9993 lines
		
	
	
		
			416 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			9993 lines
		
	
	
		
			416 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (C) 2017-2018 Google, Inc.
 | |
| // Copyright (C) 2017 LunarG, Inc.
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions
 | |
| // are met:
 | |
| //
 | |
| //    Redistributions of source code must retain the above copyright
 | |
| //    notice, this list of conditions and the following disclaimer.
 | |
| //
 | |
| //    Redistributions in binary form must reproduce the above
 | |
| //    copyright notice, this list of conditions and the following
 | |
| //    disclaimer in the documentation and/or other materials provided
 | |
| //    with the distribution.
 | |
| //
 | |
| //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
 | |
| //    contributors may be used to endorse or promote products derived
 | |
| //    from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | |
| // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
| // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
| // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
| // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | |
| // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| // POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| 
 | |
| #include "hlslParseHelper.h"
 | |
| #include "hlslScanContext.h"
 | |
| #include "hlslGrammar.h"
 | |
| #include "hlslAttributes.h"
 | |
| 
 | |
| #include "../glslang/Include/Common.h"
 | |
| #include "../glslang/MachineIndependent/Scan.h"
 | |
| #include "../glslang/MachineIndependent/preprocessor/PpContext.h"
 | |
| 
 | |
| #include "../glslang/OSDependent/osinclude.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <functional>
 | |
| #include <cctype>
 | |
| #include <array>
 | |
| #include <set>
 | |
| 
 | |
| namespace glslang {
 | |
| 
 | |
| HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
 | |
|                                    int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
 | |
|                                    TInfoSink& infoSink,
 | |
|                                    const TString sourceEntryPointName,
 | |
|                                    bool forwardCompatible, EShMessages messages) :
 | |
|     TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
 | |
|                       forwardCompatible, messages, &sourceEntryPointName),
 | |
|     annotationNestingLevel(0),
 | |
|     inputPatch(nullptr),
 | |
|     nextInLocation(0), nextOutLocation(0),
 | |
|     entryPointFunction(nullptr),
 | |
|     entryPointFunctionBody(nullptr),
 | |
|     gsStreamOutput(nullptr),
 | |
|     clipDistanceOutput(nullptr),
 | |
|     cullDistanceOutput(nullptr),
 | |
|     clipDistanceInput(nullptr),
 | |
|     cullDistanceInput(nullptr)
 | |
| {
 | |
|     globalUniformDefaults.clear();
 | |
|     globalUniformDefaults.layoutMatrix = ElmRowMajor;
 | |
|     globalUniformDefaults.layoutPacking = ElpStd140;
 | |
| 
 | |
|     globalBufferDefaults.clear();
 | |
|     globalBufferDefaults.layoutMatrix = ElmRowMajor;
 | |
|     globalBufferDefaults.layoutPacking = ElpStd430;
 | |
| 
 | |
|     globalInputDefaults.clear();
 | |
|     globalOutputDefaults.clear();
 | |
| 
 | |
|     clipSemanticNSizeIn.fill(0);
 | |
|     cullSemanticNSizeIn.fill(0);
 | |
|     clipSemanticNSizeOut.fill(0);
 | |
|     cullSemanticNSizeOut.fill(0);
 | |
| 
 | |
|     // "Shaders in the transform
 | |
|     // feedback capturing mode have an initial global default of
 | |
|     //     layout(xfb_buffer = 0) out;"
 | |
|     if (language == EShLangVertex ||
 | |
|         language == EShLangTessControl ||
 | |
|         language == EShLangTessEvaluation ||
 | |
|         language == EShLangGeometry)
 | |
|         globalOutputDefaults.layoutXfbBuffer = 0;
 | |
| 
 | |
|     if (language == EShLangGeometry)
 | |
|         globalOutputDefaults.layoutStream = 0;
 | |
| }
 | |
| 
 | |
| HlslParseContext::~HlslParseContext()
 | |
| {
 | |
| }
 | |
| 
 | |
| void HlslParseContext::initializeExtensionBehavior()
 | |
| {
 | |
|     TParseContextBase::initializeExtensionBehavior();
 | |
| 
 | |
|     // HLSL allows #line by default.
 | |
|     extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::setLimits(const TBuiltInResource& r)
 | |
| {
 | |
|     resources = r;
 | |
|     intermediate.setLimits(resources);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Parse an array of strings using the parser in HlslRules.
 | |
| //
 | |
| // Returns true for successful acceptance of the shader, false if any errors.
 | |
| //
 | |
| bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
 | |
| {
 | |
|     currentScanner = &input;
 | |
|     ppContext.setInput(input, versionWillBeError);
 | |
| 
 | |
|     HlslScanContext scanContext(*this, ppContext);
 | |
|     HlslGrammar grammar(scanContext, *this);
 | |
|     if (!grammar.parse()) {
 | |
|         // Print a message formated such that if you click on the message it will take you right to
 | |
|         // the line through most UIs.
 | |
|         const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
 | |
|         infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
 | |
|                       << ", HLSL parsing failed.\n";
 | |
|         ++numErrors;
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     finish();
 | |
| 
 | |
|     return numErrors == 0;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Return true if this l-value node should be converted in some manner.
 | |
| // For instance: turning a load aggregate into a store in an l-value.
 | |
| //
 | |
| bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
 | |
| {
 | |
|     if (node == nullptr || node->getAsTyped() == nullptr)
 | |
|         return false;
 | |
| 
 | |
|     const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
 | |
|     const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
 | |
| 
 | |
|     // If it's a swizzled/indexed aggregate, look at the left node instead.
 | |
|     if (lhsAsBinary != nullptr &&
 | |
|         (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
 | |
|         lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
 | |
|     if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
 | |
|                                               TTypeList* newTypeList)
 | |
| {
 | |
|     newTypeList = nullptr;
 | |
|     correctUniform(memberType.getQualifier());
 | |
|     if (memberType.isStruct()) {
 | |
|         auto it = ioTypeMap.find(memberType.getStruct());
 | |
|         if (it != ioTypeMap.end() && it->second.uniform)
 | |
|             newTypeList = it->second.uniform;
 | |
|     }
 | |
|     TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Return a TLayoutFormat corresponding to the given texture type.
 | |
| //
 | |
| TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
 | |
| {
 | |
|     if (txType.isStruct()) {
 | |
|         // TODO: implement.
 | |
|         error(loc, "unimplemented: structure type in image or buffer", "", "");
 | |
|         return ElfNone;
 | |
|     }
 | |
| 
 | |
|     const int components = txType.getVectorSize();
 | |
|     const TBasicType txBasicType = txType.getBasicType();
 | |
| 
 | |
|     const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
 | |
|         if (intermediate.getNoStorageFormat())
 | |
|             return ElfNone;
 | |
| 
 | |
|         return components == 1 ? v1 :
 | |
|                components == 2 ? v2 : v4;
 | |
|     };
 | |
| 
 | |
|     switch (txBasicType) {
 | |
|     case EbtFloat: return selectFormat(ElfR32f,  ElfRg32f,  ElfRgba32f);
 | |
|     case EbtInt:   return selectFormat(ElfR32i,  ElfRg32i,  ElfRgba32i);
 | |
|     case EbtUint:  return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
 | |
|     default:
 | |
|         error(loc, "unknown basic type in image format", "", "");
 | |
|         return ElfNone;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Both test and if necessary, spit out an error, to see if the node is really
 | |
| // an l-value that can be operated on this way.
 | |
| //
 | |
| // Returns true if there was an error.
 | |
| //
 | |
| bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
 | |
| {
 | |
|     if (shouldConvertLValue(node)) {
 | |
|         // if we're writing to a texture, it must be an RW form.
 | |
| 
 | |
|         TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
 | |
|         TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
 | |
| 
 | |
|         if (!object->getType().getSampler().isImage()) {
 | |
|             error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // We tolerate samplers as l-values, even though they are nominally
 | |
|     // illegal, because we expect a later optimization to eliminate them.
 | |
|     if (node->getType().getBasicType() == EbtSampler) {
 | |
|         intermediate.setNeedsLegalization();
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Let the base class check errors
 | |
|     return TParseContextBase::lValueErrorCheck(loc, op, node);
 | |
| }
 | |
| 
 | |
| //
 | |
| // This function handles l-value conversions and verifications.  It uses, but is not synonymous
 | |
| // with lValueErrorCheck.  That function accepts an l-value directly, while this one must be
 | |
| // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
 | |
| // series of other image operations.
 | |
| //
 | |
| // Most things are passed through unmodified, except for error checking.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
 | |
| {
 | |
|     if (node == nullptr)
 | |
|         return nullptr;
 | |
| 
 | |
|     TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
 | |
|     TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
 | |
|     TIntermAggregate* sequence = nullptr;
 | |
| 
 | |
|     TIntermTyped* lhs = nodeAsUnary  ? nodeAsUnary->getOperand() :
 | |
|                         nodeAsBinary ? nodeAsBinary->getLeft() :
 | |
|                         nullptr;
 | |
| 
 | |
|     // Early bail out if there is no conversion to apply
 | |
|     if (!shouldConvertLValue(lhs)) {
 | |
|         if (lhs != nullptr)
 | |
|             if (lValueErrorCheck(loc, op, lhs))
 | |
|                 return nullptr;
 | |
|         return node;
 | |
|     }
 | |
| 
 | |
|     // *** If we get here, we're going to apply some conversion to an l-value.
 | |
| 
 | |
|     // Helper to create a load.
 | |
|     const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
 | |
|         TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
 | |
|         loadOp->setLoc(loc);
 | |
|         loadOp->getSequence().push_back(object);
 | |
|         loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
 | |
|         loadOp->setType(derefType);
 | |
| 
 | |
|         sequence = intermediate.growAggregate(sequence,
 | |
|                                               intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
 | |
|                                               loc);
 | |
|     };
 | |
| 
 | |
|     // Helper to create a store.
 | |
|     const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
 | |
|         TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
 | |
|         storeOp->getSequence().push_back(object);
 | |
|         storeOp->getSequence().push_back(coord);
 | |
|         storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
 | |
|         storeOp->setLoc(loc);
 | |
|         storeOp->setType(TType(EbtVoid));
 | |
| 
 | |
|         sequence = intermediate.growAggregate(sequence, storeOp);
 | |
|     };
 | |
| 
 | |
|     // Helper to create an assign.
 | |
|     const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
 | |
|         sequence = intermediate.growAggregate(sequence,
 | |
|                                               intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
 | |
|                                               loc);
 | |
|     };
 | |
| 
 | |
|     // Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
 | |
|     const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
 | |
|         // Add a trailing use of the temp, so the sequence returns the proper value.
 | |
|         sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
 | |
|         sequence->setOperator(EOpSequence);
 | |
|         sequence->setLoc(loc);
 | |
|         sequence->setType(derefType);
 | |
| 
 | |
|         return sequence;
 | |
|     };
 | |
| 
 | |
|     // Helper to add unary op
 | |
|     const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
 | |
|         sequence = intermediate.growAggregate(sequence,
 | |
|                                               intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
 | |
|                                                                         rhsTmp->getType()),
 | |
|                                               loc);
 | |
|     };
 | |
| 
 | |
|     // Return true if swizzle or index writes all components of the given variable.
 | |
|     const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
 | |
|         if (swizzle == nullptr)  // not a swizzle or index
 | |
|             return true;
 | |
| 
 | |
|         // Track which components are being set.
 | |
|         std::array<bool, 4> compIsSet;
 | |
|         compIsSet.fill(false);
 | |
| 
 | |
|         const TIntermConstantUnion* asConst     = swizzle->getRight()->getAsConstantUnion();
 | |
|         const TIntermAggregate*     asAggregate = swizzle->getRight()->getAsAggregate();
 | |
| 
 | |
|         // This could be either a direct index, or a swizzle.
 | |
|         if (asConst) {
 | |
|             compIsSet[asConst->getConstArray()[0].getIConst()] = true;
 | |
|         } else if (asAggregate) {
 | |
|             const TIntermSequence& seq = asAggregate->getSequence();
 | |
|             for (int comp=0; comp<int(seq.size()); ++comp)
 | |
|                 compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
 | |
|         } else {
 | |
|             assert(0);
 | |
|         }
 | |
| 
 | |
|         // Return true if all components are being set by the index or swizzle
 | |
|         return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
 | |
|                            [](bool isSet) { return isSet; } );
 | |
|     };
 | |
| 
 | |
|     // Create swizzle matching input swizzle
 | |
|     const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
 | |
|         if (swizzle)
 | |
|             return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
 | |
|         else
 | |
|             return var;
 | |
|     };
 | |
| 
 | |
|     TIntermBinary*    lhsAsBinary    = lhs->getAsBinaryNode();
 | |
|     TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
 | |
|     bool lhsIsSwizzle = false;
 | |
| 
 | |
|     // If it's a swizzled L-value, remember the swizzle, and use the LHS.
 | |
|     if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
 | |
|         lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
 | |
|         lhsIsSwizzle = true;
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
 | |
|     TIntermTyped* coord  = lhsAsAggregate->getSequence()[1]->getAsTyped();
 | |
| 
 | |
|     const TSampler& texSampler = object->getType().getSampler();
 | |
| 
 | |
|     TType objDerefType;
 | |
|     getTextureReturnType(texSampler, objDerefType);
 | |
| 
 | |
|     if (nodeAsBinary) {
 | |
|         TIntermTyped* rhs = nodeAsBinary->getRight();
 | |
|         const TOperator assignOp = nodeAsBinary->getOp();
 | |
| 
 | |
|         bool isModifyOp = false;
 | |
| 
 | |
|         switch (assignOp) {
 | |
|         case EOpAddAssign:
 | |
|         case EOpSubAssign:
 | |
|         case EOpMulAssign:
 | |
|         case EOpVectorTimesMatrixAssign:
 | |
|         case EOpVectorTimesScalarAssign:
 | |
|         case EOpMatrixTimesScalarAssign:
 | |
|         case EOpMatrixTimesMatrixAssign:
 | |
|         case EOpDivAssign:
 | |
|         case EOpModAssign:
 | |
|         case EOpAndAssign:
 | |
|         case EOpInclusiveOrAssign:
 | |
|         case EOpExclusiveOrAssign:
 | |
|         case EOpLeftShiftAssign:
 | |
|         case EOpRightShiftAssign:
 | |
|             isModifyOp = true;
 | |
|             // fall through...
 | |
|         case EOpAssign:
 | |
|             {
 | |
|                 // Since this is an lvalue, we'll convert an image load to a sequence like this
 | |
|                 // (to still provide the value):
 | |
|                 //   OpSequence
 | |
|                 //      OpImageStore(object, lhs, rhs)
 | |
|                 //      rhs
 | |
|                 // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
 | |
|                 // so we'll convert instead to this:
 | |
|                 //   OpSequence
 | |
|                 //      rhsTmp = rhs
 | |
|                 //      OpImageStore(object, coord, rhsTmp)
 | |
|                 //      rhsTmp
 | |
|                 // If this is a read-modify-write op, like +=, we issue:
 | |
|                 //   OpSequence
 | |
|                 //      coordtmp = load's param1
 | |
|                 //      rhsTmp = OpImageLoad(object, coordTmp)
 | |
|                 //      rhsTmp op= rhs
 | |
|                 //      OpImageStore(object, coordTmp, rhsTmp)
 | |
|                 //      rhsTmp
 | |
|                 //
 | |
|                 // If the lvalue is swizzled, we apply that when writing the temp variable, like so:
 | |
|                 //    ...
 | |
|                 //    rhsTmp.some_swizzle = ...
 | |
|                 // For partial writes, an error is generated.
 | |
| 
 | |
|                 TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
 | |
|                 TIntermTyped* coordTmp = coord;
 | |
| 
 | |
|                 if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
 | |
|                     rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
 | |
| 
 | |
|                     // Partial updates not yet supported
 | |
|                     if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
 | |
|                         error(loc, "unimplemented: partial image updates", "", "");
 | |
|                     }
 | |
| 
 | |
|                     // Assign storeTemp = rhs
 | |
|                     if (isModifyOp) {
 | |
|                         // We have to make a temp var for the coordinate, to avoid evaluating it twice.
 | |
|                         coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
 | |
|                         makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
 | |
|                         makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
 | |
|                     }
 | |
| 
 | |
|                     // rhsTmp op= rhs.
 | |
|                     makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
 | |
|                 }
 | |
| 
 | |
|                 makeStore(object, coordTmp, rhsTmp);         // add a store
 | |
|                 return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
 | |
|             }
 | |
| 
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (nodeAsUnary) {
 | |
|         const TOperator assignOp = nodeAsUnary->getOp();
 | |
| 
 | |
|         switch (assignOp) {
 | |
|         case EOpPreIncrement:
 | |
|         case EOpPreDecrement:
 | |
|             {
 | |
|                 // We turn this into:
 | |
|                 //   OpSequence
 | |
|                 //      coordtmp = load's param1
 | |
|                 //      rhsTmp = OpImageLoad(object, coordTmp)
 | |
|                 //      rhsTmp op
 | |
|                 //      OpImageStore(object, coordTmp, rhsTmp)
 | |
|                 //      rhsTmp
 | |
| 
 | |
|                 TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
 | |
|                 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
 | |
| 
 | |
|                 makeBinary(EOpAssign, coordTmp, coord);           // coordtmp = load[param1]
 | |
|                 makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
 | |
|                 makeUnary(assignOp, rhsTmp);                      // op rhsTmp
 | |
|                 makeStore(object, coordTmp, rhsTmp);              // OpImageStore(object, coordTmp, rhsTmp)
 | |
|                 return finishSequence(rhsTmp, objDerefType);      // return rhsTmp from sequence
 | |
|             }
 | |
| 
 | |
|         case EOpPostIncrement:
 | |
|         case EOpPostDecrement:
 | |
|             {
 | |
|                 // We turn this into:
 | |
|                 //   OpSequence
 | |
|                 //      coordtmp = load's param1
 | |
|                 //      rhsTmp1 = OpImageLoad(object, coordTmp)
 | |
|                 //      rhsTmp2 = rhsTmp1
 | |
|                 //      rhsTmp2 op
 | |
|                 //      OpImageStore(object, coordTmp, rhsTmp2)
 | |
|                 //      rhsTmp1 (pre-op value)
 | |
|                 TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre",  objDerefType);
 | |
|                 TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
 | |
|                 TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
 | |
| 
 | |
|                 makeBinary(EOpAssign, coordTmp, coord);            // coordtmp = load[param1]
 | |
|                 makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
 | |
|                 makeBinary(EOpAssign, rhsTmp2, rhsTmp1);           // rhsTmp2 = rhsTmp1
 | |
|                 makeUnary(assignOp, rhsTmp2);                      // rhsTmp op
 | |
|                 makeStore(object, coordTmp, rhsTmp2);              // OpImageStore(object, coordTmp, rhsTmp2)
 | |
|                 return finishSequence(rhsTmp1, objDerefType);      // return rhsTmp from sequence
 | |
|             }
 | |
| 
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (lhs)
 | |
|         if (lValueErrorCheck(loc, op, lhs))
 | |
|             return nullptr;
 | |
| 
 | |
|     return node;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
 | |
| {
 | |
|     if (pragmaCallback)
 | |
|         pragmaCallback(loc.line, tokens);
 | |
| 
 | |
|     if (tokens.size() == 0)
 | |
|         return;
 | |
| 
 | |
|     // These pragmas are case insensitive in HLSL, so we'll compare in lower case.
 | |
|     TVector<TString> lowerTokens = tokens;
 | |
| 
 | |
|     for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it)
 | |
|         std::transform(it->begin(), it->end(), it->begin(), ::tolower);
 | |
| 
 | |
|     // Handle pack_matrix
 | |
|     if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") {
 | |
|         // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense.
 | |
|         // Row major becomes column major and vice versa.
 | |
| 
 | |
|         if (lowerTokens[2] == "row_major") {
 | |
|             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor;
 | |
|         } else if (lowerTokens[2] == "column_major") {
 | |
|             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
 | |
|         } else {
 | |
|             // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major)
 | |
|             warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), "");
 | |
|             globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Handle once
 | |
|     if (lowerTokens[0] == "once") {
 | |
|         warn(loc, "not implemented", "#pragma once", "");
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Look at a '.' matrix selector string and change it into components
 | |
| // for a matrix. There are two types:
 | |
| //
 | |
| //   _21    second row, first column (one based)
 | |
| //   _m21   third row, second column (zero based)
 | |
| //
 | |
| // Returns true if there is no error.
 | |
| //
 | |
| bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
 | |
|                                                   TSwizzleSelectors<TMatrixSelector>& components)
 | |
| {
 | |
|     int startPos[MaxSwizzleSelectors];
 | |
|     int numComps = 0;
 | |
|     TString compString = fields;
 | |
| 
 | |
|     // Find where each component starts,
 | |
|     // recording the first character position after the '_'.
 | |
|     for (size_t c = 0; c < compString.size(); ++c) {
 | |
|         if (compString[c] == '_') {
 | |
|             if (numComps >= MaxSwizzleSelectors) {
 | |
|                 error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
 | |
|                 return false;
 | |
|             }
 | |
|             if (c > compString.size() - 3 ||
 | |
|                     ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
 | |
|                 error(loc, "matrix component swizzle missing", compString.c_str(), "");
 | |
|                 return false;
 | |
|             }
 | |
|             startPos[numComps++] = (int)c + 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Process each component
 | |
|     for (int i = 0; i < numComps; ++i) {
 | |
|         int pos = startPos[i];
 | |
|         int bias = -1;
 | |
|         if (compString[pos] == 'm' || compString[pos] == 'M') {
 | |
|             bias = 0;
 | |
|             ++pos;
 | |
|         }
 | |
|         TMatrixSelector comp;
 | |
|         comp.coord1 = compString[pos+0] - '0' + bias;
 | |
|         comp.coord2 = compString[pos+1] - '0' + bias;
 | |
|         if (comp.coord1 < 0 || comp.coord1 >= cols) {
 | |
|             error(loc, "matrix row component out of range", compString.c_str(), "");
 | |
|             return false;
 | |
|         }
 | |
|         if (comp.coord2 < 0 || comp.coord2 >= rows) {
 | |
|             error(loc, "matrix column component out of range", compString.c_str(), "");
 | |
|             return false;
 | |
|         }
 | |
|         components.push_back(comp);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // If the 'comps' express a column of a matrix,
 | |
| // return the column.  Column means the first coords all match.
 | |
| //
 | |
| // Otherwise, return -1.
 | |
| //
 | |
| int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
 | |
| {
 | |
|     int col = -1;
 | |
| 
 | |
|     // right number of comps?
 | |
|     if (selector.size() != rows)
 | |
|         return -1;
 | |
| 
 | |
|     // all comps in the same column?
 | |
|     // rows in order?
 | |
|     col = selector[0].coord1;
 | |
|     for (int i = 0; i < rows; ++i) {
 | |
|         if (col != selector[i].coord1)
 | |
|             return -1;
 | |
|         if (i != selector[i].coord2)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     return col;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a variable identifier in the grammar.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
 | |
| {
 | |
|     int thisDepth;
 | |
|     TSymbol* symbol = symbolTable.find(*string, thisDepth);
 | |
|     if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
 | |
|         error(loc, "expected symbol, not user-defined type", string->c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     const TVariable* variable = nullptr;
 | |
|     const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
 | |
|     TIntermTyped* node = nullptr;
 | |
|     if (anon) {
 | |
|         // It was a member of an anonymous container, which could be a 'this' structure.
