op < optArgNum; ++op)
 | 
						|
        textureInst->addIdOperand(texArgs[op]);
 | 
						|
    if (optArgNum < numArgs)
 | 
						|
        textureInst->addImmediateOperand(texArgs[optArgNum]);
 | 
						|
    for (int op = optArgNum + 1; op < numArgs; ++op)
 | 
						|
        textureInst->addIdOperand(texArgs[op]);
 | 
						|
    setPrecision(textureInst->getResultId(), precision);
 | 
						|
    buildPoint->addInstruction(textureInst);
 | 
						|
 | 
						|
    return textureInst->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createTextureQueryCall(Op opCode, const TextureParameters& parameters)
 | 
						|
{
 | 
						|
    // Figure out the result type
 | 
						|
    Id resultType = 0;
 | 
						|
    switch (opCode) {
 | 
						|
    case OpImageQuerySize:
 | 
						|
    case OpImageQuerySizeLod:
 | 
						|
    {
 | 
						|
        int numComponents;
 | 
						|
        switch (getTypeDimensionality(getImageType(parameters.sampler))) {
 | 
						|
        case Dim1D:
 | 
						|
        case DimBuffer:
 | 
						|
            numComponents = 1;
 | 
						|
            break;
 | 
						|
        case Dim2D:
 | 
						|
        case DimCube:
 | 
						|
        case DimRect:
 | 
						|
            numComponents = 2;
 | 
						|
            break;
 | 
						|
        case Dim3D:
 | 
						|
            numComponents = 3;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            MissingFunctionality("texture query dimensionality");
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (isArrayedImageType(getImageType(parameters.sampler)))
 | 
						|
            ++numComponents;
 | 
						|
        if (numComponents == 1)
 | 
						|
            resultType = makeIntType(32);
 | 
						|
        else
 | 
						|
            resultType = makeVectorType(makeIntType(32), numComponents);
 | 
						|
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    case OpImageQueryLod:
 | 
						|
        resultType = makeVectorType(makeFloatType(32), 2);
 | 
						|
        break;
 | 
						|
    case OpImageQueryLevels:
 | 
						|
    case OpImageQuerySamples:
 | 
						|
        resultType = makeIntType(32);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        MissingFunctionality("Texture query op code");
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction* query = new Instruction(getUniqueId(), resultType, opCode);
 | 
						|
    query->addIdOperand(parameters.sampler);
 | 
						|
    if (parameters.coords)
 | 
						|
        query->addIdOperand(parameters.coords);
 | 
						|
    if (parameters.lod)
 | 
						|
        query->addIdOperand(parameters.lod);
 | 
						|
    buildPoint->addInstruction(query);
 | 
						|
 | 
						|
    return query->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
//Id Builder::createSamplePositionCall(Decoration precision, Id returnType, Id sampleIdx)
 | 
						|
//{
 | 
						|
//    // Return type is only flexible type
 | 
						|
//    Function* opCode = (fSamplePosition, returnType);
 | 
						|
//
 | 
						|
//    Instruction* instr = (opCode, sampleIdx);
 | 
						|
//    setPrecision(instr, precision);
 | 
						|
//
 | 
						|
//    return instr;
 | 
						|
//}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
//Id Builder::createBitFieldExtractCall(Decoration precision, Id id, Id offset, Id bits, bool isSigned)
 | 
						|
//{
 | 
						|
//    Op opCode = isSigned ? sBitFieldExtract
 | 
						|
//                                               : uBitFieldExtract;
 | 
						|
//
 | 
						|
//    if (isScalar(offset) == false || isScalar(bits) == false)
 | 
						|
//        MissingFunctionality("bitFieldExtract operand types");
 | 
						|
//
 | 
						|
//    // Dest and value are matching flexible types
 | 
						|
//    Function* opCode = (opCode, id->getType(), id->getType());
 | 
						|
//
 | 
						|
//    assert(opCode);
 | 
						|
//
 | 
						|
//    Instruction* instr = (opCode, id, offset, bits);
 | 
						|
//    setPrecision(instr, precision);
 | 
						|
//
 | 
						|
//    return instr;
 | 
						|
//}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
//Id Builder::createBitFieldInsertCall(Decoration precision, Id base, Id insert, Id offset, Id bits)
 | 
						|
//{
 | 
						|
//    Op opCode = bitFieldInsert;
 | 
						|
//
 | 
						|
//    if (isScalar(offset) == false || isScalar(bits) == false)
 | 
						|
//        MissingFunctionality("bitFieldInsert operand types");
 | 
						|
//
 | 
						|
//    // Dest, base, and insert are matching flexible types
 | 
						|
//    Function* opCode = (opCode, base->getType(), base->getType(), base->getType());
 | 
						|
//
 | 
						|
//    assert(opCode);
 | 
						|
//
 | 
						|
//    Instruction* instr = (opCode, base, insert, offset, bits);
 | 
						|
//    setPrecision(instr, precision);
 | 
						|
//
 | 
						|
//    return instr;
 | 
						|
//}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createCompare(Decoration precision, Id value1, Id value2, bool equal)
 | 
						|
{
 | 
						|
    Id boolType = makeBoolType();
 | 
						|
    Id valueType = getTypeId(value1);
 | 
						|
 | 
						|
    assert(valueType == getTypeId(value2));
 | 
						|
    assert(! isScalar(value1));
 | 
						|
 | 
						|
    // Vectors
 | 
						|
 | 
						|
    if (isVectorType(valueType)) {
 | 
						|
        Id boolVectorType = makeVectorType(boolType, getNumTypeComponents(valueType));
 | 
						|
        Id boolVector;
 | 
						|
        Op op;
 | 
						|
        if (getMostBasicTypeClass(valueType) == OpTypeFloat)
 | 
						|
            op = equal ? OpFOrdEqual : OpFOrdNotEqual;
 | 
						|
        else
 | 
						|
            op = equal ? OpIEqual : OpINotEqual;
 | 
						|
 | 
						|
        boolVector = createBinOp(op, boolVectorType, value1, value2);
 | 
						|
        setPrecision(boolVector, precision);
 | 
						|
 | 
						|
        // Reduce vector compares with any() and all().