 | |
| 
 | |
|         // Create a subtree for its dereference.
 | |
|         if (thisDepth > 0) {
 | |
|             variable = getImplicitThis(thisDepth);
 | |
|             if (variable == nullptr)
 | |
|                 error(loc, "cannot access member variables (static member function?)", "this", "");
 | |
|         }
 | |
|         if (variable == nullptr)
 | |
|             variable = anon->getAnonContainer().getAsVariable();
 | |
| 
 | |
|         TIntermTyped* container = intermediate.addSymbol(*variable, loc);
 | |
|         TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
 | |
|         node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
 | |
| 
 | |
|         node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
 | |
|         if (node->getType().hiddenMember())
 | |
|             error(loc, "member of nameless block was not redeclared", string->c_str(), "");
 | |
|     } else {
 | |
|         // Not a member of an anonymous container.
 | |
| 
 | |
|         // The symbol table search was done in the lexical phase.
 | |
|         // See if it was a variable.
 | |
|         variable = symbol ? symbol->getAsVariable() : nullptr;
 | |
|         if (variable) {
 | |
|             if ((variable->getType().getBasicType() == EbtBlock ||
 | |
|                 variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
 | |
|                 error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
 | |
|                 variable = nullptr;
 | |
|             }
 | |
|         } else {
 | |
|             if (symbol)
 | |
|                 error(loc, "variable name expected", string->c_str(), "");
 | |
|         }
 | |
| 
 | |
|         // Recovery, if it wasn't found or was not a variable.
 | |
|         if (variable == nullptr) {
 | |
|             error(loc, "unknown variable", string->c_str(), "");
 | |
|             variable = new TVariable(string, TType(EbtVoid));
 | |
|         }
 | |
| 
 | |
|         if (variable->getType().getQualifier().isFrontEndConstant())
 | |
|             node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
 | |
|         else
 | |
|             node = intermediate.addSymbol(*variable, loc);
 | |
|     }
 | |
| 
 | |
|     if (variable->getType().getQualifier().isIo())
 | |
|         intermediate.addIoAccessed(*string);
 | |
| 
 | |
|     return node;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle operator[] on any objects it applies to.  Currently:
 | |
| //    Textures
 | |
| //    Buffers
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
 | |
| {
 | |
|     // handle r-value operator[] on textures and images.  l-values will be processed later.
 | |
|     if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
 | |
|         const TSampler& sampler = base->getType().getSampler();
 | |
|         if (sampler.isImage() || sampler.isTexture()) {
 | |
|             if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
 | |
|                 // The first operator[] to a .mips[] sequence is the mip level.  We'll remember it.
 | |
|                 mipsOperatorMipArg.back().mipLevel = index;
 | |
|                 return base;  // next [] index is to the same base.
 | |
|             } else {
 | |
|                 TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
 | |
| 
 | |
|                 TType sampReturnType;
 | |
|                 getTextureReturnType(sampler, sampReturnType);
 | |
| 
 | |
|                 load->setType(sampReturnType);
 | |
|                 load->setLoc(loc);
 | |
|                 load->getSequence().push_back(base);
 | |
|                 load->getSequence().push_back(index);
 | |
| 
 | |
|                 // Textures need a MIP.  If we saw one go by, use it.  Otherwise, use zero.
 | |
|                 if (sampler.isTexture()) {
 | |
|                     if (! mipsOperatorMipArg.empty()) {
 | |
|                         load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
 | |
|                         mipsOperatorMipArg.pop_back();
 | |
|                     } else {
 | |
|                         load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 return load;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Handle operator[] on structured buffers: this indexes into the array element of the buffer.
 | |
|     // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
 | |
|     TIntermTyped* sbArray = indexStructBufferContent(loc, base);
 | |
|     if (sbArray != nullptr) {
 | |
|         if (sbArray == nullptr)
 | |
|             return nullptr;
 | |
| 
 | |
|         // Now we'll apply the [] index to that array
 | |
|         const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
 | |
| 
 | |
|         TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
 | |
|         const TType derefType(sbArray->getType(), 0);
 | |
|         element->setType(derefType);
 | |
|         return element;
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
 | |
| TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
 | |
| {
 | |
|     const TBasicType indexBasicType = index->getType().getBasicType();
 | |
|     const int vecSize = index->getType().getVectorSize();
 | |
| 
 | |
|     // We can use int types directly as the index
 | |
|     if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
 | |
|         indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
 | |
|         return index;
 | |
| 
 | |
|     // Cast index to unsigned integer if it isn't one.
 | |
|     return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a base[index] dereference in the grammar.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
 | |
| {
 | |
|     index = makeIntegerIndex(index);
 | |
| 
 | |
|     if (index == nullptr) {
 | |
|         error(loc, " unknown index type ", "", "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* result = handleBracketOperator(loc, base, index);
 | |
| 
 | |
|     if (result != nullptr)
 | |
|         return result;  // it was handled as an operator[]
 | |
| 
 | |
|     bool flattened = false;
 | |
|     int indexValue = 0;
 | |
|     if (index->getQualifier().isFrontEndConstant())
 | |
|         indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
 | |
| 
 | |
|     variableCheck(base);
 | |
|     if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
 | |
|         if (base->getAsSymbolNode())
 | |
|             error(loc, " left of '[' is not of type array, matrix, or vector ",
 | |
|                   base->getAsSymbolNode()->getName().c_str(), "");
 | |
|         else
 | |
|             error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
 | |
|     } else if (base->getType().getQualifier().isFrontEndConstant() && 
 | |
|                index->getQualifier().isFrontEndConstant()) {
 | |
|         // both base and index are front-end constants
 | |
|         checkIndex(loc, base->getType(), indexValue);
 | |
|         return intermediate.foldDereference(base, indexValue, loc);
 | |
|     } else {
 | |
|         // at least one of base and index is variable...
 | |
| 
 | |
|         if (index->getQualifier().isFrontEndConstant())
 | |
|             checkIndex(loc, base->getType(), indexValue);
 | |
| 
 | |
|         if (base->getType().isScalarOrVec1())
 | |
|             result = base;
 | |
|         else if (base->getAsSymbolNode() && wasFlattened(base)) {
 | |
|             if (index->getQualifier().storage != EvqConst)
 | |
|                 error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
 | |
| 
 | |
|             result = flattenAccess(base, indexValue);
 | |
|             flattened = (result != base);
 | |
|         } else {
 | |
|             if (index->getQualifier().isFrontEndConstant()) {
 | |
|                 if (base->getType().isUnsizedArray())
 | |
|                     base->getWritableType().updateImplicitArraySize(indexValue + 1);
 | |
|                 else
 | |
|                     checkIndex(loc, base->getType(), indexValue);
 | |
|                 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
 | |
|             } else
 | |
|                 result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (result == nullptr) {
 | |
|         // Insert dummy error-recovery result
 | |
|         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
 | |
|     } else {
 | |
|         // If the array reference was flattened, it has the correct type.  E.g, if it was
 | |
|         // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
 | |
|         // In that case, we preserve the qualifiers.
 | |
|         if (!flattened) {
 | |
|             // Insert valid dereferenced result
 | |
|             TType newType(base->getType(), 0);  // dereferenced type
 | |
|             if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
 | |
|                 newType.getQualifier().storage = EvqConst;
 | |
|             else
 | |
|                 newType.getQualifier().storage = EvqTemporary;
 | |
|             result->setType(newType);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Handle seeing a binary node with a math operation.
 | |
| TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
 | |
|                                                  TIntermTyped* left, TIntermTyped* right)
 | |
| {
 | |
|     TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
 | |
|     if (result == nullptr)
 | |
|         binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Handle seeing a unary node with a math operation.
 | |
| TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
 | |
|                                                 TIntermTyped* childNode)
 | |
| {
 | |
|     TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
 | |
| 
 | |
|     if (result)
 | |
|         return result;
 | |
|     else
 | |
|         unaryOpError(loc, str, childNode->getCompleteString());
 | |
| 
 | |
|     return childNode;
 | |
| }
 | |
| //
 | |
| // Return true if the name is a struct buffer method
 | |
| //
 | |
| bool HlslParseContext::isStructBufferMethod(const TString& name) const
 | |
| {
 | |
|     return
 | |
|         name == "GetDimensions"              ||
 | |
|         name == "Load"                       ||
 | |
|         name == "Load2"                      ||
 | |
|         name == "Load3"                      ||
 | |
|         name == "Load4"                      ||
 | |
|         name == "Store"                      ||
 | |
|         name == "Store2"                     ||
 | |
|         name == "Store3"                     ||
 | |
|         name == "Store4"                     ||
 | |
|         name == "InterlockedAdd"             ||
 | |
|         name == "InterlockedAnd"             ||
 | |
|         name == "InterlockedCompareExchange" ||
 | |
|         name == "InterlockedCompareStore"    ||
 | |
|         name == "InterlockedExchange"        ||
 | |
|         name == "InterlockedMax"             ||
 | |
|         name == "InterlockedMin"             ||
 | |
|         name == "InterlockedOr"              ||
 | |
|         name == "InterlockedXor"             ||
 | |
|         name == "IncrementCounter"           ||
 | |
|         name == "DecrementCounter"           ||
 | |
|         name == "Append"                     ||
 | |
|         name == "Consume";
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a base.field dereference in the grammar, where 'field' is a
 | |
| // swizzle or member variable.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
 | |
| {
 | |
|     variableCheck(base);
 | |
| 
 | |
|     if (base->isArray()) {
 | |
|         error(loc, "cannot apply to an array:", ".", field.c_str());
 | |
|         return base;
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* result = base;
 | |
| 
 | |
|     if (base->getType().getBasicType() == EbtSampler) {
 | |
|         // Handle .mips[mipid][pos] operation on textures
 | |
|         const TSampler& sampler = base->getType().getSampler();
 | |
|         if (sampler.isTexture() && field == "mips") {
 | |
|             // Push a null to signify that we expect a mip level under operator[] next.
 | |
|             mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
 | |
|             // Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
 | |
|         } else {
 | |
|             if (field == "mips")
 | |
|                 error(loc, "unexpected texture type for .mips[][] operator:",
 | |
|                       base->getType().getCompleteString().c_str(), "");
 | |
|             else
 | |
|                 error(loc, "unexpected operator on texture type:", field.c_str(),
 | |
|                       base->getType().getCompleteString().c_str());
 | |
|         }
 | |
|     } else if (base->isVector() || base->isScalar()) {
 | |
|         TSwizzleSelectors<TVectorSelector> selectors;
 | |
|         parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
 | |
| 
 | |
|         if (base->isScalar()) {
 | |
|             if (selectors.size() == 1)
 | |
|                 return result;
 | |
|             else {
 | |
|                 TType type(base->getBasicType(), EvqTemporary, selectors.size());
 | |
|                 return addConstructor(loc, base, type);
 | |
|             }
 | |
|         }
 | |
|         if (base->getVectorSize() == 1) {
 | |
|             TType scalarType(base->getBasicType(), EvqTemporary, 1);
 | |
|             if (selectors.size() == 1)
 | |
|                 return addConstructor(loc, base, scalarType);
 | |
|             else {
 | |
|                 TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
 | |
|                 return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (base->getType().getQualifier().isFrontEndConstant())
 | |
|             result = intermediate.foldSwizzle(base, selectors, loc);
 | |
|         else {
 | |
|             if (selectors.size() == 1) {
 | |
|                 TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
 | |
|                 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
 | |
|                 result->setType(TType(base->getBasicType(), EvqTemporary));
 | |
|             } else {
 | |
|                 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
 | |
|                 result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
 | |
|                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
 | |
|                                 selectors.size()));
 | |
|             }
 | |
|         }
 | |
|     } else if (base->isMatrix()) {
 | |
|         TSwizzleSelectors<TMatrixSelector> selectors;
 | |
|         if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
 | |
|             return result;
 | |
| 
 | |
|         if (selectors.size() == 1) {
 | |
|             // Representable by m[c][r]
 | |
|             if (base->getType().getQualifier().isFrontEndConstant()) {
 | |
|                 result = intermediate.foldDereference(base, selectors[0].coord1, loc);
 | |
|                 result = intermediate.foldDereference(result, selectors[0].coord2, loc);
 | |
|             } else {
 | |
|                 result = intermediate.addIndex(EOpIndexDirect, base,
 | |
|                                                intermediate.addConstantUnion(selectors[0].coord1, loc),
 | |
|                                                loc);
 | |
|                 TType dereferencedCol(base->getType(), 0);
 | |
|                 result->setType(dereferencedCol);
 | |
|                 result = intermediate.addIndex(EOpIndexDirect, result,
 | |
|                                                intermediate.addConstantUnion(selectors[0].coord2, loc),
 | |
|                                                loc);
 | |
|                 TType dereferenced(dereferencedCol, 0);
 | |
|                 result->setType(dereferenced);
 | |
|             }
 | |
|         } else {
 | |
|             int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
 | |
|             if (column >= 0) {
 | |
|                 // Representable by m[c]
 | |
|                 if (base->getType().getQualifier().isFrontEndConstant())
 | |
|                     result = intermediate.foldDereference(base, column, loc);
 | |
|                 else {
 | |
|                     result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
 | |
|                                                    loc);
 | |
|                     TType dereferenced(base->getType(), 0);
 | |
|                     result->setType(dereferenced);
 | |
|                 }
 | |
|             } else {
 | |
|                 // general case, not a column, not a single component
 | |
|                 TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
 | |
|                 result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
 | |
|                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
 | |
|                                       selectors.size()));
 | |
|            }
 | |
|         }
 | |
|     } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
 | |
|         const TTypeList* fields = base->getType().getStruct();
 | |
|         bool fieldFound = false;
 | |
|         int member;
 | |
|         for (member = 0; member < (int)fields->size(); ++member) {
 | |
|             if ((*fields)[member].type->getFieldName() == field) {
 | |
|                 fieldFound = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (fieldFound) {
 | |
|             if (base->getAsSymbolNode() && wasFlattened(base)) {
 | |
|                 result = flattenAccess(base, member);
 | |
|             } else {
 | |
|                 if (base->getType().getQualifier().storage == EvqConst)
 | |
|                     result = intermediate.foldDereference(base, member, loc);
 | |
|                 else {
 | |
|                     TIntermTyped* index = intermediate.addConstantUnion(member, loc);
 | |
|                     result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
 | |
|                     result->setType(*(*fields)[member].type);
 | |
|                 }
 | |
|             }
 | |
|         } else
 | |
|             error(loc, "no such field in structure", field.c_str(), "");
 | |
|     } else
 | |
|         error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Return true if the field should be treated as a built-in method.
 | |
| // Return false otherwise.
 | |
| //
 | |
| bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
 | |
| {
 | |
|     if (base == nullptr)
 | |
|         return false;
 | |
| 
 | |
|     variableCheck(base);
 | |
| 
 | |
|     if (base->getType().getBasicType() == EbtSampler) {
 | |
|         return true;
 | |
|     } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
 | |
|         return true;
 | |
|     } else if (field == "Append" ||
 | |
|                field == "RestartStrip") {
 | |
|         // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
 | |
|         // the code is around in the shader source.
 | |
|         return true;
 | |
|     } else
 | |
|         return false;
 | |
| }
 | |
| 
 | |
| // Independently establish a built-in that is a member of a structure.
 | |
| // 'arraySizes' are what's desired for the independent built-in, whatever
 | |
| // the higher-level source/expression of them was.
 | |
| void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes,
 | |
|                                     const TQualifier& outerQualifier)
 | |
| {
 | |
|     // Because of arrays of structs, we might be asked more than once,
 | |
|     // but the arraySizes passed in should have captured the whole thing
 | |
|     // the first time.
 | |
|     // However, clip/cull rely on multiple updates.
 | |
|     if (!isClipOrCullDistance(memberType))
 | |
|         if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) !=
 | |
|             splitBuiltIns.end())
 | |
|             return;
 | |
| 
 | |
|     TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType);
 | |
| 
 | |
|     if (arraySizes != nullptr && !memberType.isArray())
 | |
|         ioVar->getWritableType().copyArraySizes(*arraySizes);
 | |
| 
 | |
|     splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar;
 | |
|     if (!isClipOrCullDistance(ioVar->getType()))
 | |
|         trackLinkage(*ioVar);
 | |
| 
 | |
|     // Merge qualifier from the user structure
 | |
|     mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier);
 | |
| 
 | |
|     // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the
 | |
|     // shader declared them).  This is done after mergeQualifiers(), in case fixBuiltInIoType looks
 | |
|     // at the qualifier to determine e.g, in or out qualifications.
 | |
|     fixBuiltInIoType(ioVar->getWritableType());
 | |
| 
 | |
|     // But, not location, we're losing that
 | |
|     ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
 | |
| }
 | |
| 
 | |
| // Split a type into
 | |
| //   1. a struct of non-I/O members
 | |
| //   2. a collection of independent I/O variables
 | |
| void HlslParseContext::split(const TVariable& variable)
 | |
| {
 | |
|     // Create a new variable:
 | |
|     const TType& clonedType = *variable.getType().clone();
 | |
|     const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier());
 | |
|     splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
 | |
| }
 | |
| 
 | |
| // Recursive implementation of split().
 | |
| // Returns reference to the modified type.
 | |
| const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier)
 | |
| {
 | |
|     if (type.isStruct()) {
 | |
|         TTypeList* userStructure = type.getWritableStruct();
 | |
|         for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
 | |
|             if (ioType->type->isBuiltIn()) {
 | |
|                 // move out the built-in
 | |
|                 splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier);
 | |
|                 ioType = userStructure->erase(ioType);
 | |
|             } else {
 | |
|                 split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier);
 | |
|                 ++ioType;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return type;
 | |
| }
 | |
| 
 | |
| // Is this an aggregate that should be flattened?
 | |
| // Can be applied to intermediate levels of type in a hierarchy.
 | |
| // Some things like flattening uniform arrays are only about the top level
 | |
| // of the aggregate, triggered on 'topLevel'.
 | |
| bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const
 | |
| {
 | |
|     switch (qualifier) {
 | |
|     case EvqVaryingIn:
 | |
|     case EvqVaryingOut:
 | |
|         return type.isStruct() || type.isArray();
 | |
|     case EvqUniform:
 | |
|         return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) ||
 | |
|                (type.isStruct() && type.containsOpaque());
 | |
|     default:
 | |
|         return false;
 | |
|     };
 | |
| }
 | |
| 
 | |
| // Top level variable flattening: construct data
 | |
| void HlslParseContext::flatten(const TVariable& variable, bool linkage)
 | |
| {
 | |
|     const TType& type = variable.getType();
 | |
| 
 | |
|     // If it's a standalone built-in, there is nothing to flatten
 | |
|     if (type.isBuiltIn() && !type.isStruct())
 | |
|         return;
 | |
| 
 | |
|     auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
 | |
|                                                   TFlattenData(type.getQualifier().layoutBinding,
 | |
|                                                                type.getQualifier().layoutLocation)));
 | |
| 
 | |
|     // the item is a map pair, so first->second is the TFlattenData itself.
 | |
|     flatten(variable, type, entry.first->second, variable.getName(), linkage, type.getQualifier(), nullptr);
 | |
| }
 | |
| 
 | |
| // Recursively flatten the given variable at the provided type, building the flattenData as we go.
 | |
| //
 | |
| // This is mutually recursive with flattenStruct and flattenArray.
 | |
| // We are going to flatten an arbitrarily nested composite structure into a linear sequence of
 | |
| // members, and later on, we want to turn a path through the tree structure into a final
 | |
| // location in this linear sequence.
 | |
| //
 | |
| // If the tree was N-ary, that can be directly calculated.  However, we are dealing with
 | |
| // arbitrary numbers - perhaps a struct of 7 members containing an array of 3.  Thus, we must
 | |
| // build a data structure to allow the sequence of bracket and dot operators on arrays and
 | |
| // structs to arrive at the proper member.
 | |
| //
 | |
| // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
 | |
| // The leaves are the indexes into the flattened member array.
 | |
| // Each level will have the next location for the Nth item stored sequentially, so for instance:
 | |
| //
 | |
| // struct { float2 a[2]; int b; float4 c[3] };
 | |
| //
 | |
| // This will produce the following flattened tree:
 | |
| // Pos: 0  1   2    3  4    5  6   7     8   9  10   11  12 13
 | |
| //     (3, 7,  8,   5, 6,   0, 1,  2,   11, 12, 13,   3,  4, 5}
 | |
| //
 | |
| // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
 | |
| //   (0+2) = 8  -->  (8+1) = 12 -->   12 = 4
 | |
| //
 | |
| // so the 4th flattened member in traversal order is ours.
 | |
| //
 | |
| int HlslParseContext::flatten(const TVariable& variable, const TType& type,
 | |
|                               TFlattenData& flattenData, TString name, bool linkage,
 | |
|                               const TQualifier& outerQualifier,
 | |
|                               const TArraySizes* builtInArraySizes)
 | |
| {
 | |
|     // If something is an arrayed struct, the array flattener will recursively call flatten()
 | |
|     // to then flatten the struct, so this is an "if else": we don't do both.
 | |
|     if (type.isArray())
 | |
|         return flattenArray(variable, type, flattenData, name, linkage, outerQualifier);
 | |
|     else if (type.isStruct())
 | |
|         return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes);
 | |
|     else {
 | |
|         assert(0); // should never happen
 | |
|         return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Add a single flattened member to the flattened data being tracked for the composite
 | |
| // Returns true for the final flattening level.
 | |
| int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
 | |
|                                          const TString& memberName, bool linkage,
 | |
|                                          const TQualifier& outerQualifier,
 | |
|                                          const TArraySizes* builtInArraySizes)
 | |
| {
 | |
|     if (!shouldFlatten(type, outerQualifier.storage, false)) {
 | |
|         // This is as far as we flatten.  Insert the variable.
 | |
|         TVariable* memberVariable = makeInternalVariable(memberName, type);
 | |
|         mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
 | |
| 
 | |
|         if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
 | |
|             memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
 | |
| 
 | |
|         if (memberVariable->getType().isBuiltIn()) {
 | |
|             // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number)
 | |
|             memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
 | |
|         } else {
 | |
|             // inherited locations must be auto bumped, not replicated
 | |
|             if (flattenData.nextLocation != TQualifier::layoutLocationEnd) {
 | |
|                 memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
 | |
|                 flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language);
 | |
|                 nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
 | |
|         flattenData.members.push_back(memberVariable);
 | |
| 
 | |
|         if (linkage)
 | |
|             trackLinkage(*memberVariable);
 | |
| 
 | |
|         return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
 | |
|     } else {
 | |
|         // Further recursion required
 | |
|         return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Figure out the mapping between an aggregate's top members and an
 | |
| // equivalent set of individual variables.
 | |
| //
 | |
| // Assumes shouldFlatten() or equivalent was called first.
 | |
| int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
 | |
|                                     TFlattenData& flattenData, TString name, bool linkage,
 | |
|                                     const TQualifier& outerQualifier,
 | |
|                                     const TArraySizes* builtInArraySizes)
 | |
| {
 | |
|     assert(type.isStruct());
 | |
| 
 | |
|     auto members = *type.getStruct();
 | |
| 
 | |
|     // Reserve space for this tree level.
 | |
|     int start = static_cast<int>(flattenData.offsets.size());
 | |
|     int pos = start;
 | |
|     flattenData.offsets.resize(int(pos + members.size()), -1);
 | |
| 
 | |
|     for (int member = 0; member < (int)members.size(); ++member) {
 | |
|         TType& dereferencedType = *members[member].type;
 | |
|         if (dereferencedType.isBuiltIn())
 | |
|             splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier);
 | |
|         else {
 | |
|             const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
 | |
|                                                 name + "." + dereferencedType.getFieldName(),
 | |
|                                                 linkage, outerQualifier,
 | |
|                                                 builtInArraySizes == nullptr && dereferencedType.isArray()
 | |
|                                                                        ? dereferencedType.getArraySizes()
 | |
|                                                                        : builtInArraySizes);
 | |
|             flattenData.offsets[pos++] = mpos;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return start;
 | |
| }
 | |
| 
 | |
| // Figure out mapping between an array's members and an
 | |
| // equivalent set of individual variables.
 | |
| //
 | |
| // Assumes shouldFlatten() or equivalent was called first.
 | |
| int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
 | |
|                                    TFlattenData& flattenData, TString name, bool linkage,
 | |
|                                    const TQualifier& outerQualifier)
 | |
| {
 | |
|     assert(type.isSizedArray());
 | |
| 
 | |
|     const int size = type.getOuterArraySize();
 | |
|     const TType dereferencedType(type, 0);
 | |
| 
 | |
|     if (name.empty())
 | |
|         name = variable.getName();
 | |
| 
 | |
|     // Reserve space for this tree level.
 | |
|     int start = static_cast<int>(flattenData.offsets.size());
 | |
|     int pos   = start;
 | |
|     flattenData.offsets.resize(int(pos + size), -1);
 | |
| 
 | |
|     for (int element=0; element < size; ++element) {
 | |
|         char elementNumBuf[20];  // sufficient for MAXINT
 | |
|         snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
 | |
|         const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
 | |
|                                             name + elementNumBuf, linkage, outerQualifier,
 | |
|                                             type.getArraySizes());
 | |
| 
 | |
|         flattenData.offsets[pos++] = mpos;
 | |
|     }
 | |
| 
 | |
|     return start;
 | |
| }
 | |
| 
 | |
| // Return true if we have flattened this node.
 | |
| bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
 | |
| {
 | |
|     return node != nullptr && node->getAsSymbolNode() != nullptr &&
 | |
|            wasFlattened(node->getAsSymbolNode()->getId());
 | |
| }
 | |
| 
 | |
| // Return true if we have split this structure
 | |
| bool HlslParseContext::wasSplit(const TIntermTyped* node) const
 | |
| {
 | |
|     return node != nullptr && node->getAsSymbolNode() != nullptr &&
 | |
|            wasSplit(node->getAsSymbolNode()->getId());
 | |
| }
 | |
| 
 | |
| // Turn an access into an aggregate that was flattened to instead be
 | |
| // an access to the individual variable the member was flattened to.
 | |
| // Assumes wasFlattened() or equivalent was called first.
 | |
| TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
 | |
| {
 | |
|     const TType dereferencedType(base->getType(), member);  // dereferenced type
 | |
|     const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
 | |
|     TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage,
 | |
|                                             dereferencedType, symbolNode.getFlattenSubset());
 | |
| 
 | |
|     return flattened ? flattened : base;
 | |
| }
 | |
| TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, TStorageQualifier outerStorage,
 | |
|     const TType& dereferencedType, int subset)
 | |
| {
 | |
|     const auto flattenData = flattenMap.find(uniqueId);
 | |
| 
 | |
|     if (flattenData == flattenMap.end())
 | |
|         return nullptr;
 | |
| 
 | |
|     // Calculate new cumulative offset from the packed tree
 | |
|     int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
 | |
| 
 | |
|     TIntermSymbol* subsetSymbol;
 | |
|     if (!shouldFlatten(dereferencedType, outerStorage, false)) {
 | |
|         // Finished flattening: create symbol for variable
 | |
|         member = flattenData->second.offsets[newSubset];
 | |
|         const TVariable* memberVariable = flattenData->second.members[member];
 | |
|         subsetSymbol = intermediate.addSymbol(*memberVariable);
 | |
|         subsetSymbol->setFlattenSubset(-1);
 | |
|     } else {
 | |
| 
 | |
|         // If this is not the final flattening, accumulate the position and return
 | |
|         // an object of the partially dereferenced type.
 | |
|         subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
 | |
|         subsetSymbol->setFlattenSubset(newSubset);
 | |
|     }
 | |
| 
 | |
|     return subsetSymbol;
 | |
| }
 | |
| 
 | |
| // For finding where the first leaf is in a subtree of a multi-level aggregate
 | |
| // that is just getting a subset assigned. Follows the same logic as flattenAccess,
 | |
| // but logically going down the "left-most" tree branch each step of the way.
 | |
| //
 | |
| // Returns the offset into the first leaf of the subset.
 | |
| int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const
 | |
| {
 | |
|     const TIntermSymbol* sym = node.getAsSymbolNode();
 | |
|     if (sym == nullptr)
 | |
|         return 0;
 | |
|     if (!sym->isArray() && !sym->isStruct())
 | |
|         return 0;
 | |
|     int subset = sym->getFlattenSubset();
 | |
|     if (subset == -1)
 | |
|         return 0;
 | |
| 
 | |
|     // Getting this far means a partial aggregate is identified by the flatten subset.
 | |
|     // Find the first leaf of the subset.
 | |
| 
 | |
|     const auto flattenData = flattenMap.find(sym->getId());
 | |
|     if (flattenData == flattenMap.end())
 | |
|         return 0;
 | |
| 
 | |
|     return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets);
 | |
| 
 | |
|     do {
 | |
|         subset = flattenData->second.offsets[subset];
 | |
|     } while (true);
 | |
| }
 | |
| // Recursively do the desent
 | |
| int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const
 | |
| {
 | |
|     if (!type.isArray() && !type.isStruct())
 | |
|         return offsets[subset];
 | |
|     TType derefType(type, 0);
 | |
|     return findSubtreeOffset(derefType, offsets[subset], offsets);
 | |
| };
 | |
| 
 | |
| // Find and return the split IO TVariable for id, or nullptr if none.
 | |
| TVariable* HlslParseContext::getSplitNonIoVar(int id) const
 | |
| {
 | |
|     const auto splitNonIoVar = splitNonIoVars.find(id);
 | |
|     if (splitNonIoVar == splitNonIoVars.end())
 | |
|         return nullptr;
 | |
| 
 | |
|     return splitNonIoVar->second;
 | |
| }
 | |
| 
 | |
| // Pass through to base class after remembering built-in mappings.
 | |
| void HlslParseContext::trackLinkage(TSymbol& symbol)
 | |
| {
 | |
|     TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
 | |
| 
 | |
|     if (biType != EbvNone)
 | |
|         builtInTessLinkageSymbols[biType] = symbol.clone();
 | |
| 
 | |
|     TParseContextBase::trackLinkage(symbol);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns true if the built-in is a clip or cull distance variable.
 | |
| bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
 | |
| {
 | |
|     return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
 | |
| }
 | |
| 
 | |
| // Some types require fixed array sizes in SPIR-V, but can be scalars or
 | |
| // arrays of sizes SPIR-V doesn't allow.  For example, tessellation factors.
 | |
| // This creates the right size.  A conversion is performed when the internal
 | |
| // type is copied to or from the external type.  This corrects the externally
 | |
| // facing input or output type to abide downstream semantics.
 | |
| void HlslParseContext::fixBuiltInIoType(TType& type)
 | |
| {
 | |
|     int requiredArraySize = 0;
 | |
|     int requiredVectorSize = 0;
 | |
| 
 | |
|     switch (type.getQualifier().builtIn) {
 | |
|     case EbvTessLevelOuter: requiredArraySize = 4; break;
 | |
|     case EbvTessLevelInner: requiredArraySize = 2; break;
 | |
| 
 | |
|     case EbvSampleMask:
 | |
|         {
 | |
|             // Promote scalar to array of size 1.  Leave existing arrays alone.
 | |
|             if (!type.isArray())
 | |
|                 requiredArraySize = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EbvWorkGroupId:        requiredVectorSize = 3; break;
 | |
|     case EbvGlobalInvocationId: requiredVectorSize = 3; break;
 | |
|     case EbvLocalInvocationId:  requiredVectorSize = 3; break;
 | |
|     case EbvTessCoord:          requiredVectorSize = 3; break;
 | |
| 
 | |
|     default:
 | |
|         if (isClipOrCullDistance(type)) {
 | |
|             const int loc = type.getQualifier().layoutLocation;
 | |
| 
 | |
|             if (type.getQualifier().builtIn == EbvClipDistance) {
 | |
|                 if (type.getQualifier().storage == EvqVaryingIn)
 | |
|                     clipSemanticNSizeIn[loc] = type.getVectorSize();
 | |
|                 else
 | |
|                     clipSemanticNSizeOut[loc] = type.getVectorSize();
 | |
|             } else {
 | |
|                 if (type.getQualifier().storage == EvqVaryingIn)
 | |
|                     cullSemanticNSizeIn[loc] = type.getVectorSize();
 | |
|                 else
 | |
|                     cullSemanticNSizeOut[loc] = type.getVectorSize();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Alter or set vector size as needed.
 | |
|     if (requiredVectorSize > 0) {
 | |
|         TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize);
 | |
|         newType.getQualifier() = type.getQualifier();
 | |
| 
 | |
|         type.shallowCopy(newType);
 | |
|     }
 | |
| 
 | |
|     // Alter or set array size as needed.
 | |
|     if (requiredArraySize > 0) {
 | |
|         if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) {
 | |
|             TArraySizes* arraySizes = new TArraySizes;
 | |
|             arraySizes->addInnerSize(requiredArraySize);
 | |
|             type.transferArraySizes(arraySizes);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Variables that correspond to the user-interface in and out of a stage
 | |
| // (not the built-in interface) are
 | |
| //  - assigned locations
 | |
| //  - registered as a linkage node (part of the stage's external interface).
 | |
| // Assumes it is called in the order in which locations should be assigned.
 | |
| void HlslParseContext::assignToInterface(TVariable& variable)
 | |
| {
 | |
|     const auto assignLocation = [&](TVariable& variable) {
 | |
|         TType& type = variable.getWritableType();
 | |
|         if (!type.isStruct() || type.getStruct()->size() > 0) {
 | |
|             TQualifier& qualifier = type.getQualifier();
 | |
|             if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
 | |
|                 if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
 | |
|                     // Strip off the outer array dimension for those having an extra one.
 | |
|                     int size;
 | |
|                     if (type.isArray() && qualifier.isArrayedIo(language)) {
 | |
|                         TType elementType(type, 0);
 | |
|                         size = intermediate.computeTypeLocationSize(elementType, language);
 | |
|                     } else
 | |
|                         size = intermediate.computeTypeLocationSize(type, language);
 | |
| 
 | |
|                     if (qualifier.storage == EvqVaryingIn) {
 | |
|                         variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
 | |
|                         nextInLocation += size;
 | |
|                     } else {
 | |
|                         variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
 | |
|                         nextOutLocation += size;
 | |
|                     }
 | |
|                 }
 | |
|                 trackLinkage(variable);
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     if (wasFlattened(variable.getUniqueId())) {
 | |
|         auto& memberList = flattenMap[variable.getUniqueId()].members;
 | |
|         for (auto member = memberList.begin(); member != memberList.end(); ++member)
 | |
|             assignLocation(**member);
 | |
|     } else if (wasSplit(variable.getUniqueId())) {
 | |
|         TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
 | |
|         assignLocation(*splitIoVar);
 | |
|     } else {
 | |
|         assignLocation(variable);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a function declarator in the grammar.  This is the precursor
 | |
| // to recognizing a function prototype or function definition.
 | |
| //
 | |
| void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
 | |
| {
 | |
|     //
 | |
|     // Multiple declarations of the same function name are allowed.
 | |
|     //
 | |
|     // If this is a definition, the definition production code will check for redefinitions
 | |
|     // (we don't know at this point if it's a definition or not).
 | |
|     //
 | |
|     bool builtIn;
 | |
|     TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
 | |
|     const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
 | |
| 
 | |
|     if (prototype) {
 | |
|         // All built-in functions are defined, even though they don't have a body.
 | |
|         // Count their prototype as a definition instead.
 | |
|         if (symbolTable.atBuiltInLevel())
 | |
|             function.setDefined();
 | |
|         else {
 | |
|             if (prevDec && ! builtIn)
 | |
|                 symbol->getAsFunction()->setPrototyped();  // need a writable one, but like having prevDec as a const
 | |
|             function.setPrototyped();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // This insert won't actually insert it if it's a duplicate signature, but it will still check for
 | |
|     // other forms of name collisions.
 | |
|     if (! symbolTable.insert(function))
 | |
|         error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
 | |
| }
 | |
| 
 | |
| // For struct buffers with counters, we must pass the counter buffer as hidden parameter.
 | |
| // This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
 | |
| // Otherwise, it's a no-op
 | |
| void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
 | |
|                                                          TIntermAggregate*& paramNodes)
 | |
| {
 | |
|     if (! hasStructBuffCounter(*param.type))
 | |
|         return;
 | |
| 
 | |
|     const TString counterBlockName(intermediate.addCounterBufferName(*param.name));
 | |
| 
 | |
|     TType counterType;
 | |
|     counterBufferType(loc, counterType);
 | |
|     TVariable *variable = makeInternalVariable(counterBlockName, counterType);
 | |
| 
 | |
|     if (! symbolTable.insert(*variable))
 | |
|         error(loc, "redefinition", variable->getName().c_str(), "");
 | |
| 
 | |
|     paramNodes = intermediate.growAggregate(paramNodes,
 | |
|                                             intermediate.addSymbol(*variable, loc),
 | |
|                                             loc);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing the function prototype in front of a function definition in the grammar.
 | |
| // The body is handled after this function returns.
 | |
| //
 | |
| // Returns an aggregate of parameter-symbol nodes.
 | |
| //
 | |
| TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
 | |
|                                                              const TAttributes& attributes,
 | |
|                                                              TIntermNode*& entryPointTree)
 | |
| {
 | |
|     currentCaller = function.getMangledName();
 | |
|     TSymbol* symbol = symbolTable.find(function.getMangledName());
 | |
|     TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
 | |
| 
 | |
|     if (prevDec == nullptr)
 | |
|         error(loc, "can't find function", function.getName().c_str(), "");
 | |
|     // Note:  'prevDec' could be 'function' if this is the first time we've seen function
 | |
|     // as it would have just been put in the symbol table.  Otherwise, we're looking up
 | |
|     // an earlier occurrence.
 | |
| 
 | |
|     if (prevDec && prevDec->isDefined()) {
 | |
|         // Then this function already has a body.
 | |
|         error(loc, "function already has a body", function.getName().c_str(), "");
 | |
|     }
 | |
|     if (prevDec && ! prevDec->isDefined()) {
 | |
|         prevDec->setDefined();
 | |
| 
 | |
|         // Remember the return type for later checking for RETURN statements.
 | |
|         currentFunctionType = &(prevDec->getType());
 | |
|     } else
 | |
|         currentFunctionType = new TType(EbtVoid);
 | |
|     functionReturnsValue = false;
 | |
| 
 | |
|     // Entry points need different I/O and other handling, transform it so the
 | |
|     // rest of this function doesn't care.
 | |
|     entryPointTree = transformEntryPoint(loc, function, attributes);
 | |
| 
 | |
|     //
 | |
|     // New symbol table scope for body of function plus its arguments
 | |
|     //
 | |
|     pushScope();
 | |
| 
 | |
|     //
 | |
|     // Insert parameters into the symbol table.
 | |
|     // If the parameter has no name, it's not an error, just don't insert it
 | |
|     // (could be used for unused args).
 | |
|     //
 | |
|     // Also, accumulate the list of parameters into the AST, so lower level code
 | |
|     // knows where to find parameters.
 | |
|     //
 | |
|     TIntermAggregate* paramNodes = new TIntermAggregate;
 | |
|     for (int i = 0; i < function.getParamCount(); i++) {
 | |
|         TParameter& param = function[i];
 | |
|         if (param.name != nullptr) {
 | |
|             TVariable *variable = new TVariable(param.name, *param.type);
 | |
| 
 | |
|             if (i == 0 && function.hasImplicitThis()) {
 | |
|                 // Anonymous 'this' members are already in a symbol-table level,
 | |
|                 // and we need to know what function parameter to map them to.
 | |
|                 symbolTable.makeInternalVariable(*variable);
 | |
|                 pushImplicitThis(variable);
 | |
|             }
 | |
| 
 | |
|             // Insert the parameters with name in the symbol table.
 | |
|             if (! symbolTable.insert(*variable))
 | |
|                 error(loc, "redefinition", variable->getName().c_str(), "");
 | |
| 
 | |
|             // Add parameters to the AST list.
 | |
|             if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) {
 | |
|                 // Expand the AST parameter nodes (but not the name mangling or symbol table view)
 | |
|                 // for structures that need to be flattened.
 | |
|                 flatten(*variable, false);
 | |
|                 const TTypeList* structure = variable->getType().getStruct();
 | |
|                 for (int mem = 0; mem < (int)structure->size(); ++mem) {
 | |
|                     paramNodes = intermediate.growAggregate(paramNodes,
 | |
|                                                             flattenAccess(variable->getUniqueId(), mem,
 | |
|                                                                           variable->getType().getQualifier().storage,
 | |
|                                                                           *(*structure)[mem].type),
 | |
|                                                             loc);
 | |
|                 }
 | |
|             } else {
 | |
|                 // Add the parameter to the AST
 | |
|                 paramNodes = intermediate.growAggregate(paramNodes,
 | |
|                                                         intermediate.addSymbol(*variable, loc),
 | |
|                                                         loc);
 | |
|             }
 | |
| 
 | |
|             // Add hidden AST parameter for struct buffer counters, if needed.
 | |
|             addStructBufferHiddenCounterParam(loc, param, paramNodes);
 | |
|         } else
 | |
|             paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
 | |
|     }
 | |
|     if (function.hasIllegalImplicitThis())
 | |
|         pushImplicitThis(nullptr);
 | |
| 
 | |
|     intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
 | |
|     loopNestingLevel = 0;
 | |
|     controlFlowNestingLevel = 0;
 | |
|     postEntryPointReturn = false;
 | |
| 
 | |
|     return paramNodes;
 | |
| }
 | |
| 
 | |
| // Handle all [attrib] attribute for the shader entry point
 | |
| void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes)
 | |
| {
 | |
|     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
 | |
|         switch (it->name) {
 | |
|         case EatNumThreads:
 | |
|         {
 | |
|             const TIntermSequence& sequence = it->args->getSequence();
 | |
|             for (int lid = 0; lid < int(sequence.size()); ++lid)
 | |
|                 intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
 | |
|             break;
 | |
|         }
 | |
|         case EatMaxVertexCount:
 | |
|         {
 | |
|             int maxVertexCount;
 | |
| 
 | |
|             if (! it->getInt(maxVertexCount)) {
 | |
|                 error(loc, "invalid maxvertexcount", "", "");
 | |
|             } else {
 | |
|                 if (! intermediate.setVertices(maxVertexCount))
 | |
|                     error(loc, "cannot change previously set maxvertexcount attribute", "", "");
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case EatPatchConstantFunc:
 | |
|         {
 | |
|             TString pcfName;
 | |
|             if (! it->getString(pcfName, 0, false)) {
 | |
|                 error(loc, "invalid patch constant function", "", "");
 | |
|             } else {
 | |
|                 patchConstantFunctionName = pcfName;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case EatDomain:
 | |
|         {
 | |
|             // Handle [domain("...")]
 | |
|             TString domainStr;
 | |
|             if (! it->getString(domainStr)) {
 | |
|                 error(loc, "invalid domain", "", "");
 | |
|             } else {
 | |
|                 TLayoutGeometry domain = ElgNone;
 | |
| 
 | |
|                 if (domainStr == "tri") {
 | |
|                     domain = ElgTriangles;
 | |
|                 } else if (domainStr == "quad") {
 | |
|                     domain = ElgQuads;
 | |
|                 } else if (domainStr == "isoline") {
 | |
|                     domain = ElgIsolines;
 | |
|                 } else {
 | |
|                     error(loc, "unsupported domain type", domainStr.c_str(), "");
 | |
|                 }
 | |
| 
 | |
|                 if (language == EShLangTessEvaluation) {
 | |
|                     if (! intermediate.setInputPrimitive(domain))
 | |
|                         error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
 | |
|                 } else {
 | |
|                     if (! intermediate.setOutputPrimitive(domain))
 | |
|                         error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case EatOutputTopology:
 | |
|         {
 | |
|             // Handle [outputtopology("...")]
 | |
|             TString topologyStr;
 | |
|             if (! it->getString(topologyStr)) {
 | |
|                 error(loc, "invalid outputtopology", "", "");
 | |
|             } else {
 | |
|                 TVertexOrder vertexOrder = EvoNone;
 | |
|                 TLayoutGeometry primitive = ElgNone;
 | |
| 
 | |
|                 if (topologyStr == "point") {
 | |
|                     intermediate.setPointMode();
 | |
|                 } else if (topologyStr == "line") {
 | |
|                     primitive = ElgIsolines;
 | |
|                 } else if (topologyStr == "triangle_cw") {
 | |
|                     vertexOrder = EvoCw;
 | |
|                     primitive = ElgTriangles;
 | |
|                 } else if (topologyStr == "triangle_ccw") {
 | |
|                     vertexOrder = EvoCcw;
 | |
|                     primitive = ElgTriangles;
 | |
|                 } else {
 | |
|                     error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
 | |
|                 }
 | |
| 
 | |
|                 if (vertexOrder != EvoNone) {
 | |
|                     if (! intermediate.setVertexOrder(vertexOrder)) {
 | |
|                         error(loc, "cannot change previously set outputtopology",
 | |
|                               TQualifier::getVertexOrderString(vertexOrder), "");
 | |
|                     }
 | |
|                 }
 | |
|                 if (primitive != ElgNone)
 | |
|                     intermediate.setOutputPrimitive(primitive);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case EatPartitioning:
 | |
|         {
 | |
|             // Handle [partitioning("...")]
 | |
|             TString partitionStr;
 | |
|             if (! it->getString(partitionStr)) {
 | |
|                 error(loc, "invalid partitioning", "", "");
 | |
|             } else {
 | |
|                 TVertexSpacing partitioning = EvsNone;
 | |
|                 
 | |
|                 if (partitionStr == "integer") {
 | |
|                     partitioning = EvsEqual;
 | |
|                 } else if (partitionStr == "fractional_even") {
 | |
|                     partitioning = EvsFractionalEven;
 | |
|                 } else if (partitionStr == "fractional_odd") {
 | |
|                     partitioning = EvsFractionalOdd;
 | |
|                     //} else if (partition == "pow2") { // TODO: currently nothing to map this to.