 | 
						|
 | 
						|
        op = equal ? OpAll : OpAny;
 | 
						|
 | 
						|
        return createUnaryOp(op, boolType, boolVector);
 | 
						|
    }
 | 
						|
 | 
						|
    spv::MissingFunctionality("Composite comparison of non-vectors");
 | 
						|
 | 
						|
    return NoResult;
 | 
						|
 | 
						|
    // Recursively handle aggregates, which include matrices, arrays, and structures
 | 
						|
    // and accumulate the results.
 | 
						|
 | 
						|
    // Matrices
 | 
						|
 | 
						|
    // Arrays
 | 
						|
 | 
						|
    //int numElements;
 | 
						|
    //const llvm::ArrayType* arrayType = llvm::dyn_cast<llvm::ArrayType>(value1->getType());
 | 
						|
    //if (arrayType)
 | 
						|
    //    numElements = (int)arrayType->getNumElements();
 | 
						|
    //else {
 | 
						|
    //    // better be structure
 | 
						|
    //    const llvm::StructType* structType = llvm::dyn_cast<llvm::StructType>(value1->getType());
 | 
						|
    //    assert(structType);
 | 
						|
    //    numElements = structType->getNumElements();
 | 
						|
    //}
 | 
						|
 | 
						|
    //assert(numElements > 0);
 | 
						|
 | 
						|
    //for (int element = 0; element < numElements; ++element) {
 | 
						|
    //    // Get intermediate comparison values
 | 
						|
    //    llvm::Value* element1 = builder.CreateExtractValue(value1, element, "element1");
 | 
						|
    //    setInstructionPrecision(element1, precision);
 | 
						|
    //    llvm::Value* element2 = builder.CreateExtractValue(value2, element, "element2");
 | 
						|
    //    setInstructionPrecision(element2, precision);
 | 
						|
 | 
						|
    //    llvm::Value* subResult = createCompare(precision, element1, element2, equal, "comp");
 | 
						|
 | 
						|
    //    // Accumulate intermediate comparison
 | 
						|
    //    if (element == 0)
 | 
						|
    //        result = subResult;
 | 
						|
    //    else {
 | 
						|
    //        if (equal)
 | 
						|
    //            result = builder.CreateAnd(result, subResult);
 | 
						|
    //        else
 | 
						|
    //            result = builder.CreateOr(result, subResult);
 | 
						|
    //        setInstructionPrecision(result, precision);
 | 
						|
    //    }
 | 
						|
    //}
 | 
						|
 | 
						|
    //return result;
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
//Id Builder::createOperation(Decoration precision, Op opCode, Id operand)
 | 
						|
//{
 | 
						|
//    Op* opCode = 0;
 | 
						|
//
 | 
						|
//    // Handle special return types here.  Things that don't have same result type as parameter
 | 
						|
//    switch (opCode) {
 | 
						|
//    case fIsNan:
 | 
						|
//    case fIsInf:
 | 
						|
//        break;
 | 
						|
//    case fFloatBitsToInt:
 | 
						|
//        break;
 | 
						|
//    case fIntBitsTofloat:
 | 
						|
//        break;
 | 
						|
//    case fPackSnorm2x16:
 | 
						|
//    case fPackUnorm2x16:
 | 
						|
//    case fPackHalf2x16:
 | 
						|
//        break;
 | 
						|
//    case fUnpackUnorm2x16:
 | 
						|
//    case fUnpackSnorm2x16:
 | 
						|
//    case fUnpackHalf2x16:
 | 
						|
//        break;
 | 
						|
//
 | 
						|
//    case fFrexp:
 | 
						|
//    case fLdexp:
 | 
						|
//    case fPackUnorm4x8:
 | 
						|
//    case fPackSnorm4x8:
 | 
						|
//    case fUnpackUnorm4x8:
 | 
						|
//    case fUnpackSnorm4x8:
 | 
						|
//    case fPackDouble2x32:
 | 
						|
//    case fUnpackDouble2x32:
 | 
						|
//        break;
 | 
						|
//    case fLength:
 | 
						|
//       // scalar result type
 | 
						|
//       break;
 | 
						|
//    case any:
 | 
						|
//    case all:
 | 
						|
//        // fixed result type
 | 
						|
//        break;
 | 
						|
//    case fModF:
 | 
						|
//        // modf() will return a struct that the caller must decode
 | 
						|
//        break;
 | 
						|
//    default:
 | 
						|
//        // Unary operations that have operand and dest with same flexible type
 | 
						|
//        break;
 | 
						|
//    }
 | 
						|
//
 | 
						|
//    assert(opCode);
 | 
						|
//
 | 
						|
//    Instruction* instr = (opCode, operand);
 | 
						|
//    setPrecision(instr, precision);
 | 
						|
//
 | 
						|
//    return instr;
 | 
						|
//}
 | 
						|
//
 | 
						|
//// Comments in header
 | 
						|
//Id Builder::createOperation(Decoration precision, Op opCode, Id operand0, Id operand1)
 | 
						|
//{
 | 
						|
//    Function* opCode = 0;
 | 
						|
//
 | 
						|
//    // Handle special return types here.  Things that don't have same result type as parameter
 | 
						|
//    switch (opCode) {
 | 
						|
//    case fDistance:
 | 
						|
//    case fDot2:
 | 
						|
//    case fDot3:
 | 
						|
//    case fDot4:
 | 
						|
//        // scalar result type
 | 
						|
//        break;
 | 
						|
//    case fStep:
 | 
						|
//        // first argument can be scalar, return and second argument match
 | 
						|
//        break;
 | 
						|
//    case fSmoothStep:
 | 
						|
//        // first argument can be scalar, return and second argument match
 | 
						|
//        break;
 | 
						|
//    default:
 | 
						|
//        // Binary operations that have operand and dest with same flexible type
 | 
						|
//        break;
 | 
						|
//    }
 | 
						|
//
 | 
						|
//    assert(opCode);
 | 
						|
//
 | 
						|
//    Instruction* instr = (opCode, operand0, operand1);
 | 
						|
//    setPrecision(instr, precision);
 | 
						|
//
 | 
						|
//    return instr;
 | 
						|
//}
 | 
						|
//
 | 
						|
//Id Builder::createOperation(Decoration precision, Op opCode, Id operand0, Id operand1, Id operand2)
 | 
						|
//{
 | 
						|
//    Function* opCode;
 | 
						|
//
 | 
						|
//    // Handle special return types here.  Things that don't have same result type as parameter
 | 
						|
//    switch (opCode) {
 | 
						|
//    case fSmoothStep:
 | 
						|
//        // first argument can be scalar, return and second argument match
 | 
						|
//        break;
 | 
						|
//    default:
 | 
						|
//        // Use operand0 type as result type
 | 
						|
//        break;
 | 
						|
//    }
 | 
						|
//
 | 
						|
//    assert(opCode);
 | 
						|
//
 | 
						|
//    Instruction* instr = (opCode, operand0, operand1, operand2);
 | 
						|
//    setPrecision(instr, precision);
 | 
						|
//
 | 
						|
//    return instr;
 | 
						|
//}
 | 
						|
 | 
						|
// OpCompositeConstruct
 | 
						|
Id Builder::createCompositeConstruct(Id typeId, std::vector<Id>& constituents)
 | 
						|
{
 | 
						|
    assert(isAggregateType(typeId) || (getNumTypeComponents(typeId) > 1 && getNumTypeComponents(typeId) == (int)constituents.size()));
 | 
						|
 | 
						|
    Instruction* op = new Instruction(getUniqueId(), typeId, OpCompositeConstruct);
 | 
						|
    for (int c = 0; c < (int)constituents.size(); ++c)
 | 
						|
        op->addIdOperand(constituents[c]);
 | 
						|
    buildPoint->addInstruction(op);
 | 
						|
 | 
						|
    return op->getResultId();
 | 
						|
}
 | 
						|
 | 
						|
// Vector or scalar constructor
 | 
						|
Id Builder::createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
 | 
						|
{
 | 
						|
    Id result = 0;
 | 
						|
    unsigned int numTargetComponents = getNumTypeComponents(resultTypeId);
 | 
						|
    unsigned int targetComponent = 0;
 | 
						|
 | 
						|
    // Special case: when calling a vector constructor with a single scalar
 | 
						|
    // argument, smear the scalar
 | 
						|
    if (sources.size() == 1 && isScalar(sources[0]) && numTargetComponents > 1)
 | 
						|
        return smearScalar(precision, sources[0], resultTypeId);
 | 
						|
 | 
						|
    Id scalarTypeId = getScalarTypeId(resultTypeId);
 | 
						|
    std::vector<Id> constituents;  // accumulate the arguments for OpCompositeConstruct
 | 
						|
    for (unsigned int i = 0; i < sources.size(); ++i) {
 | 
						|
        if (isAggregate(sources[i]))
 | 
						|
            MissingFunctionality("aggregate in vector constructor");
 | 
						|
 | 
						|
        unsigned int sourceSize = getNumComponents(sources[i]);
 | 
						|
 | 
						|
        unsigned int sourcesToUse = sourceSize;
 | 
						|
        if (sourcesToUse + targetComponent > numTargetComponents)
 | 
						|
            sourcesToUse = numTargetComponents - targetComponent;
 | 
						|
 | 
						|
        for (unsigned int s = 0; s < sourcesToUse; ++s) {
 | 
						|
            Id arg = sources[i];
 | 
						|
            if (sourceSize > 1) {
 | 
						|
                std::vector<unsigned> swiz;
 | 
						|
                swiz.push_back(s);
 | 
						|
                arg = createRvalueSwizzle(scalarTypeId, arg, swiz);
 | 
						|
            }
 | 
						|
 | 
						|
            if (numTargetComponents > 1)
 | 
						|
                constituents.push_back(arg);
 | 
						|
            else
 | 
						|
                result = arg;
 | 
						|
            ++targetComponent;
 | 
						|
        }
 | 
						|
 | 
						|
        if (targetComponent >= numTargetComponents)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (constituents.size() > 0)
 | 
						|
        result = createCompositeConstruct(resultTypeId, constituents);
 | 
						|
 | 
						|
    setPrecision(result, precision);
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
 | 
						|
{
 | 
						|
    Id componentTypeId = getScalarTypeId(resultTypeId);
 | 
						|
    int numCols = getTypeNumColumns(resultTypeId);
 | 
						|
    int numRows = getTypeNumRows(resultTypeId);
 | 
						|
 | 
						|
    // Will use a two step process
 | 
						|
    // 1. make a compile-time 2D array of values
 | 
						|
    // 2. construct a matrix from that array
 | 
						|
 | 
						|
    // Step 1.