 | |
|                 } else {
 | |
|                     error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
 | |
|                 }
 | |
| 
 | |
|                 if (! intermediate.setVertexSpacing(partitioning))
 | |
|                     error(loc, "cannot change previously set partitioning",
 | |
|                           TQualifier::getVertexSpacingString(partitioning), "");
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case EatOutputControlPoints:
 | |
|         {
 | |
|             // Handle [outputcontrolpoints("...")]
 | |
|             int ctrlPoints;
 | |
|             if (! it->getInt(ctrlPoints)) {
 | |
|                 error(loc, "invalid outputcontrolpoints", "", "");
 | |
|             } else {
 | |
|                 if (! intermediate.setVertices(ctrlPoints)) {
 | |
|                     error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case EatEarlyDepthStencil:
 | |
|             intermediate.setEarlyFragmentTests();
 | |
|             break;
 | |
|         case EatBuiltIn:
 | |
|         case EatLocation:
 | |
|             // tolerate these because of dual use of entrypoint and type attributes
 | |
|             break;
 | |
|         default:
 | |
|             warn(loc, "attribute does not apply to entry point", "", "");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Update the given type with any type-like attribute information in the
 | |
| // attributes.
 | |
| void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type,
 | |
|     bool allowEntry)
 | |
| {
 | |
|     if (attributes.size() == 0)
 | |
|         return;
 | |
| 
 | |
|     int value;
 | |
|     TString builtInString;
 | |
|     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
 | |
|         switch (it->name) {
 | |
|         case EatLocation:
 | |
|             // location
 | |
|             if (it->getInt(value))
 | |
|                 type.getQualifier().layoutLocation = value;
 | |
|             else
 | |
|                 error(loc, "needs a literal integer", "location", "");
 | |
|             break;
 | |
|         case EatBinding:
 | |
|             // binding
 | |
|             if (it->getInt(value)) {
 | |
|                 type.getQualifier().layoutBinding = value;
 | |
|                 type.getQualifier().layoutSet = 0;
 | |
|             } else
 | |
|                 error(loc, "needs a literal integer", "binding", "");
 | |
|             // set
 | |
|             if (it->getInt(value, 1))
 | |
|                 type.getQualifier().layoutSet = value;
 | |
|             break;
 | |
|         case EatGlobalBinding:
 | |
|             // global cbuffer binding
 | |
|             if (it->getInt(value))
 | |
|                 globalUniformBinding = value;
 | |
|             else
 | |
|                 error(loc, "needs a literal integer", "global binding", "");
 | |
|             // global cbuffer set
 | |
|             if (it->getInt(value, 1))
 | |
|                 globalUniformSet = value;
 | |
|             break;
 | |
|         case EatInputAttachment:
 | |
|             // input attachment
 | |
|             if (it->getInt(value))
 | |
|                 type.getQualifier().layoutAttachment = value;
 | |
|             else
 | |
|                 error(loc, "needs a literal integer", "input attachment", "");
 | |
|             break;
 | |
|         case EatBuiltIn:
 | |
|             // PointSize built-in
 | |
|             if (it->getString(builtInString, 0, false)) {
 | |
|                 if (builtInString == "PointSize")
 | |
|                     type.getQualifier().builtIn = EbvPointSize;
 | |
|             }
 | |
|             break;
 | |
|         case EatPushConstant:
 | |
|             // push_constant
 | |
|             type.getQualifier().layoutPushConstant = true;
 | |
|             break;
 | |
|         case EatConstantId:
 | |
|             // specialization constant
 | |
|             if (it->getInt(value)) {
 | |
|                 TSourceLoc loc;
 | |
|                 loc.init();
 | |
|                 setSpecConstantId(loc, type.getQualifier(), value);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             if (! allowEntry)
 | |
|                 warn(loc, "attribute does not apply to a type", "", "");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do all special handling for the entry point, including wrapping
 | |
| // the shader's entry point with the official entry point that will call it.
 | |
| //
 | |
| // The following:
 | |
| //
 | |
| //    retType shaderEntryPoint(args...) // shader declared entry point
 | |
| //    { body }
 | |
| //
 | |
| // Becomes
 | |
| //
 | |
| //    out retType ret;
 | |
| //    in iargs<that are input>...;
 | |
| //    out oargs<that are output> ...;
 | |
| //
 | |
| //    void shaderEntryPoint()    // synthesized, but official, entry point
 | |
| //    {
 | |
| //        args<that are input> = iargs...;
 | |
| //        ret = @shaderEntryPoint(args...);
 | |
| //        oargs = args<that are output>...;
 | |
| //    }
 | |
| //    retType @shaderEntryPoint(args...)
 | |
| //    { body }
 | |
| //
 | |
| // The symbol table will still map the original entry point name to the
 | |
| // the modified function and its new name:
 | |
| //
 | |
| //    symbol table:  shaderEntryPoint  ->   @shaderEntryPoint
 | |
| //
 | |
| // Returns nullptr if no entry-point tree was built, otherwise, returns
 | |
| // a subtree that creates the entry point.
 | |
| //
 | |
| TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
 | |
|                                                    const TAttributes& attributes)
 | |
| {
 | |
|     // Return true if this is a tessellation patch constant function input to a domain shader.
 | |
|     const auto isDsPcfInput = [this](const TType& type) {
 | |
|         return language == EShLangTessEvaluation &&
 | |
|         type.contains([](const TType* t) {
 | |
|                 return t->getQualifier().builtIn == EbvTessLevelOuter ||
 | |
|                        t->getQualifier().builtIn == EbvTessLevelInner;
 | |
|             });
 | |
|     };
 | |
| 
 | |
|     // if we aren't in the entry point, fix the IO as such and exit
 | |
|     if (userFunction.getName().compare(intermediate.getEntryPointName().c_str()) != 0) {
 | |
|         remapNonEntryPointIO(userFunction);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     entryPointFunction = &userFunction; // needed in finish()
 | |
| 
 | |
|     // Handle entry point attributes
 | |
|     handleEntryPointAttributes(loc, attributes);
 | |
| 
 | |
|     // entry point logic...
 | |
| 
 | |
|     // Move parameters and return value to shader in/out
 | |
|     TVariable* entryPointOutput; // gets created in remapEntryPointIO
 | |
|     TVector<TVariable*> inputs;
 | |
|     TVector<TVariable*> outputs;
 | |
|     remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
 | |
| 
 | |
|     // Further this return/in/out transform by flattening, splitting, and assigning locations
 | |
|     const auto makeVariableInOut = [&](TVariable& variable) {
 | |
|         if (variable.getType().isStruct()) {
 | |
|             if (variable.getType().getQualifier().isArrayedIo(language)) {
 | |
|                 if (variable.getType().containsBuiltIn())
 | |
|                     split(variable);
 | |
|             } else if (shouldFlatten(variable.getType(), EvqVaryingIn /* not assigned yet, but close enough */, true))
 | |
|                 flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */);
 | |
|         }
 | |
|         // TODO: flatten arrays too
 | |
|         // TODO: flatten everything in I/O
 | |
|         // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed
 | |
| 
 | |
|         // For clip and cull distance, multiple output variables potentially get merged
 | |
|         // into one in assignClipCullDistance.  That code in assignClipCullDistance
 | |
|         // handles the interface logic, so we avoid it here in that case.
 | |
|         if (!isClipOrCullDistance(variable.getType()))
 | |
|             assignToInterface(variable);
 | |
|     };
 | |
|     if (entryPointOutput != nullptr)
 | |
|         makeVariableInOut(*entryPointOutput);
 | |
|     for (auto it = inputs.begin(); it != inputs.end(); ++it)
 | |
|         if (!isDsPcfInput((*it)->getType()))  // wait until the end for PCF input (see comment below)
 | |
|             makeVariableInOut(*(*it));
 | |
|     for (auto it = outputs.begin(); it != outputs.end(); ++it)
 | |
|         makeVariableInOut(*(*it));
 | |
| 
 | |
|     // In the domain shader, PCF input must be at the end of the linkage.  That's because in the
 | |
|     // hull shader there is no ordering: the output comes from the separate PCF, which does not
 | |
|     // participate in the argument list.  That is always put at the end of the HS linkage, so the
 | |
|     // input side of the DS must match.  The argument may be in any position in the DS argument list
 | |
|     // however, so this ensures the linkage is built in the correct order regardless of argument order.
 | |
|     if (language == EShLangTessEvaluation) {
 | |
|         for (auto it = inputs.begin(); it != inputs.end(); ++it)
 | |
|             if (isDsPcfInput((*it)->getType()))
 | |
|                 makeVariableInOut(*(*it));
 | |
|     }
 | |
| 
 | |
|     // Synthesize the call
 | |
| 
 | |
|     pushScope(); // matches the one in handleFunctionBody()
 | |
| 
 | |
|     // new signature
 | |
|     TType voidType(EbtVoid);
 | |
|     TFunction synthEntryPoint(&userFunction.getName(), voidType);
 | |
|     TIntermAggregate* synthParams = new TIntermAggregate();
 | |
|     intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
 | |
|     intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
 | |
|     intermediate.incrementEntryPointCount();
 | |
|     TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
 | |
| 
 | |
|     // change original name
 | |
|     userFunction.addPrefix("@");                         // change the name in the function, but not in the symbol table
 | |
| 
 | |
|     // Copy inputs (shader-in -> calling arg), while building up the call node
 | |
|     TVector<TVariable*> argVars;
 | |
|     TIntermAggregate* synthBody = new TIntermAggregate();
 | |
|     auto inputIt = inputs.begin();
 | |
|     TIntermTyped* callingArgs = nullptr;
 | |
| 
 | |
|     for (int i = 0; i < userFunction.getParamCount(); i++) {
 | |
|         TParameter& param = userFunction[i];
 | |
|         argVars.push_back(makeInternalVariable(*param.name, *param.type));
 | |
|         argVars.back()->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|         // Track the input patch, which is the only non-builtin supported by hull shader PCF.
 | |
|         if (param.getDeclaredBuiltIn() == EbvInputPatch)
 | |
|             inputPatch = argVars.back();
 | |
| 
 | |
|         TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
 | |
|         handleFunctionArgument(&callee, callingArgs, arg);
 | |
|         if (param.type->getQualifier().isParamInput()) {
 | |
|             intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
 | |
|                                                                intermediate.addSymbol(**inputIt)));
 | |
|             inputIt++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Call
 | |
|     currentCaller = synthEntryPoint.getMangledName();
 | |
|     TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
 | |
|     currentCaller = userFunction.getMangledName();
 | |
| 
 | |
|     // Return value
 | |
|     if (entryPointOutput) {
 | |
|         TIntermTyped* returnAssign;
 | |
| 
 | |
|         // For hull shaders, the wrapped entry point return value is written to
 | |
|         // an array element as indexed by invocation ID, which we might have to make up.
 | |
|         // This is required to match SPIR-V semantics.
 | |
|         if (language == EShLangTessControl) {
 | |
|             TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
 | |
| 
 | |
|             // If there is no user declared invocation ID, we must make one.
 | |
|             if (invocationIdSym == nullptr) {
 | |
|                 TType invocationIdType(EbtUint, EvqIn, 1);
 | |
|                 TString* invocationIdName = NewPoolTString("InvocationId");
 | |
|                 invocationIdType.getQualifier().builtIn = EbvInvocationId;
 | |
| 
 | |
|                 TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
 | |
| 
 | |
|                 globalQualifierFix(loc, variable->getWritableType().getQualifier());
 | |
|                 trackLinkage(*variable);
 | |
| 
 | |
|                 invocationIdSym = intermediate.addSymbol(*variable);
 | |
|             }
 | |
| 
 | |
|             TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
 | |
|                                                           invocationIdSym, loc);
 | |
| 
 | |
|             // Set the type of the array element being dereferenced
 | |
|             const TType derefElementType(entryPointOutput->getType(), 0);
 | |
|             element->setType(derefElementType);
 | |
| 
 | |
|             returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
 | |
|         } else {
 | |
|             returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
 | |
|         }
 | |
|         intermediate.growAggregate(synthBody, returnAssign);
 | |
|     } else
 | |
|         intermediate.growAggregate(synthBody, callReturn);
 | |
| 
 | |
|     // Output copies
 | |
|     auto outputIt = outputs.begin();
 | |
|     for (int i = 0; i < userFunction.getParamCount(); i++) {
 | |
|         TParameter& param = userFunction[i];
 | |
| 
 | |
|         // GS outputs are via emit, so we do not copy them here.
 | |
|         if (param.type->getQualifier().isParamOutput()) {
 | |
|             if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
 | |
|                 // GS output stream does not assign outputs here: it's the Append() method
 | |
|                 // which writes to the output, probably multiple times separated by Emit.
 | |
|                 // We merely remember the output to use, here.
 | |
|                 gsStreamOutput = *outputIt;
 | |
|             } else {
 | |
|                 intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
 | |
|                                                                    intermediate.addSymbol(**outputIt),
 | |
|                                                                    intermediate.addSymbol(*argVars[i])));
 | |
|             }
 | |
| 
 | |
|             outputIt++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Put the pieces together to form a full function subtree
 | |
|     // for the synthesized entry point.
 | |
|     synthBody->setOperator(EOpSequence);
 | |
|     TIntermNode* synthFunctionDef = synthParams;
 | |
|     handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
 | |
| 
 | |
|     entryPointFunctionBody = synthBody;
 | |
| 
 | |
|     return synthFunctionDef;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
 | |
|                                           TIntermNode*& node)
 | |
| {
 | |
|     node = intermediate.growAggregate(node, functionBody);
 | |
|     intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
 | |
|     node->getAsAggregate()->setName(function.getMangledName().c_str());
 | |
| 
 | |
|     popScope();
 | |
|     if (function.hasImplicitThis())
 | |
|         popImplicitThis();
 | |
| 
 | |
|     if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
 | |
|         error(loc, "function does not return a value:", "", function.getName().c_str());
 | |
| }
 | |
| 
 | |
| // AST I/O is done through shader globals declared in the 'in' or 'out'
 | |
| // storage class.  An HLSL entry point has a return value, input parameters
 | |
| // and output parameters.  These need to get remapped to the AST I/O.
 | |
| void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
 | |
|     TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
 | |
| {
 | |
|     // We might have in input structure type with no decorations that caused it
 | |
|     // to look like an input type, yet it has (e.g.) interpolation types that
 | |
|     // must be modified that turn it into an input type.
 | |
|     // Hence, a missing ioTypeMap for 'input' might need to be synthesized.
 | |
|     const auto synthesizeEditedInput = [this](TType& type) {
 | |
|         // True if a type needs to be 'flat'
 | |
|         const auto needsFlat = [](const TType& type) {
 | |
|             return type.containsBasicType(EbtInt) ||
 | |
|                     type.containsBasicType(EbtUint) ||
 | |
|                     type.containsBasicType(EbtInt64) ||
 | |
|                     type.containsBasicType(EbtUint64) ||
 | |
|                     type.containsBasicType(EbtBool) ||
 | |
|                     type.containsBasicType(EbtDouble);
 | |
|         };
 | |
| 
 | |
|         if (language == EShLangFragment && needsFlat(type)) {
 | |
|             if (type.isStruct()) {
 | |
|                 TTypeList* finalList = nullptr;
 | |
|                 auto it = ioTypeMap.find(type.getStruct());
 | |
|                 if (it == ioTypeMap.end() || it->second.input == nullptr) {
 | |
|                     // Getting here means we have no input struct, but we need one.
 | |
|                     auto list = new TTypeList;
 | |
|                     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
 | |
|                         TType* newType = new TType;
 | |
|                         newType->shallowCopy(*member->type);
 | |
|                         TTypeLoc typeLoc = { newType, member->loc };
 | |
|                         list->push_back(typeLoc);
 | |
|                     }
 | |
|                     // install the new input type
 | |
|                     if (it == ioTypeMap.end()) {
 | |
|                         tIoKinds newLists = { list, nullptr, nullptr };
 | |
|                         ioTypeMap[type.getStruct()] = newLists;
 | |
|                     } else
 | |
|                         it->second.input = list;
 | |
|                     finalList = list;
 | |
|                 } else
 | |
|                     finalList = it->second.input;
 | |
|                 // edit for 'flat'
 | |
|                 for (auto member = finalList->begin(); member != finalList->end(); ++member) {
 | |
|                     if (needsFlat(*member->type)) {
 | |
|                         member->type->getQualifier().clearInterpolation();
 | |
|                         member->type->getQualifier().flat = true;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 type.getQualifier().clearInterpolation();
 | |
|                 type.getQualifier().flat = true;
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // Do the actual work to make a type be a shader input or output variable,
 | |
|     // and clear the original to be non-IO (for use as a normal function parameter/return).
 | |
|     const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
 | |
|         TVariable* ioVariable = makeInternalVariable(name, type);
 | |
|         clearUniformInputOutput(type.getQualifier());
 | |
|         if (type.isStruct()) {
 | |
|             auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
 | |
|             if (newLists != ioTypeMap.end()) {
 | |
|                 if (storage == EvqVaryingIn && newLists->second.input)
 | |
|                     ioVariable->getWritableType().setStruct(newLists->second.input);
 | |
|                 else if (storage == EvqVaryingOut && newLists->second.output)
 | |
|                     ioVariable->getWritableType().setStruct(newLists->second.output);
 | |
|             }
 | |
|         }
 | |
|         if (storage == EvqVaryingIn) {
 | |
|             correctInput(ioVariable->getWritableType().getQualifier());
 | |
|             if (language == EShLangTessEvaluation)
 | |
|                 if (!ioVariable->getType().isArray())
 | |
|                     ioVariable->getWritableType().getQualifier().patch = true;
 | |
|         } else {
 | |
|             correctOutput(ioVariable->getWritableType().getQualifier());
 | |
|         }
 | |
|         ioVariable->getWritableType().getQualifier().storage = storage;
 | |
| 
 | |
|         fixBuiltInIoType(ioVariable->getWritableType());
 | |
| 
 | |
|         return ioVariable;
 | |
|     };
 | |
| 
 | |
|     // return value is actually a shader-scoped output (out)
 | |
|     if (function.getType().getBasicType() == EbtVoid) {
 | |
|         returnValue = nullptr;
 | |
|     } else {
 | |
|         if (language == EShLangTessControl) {
 | |
|             // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
 | |
|             // array in SPIR-V semantics.  We'll write to it indexed by invocation ID.
 | |
| 
 | |
|             returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
 | |
| 
 | |
|             TType outputType;
 | |
|             outputType.shallowCopy(function.getType());
 | |
| 
 | |
|             // vertices has necessarily already been set when handling entry point attributes.
 | |
|             TArraySizes* arraySizes = new TArraySizes;
 | |
|             arraySizes->addInnerSize(intermediate.getVertices());
 | |
|             outputType.transferArraySizes(arraySizes);
 | |
| 
 | |
|             clearUniformInputOutput(function.getWritableType().getQualifier());
 | |
|             returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
 | |
|         } else {
 | |
|             returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // parameters are actually shader-scoped inputs and outputs (in or out)
 | |
|     for (int i = 0; i < function.getParamCount(); i++) {
 | |
|         TType& paramType = *function[i].type;
 | |
|         if (paramType.getQualifier().isParamInput()) {
 | |
|             synthesizeEditedInput(paramType);
 | |
|             TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
 | |
|             inputs.push_back(argAsGlobal);
 | |
|         }
 | |
|         if (paramType.getQualifier().isParamOutput()) {
 | |
|             TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
 | |
|             outputs.push_back(argAsGlobal);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // An HLSL function that looks like an entry point, but is not,
 | |
| // declares entry point IO built-ins, but these have to be undone.
 | |
| void HlslParseContext::remapNonEntryPointIO(TFunction& function)
 | |
| {
 | |
|     // return value
 | |
|     if (function.getType().getBasicType() != EbtVoid)
 | |
|         clearUniformInputOutput(function.getWritableType().getQualifier());
 | |
| 
 | |
|     // parameters.
 | |
|     // References to structuredbuffer types are left unmodified
 | |
|     for (int i = 0; i < function.getParamCount(); i++)
 | |
|         if (!isReference(*function[i].type))
 | |
|             clearUniformInputOutput(function[i].type->getQualifier());
 | |
| }
 | |
| 
 | |
| // Handle function returns, including type conversions to the function return type
 | |
| // if necessary.
 | |
| TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
 | |
| {
 | |
|     functionReturnsValue = true;
 | |
| 
 | |
|     if (currentFunctionType->getBasicType() == EbtVoid) {
 | |
|         error(loc, "void function cannot return a value", "return", "");
 | |
|         return intermediate.addBranch(EOpReturn, loc);
 | |
|     } else if (*currentFunctionType != value->getType()) {
 | |
|         value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
 | |
|         if (value && *currentFunctionType != value->getType())
 | |
|             value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
 | |
|         if (value == nullptr || *currentFunctionType != value->getType()) {
 | |
|             error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
 | |
|             return value;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return intermediate.addBranch(EOpReturn, value, loc);
 | |
| }
 | |
| 
 | |
| void HlslParseContext::handleFunctionArgument(TFunction* function,
 | |
|                                               TIntermTyped*& arguments, TIntermTyped* newArg)
 | |
| {
 | |
|     TParameter param = { 0, new TType, nullptr };
 | |
|     param.type->shallowCopy(newArg->getType());
 | |
| 
 | |
|     function->addParameter(param);
 | |
|     if (arguments)
 | |
|         arguments = intermediate.growAggregate(arguments, newArg);
 | |
|     else
 | |
|         arguments = newArg;
 | |
| }
 | |
| 
 | |
| // Position may require special handling: we can optionally invert Y.
 | |
| // See: https://github.com/KhronosGroup/glslang/issues/1173
 | |
| //      https://github.com/KhronosGroup/glslang/issues/494
 | |
| TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op,
 | |
|                                                TIntermTyped* left, TIntermTyped* right)
 | |
| {
 | |
|     // If we are not asked for Y inversion, use a plain old assign.
 | |
|     if (!intermediate.getInvertY())
 | |
|         return intermediate.addAssign(op, left, right, loc);
 | |
| 
 | |
|     // If we get here, we should invert Y.
 | |
|     TIntermAggregate* assignList = nullptr;
 | |
| 
 | |
|     // If this is a complex rvalue, we don't want to dereference it many times.  Create a temporary.
 | |
|     TVariable* rhsTempVar = nullptr;
 | |
|     rhsTempVar = makeInternalVariable("@position", right->getType());
 | |
|     rhsTempVar->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|     {
 | |
|         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
 | |
|         assignList = intermediate.growAggregate(assignList,
 | |
|                                                 intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
 | |
|     }
 | |
| 
 | |
|     // pos.y = -pos.y
 | |
|     {
 | |
|         const int Y = 1;
 | |
| 
 | |
|         TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
 | |
|         TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
 | |
|         TIntermTyped* index = intermediate.addConstantUnion(Y, loc);
 | |
| 
 | |
|         TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
 | |
|         TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
 | |
| 
 | |
|         const TType derefType(right->getType(), 0);
 | |
|     
 | |
|         lhsElement->setType(derefType);
 | |
|         rhsElement->setType(derefType);
 | |
| 
 | |
|         TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc);
 | |
| 
 | |
|         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc));
 | |
|     }
 | |
| 
 | |
|     // Assign the rhs temp (now with Y inversion) to the final output
 | |
|     {
 | |
|         TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
 | |
|         assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
 | |
|     }
 | |
| 
 | |
|     assert(assignList != nullptr);
 | |
|     assignList->setOperator(EOpSequence);
 | |
| 
 | |
|     return assignList;
 | |
| }
 | |
|     
 | |
| // Clip and cull distance require special handling due to a semantic mismatch.  In HLSL,
 | |
| // these can be float scalar, float vector, or arrays of float scalar or float vector.