 | 
						|
 | 
						|
    // initialize the array to the identity matrix
 | 
						|
    Id ids[maxMatrixSize][maxMatrixSize];
 | 
						|
    Id  one = makeFloatConstant(1.0);
 | 
						|
    Id zero = makeFloatConstant(0.0);
 | 
						|
    for (int col = 0; col < 4; ++col) {
 | 
						|
        for (int row = 0; row < 4; ++row) {
 | 
						|
            if (col == row)
 | 
						|
                ids[col][row] = one;
 | 
						|
            else
 | 
						|
                ids[col][row] = zero;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // modify components as dictated by the arguments
 | 
						|
    if (sources.size() == 1 && isScalar(sources[0])) {
 | 
						|
        // a single scalar; resets the diagonals
 | 
						|
        for (int col = 0; col < 4; ++col)
 | 
						|
            ids[col][col] = sources[0];
 | 
						|
    } else if (isMatrix(sources[0])) {
 | 
						|
        // constructing from another matrix; copy over the parts that exist in both the argument and constructee
 | 
						|
        Id matrix = sources[0];
 | 
						|
        int minCols = std::min(numCols, getNumColumns(matrix));
 | 
						|
        int minRows = std::min(numRows, getNumRows(matrix));
 | 
						|
        for (int col = 0; col < minCols; ++col) {
 | 
						|
            std::vector<unsigned> indexes;
 | 
						|
            indexes.push_back(col);
 | 
						|
            for (int row = 0; row < minRows; ++row) {
 | 
						|
                indexes.push_back(row);
 | 
						|
                ids[col][row] = createCompositeExtract(matrix, componentTypeId, indexes);
 | 
						|
                indexes.pop_back();
 | 
						|
                setPrecision(ids[col][row], precision);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        // fill in the matrix in column-major order with whatever argument components are available
 | 
						|
        int row = 0;
 | 
						|
        int col = 0;
 | 
						|
 | 
						|
        for (int arg = 0; arg < (int)sources.size(); ++arg) {
 | 
						|
            Id argComp = sources[arg];
 | 
						|
            for (int comp = 0; comp < getNumComponents(sources[arg]); ++comp) {
 | 
						|
                if (getNumComponents(sources[arg]) > 1) {
 | 
						|
                    argComp = createCompositeExtract(sources[arg], componentTypeId, comp);
 | 
						|
                    setPrecision(argComp, precision);
 | 
						|
                }
 | 
						|
                ids[col][row++] = argComp;
 | 
						|
                if (row == numRows) {
 | 
						|
                    row = 0;
 | 
						|
                    col++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Step 2:  Construct a matrix from that array.
 | 
						|
    // First make the column vectors, then make the matrix.
 | 
						|
 | 
						|
    // make the column vectors
 | 
						|
    Id columnTypeId = getContainedTypeId(resultTypeId);
 | 
						|
    std::vector<Id> matrixColumns;
 | 
						|
    for (int col = 0; col < numCols; ++col) {
 | 
						|
        std::vector<Id> vectorComponents;
 | 
						|
        for (int row = 0; row < numRows; ++row)
 | 
						|
            vectorComponents.push_back(ids[col][row]);
 | 
						|
        matrixColumns.push_back(createCompositeConstruct(columnTypeId, vectorComponents));
 | 
						|
    }
 | 
						|
 | 
						|
    // make the matrix
 | 
						|
    return createCompositeConstruct(resultTypeId, matrixColumns);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Builder::If::If(Id cond, Builder& gb) :
 | 
						|
    builder(gb),
 | 
						|
    condition(cond),
 | 
						|
    elseBlock(0)
 | 
						|
{
 | 
						|
    function = &builder.getBuildPoint()->getParent();
 | 
						|
 | 
						|
    // make the blocks, but only put the then-block into the function,
 | 
						|
    // the else-block and merge-block will be added later, in order, after
 | 
						|
    // earlier code is emitted
 | 
						|
    thenBlock = new Block(builder.getUniqueId(), *function);
 | 
						|
    mergeBlock = new Block(builder.getUniqueId(), *function);
 | 
						|
 | 
						|
    // Save the current block, so that we can add in the flow control split when
 | 
						|
    // makeEndIf is called.
 | 
						|
    headerBlock = builder.getBuildPoint();
 | 
						|
 | 
						|
    function->addBlock(thenBlock);
 | 
						|
    builder.setBuildPoint(thenBlock);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::If::makeBeginElse()
 | 
						|
{
 | 
						|
    // Close out the "then" by having it jump to the mergeBlock
 | 
						|
    builder.createBranch(mergeBlock);
 | 
						|
 | 
						|
    // Make the first else block and add it to the function
 | 
						|
    elseBlock = new Block(builder.getUniqueId(), *function);
 | 
						|
    function->addBlock(elseBlock);
 | 
						|
 | 
						|
    // Start building the else block
 | 
						|
    builder.setBuildPoint(elseBlock);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::If::makeEndIf()
 | 
						|
{
 | 
						|
    // jump to the merge block
 | 
						|
    builder.createBranch(mergeBlock);
 | 
						|
 | 
						|
    // Go back to the headerBlock and make the flow control split
 | 
						|
    builder.setBuildPoint(headerBlock);
 | 
						|
    builder.createMerge(OpSelectionMerge, mergeBlock, SelectionControlMaskNone);
 | 
						|
    if (elseBlock)
 | 
						|
        builder.createConditionalBranch(condition, thenBlock, elseBlock);
 | 
						|
    else
 | 
						|
        builder.createConditionalBranch(condition, thenBlock, mergeBlock);
 | 
						|
 | 
						|
    // add the merge block to the function
 | 
						|
    function->addBlock(mergeBlock);
 | 
						|
    builder.setBuildPoint(mergeBlock);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::makeSwitch(Id selector, int numSegments, std::vector<int>& caseValues, std::vector<int>& valueIndexToSegment, int defaultSegment,
 | 
						|
                         std::vector<Block*>& segmentBlocks)
 | 
						|
{
 | 
						|
    Function& function = buildPoint->getParent();
 | 
						|
 | 
						|
    // make all the blocks
 | 
						|
    for (int s = 0; s < numSegments; ++s)
 | 
						|
        segmentBlocks.push_back(new Block(getUniqueId(), function));
 | 
						|
 | 
						|
    Block* mergeBlock = new Block(getUniqueId(), function);
 | 
						|
 | 
						|
    // make and insert the switch's selection-merge instruction
 | 
						|
    createMerge(OpSelectionMerge, mergeBlock, SelectionControlMaskNone);
 | 
						|
 | 
						|
    // make the switch instruction
 | 
						|
    Instruction* switchInst = new Instruction(NoResult, NoType, OpSwitch);
 | 
						|
    switchInst->addIdOperand(selector);
 | 
						|
    switchInst->addIdOperand(defaultSegment >= 0 ? segmentBlocks[defaultSegment]->getId() : mergeBlock->getId());
 | 
						|
    for (int i = 0; i < (int)caseValues.size(); ++i) {
 | 
						|
        switchInst->addImmediateOperand(caseValues[i]);
 | 
						|
        switchInst->addIdOperand(segmentBlocks[valueIndexToSegment[i]]->getId());
 | 
						|
    }
 | 
						|
    buildPoint->addInstruction(switchInst);
 | 
						|
 | 
						|
    // push the merge block
 | 
						|
    switchMerges.push(mergeBlock);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::addSwitchBreak()
 | 
						|
{
 | 
						|
    // branch to the top of the merge block stack
 | 
						|
    createBranch(switchMerges.top());
 | 
						|
    createAndSetNoPredecessorBlock("post-switch-break");
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::nextSwitchSegment(std::vector<Block*>& segmentBlock, int nextSegment)
 | 
						|
{
 | 
						|
    int lastSegment = nextSegment - 1;
 | 
						|
    if (lastSegment >= 0) {
 | 
						|
        // Close out previous segment by jumping, if necessary, to next segment
 | 
						|
        if (! buildPoint->isTerminated())
 | 
						|
            createBranch(segmentBlock[nextSegment]);
 | 
						|
    }
 | 
						|
    Block* block = segmentBlock[nextSegment];
 | 
						|
    block->getParent().addBlock(block);
 | 
						|
    setBuildPoint(block);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::endSwitch(std::vector<Block*>& /*segmentBlock*/)
 | 
						|
{
 | 
						|
    // Close out previous segment by jumping, if necessary, to next segment
 | 
						|
    if (! buildPoint->isTerminated())
 | 
						|
        addSwitchBreak();
 | 
						|
 | 
						|
    switchMerges.top()->getParent().addBlock(switchMerges.top());
 | 
						|
    setBuildPoint(switchMerges.top());
 | 
						|
 | 
						|
    switchMerges.pop();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::makeNewLoop(bool loopTestFirst)
 | 
						|
{
 | 
						|
    loops.push(Loop(*this, loopTestFirst));
 | 
						|
    const Loop& loop = loops.top();
 | 
						|
 | 
						|
    // The loop test is always emitted before the loop body.
 | 
						|
    // But if the loop test executes at the bottom of the loop, then
 | 
						|
    // execute the test only on the second and subsequent iterations.
 | 
						|
 | 
						|
    // Remember the block that branches to the loop header.  This
 | 
						|
    // is required for the test-after-body case.
 | 
						|
    Block* preheader = getBuildPoint();
 | 
						|
 | 
						|
    // Branch into the loop
 | 
						|
    createBranch(loop.header);
 | 
						|
 | 
						|
    // Set ourselves inside the loop
 | 
						|
    loop.function->addBlock(loop.header);
 | 
						|
    setBuildPoint(loop.header);
 | 
						|
 | 
						|
    if (!loopTestFirst) {
 | 
						|
        // Generate code to defer the loop test until the second and
 | 
						|
        // subsequent iterations.
 | 
						|
 | 
						|
        // It's always the first iteration when coming from the preheader.
 | 
						|
        // All other branches to this loop header will need to indicate "false",
 | 
						|
        // but we don't yet know where they will come from.
 | 
						|
        loop.isFirstIteration->addIdOperand(makeBoolConstant(true));
 | 
						|
        loop.isFirstIteration->addIdOperand(preheader->getId());
 | 
						|
        getBuildPoint()->addInstruction(loop.isFirstIteration);
 | 
						|
 | 
						|
        // Mark the end of the structured loop. This must exist in the loop header block.
 | 
						|
        createMerge(OpLoopMerge, loop.merge, LoopControlMaskNone);
 | 
						|
 | 
						|
        // Generate code to see if this is the first iteration of the loop.
 | 
						|
        // It needs to be in its own block, since the loop merge and
 | 
						|
        // the selection merge instructions can't both be in the same
 | 
						|
        // (header) block.
 | 
						|
        Block* firstIterationCheck = new Block(getUniqueId(), *loop.function);
 | 
						|
        createBranch(firstIterationCheck);
 | 
						|
        loop.function->addBlock(firstIterationCheck);
 | 
						|
        setBuildPoint(firstIterationCheck);
 | 
						|
 | 
						|
        // Control flow after this "if" normally reconverges at the loop body.
 | 
						|
        // However, the loop test has a "break branch" out of this selection
 | 
						|
        // construct because it can transfer control to the loop merge block.
 | 
						|
        createMerge(OpSelectionMerge, loop.body, SelectionControlMaskNone);
 | 
						|
 | 
						|
        Block* loopTest = new Block(getUniqueId(), *loop.function);
 | 
						|
        createConditionalBranch(loop.isFirstIteration->getResultId(), loop.body, loopTest);
 | 
						|
 | 
						|
        loop.function->addBlock(loopTest);
 | 
						|
        setBuildPoint(loopTest);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void Builder::createLoopTestBranch(Id condition)
 | 
						|
{
 | 
						|
    const Loop& loop = loops.top();
 | 
						|
 | 
						|
    // Generate the merge instruction. If the loop test executes before
 | 
						|
    // the body, then this is a loop merge.  Otherwise the loop merge
 | 
						|
    // has already been generated and this is a conditional merge.
 | 
						|
    if (loop.testFirst) {
 | 
						|
        createMerge(OpLoopMerge, loop.merge, LoopControlMaskNone);
 | 
						|
        // Branching to the "body" block will keep control inside
 | 
						|
        // the loop.
 | 
						|
        createConditionalBranch(condition, loop.body, loop.merge);
 | 
						|
        loop.function->addBlock(loop.body);
 | 
						|
        setBuildPoint(loop.body);
 | 
						|
    } else {
 | 
						|
        // The branch to the loop merge block is the allowed exception
 | 
						|
        // to the structured control flow.  Otherwise, control flow will
 | 
						|
        // continue to loop.body block.  Since that is already the target
 | 
						|
        // of a merge instruction, and a block can't be the target of more
 | 
						|
        // than one merge instruction, we need to make an intermediate block.
 | 
						|
        Block* stayInLoopBlock = new Block(getUniqueId(), *loop.function);
 | 
						|
        createMerge(OpSelectionMerge, stayInLoopBlock, SelectionControlMaskNone);
 | 
						|
 | 
						|
        // This is the loop test.