 | |
| // In SPIR-V, they are arrays of scalar floats in all cases.  We must copy individual components
 | |
| // (e.g, both x and y components of a float2) out into the destination float array.
 | |
| //
 | |
| // The values are assigned to sequential members of the output array.  The inner dimension
 | |
| // is vector components.  The outer dimension is array elements.
 | |
| TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
 | |
|                                                            TIntermTyped* left, TIntermTyped* right)
 | |
| {
 | |
|     switch (language) {
 | |
|     case EShLangFragment:
 | |
|     case EShLangVertex:
 | |
|     case EShLangGeometry:
 | |
|         break;
 | |
|     default:
 | |
|         error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     TVariable** clipCullVar = nullptr;
 | |
| 
 | |
|     // Figure out if we are assigning to, or from, clip or cull distance.
 | |
|     const bool isOutput = isClipOrCullDistance(left->getType());
 | |
| 
 | |
|     // This is the rvalue or lvalue holding the clip or cull distance.
 | |
|     TIntermTyped* clipCullNode = isOutput ? left : right;
 | |
|     // This is the value going into or out of the clip or cull distance.
 | |
|     TIntermTyped* internalNode = isOutput ? right : left;
 | |
| 
 | |
|     const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn;
 | |
| 
 | |
|     decltype(clipSemanticNSizeIn)* semanticNSize = nullptr;
 | |
| 
 | |
|     // Refer to either the clip or the cull distance, depending on semantic.
 | |
|     switch (builtInType) {
 | |
|     case EbvClipDistance:
 | |
|         clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput;
 | |
|         semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn;
 | |
|         break;
 | |
|     case EbvCullDistance:
 | |
|         clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput;
 | |
|         semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn;
 | |
|         break;
 | |
| 
 | |
|     // called invalidly: we expected a clip or a cull distance.
 | |
|     // static compile time problem: should not happen.
 | |
|     default: assert(0); return nullptr;
 | |
|     }
 | |
| 
 | |
|     // This is the offset in the destination array of a given semantic's data
 | |
|     std::array<int, maxClipCullRegs> semanticOffset;
 | |
| 
 | |
|     // Calculate offset of variable of semantic N in destination array
 | |
|     int arrayLoc = 0;
 | |
|     int vecItems = 0;
 | |
| 
 | |
|     for (int x = 0; x < maxClipCullRegs; ++x) {
 | |
|         // See if we overflowed the vec4 packing
 | |
|         if ((vecItems + (*semanticNSize)[x]) > 4) {
 | |
|             arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
 | |
|             vecItems = 0;
 | |
|         }
 | |
| 
 | |
|         semanticOffset[x] = arrayLoc;
 | |
|         vecItems += (*semanticNSize)[x];
 | |
|         arrayLoc += (*semanticNSize)[x];
 | |
|     }
 | |
|  
 | |
| 
 | |
|     // It can have up to 2 array dimensions (in the case of geometry shader inputs)
 | |
|     const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes();
 | |
|     const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0;
 | |
|     // vector sizes:
 | |
|     const int internalVectorSize = internalNode->getType().getVectorSize();
 | |
|     // array sizes, or 1 if it's not an array:
 | |
|     const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1);
 | |
|     const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1);
 | |
| 
 | |
|     // The created type may be an array of arrays, e.g, for geometry shader inputs.
 | |
|     const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput);
 | |
| 
 | |
|     // If we haven't created the output already, create it now.
 | |
|     if (*clipCullVar == nullptr) {
 | |
|         // ClipDistance and CullDistance are handled specially in the entry point input/output copy
 | |
|         // algorithm, because they may need to be unpacked from components of vectors (or a scalar)
 | |
|         // into a float array, or vice versa.  Here, we make the array the right size and type,
 | |
|         // which depends on the incoming data, which has several potential dimensions:
 | |
|         //    * Semantic ID
 | |
|         //    * vector size 
 | |
|         //    * array size
 | |
|         // Of those, semantic ID and array size cannot appear simultaneously.
 | |
|         //
 | |
|         // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two
 | |
|         // array dimensions.  The shader's declaration may have one or two array dimensions.  One is always
 | |
|         // the geometry's dimension.
 | |
| 
 | |
|         const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed;
 | |
| 
 | |
|         const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1);
 | |
|         const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1;
 | |
| 
 | |
|         TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1);
 | |
|         clipCullType.getQualifier() = clipCullNode->getType().getQualifier();
 | |
| 
 | |
|         // Create required array dimension
 | |
|         TArraySizes* arraySizes = new TArraySizes;
 | |
|         if (isImplicitlyArrayed)
 | |
|             arraySizes->addInnerSize(requiredOuterArraySize);
 | |
|         arraySizes->addInnerSize(requiredInnerArraySize);
 | |
|         clipCullType.transferArraySizes(arraySizes);
 | |
| 
 | |
|         // Obtain symbol name: we'll use that for the symbol we introduce.
 | |
|         TIntermSymbol* sym = clipCullNode->getAsSymbolNode();
 | |
|         assert(sym != nullptr);
 | |
| 
 | |
|         // We are moving the semantic ID from the layout location, so it is no longer needed or
 | |
|         // desired there.
 | |
|         clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
 | |
| 
 | |
|         // Create variable and track its linkage
 | |
|         *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
 | |
| 
 | |
|         trackLinkage(**clipCullVar);
 | |
|     }
 | |
| 
 | |
|     // Create symbol for the clip or cull variable.
 | |
|     TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar);
 | |
| 
 | |
|     // vector sizes:
 | |
|     const int clipCullVectorSize = clipCullSym->getType().getVectorSize();
 | |
| 
 | |
|     // array sizes, or 1 if it's not an array:
 | |
|     const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes();
 | |
|     const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1;
 | |
|     const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0);
 | |
| 
 | |
|     // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics.
 | |
|     // fixBuiltInIoType() should have handled that upstream.
 | |
|     assert(clipCullSym->getType().isArray());
 | |
|     assert(clipCullSym->getType().getVectorSize() == 1);
 | |
|     assert(clipCullSym->getType().getBasicType() == EbtFloat);
 | |
| 
 | |
|     // We may be creating multiple sub-assignments.  This is an aggregate to hold them.
 | |
|     // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
 | |
|     TIntermAggregate* assignList = nullptr;
 | |
| 
 | |
|     // Holds individual component assignments as we make them.
 | |
|     TIntermTyped* clipCullAssign = nullptr;
 | |
| 
 | |
|     // If the types are homomorphic, use a simple assign.  No need to mess about with 
 | |
|     // individual components.
 | |
|     if (clipCullSym->getType().isArray() == internalNode->getType().isArray() &&
 | |
|         clipCullInnerArraySize == internalInnerArraySize &&
 | |
|         clipCullOuterArraySize == internalOuterArraySize &&
 | |
|         clipCullVectorSize == internalVectorSize) {
 | |
| 
 | |
|         if (isOutput)
 | |
|             clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc);
 | |
|         else
 | |
|             clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc);
 | |
| 
 | |
|         assignList = intermediate.growAggregate(assignList, clipCullAssign);
 | |
|         assignList->setOperator(EOpSequence);
 | |
| 
 | |
|         return assignList;
 | |
|     }
 | |
| 
 | |
|     // We are going to copy each component of the internal (per array element if indicated) to sequential
 | |
|     // array elements of the clipCullSym.  This tracks the lhs element we're writing to as we go along.
 | |
|     // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
 | |
|     int clipCullInnerArrayPos = semanticOffset[semanticId];
 | |
|     int clipCullOuterArrayPos = 0;
 | |
| 
 | |
|     // Lambda to add an index to a node, set the type of the result, and return the new node.
 | |
|     const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* {
 | |
|         const TType derefType(node->getType(), 0);
 | |
|         node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc);
 | |
|         node->setType(derefType);
 | |
|         return node;
 | |
|     };
 | |
| 
 | |
|     // Loop through every component of every element of the internal, and copy to or from the matching external.
 | |
|     for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) {
 | |
|         for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) {
 | |
|             for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) {
 | |
|                 // clip/cull array member to read from / write to:
 | |
|                 TIntermTyped* clipCullMember = clipCullSym;
 | |
| 
 | |
|                 // If implicitly arrayed, there is an outer array dimension involved
 | |
|                 if (isImplicitlyArrayed)
 | |
|                     clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos);
 | |
| 
 | |
|                 // Index into proper array position for clip cull member
 | |
|                 clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++);
 | |
| 
 | |
|                 // if needed, start over with next outer array slice.
 | |
|                 if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) {
 | |
|                     clipCullInnerArrayPos = semanticOffset[semanticId];
 | |
|                     ++clipCullOuterArrayPos;
 | |
|                 }
 | |
| 
 | |
|                 // internal member to read from / write to:
 | |
|                 TIntermTyped* internalMember = internalNode;
 | |
| 
 | |
|                 // If internal node has outer array dimension, index appropriately.
 | |
|                 if (internalArrayDims > 1)
 | |
|                     internalMember = addIndex(internalMember, internalOuterArrayPos);
 | |
| 
 | |
|                 // If internal node has inner array dimension, index appropriately.
 | |
|                 if (internalArrayDims > 0)
 | |
|                     internalMember = addIndex(internalMember, internalInnerArrayPos);
 | |
| 
 | |
|                 // If internal node is a vector, extract the component of interest.
 | |
|                 if (internalNode->getType().isVector())
 | |
|                     internalMember = addIndex(internalMember, internalComponent);
 | |
| 
 | |
|                 // Create an assignment: output from internal to clip cull, or input from clip cull to internal.
 | |
|                 if (isOutput)
 | |
|                     clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc);
 | |
|                 else
 | |
|                     clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc);
 | |
| 
 | |
|                 // Track assignment in the sequence.
 | |
|                 assignList = intermediate.growAggregate(assignList, clipCullAssign);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(assignList != nullptr);
 | |
|     assignList->setOperator(EOpSequence);
 | |
| 
 | |
|     return assignList;
 | |
| }
 | |
| 
 | |
| // Some simple source assignments need to be flattened to a sequence
 | |
| // of AST assignments. Catch these and flatten, otherwise, pass through
 | |
| // to intermediate.addAssign().
 | |
| //
 | |
| // Also, assignment to matrix swizzles requires multiple component assignments,
 | |
| // intercept those as well.
 | |
| TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
 | |
|                                              TIntermTyped* right)
 | |
| {
 | |
|     if (left == nullptr || right == nullptr)
 | |
|         return nullptr;
 | |
| 
 | |
|     // writing to opaques will require fixing transforms
 | |
|     if (left->getType().containsOpaque())
 | |
|         intermediate.setNeedsLegalization();
 | |
| 
 | |
|     if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
 | |
|         return handleAssignToMatrixSwizzle(loc, op, left, right);
 | |
| 
 | |
|     // Return true if the given node is an index operation into a split variable.
 | |
|     const auto indexesSplit = [this](const TIntermTyped* node) -> bool {
 | |
|         const TIntermBinary* binaryNode = node->getAsBinaryNode();
 | |
| 
 | |
|         if (binaryNode == nullptr)
 | |
|             return false;
 | |
| 
 | |
|         return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) && 
 | |
|                wasSplit(binaryNode->getLeft());
 | |
|     };
 | |
| 
 | |
|     // Return true if this stage assigns clip position with potentially inverted Y
 | |
|     const auto assignsClipPos = [this](const TIntermTyped* node) -> bool {
 | |
|         return node->getType().getQualifier().builtIn == EbvPosition &&
 | |
|                (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation);
 | |
|     };
 | |
| 
 | |
|     const bool isSplitLeft    = wasSplit(left) || indexesSplit(left);
 | |
|     const bool isSplitRight   = wasSplit(right) || indexesSplit(right);
 | |
| 
 | |
|     const bool isFlattenLeft  = wasFlattened(left);
 | |
|     const bool isFlattenRight = wasFlattened(right);
 | |
| 
 | |
|     // OK to do a single assign if neither side is split or flattened.  Otherwise, 
 | |
|     // fall through to a member-wise copy.
 | |
|     if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
 | |
|         // Clip and cull distance requires more processing.  See comment above assignClipCullDistance.
 | |
|         if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) {
 | |
|             const bool isOutput = isClipOrCullDistance(left->getType());
 | |
| 
 | |
|             const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation;
 | |
|             return assignClipCullDistance(loc, op, semanticId, left, right);
 | |
|         } else if (assignsClipPos(left)) {
 | |
|             // Position can require special handling: see comment above assignPosition
 | |
|             return assignPosition(loc, op, left, right);
 | |
|         } else if (left->getQualifier().builtIn == EbvSampleMask) {
 | |
|             // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars
 | |
|             // in the shader.  Copy the scalar RHS into the LHS array element zero, if that happens.
 | |
|             if (left->isArray() && !right->isArray()) {
 | |
|                 const TType derefType(left->getType(), 0);
 | |
|                 left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc);
 | |
|                 left->setType(derefType);
 | |
|                 // Fall through to add assign.
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return intermediate.addAssign(op, left, right, loc);
 | |
|     }
 | |
| 
 | |
|     TIntermAggregate* assignList = nullptr;
 | |
|     const TVector<TVariable*>* leftVariables = nullptr;
 | |
|     const TVector<TVariable*>* rightVariables = nullptr;
 | |
| 
 | |
|     // A temporary to store the right node's value, so we don't keep indirecting into it
 | |
|     // if it's not a simple symbol.
 | |
|     TVariable* rhsTempVar = nullptr;
 | |
| 
 | |
|     // If the RHS is a simple symbol node, we'll copy it for each member.
 | |
|     TIntermSymbol* cloneSymNode = nullptr;
 | |
| 
 | |
|     int memberCount = 0;
 | |
| 
 | |
|     // Track how many items there are to copy.
 | |
|     if (left->getType().isStruct())
 | |
|         memberCount = (int)left->getType().getStruct()->size();
 | |
|     if (left->getType().isArray())
 | |
|         memberCount = left->getType().getCumulativeArraySize();
 | |
| 
 | |
|     if (isFlattenLeft)
 | |
|         leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members;
 | |
| 
 | |
|     if (isFlattenRight) {
 | |
|         rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members;
 | |
|     } else {
 | |
|         // The RHS is not flattened.  There are several cases:
 | |
|         // 1. 1 item to copy:  Use the RHS directly.
 | |
|         // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
 | |
|         // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
 | |
| 
 | |
|         if (memberCount <= 1) {
 | |
|             // case 1: we'll use the symbol directly below.  Nothing to do.
 | |
|         } else {
 | |
|             if (right->getAsSymbolNode() != nullptr) {
 | |
|                 // case 2: we'll copy the symbol per iteration below.
 | |
|                 cloneSymNode = right->getAsSymbolNode();
 | |
|             } else {
 | |
|                 // case 3: assign to a temp, and indirect into that.
 | |
|                 rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
 | |
|                 rhsTempVar->getWritableType().getQualifier().makeTemporary();
 | |
|                 TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
 | |
| 
 | |
|                 // Add this to the aggregate being built.
 | |
|                 assignList = intermediate.growAggregate(assignList,
 | |
|                                                         intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
 | |
|     // variables, which is awkward when copying between split and unsplit structures.  This variable tracks
 | |
|     // array indirections so they can be percolated from outer structs to inner variables.
 | |
|     std::vector <int> arrayElement;
 | |
| 
 | |
|     TStorageQualifier leftStorage = left->getType().getQualifier().storage;
 | |
|     TStorageQualifier rightStorage = right->getType().getQualifier().storage;
 | |
| 
 | |
|     int leftOffset = findSubtreeOffset(*left);
 | |
|     int rightOffset = findSubtreeOffset(*right);
 | |
| 
 | |
|     const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember,
 | |
|                                bool flattened)
 | |
|                            -> TIntermTyped * {
 | |
|         const bool split     = isLeft ? isSplitLeft   : isSplitRight;
 | |
| 
 | |
|         TIntermTyped* subTree;
 | |
|         const TType derefType(type, member);
 | |
|         const TVariable* builtInVar = nullptr;
 | |
|         if ((flattened || split) && derefType.isBuiltIn()) {
 | |
|             auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData(
 | |
|                                                    derefType.getQualifier().builtIn,
 | |
|                                                    isLeft ? leftStorage : rightStorage));
 | |
|             if (splitPair != splitBuiltIns.end())
 | |
|                 builtInVar = splitPair->second;
 | |
|         }
 | |
|         if (builtInVar != nullptr) {
 | |
|             // copy from interstage IO built-in if needed
 | |
|             subTree = intermediate.addSymbol(*builtInVar);
 | |
| 
 | |
|             if (subTree->getType().isArray()) {
 | |
|                 // Arrayness of builtIn symbols isn't handled by the normal recursion:
 | |
|                 // it's been extracted and moved to the built-in.
 | |
|                 if (!arrayElement.empty()) {
 | |
|                     const TType splitDerefType(subTree->getType(), arrayElement.back());
 | |
|                     subTree = intermediate.addIndex(EOpIndexDirect, subTree,
 | |
|                                                     intermediate.addConstantUnion(arrayElement.back(), loc), loc);
 | |
|                     subTree->setType(splitDerefType);
 | |
|                 } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) {
 | |
|                     // This might also be a stage with arrayed outputs, in which case there's an index
 | |
|                     // operation we should transfer to the output builtin.
 | |
| 
 | |
|                     const TType splitDerefType(subTree->getType(), 0);
 | |
|                     subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
 | |
|                                                     splitNode->getAsBinaryNode()->getRight(), loc);
 | |
|                     subTree->setType(splitDerefType);
 | |
|                 }
 | |
|             }
 | |
|         } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) {
 | |
|             if (isLeft)
 | |
|                 subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]);
 | |
|             else
 | |
|                 subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]);
 | |
|         } else {
 | |
|             // Index operator if it's an aggregate, else EOpNull
 | |
|             const TOperator accessOp = type.isArray()  ? EOpIndexDirect
 | |
|                                      : type.isStruct() ? EOpIndexDirectStruct
 | |
|                                      : EOpNull;
 | |
|             if (accessOp == EOpNull) {
 | |
|                 subTree = splitNode;
 | |
|             } else {
 | |
|                 subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
 | |
|                                                 loc);
 | |
|                 const TType splitDerefType(splitNode->getType(), splitMember);
 | |
|                 subTree->setType(splitDerefType);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return subTree;
 | |
|     };
 | |
| 
 | |
|     // Use the proper RHS node: a new symbol from a TVariable, copy
 | |
|     // of an TIntermSymbol node, or sometimes the right node directly.
 | |
|     right = rhsTempVar != nullptr   ? intermediate.addSymbol(*rhsTempVar, loc) :
 | |
|             cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
 | |
|             right;
 | |
| 
 | |
|     // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
 | |
|     // whole thing.  So, we'll resort to an explicit type via std::function.
 | |
|     const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
 | |
|                              bool topLevel)>
 | |
|     traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
 | |
|                    bool topLevel) -> void {
 | |
|         // If we get here, we are assigning to or from a whole array or struct that must be
 | |
|         // flattened, so have to do member-by-member assignment:
 | |
| 
 | |
|         bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel);
 | |
|         bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel);
 | |
| 
 | |
|         if ((left->getType().isArray() || right->getType().isArray()) &&
 | |
|               (shouldFlattenSubsetLeft  || isSplitLeft ||
 | |
|                shouldFlattenSubsetRight || isSplitRight)) {
 | |
|             const int elementsL = left->getType().isArray()  ? left->getType().getOuterArraySize()  : 1;
 | |
|             const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
 | |
| 
 | |
|             // The arrays might not be the same size,
 | |
|             // e.g., if the size has been forced for EbvTessLevelInner/Outer.
 | |
|             const int elementsToCopy = std::min(elementsL, elementsR);
 | |
| 
 | |
|             // array case
 | |
|             for (int element = 0; element < elementsToCopy; ++element) {
 | |
|                 arrayElement.push_back(element);
 | |
| 
 | |
|                 // Add a new AST symbol node if we have a temp variable holding a complex RHS.
 | |
|                 TIntermTyped* subLeft  = getMember(true,  left->getType(),  element, left, element,
 | |
|                                                    shouldFlattenSubsetLeft);
 | |
|                 TIntermTyped* subRight = getMember(false, right->getType(), element, right, element,
 | |
|                                                    shouldFlattenSubsetRight);
 | |
| 
 | |
|                 TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left->getType(),  element, splitLeft,
 | |
|                                                                        element, shouldFlattenSubsetLeft)
 | |
|                                                            : subLeft;
 | |
|                 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight,
 | |
|                                                                        element, shouldFlattenSubsetRight)
 | |
|                                                            : subRight;
 | |
| 
 | |
|                 traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
 | |
| 
 | |
|                 arrayElement.pop_back();
 | |
|             }
 | |
|         } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft  || isSplitLeft ||
 | |
|                                                   shouldFlattenSubsetRight || isSplitRight)) {
 | |
|             // struct case
 | |
|             const auto& membersL = *left->getType().getStruct();
 | |
|             const auto& membersR = *right->getType().getStruct();
 | |
| 
 | |
|             // These track the members in the split structures corresponding to the same in the unsplit structures,
 | |
|             // which we traverse in parallel.
 | |
|             int memberL = 0;
 | |
|             int memberR = 0;
 | |
| 
 | |
|             // Handle empty structure assignment
 | |
|             if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
 | |
|                 assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
 | |
| 
 | |
|             for (int member = 0; member < int(membersL.size()); ++member) {
 | |
|                 const TType& typeL = *membersL[member].type;
 | |
|                 const TType& typeR = *membersR[member].type;
 | |
| 
 | |
|                 TIntermTyped* subLeft  = getMember(true,  left->getType(), member, left, member,
 | |
|                                                    shouldFlattenSubsetLeft);
 | |
|                 TIntermTyped* subRight = getMember(false, right->getType(), member, right, member,
 | |
|                                                    shouldFlattenSubsetRight);
 | |
| 
 | |
|                 // If there is no splitting, use the same values to avoid inefficiency.
 | |
|                 TIntermTyped* subSplitLeft =  isSplitLeft  ? getMember(true,  left->getType(),  member, splitLeft,
 | |
|                                                                        memberL, shouldFlattenSubsetLeft)
 | |
|                                                            : subLeft;
 | |
|                 TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight,
 | |
|                                                                        memberR, shouldFlattenSubsetRight)
 | |
|                                                            : subRight;
 | |
| 
 | |
|                 if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) {
 | |
|                     // Clip and cull distance built-in assignment is complex in its own right, and is handled in
 | |
|                     // a separate function dedicated to that task.  See comment above assignClipCullDistance;
 | |
| 
 | |
|                     const bool isOutput = isClipOrCullDistance(subSplitLeft->getType());
 | |
| 
 | |
|                     // Since all clip/cull semantics boil down to the same built-in type, we need to get the
 | |
|                     // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
 | |
|                     const TType derefType((isOutput ? left : right)->getType(), member);
 | |
|                     const int semanticId = derefType.getQualifier().layoutLocation;
 | |
| 
 | |
|                     TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
 | |
|                                                                               subSplitLeft, subSplitRight);
 | |
| 
 | |
|                     assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
 | |
|                 } else if (assignsClipPos(subSplitLeft)) {
 | |
|                     // Position can require special handling: see comment above assignPosition
 | |
|                     TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight);
 | |
|                     assignList = intermediate.growAggregate(assignList, positionAssign, loc);
 | |
|                 } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight &&
 | |
|                            !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) {
 | |
|                     // If this is the final flattening (no nested types below to flatten)
 | |
|                     // we'll copy the member, else recurse into the type hierarchy.