 | 
						|
        createConditionalBranch(condition, stayInLoopBlock, loop.merge);
 | 
						|
 | 
						|
        // The dummy block just branches to the real loop body.
 | 
						|
        loop.function->addBlock(stayInLoopBlock);
 | 
						|
        setBuildPoint(stayInLoopBlock);
 | 
						|
        createBranchToBody();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void Builder::createBranchToBody()
 | 
						|
{
 | 
						|
    const Loop& loop = loops.top();
 | 
						|
    assert(loop.body);
 | 
						|
 | 
						|
    // This is a reconvergence of control flow, so no merge instruction
 | 
						|
    // is required.
 | 
						|
    createBranch(loop.body);
 | 
						|
    loop.function->addBlock(loop.body);
 | 
						|
    setBuildPoint(loop.body);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::createLoopContinue()
 | 
						|
{
 | 
						|
    createBranchToLoopHeaderFromInside(loops.top());
 | 
						|
    // Set up a block for dead code.
 | 
						|
    createAndSetNoPredecessorBlock("post-loop-continue");
 | 
						|
}
 | 
						|
 | 
						|
// Add an exit (e.g. "break") for the innermost loop that you're in
 | 
						|
void Builder::createLoopExit()
 | 
						|
{
 | 
						|
    createBranch(loops.top().merge);
 | 
						|
    // Set up a block for dead code.
 | 
						|
    createAndSetNoPredecessorBlock("post-loop-break");
 | 
						|
}
 | 
						|
 | 
						|
// Close the innermost loop
 | 
						|
void Builder::closeLoop()
 | 
						|
{
 | 
						|
    const Loop& loop = loops.top();
 | 
						|
 | 
						|
    // Branch back to the top
 | 
						|
    createBranchToLoopHeaderFromInside(loop);
 | 
						|
 | 
						|
    // Add the merge block and set the build point to it
 | 
						|
    loop.function->addBlock(loop.merge);
 | 
						|
    setBuildPoint(loop.merge);
 | 
						|
 | 
						|
    loops.pop();
 | 
						|
}
 | 
						|
 | 
						|
// Create a branch to the header of the given loop, from inside
 | 
						|
// the loop body.
 | 
						|
// Adjusts the phi node for the first-iteration value if needeed.
 | 
						|
void Builder::createBranchToLoopHeaderFromInside(const Loop& loop)
 | 
						|
{
 | 
						|
    createBranch(loop.header);
 | 
						|
    if (loop.isFirstIteration) {
 | 
						|
        loop.isFirstIteration->addIdOperand(makeBoolConstant(false));
 | 
						|
        loop.isFirstIteration->addIdOperand(getBuildPoint()->getId());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void Builder::clearAccessChain()
 | 
						|
{
 | 
						|
    accessChain.base = 0;
 | 
						|
    accessChain.indexChain.clear();
 | 
						|
    accessChain.instr = 0;
 | 
						|
    accessChain.swizzle.clear();
 | 
						|
    accessChain.component = 0;
 | 
						|
    accessChain.resultType = NoType;
 | 
						|
    accessChain.isRValue = false;
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::accessChainPushSwizzle(std::vector<unsigned>& swizzle)
 | 
						|
{
 | 
						|
    // if needed, propagate the swizzle for the current access chain
 | 
						|
    if (accessChain.swizzle.size()) {
 | 
						|
        std::vector<unsigned> oldSwizzle = accessChain.swizzle;
 | 
						|
        accessChain.swizzle.resize(0);
 | 
						|
        for (unsigned int i = 0; i < swizzle.size(); ++i) {
 | 
						|
            accessChain.swizzle.push_back(oldSwizzle[swizzle[i]]);
 | 
						|
        }
 | 
						|
    } else
 | 
						|
        accessChain.swizzle = swizzle;
 | 
						|
 | 
						|
    // determine if we need to track this swizzle anymore
 | 
						|
    simplifyAccessChainSwizzle();
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::accessChainStore(Id rvalue)
 | 
						|
{
 | 
						|
    assert(accessChain.isRValue == false);
 | 
						|
 | 
						|
    Id base = collapseAccessChain();
 | 
						|
 | 
						|
    if (accessChain.swizzle.size() && accessChain.component)
 | 
						|
        MissingFunctionality("simultaneous l-value swizzle and dynamic component selection");
 | 
						|
 | 
						|
    // If swizzle exists, it is out-of-order or not full, we must load the target vector,
 | 
						|
    // extract and insert elements to perform writeMask and/or swizzle.