 | |
|                     // However, if splitting the struct, that means we can copy a whole
 | |
|                     // subtree here IFF it does not itself contain any interstage built-in
 | |
|                     // IO variables, so we only have to recurse into it if there's something
 | |
|                     // for splitting to do.  That can save a lot of AST verbosity for
 | |
|                     // a bunch of memberwise copies.
 | |
| 
 | |
|                     assignList = intermediate.growAggregate(assignList,
 | |
|                                                             intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
 | |
|                                                             loc);
 | |
|                 } else {
 | |
|                     traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
 | |
|                 }
 | |
| 
 | |
|                 memberL += (typeL.isBuiltIn() ? 0 : 1);
 | |
|                 memberR += (typeR.isBuiltIn() ? 0 : 1);
 | |
|             }
 | |
|         } else {
 | |
|             // Member copy
 | |
|             assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
 | |
|         }
 | |
| 
 | |
|     };
 | |
| 
 | |
|     TIntermTyped* splitLeft  = left;
 | |
|     TIntermTyped* splitRight = right;
 | |
| 
 | |
|     // If either left or right was a split structure, we must read or write it, but still have to
 | |
|     // parallel-recurse through the unsplit structure to identify the built-in IO vars.
 | |
|     // The left can be either a symbol, or an index into a symbol (e.g, array reference)
 | |
|     if (isSplitLeft) {
 | |
|         if (indexesSplit(left)) {
 | |
|             // Index case: Refer to the indexed symbol, if the left is an index operator.
 | |
|             const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode();
 | |
| 
 | |
|             TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
 | |
| 
 | |
|             splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo,
 | |
|                                               left->getAsBinaryNode()->getRight(), loc);
 | |
| 
 | |
|             const TType derefType(splitLeftNonIo->getType(), 0);
 | |
|             splitLeft->setType(derefType);
 | |
|         } else {
 | |
|             // Symbol case: otherwise, if not indexed, we have the symbol directly.
 | |
|             const TIntermSymbol* symNode = left->getAsSymbolNode();
 | |
|             splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (isSplitRight)
 | |
|         splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
 | |
| 
 | |
|     // This makes the whole assignment, recursing through subtypes as needed.
 | |
|     traverse(left, right, splitLeft, splitRight, true);
 | |
| 
 | |
|     assert(assignList != nullptr);
 | |
|     assignList->setOperator(EOpSequence);
 | |
| 
 | |
|     return assignList;
 | |
| }
 | |
| 
 | |
| // An assignment to matrix swizzle must be decomposed into individual assignments.
 | |
| // These must be selected component-wise from the RHS and stored component-wise
 | |
| // into the LHS.
 | |
| TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
 | |
|                                                             TIntermTyped* right)
 | |
| {
 | |
|     assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
 | |
| 
 | |
|     if (op != EOpAssign)
 | |
|         error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
 | |
| 
 | |
|     // isolate the matrix and swizzle nodes
 | |
|     TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
 | |
|     const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
 | |
| 
 | |
|     // if the RHS isn't already a simple vector, let's store into one
 | |
|     TIntermSymbol* vector = right->getAsSymbolNode();
 | |
|     TIntermTyped* vectorAssign = nullptr;
 | |
|     if (vector == nullptr) {
 | |
|         // create a new intermediate vector variable to assign to
 | |
|         TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
 | |
|         vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
 | |
| 
 | |
|         // assign the right to the new vector
 | |
|         vectorAssign = handleAssign(loc, op, vector, right);
 | |
|     }
 | |
| 
 | |
|     // Assign the vector components to the matrix components.
 | |
|     // Store this as a sequence, so a single aggregate node represents this
 | |
|     // entire operation.
 | |
|     TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
 | |
|     TType columnType(matrix->getType(), 0);
 | |
|     TType componentType(columnType, 0);
 | |
|     TType indexType(EbtInt);
 | |
|     for (int i = 0; i < (int)swizzle.size(); i += 2) {
 | |
|         // the right component, single index into the RHS vector
 | |
|         TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
 | |
|                                     intermediate.addConstantUnion(i/2, loc), loc);
 | |
| 
 | |
|         // the left component, double index into the LHS matrix
 | |
|         TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
 | |
|                                     intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
 | |
|                                                                   indexType, loc),
 | |
|                                     loc);
 | |
|         leftComp->setType(columnType);
 | |
|         leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
 | |
|                                     intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
 | |
|                                                                   indexType, loc),
 | |
|                                     loc);
 | |
|         leftComp->setType(componentType);
 | |
| 
 | |
|         // Add the assignment to the aggregate
 | |
|         result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
 | |
|     }
 | |
| 
 | |
|     result->setOp(EOpSequence);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| //
 | |
| // HLSL atomic operations have slightly different arguments than
 | |
| // GLSL/AST/SPIRV.  The semantics are converted below in decomposeIntrinsic.
 | |
| // This provides the post-decomposition equivalent opcode.
 | |
| //
 | |
| TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
 | |
| {
 | |
|     switch (op) {
 | |
|     case EOpInterlockedAdd:             return isImage ? EOpImageAtomicAdd      : EOpAtomicAdd;
 | |
|     case EOpInterlockedAnd:             return isImage ? EOpImageAtomicAnd      : EOpAtomicAnd;
 | |
|     case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
 | |
|     case EOpInterlockedMax:             return isImage ? EOpImageAtomicMax      : EOpAtomicMax;
 | |
|     case EOpInterlockedMin:             return isImage ? EOpImageAtomicMin      : EOpAtomicMin;
 | |
|     case EOpInterlockedOr:              return isImage ? EOpImageAtomicOr       : EOpAtomicOr;
 | |
|     case EOpInterlockedXor:             return isImage ? EOpImageAtomicXor      : EOpAtomicXor;
 | |
|     case EOpInterlockedExchange:        return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
 | |
|     case EOpInterlockedCompareStore:  // TODO: ...
 | |
|     default:
 | |
|         error(loc, "unknown atomic operation", "unknown op", "");
 | |
|         return EOpNull;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Create a combined sampler/texture from separate sampler and texture.
 | |
| //
 | |
| TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
 | |
|                                                                 TIntermTyped* argSampler)
 | |
| {
 | |
|     TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
 | |
| 
 | |
|     txcombine->getSequence().push_back(argTex);
 | |
|     txcombine->getSequence().push_back(argSampler);
 | |
| 
 | |
|     TSampler samplerType = argTex->getType().getSampler();
 | |
|     samplerType.combined = true;
 | |
| 
 | |
|     // TODO:
 | |
|     // This block exists until the spec no longer requires shadow modes on texture objects.
 | |
|     // It can be deleted after that, along with the shadowTextureVariant member.
 | |
|     {
 | |
|         const bool shadowMode = argSampler->getType().getSampler().shadow;
 | |
| 
 | |
|         TIntermSymbol* texSymbol = argTex->getAsSymbolNode();
 | |
| 
 | |
|         if (texSymbol == nullptr)
 | |
|             texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode();
 | |
| 
 | |
|         if (texSymbol == nullptr) {
 | |
|             error(loc, "unable to find texture symbol", "", "");
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         // This forces the texture's shadow state to be the sampler's
 | |
|         // shadow state.  This depends on downstream optimization to
 | |
|         // DCE one variant in [shadow, nonshadow] if both are present,
 | |
|         // or the SPIR-V module would be invalid.
 | |
|         int newId = texSymbol->getId();
 | |
| 
 | |
|         // Check to see if this texture has been given a shadow mode already.
 | |
|         // If so, look up the one we already have.
 | |
|         const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId());
 | |
| 
 | |
|         if (textureShadowEntry != textureShadowVariant.end())
 | |
|             newId = textureShadowEntry->second->get(shadowMode);
 | |
|         else
 | |
|             textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1);
 | |
| 
 | |
|         // Sometimes we have to create another symbol (if this texture has been seen before,
 | |
|         // and we haven't created the form for this shadow mode).
 | |
|         if (newId == -1) {
 | |
|             TType texType;
 | |
|             texType.shallowCopy(argTex->getType());
 | |
|             texType.getSampler().shadow = shadowMode;  // set appropriate shadow mode.
 | |
|             globalQualifierFix(loc, texType.getQualifier());
 | |
| 
 | |
|             TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType);
 | |
| 
 | |
|             trackLinkage(*newTexture);
 | |
| 
 | |
|             newId = newTexture->getUniqueId();
 | |
|         }
 | |
| 
 | |
|         assert(newId != -1);
 | |
| 
 | |
|         if (textureShadowVariant.find(newId) == textureShadowVariant.end())
 | |
|             textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()];
 | |
| 
 | |
|         textureShadowVariant[newId]->set(shadowMode, newId);
 | |
| 
 | |
|         // Remember this shadow mode in the texture and the merged type.
 | |
|         argTex->getWritableType().getSampler().shadow = shadowMode;
 | |
|         samplerType.shadow = shadowMode;
 | |
| 
 | |
|         texSymbol->switchId(newId);
 | |
|     }
 | |
| 
 | |
|     txcombine->setType(TType(samplerType, EvqTemporary));
 | |
|     txcombine->setLoc(loc);
 | |
| 
 | |
|     return txcombine;
 | |
| }
 | |
| 
 | |
| // Return true if this a buffer type that has an associated counter buffer.
 | |
| bool HlslParseContext::hasStructBuffCounter(const TType& type) const
 | |
| {
 | |
|     switch (type.getQualifier().declaredBuiltIn) {
 | |
|     case EbvAppendConsume:       // fall through...
 | |
|     case EbvRWStructuredBuffer:  // ...
 | |
|         return true;
 | |
|     default:
 | |
|         return false; // the other structuredbuffer types do not have a counter.
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
 | |
| {
 | |
|     // Counter type
 | |
|     TType* counterType = new TType(EbtUint, EvqBuffer);
 | |
|     counterType->setFieldName(intermediate.implicitCounterName);
 | |
| 
 | |
|     TTypeList* blockStruct = new TTypeList;
 | |
|     TTypeLoc  member = { counterType, loc };
 | |
|     blockStruct->push_back(member);
 | |
| 
 | |
|     TType blockType(blockStruct, "", counterType->getQualifier());
 | |
|     blockType.getQualifier().storage = EvqBuffer;
 | |
| 
 | |
|     type.shallowCopy(blockType);
 | |
|     shareStructBufferType(type);
 | |
| }
 | |
| 
 | |
| // declare counter for a structured buffer type
 | |
| void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
 | |
| {
 | |
|     // Bail out if not a struct buffer
 | |
|     if (! isStructBufferType(bufferType))
 | |
|         return;
 | |
| 
 | |
|     if (! hasStructBuffCounter(bufferType))
 | |
|         return;
 | |
| 
 | |
|     TType blockType;
 | |
|     counterBufferType(loc, blockType);
 | |
| 
 | |
|     TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str());
 | |
| 
 | |
|     // Counter buffer is not yet in use
 | |
|     structBufferCounter[*blockName] = false;
 | |
| 
 | |
|     shareStructBufferType(blockType);
 | |
|     declareBlock(loc, blockType, blockName);
 | |
| }
 | |
| 
 | |
| // return the counter that goes with a given structuredbuffer
 | |
| TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
 | |
| {
 | |
|     // Bail out if not a struct buffer
 | |
|     if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
 | |
|         return nullptr;
 | |
| 
 | |
|     const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName()));
 | |
| 
 | |
|     // Mark the counter as being used
 | |
|     structBufferCounter[counterBlockName] = true;
 | |
| 
 | |
|     TIntermTyped* counterVar = handleVariable(loc, &counterBlockName);  // find the block structure
 | |
|     TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
 | |
| 
 | |
|     TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
 | |
|     counterMember->setType(TType(EbtUint));
 | |
|     return counterMember;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Decompose structure buffer methods into AST
 | |
| //
 | |
| void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
 | |
| {
 | |
|     if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
 | |
|         return;
 | |
| 
 | |
|     const TOperator op  = node->getAsOperator()->getOp();
 | |
|     TIntermAggregate* argAggregate = arguments->getAsAggregate();
 | |
| 
 | |
|     // Buffer is the object upon which method is called, so always arg 0
 | |
|     TIntermTyped* bufferObj = nullptr;
 | |
| 
 | |
|     // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
 | |
|     if (argAggregate) {
 | |
|         if (argAggregate->getSequence().empty())
 | |
|             return;
 | |
|         if (argAggregate->getSequence()[0])
 | |
|             bufferObj = argAggregate->getSequence()[0]->getAsTyped();
 | |
|     } else {
 | |
|         bufferObj = arguments->getAsSymbolNode();
 | |
|     }
 | |
| 
 | |
|     if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
 | |
|         return;
 | |
| 
 | |
|     // Some methods require a hidden internal counter, obtained via getStructBufferCounter().
 | |
|     // This lambda adds something to it and returns the old value.
 | |
|     const auto incDecCounter = [&](int incval) -> TIntermTyped* {
 | |
|         TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true);
 | |
|         TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
 | |
| 
 | |
|         if (counter == nullptr)
 | |
|             return nullptr;
 | |
| 
 | |
|         TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
 | |
|         counterIncrement->setType(TType(EbtUint, EvqTemporary));
 | |
|         counterIncrement->setLoc(loc);
 | |
|         counterIncrement->getSequence().push_back(counter);
 | |
|         counterIncrement->getSequence().push_back(incrementValue);
 | |
| 
 | |
|         return counterIncrement;
 | |
|     };
 | |
| 
 | |
|     // Index to obtain the runtime sized array out of the buffer.
 | |
|     TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
 | |
|     if (argArray == nullptr)
 | |
|         return;  // It might not be a struct buffer method.
 | |
| 
 | |
|     switch (op) {
 | |
|     case EOpMethodLoad:
 | |
|         {
 | |
|             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
 | |
| 
 | |
|             const TType& bufferType = bufferObj->getType();
 | |
| 
 | |
|             const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
 | |
| 
 | |
|             // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
 | |
|             // buffer then, but that's what it calls itself.
 | |
|             const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer   || 
 | |
|                                               builtInType == EbvRWByteAddressBuffer);
 | |
|                 
 | |
| 
 | |
|             if (isByteAddressBuffer)
 | |
|                 argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
 | |
|                                                       intermediate.addConstantUnion(2, loc, true),
 | |
|                                                       loc, TType(EbtInt));
 | |
| 
 | |
|             // Index into the array to find the item being loaded.
 | |
|             const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
 | |
| 
 | |
|             node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
 | |
| 
 | |
|             const TType derefType(argArray->getType(), 0);
 | |
|             node->setType(derefType);
 | |
|         }
 | |
|         
 | |
|         break;
 | |
| 
 | |
|     case EOpMethodLoad2:
 | |
|     case EOpMethodLoad3:
 | |
|     case EOpMethodLoad4:
 | |
|         {
 | |
|             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
 | |
| 
 | |
|             TOperator constructOp = EOpNull;
 | |
|             int size = 0;
 | |
| 
 | |
|             switch (op) {
 | |
|             case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
 | |
|             case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
 | |
|             case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
 | |
|             default: assert(0);
 | |
|             }
 | |
| 
 | |
|             TIntermTyped* body = nullptr;
 | |
| 
 | |
|             // First, we'll store the address in a variable to avoid multiple shifts
 | |
|             // (we must convert the byte address to an item address)
 | |
|             TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
 | |
|                                                                    intermediate.addConstantUnion(2, loc, true),
 | |
|                                                                    loc, TType(EbtInt));
 | |
| 
 | |
|             TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
 | |
|             TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
 | |
| 
 | |
|             body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
 | |
| 
 | |
|             TIntermTyped* vec = nullptr;
 | |
| 
 | |
|             // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
 | |
|             // address conversion.
 | |
|             for (int idx=0; idx<size; ++idx) {
 | |
|                 TIntermTyped* offsetIdx = byteAddrIdxVar;
 | |
| 
 | |
|                 // add index offset
 | |
|                 if (idx != 0)
 | |
|                     offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
 | |
|                                                            intermediate.addConstantUnion(idx, loc, true),
 | |
|                                                            loc, TType(EbtInt));
 | |
| 
 | |
|                 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
 | |
|                                                                                         : EOpIndexIndirect;
 | |
| 
 | |
|                 TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
 | |
| 
 | |
|                 TType derefType(argArray->getType(), 0);
 | |
|                 derefType.getQualifier().makeTemporary();
 | |
|                 indexVal->setType(derefType);
 | |
| 
 | |
|                 vec = intermediate.growAggregate(vec, indexVal);
 | |
|             }
 | |
| 
 | |
|             vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
 | |
|             vec->getAsAggregate()->setOperator(constructOp);
 | |
| 
 | |
|             body = intermediate.growAggregate(body, vec);
 | |
|             body->setType(vec->getType());
 | |
|             body->getAsAggregate()->setOperator(EOpSequence);
 | |
| 
 | |
|             node = body;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|     case EOpMethodStore:
 | |
|     case EOpMethodStore2:
 | |
|     case EOpMethodStore3:
 | |
|     case EOpMethodStore4:
 | |
|         {
 | |
|             TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped());  // index
 | |
|             TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped();  // value
 | |
| 
 | |
|             // Index into the array to find the item being loaded.
 | |
|             // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
 | |
|             // buffer then, but that's what it calls itself).
 | |
| 
 | |
|             int size = 0;
 | |
| 
 | |
|             switch (op) {
 | |
|             case EOpMethodStore:  size = 1; break;
 | |
|             case EOpMethodStore2: size = 2; break;
 | |
|             case EOpMethodStore3: size = 3; break;
 | |
|             case EOpMethodStore4: size = 4; break;
 | |
|             default: assert(0);
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* body = nullptr;
 | |
| 
 | |
|             // First, we'll store the address in a variable to avoid multiple shifts
 | |
|             // (we must convert the byte address to an item address)
 | |
|             TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
 | |
|                                                                    intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
 | |
| 
 | |
|             TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
 | |
|             TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
 | |
| 
 | |
|             body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
 | |
| 
 | |
|             for (int idx=0; idx<size; ++idx) {
 | |
|                 TIntermTyped* offsetIdx = byteAddrIdxVar;
 | |
|                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
 | |
| 
 | |
|                 // add index offset
 | |
|                 if (idx != 0)
 | |
|                     offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
 | |
| 
 | |
|                 const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
 | |
|                                                                                         : EOpIndexIndirect;
 | |
| 
 | |
|                 TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
 | |
|                 const TType derefType(argArray->getType(), 0);
 | |
|                 lValue->setType(derefType);
 | |
| 
 | |
|                 TIntermTyped* rValue;
 | |
|                 if (size == 1) {
 | |
|                     rValue = argValue;
 | |
|                 } else {
 | |
|                     rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
 | |
|                     const TType indexType(argValue->getType(), 0);
 | |
|                     rValue->setType(indexType);
 | |
|                 }
 | |
|                     
 | |
|                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc); 
 | |
| 
 | |
|                 body = intermediate.growAggregate(body, assign);
 | |
|             }
 | |
| 
 | |
|             body->setOperator(EOpSequence);
 | |
|             node = body;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|     case EOpMethodGetDimensions:
 | |
|         {
 | |
|             const int numArgs = (int)argAggregate->getSequence().size();
 | |
|             TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped();  // out num items
 | |
|             TIntermTyped* argStride   = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr;  // out stride
 | |
| 
 | |
|             TIntermAggregate* body = nullptr;
 | |
| 
 | |
|             // Length output:
 | |
|             if (argArray->getType().isSizedArray()) {
 | |
|                 const int length = argArray->getType().getOuterArraySize();
 | |
|                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
 | |
|                                                               intermediate.addConstantUnion(length, loc, true), loc);
 | |
|                 body = intermediate.growAggregate(body, assign, loc);
 | |
|             } else {
 | |
|                 TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
 | |
|                                                                                argNumItems->getType());
 | |
|                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
 | |
|                 body = intermediate.growAggregate(body, assign, loc);
 | |
|             }
 | |
| 
 | |
|             // Stride output:
 | |
|             if (argStride != nullptr) {
 | |
|                 int size;
 | |
|                 int stride;
 | |
|                 intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking,
 | |
|                                                 argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
 | |
| 
 | |
|                 TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
 | |
|                                                               intermediate.addConstantUnion(stride, loc, true), loc);
 | |
| 
 | |
|                 body = intermediate.growAggregate(body, assign);
 | |
|             }
 | |
| 
 | |
|             body->setOperator(EOpSequence);
 | |
|             node = body;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|     case EOpInterlockedAdd:
 | |
|     case EOpInterlockedAnd:
 | |
|     case EOpInterlockedExchange:
 | |
|     case EOpInterlockedMax:
 | |
|     case EOpInterlockedMin:
 | |
|     case EOpInterlockedOr:
 | |
|     case EOpInterlockedXor:
 | |
|     case EOpInterlockedCompareExchange:
 | |
|     case EOpInterlockedCompareStore:
 | |
|         {
 | |
|             // We'll replace the first argument with the block dereference, and let
 | |
|             // downstream decomposition handle the rest.
 | |
| 
 | |
|             TIntermSequence& sequence = argAggregate->getSequence();
 | |
| 
 | |
|             TIntermTyped* argIndex     = makeIntegerIndex(sequence[1]->getAsTyped());  // index
 | |
|             argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
 | |
|                                                   loc, TType(EbtInt));
 | |
| 
 | |
|             const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
 | |
|             TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
 | |
| 
 | |
|             const TType derefType(argArray->getType(), 0);
 | |
|             element->setType(derefType);
 | |
| 
 | |
|             // Replace the numeric byte offset parameter with array reference.
 | |
|             sequence[1] = element;
 | |
|             sequence.erase(sequence.begin(), sequence.begin()+1);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EOpMethodIncrementCounter:
 | |
|         {
 | |
|             node = incDecCounter(1);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodDecrementCounter:
 | |
|         {
 | |
|             TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
 | |
|             node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
 | |
|                                               preIncValue->getType());
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodAppend:
 | |
|         {
 | |
|             TIntermTyped* oldCounter = incDecCounter(1);
 | |
| 
 | |
|             TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
 | |
|             TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
 | |
| 
 | |
|             const TType derefType(argArray->getType(), 0);
 | |
|             lValue->setType(derefType);
 | |
| 
 | |
|             node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodConsume:
 | |
|         {
 | |
|             TIntermTyped* oldCounter = incDecCounter(-1);
 | |
| 
 | |
|             TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
 | |
|                                                                   intermediate.addConstantUnion(-1, loc, true), loc,
 | |
|                                                                   oldCounter->getType());
 | |
| 
 | |
|             node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
 | |
| 
 | |
|             const TType derefType(argArray->getType(), 0);
 | |
|             node->setType(derefType);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     default:
 | |
|         break; // most pass through unchanged
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Create array of standard sample positions for given sample count.