 | 
						|
    Id source = NoResult;
 | 
						|
    if (accessChain.swizzle.size()) {
 | 
						|
        Id tempBaseId = createLoad(base);
 | 
						|
        source = createLvalueSwizzle(getTypeId(tempBaseId), tempBaseId, rvalue, accessChain.swizzle);
 | 
						|
    }
 | 
						|
 | 
						|
    // dynamic component selection
 | 
						|
    if (accessChain.component) {
 | 
						|
        Id tempBaseId = (source == NoResult) ? createLoad(base) : source;
 | 
						|
        source = createVectorInsertDynamic(tempBaseId, getTypeId(tempBaseId), rvalue, accessChain.component);
 | 
						|
    }
 | 
						|
 | 
						|
    if (source == NoResult)
 | 
						|
        source = rvalue;
 | 
						|
 | 
						|
    createStore(source, base);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
Id Builder::accessChainLoad(Decoration /*precision*/)
 | 
						|
{
 | 
						|
    Id id;
 | 
						|
 | 
						|
    if (accessChain.isRValue) {
 | 
						|
        if (accessChain.indexChain.size() > 0) {
 | 
						|
            mergeAccessChainSwizzle();  // TODO: optimization: look at applying this optimization more widely
 | 
						|
            // if all the accesses are constants, we can use OpCompositeExtract
 | 
						|
            std::vector<unsigned> indexes;
 | 
						|
            bool constant = true;
 | 
						|
            for (int i = 0; i < (int)accessChain.indexChain.size(); ++i) {
 | 
						|
                if (isConstantScalar(accessChain.indexChain[i]))
 | 
						|
                    indexes.push_back(getConstantScalar(accessChain.indexChain[i]));
 | 
						|
                else {
 | 
						|
                    constant = false;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (constant)
 | 
						|
                id = createCompositeExtract(accessChain.base, accessChain.resultType, indexes);
 | 
						|
            else {
 | 
						|
                // make a new function variable for this r-value
 | 
						|
                Id lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable");
 | 
						|
 | 
						|
                // store into it
 | 
						|
                createStore(accessChain.base, lValue);
 | 
						|
 | 
						|
                // move base to the new variable
 | 
						|
                accessChain.base = lValue;
 | 
						|
                accessChain.isRValue = false;
 | 
						|
 | 
						|
                // load through the access chain
 | 
						|
                id = createLoad(collapseAccessChain());
 | 
						|
            }
 | 
						|
        } else
 | 
						|
            id = accessChain.base;
 | 
						|
    } else {
 | 
						|
        // load through the access chain
 | 
						|
        id = createLoad(collapseAccessChain());
 | 
						|
    }
 | 
						|
 | 
						|
    // Done, unless there are swizzles to do
 | 
						|
    if (accessChain.swizzle.size() == 0 && accessChain.component == 0)
 | 
						|
        return id;
 | 
						|
 | 
						|
    Id componentType = getScalarTypeId(accessChain.resultType);
 | 
						|
 | 
						|
    // Do remaining swizzling
 | 
						|
    // First, static swizzling
 | 
						|
    if (accessChain.swizzle.size()) {
 | 
						|
        // static swizzle
 | 
						|
        Id resultType = componentType;
 | 
						|
        if (accessChain.swizzle.size() > 1)
 | 
						|
            resultType = makeVectorType(componentType, (int)accessChain.swizzle.size());
 | 
						|
        id = createRvalueSwizzle(resultType, id, accessChain.swizzle);
 | 
						|
    }
 | 
						|
 | 
						|
    // dynamic single-component selection
 | 
						|
    if (accessChain.component)
 | 
						|
        id = createVectorExtractDynamic(id, componentType, accessChain.component);
 | 
						|
 | 
						|
    return id;
 | 
						|
}
 | 
						|
 | 
						|
Id Builder::accessChainGetLValue()
 | 
						|
{
 | 
						|
    assert(accessChain.isRValue == false);
 | 
						|
 | 
						|
    Id lvalue = collapseAccessChain();
 | 
						|
 | 
						|
    // If swizzle exists, it is out-of-order or not full, we must load the target vector,
 | 
						|
    // extract and insert elements to perform writeMask and/or swizzle.  This does not
 | 
						|
    // go with getting a direct l-value pointer.
 | 
						|
    assert(accessChain.swizzle.size() == 0);
 | 
						|
    assert(accessChain.component == spv::NoResult);
 | 
						|
 | 
						|
    return lvalue;
 | 
						|
}
 | 
						|
 | 
						|
void Builder::dump(std::vector<unsigned int>& out) const
 | 
						|
{
 | 
						|
    // Header, before first instructions:
 | 
						|
    out.push_back(MagicNumber);
 | 
						|
    out.push_back(Version);
 | 
						|
    out.push_back(builderNumber);
 | 
						|
    out.push_back(uniqueId + 1);
 | 
						|
    out.push_back(0);
 | 
						|
 | 
						|
    // First instructions, some created on the spot here:
 | 
						|
    if (source != SourceLanguageUnknown) {
 | 
						|
        Instruction sourceInst(0, 0, OpSource);
 | 
						|
        sourceInst.addImmediateOperand(source);
 | 
						|
        sourceInst.addImmediateOperand(sourceVersion);
 | 
						|
        sourceInst.dump(out);
 | 
						|
    }
 | 
						|
    for (int e = 0; e < (int)extensions.size(); ++e) {
 | 
						|
        Instruction extInst(0, 0, OpSourceExtension);
 | 
						|
        extInst.addStringOperand(extensions[e]);
 | 
						|
        extInst.dump(out);
 | 
						|
    }
 | 
						|
 | 
						|
    // TBD: OpExtension ...
 | 
						|
 | 
						|
    // Capabilities
 | 
						|
    for (auto cap : capabilities) {
 | 
						|
        Instruction capInst(0, 0, OpCapability);
 | 
						|
        capInst.addImmediateOperand(cap);
 | 
						|
        capInst.dump(out);
 | 
						|
    }
 | 
						|
 | 
						|
    dumpInstructions(out, imports);
 | 
						|
    Instruction memInst(0, 0, OpMemoryModel);
 | 
						|
    memInst.addImmediateOperand(addressModel);
 | 
						|
    memInst.addImmediateOperand(memoryModel);
 | 
						|
    memInst.dump(out);
 | 
						|
 | 
						|
    // Instructions saved up while building:
 | 
						|
    dumpInstructions(out, entryPoints);
 | 
						|
    dumpInstructions(out, executionModes);
 | 
						|
    dumpInstructions(out, names);
 | 
						|
    dumpInstructions(out, lines);
 | 
						|
    dumpInstructions(out, decorations);
 | 
						|
    dumpInstructions(out, constantsTypesGlobals);
 | 
						|
    dumpInstructions(out, externals);
 | 
						|
 | 
						|
    // The functions
 | 
						|
    module.dump(out);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Protected methods.
 | 
						|
//
 | 
						|
 | 
						|
Id Builder::collapseAccessChain()
 | 
						|
{
 | 
						|
    // TODO: bring in an individual component swizzle here, so that a pointer 
 | 
						|
    // all the way to the component level can be created.