 | |
| // TODO: remove when a real method to query sample pos exists in SPIR-V.
 | |
| TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
 | |
| {
 | |
|     struct tSamplePos { float x, y; };
 | |
| 
 | |
|     static const tSamplePos pos1[] = {
 | |
|         { 0.0/16.0,  0.0/16.0 },
 | |
|     };
 | |
| 
 | |
|     // standard sample positions for 2, 4, 8, and 16 samples.
 | |
|     static const tSamplePos pos2[] = {
 | |
|         { 4.0/16.0,  4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
 | |
|     };
 | |
| 
 | |
|     static const tSamplePos pos4[] = {
 | |
|         {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0,  2.0/16.0 }, { 2.0/16.0,  6.0/16.0 },
 | |
|     };
 | |
| 
 | |
|     static const tSamplePos pos8[] = {
 | |
|         { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0,  3.0/16.0 }, { 5.0/16.0,  1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
 | |
|         {-5.0/16.0,  5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0,  7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
 | |
|     };
 | |
| 
 | |
|     static const tSamplePos pos16[] = {
 | |
|         { 1.0/16.0,  1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0,  2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
 | |
|         {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0,  5.0/16.0 }, { 5.0/16.0,  3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
 | |
|         {-2.0/16.0,  6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0,  4.0/16.0 },
 | |
|         {-8.0/16.0,  0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0,  7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
 | |
|     };
 | |
| 
 | |
|     const tSamplePos* sampleLoc = nullptr;
 | |
|     int numSamples = count;
 | |
| 
 | |
|     switch (count) {
 | |
|     case 2:  sampleLoc = pos2;  break;
 | |
|     case 4:  sampleLoc = pos4;  break;
 | |
|     case 8:  sampleLoc = pos8;  break;
 | |
|     case 16: sampleLoc = pos16; break;
 | |
|     default:
 | |
|         sampleLoc = pos1;
 | |
|         numSamples = 1;
 | |
|     }
 | |
| 
 | |
|     TConstUnionArray* values = new TConstUnionArray(numSamples*2);
 | |
|     
 | |
|     for (int pos=0; pos<count; ++pos) {
 | |
|         TConstUnion x, y;
 | |
|         x.setDConst(sampleLoc[pos].x);
 | |
|         y.setDConst(sampleLoc[pos].y);
 | |
| 
 | |
|         (*values)[pos*2+0] = x;
 | |
|         (*values)[pos*2+1] = y;
 | |
|     }
 | |
| 
 | |
|     TType retType(EbtFloat, EvqConst, 2);
 | |
| 
 | |
|     if (numSamples != 1) {
 | |
|         TArraySizes* arraySizes = new TArraySizes;
 | |
|         arraySizes->addInnerSize(numSamples);
 | |
|         retType.transferArraySizes(arraySizes);
 | |
|     }
 | |
| 
 | |
|     return new TIntermConstantUnion(*values, retType);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Decompose DX9 and DX10 sample intrinsics & object methods into AST
 | |
| //
 | |
| void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
 | |
| {
 | |
|     if (node == nullptr || !node->getAsOperator())
 | |
|         return;
 | |
| 
 | |
|     // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it.
 | |
|     const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
 | |
|         result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
 | |
| 
 | |
|         TIntermTyped* convertedResult = nullptr;
 | |
|         
 | |
|         TType retType;
 | |
|         getTextureReturnType(sampler, retType);
 | |
| 
 | |
|         if (retType.isStruct()) {
 | |
|             // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here)
 | |
|             TIntermAggregate* conversionAggregate = new TIntermAggregate;
 | |
|             convertedResult = conversionAggregate;
 | |
| 
 | |
|             // Convert vector output to return structure.  We will need a temp symbol to copy the results to.
 | |
|             TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType);
 | |
| 
 | |
|             // We also need a temp symbol to hold the result of the texture.  We don't want to re-fetch the
 | |
|             // sample each time we'll index into the result, so we'll copy to this, and index into the copy.
 | |
|             TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType());
 | |
| 
 | |
|             // Initial copy from texture to our sample result shadow.
 | |
|             TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc),
 | |
|                                                               result, loc);
 | |
| 
 | |
|             conversionAggregate->getSequence().push_back(shadowCopy);
 | |
| 
 | |
|             unsigned vec4Pos = 0;
 | |
| 
 | |
|             for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) {
 | |
|                 const TType memberType(retType, m); // dereferenced type of the member we're about to assign.
 | |
|                 
 | |
|                 // Check for bad struct members.  This should have been caught upstream.  Complain, because
 | |
|                 // wwe don't know what to do with it.  This algorithm could be generalized to handle
 | |
|                 // other things, e.g, sub-structures, but HLSL doesn't allow them.
 | |
|                 if (!memberType.isVector() && !memberType.isScalar()) {
 | |
|                     error(loc, "expected: scalar or vector type in texture structure", "", "");
 | |
|                     return nullptr;
 | |
|                 }
 | |
|                     
 | |
|                 // Index into the struct variable to find the member to assign.
 | |
|                 TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct,
 | |
|                                                                    intermediate.addSymbol(*structVar, loc),
 | |
|                                                                    intermediate.addConstantUnion(m, loc), loc);
 | |
| 
 | |
|                 structMember->setType(memberType);
 | |
| 
 | |
|                 // Assign each component of (possible) vector in struct member.
 | |
|                 for (int component = 0; component < memberType.getVectorSize(); ++component) {
 | |
|                     TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect,
 | |
|                                                                      intermediate.addSymbol(*sampleShadow, loc),
 | |
|                                                                      intermediate.addConstantUnion(vec4Pos++, loc), loc);
 | |
|                     vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1));
 | |
| 
 | |
|                     TIntermTyped* memberAssign = nullptr;
 | |
| 
 | |
|                     if (memberType.isVector()) {
 | |
|                         // Vector member: we need to create an access chain to the vector component.
 | |
| 
 | |
|                         TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember,
 | |
|                                                                                  intermediate.addConstantUnion(component, loc), loc);
 | |
|                         
 | |
|                         memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc);
 | |
|                     } else {
 | |
|                         // Scalar member: we can assign to it directly.
 | |
|                         memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc);
 | |
|                     }
 | |
| 
 | |
|                     
 | |
|                     conversionAggregate->getSequence().push_back(memberAssign);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Add completed variable so the expression results in the whole struct value we just built.
 | |
|             conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc));
 | |
| 
 | |
|             // Make it a sequence.
 | |
|             intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc);
 | |
|         } else {
 | |
|             // vector clamp the output if template vector type is smaller than sample result.
 | |
|             if (retType.getVectorSize() < node->getVectorSize()) {
 | |
|                 // Too many components.  Construct shorter vector from it.
 | |
|                 const TOperator op = intermediate.mapTypeToConstructorOp(retType);
 | |
| 
 | |
|                 convertedResult = constructBuiltIn(retType, op, result, loc, false);
 | |
|             } else {
 | |
|                 // Enough components.  Use directly.
 | |
|                 convertedResult = result;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         convertedResult->setLoc(loc);
 | |
|         return convertedResult;
 | |
|     };
 | |
| 
 | |
|     const TOperator op  = node->getAsOperator()->getOp();
 | |
|     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | |
| 
 | |
|     // Bail out if not a sampler method.
 | |
|     // Note though this is odd to do before checking the op, because the op
 | |
|     // could be something that takes the arguments, and the function in question
 | |
|     // takes the result of the op.  So, this is not the final word.
 | |
|     if (arguments != nullptr) {
 | |
|         if (argAggregate == nullptr) {
 | |
|             if (arguments->getAsTyped()->getBasicType() != EbtSampler)
 | |
|                 return;
 | |
|         } else {
 | |
|             if (argAggregate->getSequence().size() == 0 || 
 | |
|                 argAggregate->getSequence()[0] == nullptr ||
 | |
|                 argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
 | |
|                 return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (op) {
 | |
|     // **** DX9 intrinsics: ****
 | |
|     case EOpTexture:
 | |
|         {
 | |
|             // Texture with ddx & ddy is really gradient form in HLSL
 | |
|             if (argAggregate->getSequence().size() == 4)
 | |
|                 node->getAsAggregate()->setOperator(EOpTextureGrad);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
|     case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different)
 | |
|         {
 | |
|             TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped();   // sampler
 | |
|             TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped();  // coord
 | |
| 
 | |
|             assert(argCoord->getVectorSize() == 4);
 | |
|             TIntermTyped *w = intermediate.addConstantUnion(3, loc, true);
 | |
|             TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc);
 | |
| 
 | |
|             TOperator constructOp = EOpNull;
 | |
|             const TSampler &sampler = argSamp->getType().getSampler();
 | |
|             int coordSize = 0;
 | |
| 
 | |
|             switch (sampler.dim)
 | |
|             {
 | |
|             case Esd1D:   constructOp = EOpConstructFloat; coordSize = 1; break; // 1D
 | |
|             case Esd2D:   constructOp = EOpConstructVec2;  coordSize = 2; break; // 2D
 | |
|             case Esd3D:   constructOp = EOpConstructVec3;  coordSize = 3; break; // 3D
 | |
|             case EsdCube: constructOp = EOpConstructVec3;  coordSize = 3; break; // also 3D
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate *constructCoord = new TIntermAggregate(constructOp);
 | |
|             constructCoord->getSequence().push_back(argCoord);
 | |
|             constructCoord->setLoc(loc);
 | |
|             constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize));
 | |
| 
 | |
|             TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod);
 | |
|             tex->getSequence().push_back(argSamp);        // sampler
 | |
|             tex->getSequence().push_back(constructCoord); // coordinate
 | |
|             tex->getSequence().push_back(argLod);         // lod
 | |
| 
 | |
|             node = convertReturn(tex, sampler);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpTextureBias:
 | |
|         {
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // sampler
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // coord
 | |
| 
 | |
|             // HLSL puts bias in W component of coordinate.  We extract it and add it to
 | |
|             // the argument list, instead
 | |
|             TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
 | |
|             TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
 | |
| 
 | |
|             TOperator constructOp = EOpNull;
 | |
|             const TSampler& sampler = arg0->getType().getSampler();
 | |
| 
 | |
|             switch (sampler.dim) {
 | |
|             case Esd1D:   constructOp = EOpConstructFloat; break; // 1D
 | |
|             case Esd2D:   constructOp = EOpConstructVec2;  break; // 2D
 | |
|             case Esd3D:   constructOp = EOpConstructVec3;  break; // 3D
 | |
|             case EsdCube: constructOp = EOpConstructVec3;  break; // also 3D
 | |
|             default: break;
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
 | |
|             constructCoord->getSequence().push_back(arg1);
 | |
|             constructCoord->setLoc(loc);
 | |
| 
 | |
|             // The input vector should never be less than 2, since there's always a bias.
 | |
|             // The max is for safety, and should be a no-op.
 | |
|             constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
 | |
| 
 | |
|             TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
 | |
|             tex->getSequence().push_back(arg0);           // sampler
 | |
|             tex->getSequence().push_back(constructCoord); // coordinate
 | |
|             tex->getSequence().push_back(bias);           // bias
 | |
| 
 | |
|             node = convertReturn(tex, sampler);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     // **** DX10 methods: ****
 | |
|     case EOpMethodSample:     // fall through
 | |
|     case EOpMethodSampleBias: // ...
 | |
|         {
 | |
|             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | |
|             TIntermTyped* argBias   = nullptr;
 | |
|             TIntermTyped* argOffset = nullptr;
 | |
|             const TSampler& sampler = argTex->getType().getSampler();
 | |
| 
 | |
|             int nextArg = 3;
 | |
| 
 | |
|             if (op == EOpMethodSampleBias)  // SampleBias has a bias arg
 | |
|                 argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
 | |
| 
 | |
|             TOperator textureOp = EOpTexture;
 | |
| 
 | |
|             if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
 | |
|                 textureOp = EOpTextureOffset;
 | |
|                 argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | |
| 
 | |
|             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | |
|             txsample->getSequence().push_back(txcombine);
 | |
|             txsample->getSequence().push_back(argCoord);
 | |
| 
 | |
|             if (argBias != nullptr)
 | |
|                 txsample->getSequence().push_back(argBias);
 | |
| 
 | |
|             if (argOffset != nullptr)
 | |
|                 txsample->getSequence().push_back(argOffset);
 | |
| 
 | |
|             node = convertReturn(txsample, sampler);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodSampleGrad: // ...
 | |
|         {
 | |
|             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | |
|             TIntermTyped* argDDX    = argAggregate->getSequence()[3]->getAsTyped();
 | |
|             TIntermTyped* argDDY    = argAggregate->getSequence()[4]->getAsTyped();
 | |
|             TIntermTyped* argOffset = nullptr;
 | |
|             const TSampler& sampler = argTex->getType().getSampler();
 | |
| 
 | |
|             TOperator textureOp = EOpTextureGrad;
 | |
| 
 | |
|             if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
 | |
|                 textureOp = EOpTextureGradOffset;
 | |
|                 argOffset = argAggregate->getSequence()[5]->getAsTyped();
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | |
| 
 | |
|             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | |
|             txsample->getSequence().push_back(txcombine);
 | |
|             txsample->getSequence().push_back(argCoord);
 | |
|             txsample->getSequence().push_back(argDDX);
 | |
|             txsample->getSequence().push_back(argDDY);
 | |
| 
 | |
|             if (argOffset != nullptr)
 | |
|                 txsample->getSequence().push_back(argOffset);
 | |
| 
 | |
|             node = convertReturn(txsample, sampler);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodGetDimensions:
 | |
|         {
 | |
|             // AST returns a vector of results, which we break apart component-wise into
 | |
|             // separate values to assign to the HLSL method's outputs, ala:
 | |
|             //  tx . GetDimensions(width, height);
 | |
|             //      float2 sizeQueryTemp = EOpTextureQuerySize
 | |
|             //      width = sizeQueryTemp.X;
 | |
|             //      height = sizeQueryTemp.Y;
 | |
| 
 | |
|             TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             const TType& texType = argTex->getType();
 | |
| 
 | |
|             assert(texType.getBasicType() == EbtSampler);
 | |
| 
 | |
|             const TSampler& sampler = texType.getSampler();
 | |
|             const TSamplerDim dim = sampler.dim;
 | |
|             const bool isImage = sampler.isImage();
 | |
|             const bool isMs = sampler.isMultiSample();
 | |
|             const int numArgs = (int)argAggregate->getSequence().size();
 | |
| 
 | |
|             int numDims = 0;
 | |
| 
 | |
|             switch (dim) {
 | |
|             case Esd1D:     numDims = 1; break; // W
 | |
|             case Esd2D:     numDims = 2; break; // W, H
 | |
|             case Esd3D:     numDims = 3; break; // W, H, D
 | |
|             case EsdCube:   numDims = 2; break; // W, H (cube)
 | |
|             case EsdBuffer: numDims = 1; break; // W (buffers)
 | |
|             case EsdRect:   numDims = 2; break; // W, H (rect)
 | |
|             default:
 | |
|                 assert(0 && "unhandled texture dimension");
 | |
|             }
 | |
| 
 | |
|             // Arrayed adds another dimension for the number of array elements
 | |
|             if (sampler.isArrayed())
 | |
|                 ++numDims;
 | |
| 
 | |
|             // Establish whether the method itself is querying mip levels.  This can be false even
 | |
|             // if the underlying query requires a MIP level, due to the available HLSL method overloads.
 | |
|             const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
 | |
| 
 | |
|             // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
 | |
|             // True if:
 | |
|             //   1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
 | |
|             // or,
 | |
|             //   2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
 | |
|             const bool mipRequired =
 | |
|                 ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
 | |
|                 mipQuery; // 2...
 | |
| 
 | |
|             // AST assumes integer return.  Will be converted to float if required.
 | |
|             TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
 | |
|             sizeQuery->getSequence().push_back(argTex);
 | |
| 
 | |
|             // If we're building an LOD query, add the LOD.
 | |
|             if (mipRequired) {
 | |
|                 // If the base HLSL query had no MIP level given, use level 0.
 | |
|                 TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
 | |
|                     intermediate.addConstantUnion(0, loc, true);
 | |
|                 sizeQuery->getSequence().push_back(queryLod);
 | |
|             }
 | |
| 
 | |
|             sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
 | |
|             sizeQuery->setLoc(loc);
 | |
| 
 | |
|             // Return value from size query
 | |
|             TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
 | |
|             tempArg->getWritableType().getQualifier().makeTemporary();
 | |
|             TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
 | |
|                                                                    intermediate.addSymbol(*tempArg, loc),
 | |
|                                                                    sizeQuery, loc);
 | |
| 
 | |
|             // Compound statement for assigning outputs
 | |
|             TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
 | |
|             // Index of first output parameter
 | |
|             const int outParamBase = mipQuery ? 2 : 1;
 | |
| 
 | |
|             for (int compNum = 0; compNum < numDims; ++compNum) {
 | |
|                 TIntermTyped* indexedOut = nullptr;
 | |
|                 TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
 | |
| 
 | |
|                 if (numDims > 1) {
 | |
|                     TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
 | |
|                     indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
 | |
|                     indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
 | |
|                     indexedOut->setLoc(loc);
 | |
|                 } else {
 | |
|                     indexedOut = sizeQueryReturn;
 | |
|                 }
 | |
| 
 | |
|                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
 | |
|                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
 | |
| 
 | |
|                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
 | |
|             }
 | |
| 
 | |
|             // handle mip level parameter
 | |
|             if (mipQuery) {
 | |
|                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
 | |
| 
 | |
|                 TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
 | |
|                 levelsQuery->getSequence().push_back(argTex);
 | |
|                 levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
 | |
|                 levelsQuery->setLoc(loc);
 | |
| 
 | |
|                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
 | |
|                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
 | |
|             }
 | |
| 
 | |
|             // 2DMS formats query # samples, which needs a different query op
 | |
|             if (sampler.isMultiSample()) {
 | |
|                 TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
 | |
| 
 | |
|                 TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
 | |
|                 samplesQuery->getSequence().push_back(argTex);
 | |
|                 samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
 | |
|                 samplesQuery->setLoc(loc);
 | |
| 
 | |
|                 TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
 | |
|                 compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
 | |
|             }
 | |
| 
 | |
|             compoundStatement->setOperator(EOpSequence);
 | |
|             compoundStatement->setLoc(loc);
 | |
|             compoundStatement->setType(TType(EbtVoid));
 | |
| 
 | |
|             node = compoundStatement;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodSampleCmp:  // fall through...
 | |
|     case EOpMethodSampleCmpLevelZero:
 | |
|         {
 | |
|             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | |
|             TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
 | |
|             TIntermTyped* argOffset = nullptr;
 | |
| 
 | |
|             // Sampler argument should be a sampler.
 | |
|             if (argSamp->getType().getBasicType() != EbtSampler) {
 | |
|                 error(loc, "expected: sampler type", "", "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // Sampler should be a SamplerComparisonState
 | |
|             if (! argSamp->getType().getSampler().isShadow()) {
 | |
|                 error(loc, "expected: SamplerComparisonState", "", "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // optional offset value
 | |
|             if (argAggregate->getSequence().size() > 4)
 | |
|                 argOffset = argAggregate->getSequence()[4]->getAsTyped();
 | |
| 
 | |
|             const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
 | |
| 
 | |
|             // AST wants comparison value as one of the texture coordinates
 | |
|             TOperator constructOp = EOpNull;
 | |
|             switch (coordDimWithCmpVal) {
 | |
|             // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
 | |
|             case 2: constructOp = EOpConstructVec2;  break;
 | |
|             case 3: constructOp = EOpConstructVec3;  break;
 | |
|             case 4: constructOp = EOpConstructVec4;  break;
 | |
|             case 5: constructOp = EOpConstructVec4;  break; // cubeArrayShadow, cmp value is separate arg.
 | |
|             default: assert(0); break;
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
 | |
|             coordWithCmp->getSequence().push_back(argCoord);
 | |
|             if (coordDimWithCmpVal != 5) // cube array shadow is special.
 | |
|                 coordWithCmp->getSequence().push_back(argCmpVal);
 | |
|             coordWithCmp->setLoc(loc);
 | |
|             coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
 | |
| 
 | |
|             TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
 | |
|             if (argOffset != nullptr)
 | |
|                 textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
 | |
| 
 | |
|             // Create combined sampler & texture op
 | |
|             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | |
|             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | |
|             txsample->getSequence().push_back(txcombine);
 | |
|             txsample->getSequence().push_back(coordWithCmp);
 | |
| 
 | |
|             if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
 | |
|                 txsample->getSequence().push_back(argCmpVal);
 | |
| 
 | |
|             // the LevelZero form uses 0 as an explicit LOD
 | |
|             if (op == EOpMethodSampleCmpLevelZero)
 | |
|                 txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
 | |
| 
 | |
|             // Add offset if present
 | |
|             if (argOffset != nullptr)
 | |
|                 txsample->getSequence().push_back(argOffset);
 | |
| 
 | |
|             txsample->setType(node->getType());
 | |
|             txsample->setLoc(loc);
 | |
|             node = txsample;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodLoad:
 | |
|         {
 | |
|             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argCoord  = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* argOffset = nullptr;
 | |
|             TIntermTyped* lodComponent = nullptr;
 | |
|             TIntermTyped* coordSwizzle = nullptr;
 | |
| 
 | |
|             const TSampler& sampler = argTex->getType().getSampler();
 | |
|             const bool isMS = sampler.isMultiSample();
 | |
|             const bool isBuffer = sampler.dim == EsdBuffer;
 | |
|             const bool isImage = sampler.isImage();
 | |
|             const TBasicType coordBaseType = argCoord->getType().getBasicType();
 | |
| 
 | |
|             // Last component of coordinate is the mip level, for non-MS.  we separate them here:
 | |
|             if (isMS || isBuffer || isImage) {
 | |
|                 // MS, Buffer, and Image have no LOD
 | |
|                 coordSwizzle = argCoord;
 | |
|             } else {
 | |
|                 // Extract coordinate
 | |
|                 int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
 | |
|                 TSwizzleSelectors<TVectorSelector> coordFields;
 | |
|                 for (int i = 0; i < swizzleSize; ++i)
 | |
|                     coordFields.push_back(i);
 | |
|                 TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
 | |
|                 coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
 | |
|                 coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
 | |
| 
 | |
|                 // Extract LOD
 | |
|                 TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
 | |
|                 lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
 | |
|                 lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
 | |
|             }
 | |
| 
 | |
|             const int numArgs    = (int)argAggregate->getSequence().size();
 | |
|             const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
 | |
| 
 | |
|             // Create texel fetch
 | |
|             const TOperator fetchOp = (isImage   ? EOpImageLoad :
 | |
|                                        hasOffset ? EOpTextureFetchOffset :
 | |
|                                        EOpTextureFetch);
 | |
|             TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
 | |
| 
 | |
|             // Build up the fetch
 | |
|             txfetch->getSequence().push_back(argTex);
 | |
|             txfetch->getSequence().push_back(coordSwizzle);
 | |
| 
 | |
|             if (isMS) {
 | |
|                 // add 2DMS sample index
 | |
|                 TIntermTyped* argSampleIdx  = argAggregate->getSequence()[2]->getAsTyped();
 | |
|                 txfetch->getSequence().push_back(argSampleIdx);
 | |
|             } else if (isBuffer) {
 | |
|                 // Nothing else to do for buffers.