 | 
						|
    assert(accessChain.isRValue == false);
 | 
						|
 | 
						|
    if (accessChain.indexChain.size() > 0) {
 | 
						|
        if (accessChain.instr == 0) {
 | 
						|
            StorageClass storageClass = (StorageClass)module.getStorageClass(getTypeId(accessChain.base));
 | 
						|
            accessChain.instr = createAccessChain(storageClass, accessChain.base, accessChain.indexChain);
 | 
						|
        }
 | 
						|
 | 
						|
        return accessChain.instr;
 | 
						|
    } else
 | 
						|
        return accessChain.base;
 | 
						|
}
 | 
						|
 | 
						|
// clear out swizzle if it is redundant
 | 
						|
void Builder::simplifyAccessChainSwizzle()
 | 
						|
{
 | 
						|
    // If the swizzle has fewer components than the vector, it is subsetting, and must stay
 | 
						|
    // to preserve that fact.
 | 
						|
    if (getNumTypeComponents(accessChain.resultType) > (int)accessChain.swizzle.size())
 | 
						|
        return;
 | 
						|
 | 
						|
    // if components are out of order, it is a swizzle
 | 
						|
    for (unsigned int i = 0; i < accessChain.swizzle.size(); ++i) {
 | 
						|
        if (i != accessChain.swizzle[i])
 | 
						|
            return;
 | 
						|
    }
 | 
						|
 | 
						|
    // otherwise, there is no need to track this swizzle
 | 
						|
    accessChain.swizzle.clear();
 | 
						|
}
 | 
						|
 | 
						|
// clear out swizzle if it can become part of the indexes
 | 
						|
void Builder::mergeAccessChainSwizzle()
 | 
						|
{
 | 
						|
    // is there even a chance of doing something?  Need a single-component swizzle
 | 
						|
    if ((accessChain.swizzle.size() > 1) ||
 | 
						|
        (accessChain.swizzle.size() == 0 && accessChain.component == 0))
 | 
						|
        return;
 | 
						|
 | 
						|
    // TODO: optimization: remove this, but for now confine this to non-dynamic accesses
 | 
						|
    // (the above test is correct when this is removed.)
 | 
						|
    if (accessChain.component)
 | 
						|
        return;
 | 
						|
 | 
						|
    // move the swizzle over to the indexes
 | 
						|
    if (accessChain.swizzle.size() == 1)
 | 
						|
        accessChain.indexChain.push_back(makeUintConstant(accessChain.swizzle.front()));
 | 
						|
    else
 | 
						|
        accessChain.indexChain.push_back(accessChain.component);
 | 
						|
    accessChain.resultType = getScalarTypeId(accessChain.resultType);
 | 
						|
 | 
						|
    // now there is no need to track this swizzle
 | 
						|
    accessChain.component = NoResult;
 | 
						|
    accessChain.swizzle.clear();
 | 
						|
}
 | 
						|
 | 
						|
// Utility method for creating a new block and setting the insert point to
 | 
						|
// be in it. This is useful for flow-control operations that need a "dummy"
 | 
						|
// block proceeding them (e.g. instructions after a discard, etc).
 | 
						|
void Builder::createAndSetNoPredecessorBlock(const char* /*name*/)
 | 
						|
{
 | 
						|
    Block* block = new Block(getUniqueId(), buildPoint->getParent());
 | 
						|
    block->setUnreachable();
 | 
						|
    buildPoint->getParent().addBlock(block);
 | 
						|
    setBuildPoint(block);
 | 
						|
 | 
						|
    //if (name)
 | 
						|
    //    addName(block->getId(), name);
 | 
						|
}
 | 
						|
 | 
						|
// Comments in header
 | 
						|
void Builder::createBranch(Block* block)
 | 
						|
{
 | 
						|
    Instruction* branch = new Instruction(OpBranch);
 | 
						|
    branch->addIdOperand(block->getId());
 | 
						|
    buildPoint->addInstruction(branch);
 | 
						|
    block->addPredecessor(buildPoint);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::createMerge(Op mergeCode, Block* mergeBlock, unsigned int control)
 | 
						|
{
 | 
						|
    Instruction* merge = new Instruction(mergeCode);
 | 
						|
    merge->addIdOperand(mergeBlock->getId());
 | 
						|
    merge->addImmediateOperand(control);
 | 
						|
    buildPoint->addInstruction(merge);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock)
 | 
						|
{
 | 
						|
    Instruction* branch = new Instruction(OpBranchConditional);
 | 
						|
    branch->addIdOperand(condition);
 | 
						|
    branch->addIdOperand(thenBlock->getId());
 | 
						|
    branch->addIdOperand(elseBlock->getId());
 | 
						|
    buildPoint->addInstruction(branch);
 | 
						|
    thenBlock->addPredecessor(buildPoint);
 | 
						|
    elseBlock->addPredecessor(buildPoint);
 | 
						|
}
 | 
						|
 | 
						|
void Builder::dumpInstructions(std::vector<unsigned int>& out, const std::vector<Instruction*>& instructions) const
 | 
						|
{
 | 
						|
    for (int i = 0; i < (int)instructions.size(); ++i) {
 | 
						|
        instructions[i]->dump(out);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void TbdFunctionality(const char* tbd)
 | 
						|
{
 | 
						|
    static std::unordered_set<const char*> issued;
 | 
						|
 | 
						|
    if (issued.find(tbd) == issued.end()) {
 | 
						|
        printf("TBD functionality: %s\n", tbd);
 | 
						|
        issued.insert(tbd);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void MissingFunctionality(const char* fun)
 | 
						|
{
 | 
						|
    printf("Missing functionality: %s\n", fun);
 | 
						|
    exit(1);
 | 
						|
}
 | 
						|
 | 
						|
Builder::Loop::Loop(Builder& builder, bool testFirstArg)
 | 
						|
  : function(&builder.getBuildPoint()->getParent()),
 | 
						|
    header(new Block(builder.getUniqueId(), *function)),
 | 
						|
    merge(new Block(builder.getUniqueId(), *function)),
 | 
						|
    body(new Block(builder.getUniqueId(), *function)),
 | 
						|
    testFirst(testFirstArg),
 | 
						|
    isFirstIteration(testFirst
 | 
						|
                     ? nullptr
 | 
						|
                     : new Instruction(builder.getUniqueId(), builder.makeBoolType(), OpPhi))
 | 
						|
  {}
 | 
						|
 | 
						|
}; // end spv namespace
 |