 | |
|             } else if (isImage) {
 | |
|                 // Nothing else to do for images.
 | |
|             } else {
 | |
|                 // 2DMS and buffer have no LOD, but everything else does.
 | |
|                 txfetch->getSequence().push_back(lodComponent);
 | |
|             }
 | |
| 
 | |
|             // Obtain offset arg, if there is one.
 | |
|             if (hasOffset) {
 | |
|                 const int offsetPos  = (isMS ? 3 : 2);
 | |
|                 argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
 | |
|                 txfetch->getSequence().push_back(argOffset);
 | |
|             }
 | |
| 
 | |
|             node = convertReturn(txfetch, sampler);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodSampleLevel:
 | |
|         {
 | |
|             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | |
|             TIntermTyped* argLod    = argAggregate->getSequence()[3]->getAsTyped();
 | |
|             TIntermTyped* argOffset = nullptr;
 | |
|             const TSampler& sampler = argTex->getType().getSampler();
 | |
| 
 | |
|             const int  numArgs = (int)argAggregate->getSequence().size();
 | |
| 
 | |
|             if (numArgs == 5) // offset, if present
 | |
|                 argOffset = argAggregate->getSequence()[4]->getAsTyped();
 | |
| 
 | |
|             const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
 | |
|             TIntermAggregate* txsample = new TIntermAggregate(textureOp);
 | |
| 
 | |
|             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | |
| 
 | |
|             txsample->getSequence().push_back(txcombine);
 | |
|             txsample->getSequence().push_back(argCoord);
 | |
|             txsample->getSequence().push_back(argLod);
 | |
| 
 | |
|             if (argOffset != nullptr)
 | |
|                 txsample->getSequence().push_back(argOffset);
 | |
| 
 | |
|             node = convertReturn(txsample, sampler);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodGather:
 | |
|         {
 | |
|             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | |
|             TIntermTyped* argOffset = nullptr;
 | |
| 
 | |
|             // Offset is optional
 | |
|             if (argAggregate->getSequence().size() > 3)
 | |
|                 argOffset = argAggregate->getSequence()[3]->getAsTyped();
 | |
| 
 | |
|             const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
 | |
|             TIntermAggregate* txgather = new TIntermAggregate(textureOp);
 | |
| 
 | |
|             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | |
| 
 | |
|             txgather->getSequence().push_back(txcombine);
 | |
|             txgather->getSequence().push_back(argCoord);
 | |
|             // Offset if not given is implicitly channel 0 (red)
 | |
| 
 | |
|             if (argOffset != nullptr)
 | |
|                 txgather->getSequence().push_back(argOffset);
 | |
| 
 | |
|             txgather->setType(node->getType());
 | |
|             txgather->setLoc(loc);
 | |
|             node = txgather;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodGatherRed:      // fall through...
 | |
|     case EOpMethodGatherGreen:    // ...
 | |
|     case EOpMethodGatherBlue:     // ...
 | |
|     case EOpMethodGatherAlpha:    // ...
 | |
|     case EOpMethodGatherCmpRed:   // ...
 | |
|     case EOpMethodGatherCmpGreen: // ...
 | |
|     case EOpMethodGatherCmpBlue:  // ...
 | |
|     case EOpMethodGatherCmpAlpha: // ...
 | |
|         {
 | |
|             int channel = 0;    // the channel we are gathering
 | |
|             int cmpValues = 0;  // 1 if there is a compare value (handier than a bool below)
 | |
| 
 | |
|             switch (op) {
 | |
|             case EOpMethodGatherCmpRed:   cmpValues = 1;  // fall through
 | |
|             case EOpMethodGatherRed:      channel = 0; break;
 | |
|             case EOpMethodGatherCmpGreen: cmpValues = 1;  // fall through
 | |
|             case EOpMethodGatherGreen:    channel = 1; break;
 | |
|             case EOpMethodGatherCmpBlue:  cmpValues = 1;  // fall through
 | |
|             case EOpMethodGatherBlue:     channel = 2; break;
 | |
|             case EOpMethodGatherCmpAlpha: cmpValues = 1;  // fall through
 | |
|             case EOpMethodGatherAlpha:    channel = 3; break;
 | |
|             default:                      assert(0);   break;
 | |
|             }
 | |
| 
 | |
|             // For now, we have nothing to map the component-wise comparison forms
 | |
|             // to, because neither GLSL nor SPIR-V has such an opcode.  Issue an
 | |
|             // unimplemented error instead.  Most of the machinery is here if that
 | |
|             // should ever become available.  However, red can be passed through
 | |
|             // to OpImageDrefGather.  G/B/A cannot, because that opcode does not
 | |
|             // accept a component.
 | |
|             if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
 | |
|                 error(loc, "unimplemented: component-level gather compare", "", "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             int arg = 0;
 | |
| 
 | |
|             TIntermTyped* argTex        = argAggregate->getSequence()[arg++]->getAsTyped();
 | |
|             TIntermTyped* argSamp       = argAggregate->getSequence()[arg++]->getAsTyped();
 | |
|             TIntermTyped* argCoord      = argAggregate->getSequence()[arg++]->getAsTyped();
 | |
|             TIntermTyped* argOffset     = nullptr;
 | |
|             TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
 | |
|             // TIntermTyped* argStatus     = nullptr; // TODO: residency
 | |
|             TIntermTyped* argCmp        = nullptr;
 | |
| 
 | |
|             const TSamplerDim dim = argTex->getType().getSampler().dim;
 | |
| 
 | |
|             const int  argSize = (int)argAggregate->getSequence().size();
 | |
|             bool hasStatus     = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
 | |
|             bool hasOffset1    = false;
 | |
|             bool hasOffset4    = false;
 | |
| 
 | |
|             // Sampler argument should be a sampler.
 | |
|             if (argSamp->getType().getBasicType() != EbtSampler) {
 | |
|                 error(loc, "expected: sampler type", "", "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // Cmp forms require SamplerComparisonState
 | |
|             if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
 | |
|                 error(loc, "expected: SamplerComparisonState", "", "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // Only 2D forms can have offsets.  Discover if we have 0, 1 or 4 offsets.
 | |
|             if (dim == Esd2D) {
 | |
|                 hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
 | |
|                 hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
 | |
|             }
 | |
| 
 | |
|             assert(!(hasOffset1 && hasOffset4));
 | |
| 
 | |
|             TOperator textureOp = EOpTextureGather;
 | |
| 
 | |
|             // Compare forms have compare value
 | |
|             if (cmpValues != 0)
 | |
|                 argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
 | |
| 
 | |
|             // Some forms have single offset
 | |
|             if (hasOffset1) {
 | |
|                 textureOp = EOpTextureGatherOffset;   // single offset form
 | |
|                 argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
 | |
|             }
 | |
| 
 | |
|             // Some forms have 4 gather offsets
 | |
|             if (hasOffset4) {
 | |
|                 textureOp = EOpTextureGatherOffsets;  // note plural, for 4 offset form
 | |
|                 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
 | |
|                     argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
 | |
|             }
 | |
| 
 | |
|             // Residency status
 | |
|             if (hasStatus) {
 | |
|                 // argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
 | |
|                 error(loc, "unimplemented: residency status", "", "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* txgather = new TIntermAggregate(textureOp);
 | |
|             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | |
| 
 | |
|             TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
 | |
| 
 | |
|             txgather->getSequence().push_back(txcombine);
 | |
|             txgather->getSequence().push_back(argCoord);
 | |
| 
 | |
|             // AST wants an array of 4 offsets, where HLSL has separate args.  Here
 | |
|             // we construct an array from the separate args.
 | |
|             if (hasOffset4) {
 | |
|                 TType arrayType(EbtInt, EvqTemporary, 2);
 | |
|                 TArraySizes* arraySizes = new TArraySizes;
 | |
|                 arraySizes->addInnerSize(4);
 | |
|                 arrayType.transferArraySizes(arraySizes);
 | |
| 
 | |
|                 TIntermAggregate* initList = new TIntermAggregate(EOpNull);
 | |
| 
 | |
|                 for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
 | |
|                     initList->getSequence().push_back(argOffsets[offsetNum]);
 | |
| 
 | |
|                 argOffset = addConstructor(loc, initList, arrayType);
 | |
|             }
 | |
| 
 | |
|             // Add comparison value if we have one
 | |
|             if (argCmp != nullptr)
 | |
|                 txgather->getSequence().push_back(argCmp);
 | |
| 
 | |
|             // Add offset (either 1, or an array of 4) if we have one
 | |
|             if (argOffset != nullptr)
 | |
|                 txgather->getSequence().push_back(argOffset);
 | |
| 
 | |
|             // Add channel value if the sampler is not shadow
 | |
|             if (! argSamp->getType().getSampler().isShadow())
 | |
|                 txgather->getSequence().push_back(argChannel);
 | |
| 
 | |
|             txgather->setType(node->getType());
 | |
|             txgather->setLoc(loc);
 | |
|             node = txgather;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodCalculateLevelOfDetail:
 | |
|     case EOpMethodCalculateLevelOfDetailUnclamped:
 | |
|         {
 | |
|             TIntermTyped* argTex    = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argSamp   = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* argCoord  = argAggregate->getSequence()[2]->getAsTyped();
 | |
| 
 | |
|             TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
 | |
| 
 | |
|             TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
 | |
|             txquerylod->getSequence().push_back(txcombine);
 | |
|             txquerylod->getSequence().push_back(argCoord);
 | |
| 
 | |
|             TIntermTyped* lodComponent = intermediate.addConstantUnion(
 | |
|                 op == EOpMethodCalculateLevelOfDetail ? 0 : 1,
 | |
|                 loc, true);
 | |
|             TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
 | |
|             lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
 | |
|             node = lodComponentIdx;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpMethodGetSamplePosition:
 | |
|         {
 | |
|             // TODO: this entire decomposition exists because there is not yet a way to query
 | |
|             // the sample position directly through SPIR-V.  Instead, we return fixed sample
 | |
|             // positions for common cases.  *** If the sample positions are set differently,
 | |
|             // this will be wrong. ***
 | |
| 
 | |
|             TIntermTyped* argTex     = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
 | |
| 
 | |
|             TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
 | |
|             samplesQuery->getSequence().push_back(argTex);
 | |
|             samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
 | |
|             samplesQuery->setLoc(loc);
 | |
| 
 | |
|             TIntermAggregate* compoundStatement = nullptr;
 | |
| 
 | |
|             TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
 | |
|             outSampleCount->getWritableType().getQualifier().makeTemporary();
 | |
|             TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
 | |
|                                                               samplesQuery, loc);
 | |
|             compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
 | |
| 
 | |
|             TIntermTyped* idxtest[4];
 | |
| 
 | |
|             // Create tests against 2, 4, 8, and 16 sample values
 | |
|             int count = 0;
 | |
|             for (int val = 2; val <= 16; val *= 2)
 | |
|                 idxtest[count++] =
 | |
|                     intermediate.addBinaryNode(EOpEqual, 
 | |
|                                                intermediate.addSymbol(*outSampleCount, loc),
 | |
|                                                intermediate.addConstantUnion(val, loc),
 | |
|                                                loc, TType(EbtBool));
 | |
| 
 | |
|             const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
 | |
|             
 | |
|             // Create index ops into position arrays given sample index.
 | |
|             // TODO: should it be clamped?
 | |
|             TIntermTyped* index[4];
 | |
|             count = 0;
 | |
|             for (int val = 2; val <= 16; val *= 2) {
 | |
|                 index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
 | |
|                 index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
 | |
|             }
 | |
| 
 | |
|             // Create expression as:
 | |
|             // (sampleCount == 2)  ? pos2[idx] :
 | |
|             // (sampleCount == 4)  ? pos4[idx] :
 | |
|             // (sampleCount == 8)  ? pos8[idx] :
 | |
|             // (sampleCount == 16) ? pos16[idx] : float2(0,0);
 | |
|             TIntermTyped* test = 
 | |
|                 intermediate.addSelection(idxtest[0], index[0], 
 | |
|                     intermediate.addSelection(idxtest[1], index[1], 
 | |
|                         intermediate.addSelection(idxtest[2], index[2],
 | |
|                             intermediate.addSelection(idxtest[3], index[3], 
 | |
|                                                       getSamplePosArray(1), loc), loc), loc), loc);
 | |
|                                          
 | |
|             compoundStatement = intermediate.growAggregate(compoundStatement, test);
 | |
|             compoundStatement->setOperator(EOpSequence);
 | |
|             compoundStatement->setLoc(loc);
 | |
|             compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
 | |
| 
 | |
|             node = compoundStatement;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpSubpassLoad:
 | |
|         {
 | |
|             const TIntermTyped* argSubpass = 
 | |
|                 argAggregate ? argAggregate->getSequence()[0]->getAsTyped() :
 | |
|                 arguments->getAsTyped();
 | |
| 
 | |
|             const TSampler& sampler = argSubpass->getType().getSampler();
 | |
| 
 | |
|             // subpass load: the multisample form is overloaded.  Here, we convert that to
 | |
|             // the EOpSubpassLoadMS opcode.
 | |
|             if (argAggregate != nullptr && argAggregate->getSequence().size() > 1)
 | |
|                 node->getAsOperator()->setOp(EOpSubpassLoadMS);
 | |
| 
 | |
|             node = convertReturn(node, sampler);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
|         
 | |
| 
 | |
|     default:
 | |
|         break; // most pass through unchanged
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Decompose geometry shader methods
 | |
| //
 | |
| void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
 | |
| {
 | |
|     if (node == nullptr || !node->getAsOperator())
 | |
|         return;
 | |
| 
 | |
|     const TOperator op  = node->getAsOperator()->getOp();
 | |
|     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | |
| 
 | |
|     switch (op) {
 | |
|     case EOpMethodAppend:
 | |
|         if (argAggregate) {
 | |
|             // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
 | |
|             if (language != EShLangGeometry) {
 | |
|                 node = nullptr;
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* sequence = nullptr;
 | |
|             TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
 | |
| 
 | |
|             emit->setLoc(loc);
 | |
|             emit->setType(TType(EbtVoid));
 | |
| 
 | |
|             TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped();
 | |
| 
 | |
|             // This will be patched in finalization during finalizeAppendMethods()
 | |
|             sequence = intermediate.growAggregate(sequence, data, loc);
 | |
|             sequence = intermediate.growAggregate(sequence, emit);
 | |
| 
 | |
|             sequence->setOperator(EOpSequence);
 | |
|             sequence->setLoc(loc);
 | |
|             sequence->setType(TType(EbtVoid));
 | |
| 
 | |
|             gsAppends.push_back({sequence, loc});
 | |
| 
 | |
|             node = sequence;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EOpMethodRestartStrip:
 | |
|         {
 | |
|             // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
 | |
|             if (language != EShLangGeometry) {
 | |
|                 node = nullptr;
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
 | |
|             cut->setLoc(loc);
 | |
|             cut->setType(TType(EbtVoid));
 | |
|             node = cut;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         break; // most pass through unchanged
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Optionally decompose intrinsics to AST opcodes.
 | |
| //
 | |
| void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
 | |
| {
 | |
|     // Helper to find image data for image atomics:
 | |
|     // OpImageLoad(image[idx])
 | |
|     // We take the image load apart and add its params to the atomic op aggregate node
 | |
|     const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
 | |
|         TIntermAggregate* loadOp = load->getAsAggregate();
 | |
|         if (loadOp == nullptr) {
 | |
|             error(loc, "unknown image type in atomic operation", "", "");
 | |
|             node = nullptr;
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         atomic->getSequence().push_back(loadOp->getSequence()[0]);
 | |
|         atomic->getSequence().push_back(loadOp->getSequence()[1]);
 | |
|     };
 | |
| 
 | |
|     // Return true if this is an imageLoad, which we will change to an image atomic.
 | |
|     const auto isImageParam = [](TIntermTyped* image) -> bool {
 | |
|         TIntermAggregate* imageAggregate = image->getAsAggregate();
 | |
|         return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
 | |
|     };
 | |
| 
 | |
|     const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* {
 | |
|         TSymbol* symbol = symbolTable.find(name);
 | |
|         if (nullptr == symbol) {
 | |
|             type.getQualifier().builtIn = builtin;
 | |
| 
 | |
|             TVariable* variable = new TVariable(NewPoolTString(name), type);
 | |
| 
 | |
|             symbolTable.insert(*variable);
 | |
| 
 | |
|             symbol = symbolTable.find(name);
 | |
|             assert(symbol && "Inserted symbol could not be found!");
 | |
|         }
 | |
| 
 | |
|         return intermediate.addSymbol(*(symbol->getAsVariable()), loc);
 | |
|     };
 | |
| 
 | |
|     // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
 | |
|     // opcodes for compatibility with existing software stacks.
 | |
|     static const bool decomposeHlslIntrinsics = true;
 | |
| 
 | |
|     if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
 | |
|         return;
 | |
| 
 | |
|     const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | |
|     TIntermUnary* fnUnary = node->getAsUnaryNode();
 | |
|     const TOperator op  = node->getAsOperator()->getOp();
 | |
| 
 | |
|     switch (op) {
 | |
|     case EOpGenMul:
 | |
|         {
 | |
|             // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
 | |
|             // Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
 | |
|             // we must reverse the operand order here.  Hence, arg0 gets sequence[1], etc.
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
 | |
| 
 | |
|             if (arg0->isVector() && arg1->isVector()) {  // vec * vec
 | |
|                 node->getAsAggregate()->setOperator(EOpDot);
 | |
|             } else {
 | |
|                 node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
 | |
|             }
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpRcp:
 | |
|         {
 | |
|             // rcp(a) -> 1 / a
 | |
|             TIntermTyped* arg0 = fnUnary->getOperand();
 | |
|             TBasicType   type0 = arg0->getBasicType();
 | |
|             TIntermTyped* one  = intermediate.addConstantUnion(1, type0, loc, true);
 | |
|             node  = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpAny: // fall through
 | |
|     case EOpAll:
 | |
|         {
 | |
|             TIntermTyped* typedArg = arguments->getAsTyped();
 | |
| 
 | |
|             // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
 | |
|             // We'll convert here.  Note that for efficiency, we could add a smarter
 | |
|             // decomposition for some type cases, e.g, maybe by decomposing a dot product.
 | |
|             if (typedArg->getType().getBasicType() != EbtBool) {
 | |
|                 const TType boolType(EbtBool, EvqTemporary,
 | |
|                                      typedArg->getVectorSize(),
 | |
|                                      typedArg->getMatrixCols(),
 | |
|                                      typedArg->getMatrixRows(),
 | |
|                                      typedArg->isVector());
 | |
| 
 | |
|                 typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
 | |
|                 node->getAsUnaryNode()->setOperand(typedArg);
 | |
|             }
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpSaturate:
 | |
|         {
 | |
|             // saturate(a) -> clamp(a,0,1)
 | |
|             TIntermTyped* arg0 = fnUnary->getOperand();
 | |
|             TBasicType   type0 = arg0->getBasicType();
 | |
|             TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
 | |
| 
 | |
|             clamp->getSequence().push_back(arg0);
 | |
|             clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
 | |
|             clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
 | |
|             clamp->setLoc(loc);
 | |
|             clamp->setType(node->getType());
 | |
|             clamp->getWritableType().getQualifier().makeTemporary();
 | |
|             node = clamp;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpSinCos:
 | |
|         {
 | |
|             // sincos(a,b,c) -> b = sin(a), c = cos(a)
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
 | |
| 
 | |
|             TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
 | |
|             TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
 | |
|             TIntermTyped* sinAssign    = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
 | |
|             TIntermTyped* cosAssign    = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
 | |
| 
 | |
|             TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
 | |
|             compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
 | |
|             compoundStatement->setOperator(EOpSequence);
 | |
|             compoundStatement->setLoc(loc);
 | |
|             compoundStatement->setType(TType(EbtVoid));
 | |
| 
 | |
|             node = compoundStatement;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpClip:
 | |
|         {
 | |
|             // clip(a) -> if (any(a<0)) discard;
 | |
|             TIntermTyped*  arg0 = fnUnary->getOperand();
 | |
|             TBasicType     type0 = arg0->getBasicType();
 | |
|             TIntermTyped*  compareNode = nullptr;
 | |
| 
 | |
|             // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
 | |
|             if (!arg0->isScalar()) {
 | |
|                 // component-wise compare: a < 0
 | |
|                 TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
 | |
|                 less->getSequence().push_back(arg0);
 | |
|                 less->setLoc(loc);
 | |
| 
 | |
|                 // make vec or mat of bool matching dimensions of input
 | |
|                 less->setType(TType(EbtBool, EvqTemporary,
 | |
|                                     arg0->getType().getVectorSize(),
 | |
|                                     arg0->getType().getMatrixCols(),
 | |
|                                     arg0->getType().getMatrixRows(),
 | |
|                                     arg0->getType().isVector()));
 | |
| 
 | |
|                 // calculate # of components for comparison const
 | |
|                 const int constComponentCount =
 | |
|                     std::max(arg0->getType().getVectorSize(), 1) *
 | |
|                     std::max(arg0->getType().getMatrixCols(), 1) *
 | |
|                     std::max(arg0->getType().getMatrixRows(), 1);
 | |
| 
 | |
|                 TConstUnion zero;
 | |
|                 if (arg0->getType().isIntegerDomain())
 | |
|                     zero.setDConst(0);
 | |
|                 else
 | |
|                     zero.setDConst(0.0);
 | |
|                 TConstUnionArray zeros(constComponentCount, zero);
 | |
| 
 | |
|                 less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
 | |
| 
 | |
|                 compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
 | |
|             } else {
 | |
|                 TIntermTyped* zero;
 | |
|                 if (arg0->getType().isIntegerDomain())
 | |
|                     zero = intermediate.addConstantUnion(0, loc, true);
 | |
|                 else
 | |
|                     zero = intermediate.addConstantUnion(0.0, type0, loc, true);
 | |
|                 compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
 | |
|             }
 | |
| 
 | |
|             TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
 | |
| 
 | |
|             node = new TIntermSelection(compareNode, killNode, nullptr);
 | |
|             node->setLoc(loc);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpLog10:
 | |
|         {
 | |
|             // log10(a) -> log2(a) * 0.301029995663981  (== 1/log2(10))
 | |
|             TIntermTyped* arg0 = fnUnary->getOperand();
 | |
|             TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
 | |
|             TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
 | |
| 
 | |
|             node  = handleBinaryMath(loc, "mul", EOpMul, log2, base);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpDst:
 | |
|         {
 | |
|             // dest.x = 1;
 | |
|             // dest.y = src0.y * src1.y;
 | |
|             // dest.z = src0.z;
 | |
|             // dest.w = src1.w;
 | |
| 
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
 | |
| 
 | |
|             TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
 | |
|             TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
 | |
|             TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
 | |
| 
 | |
|             TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
 | |
|             TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
 | |
|             TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
 | |
|             TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
 | |
| 
 | |
|             TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
 | |
| 
 | |
|             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
 | |
|             dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
 | |
|             dst->getSequence().push_back(src0z);
 | |
|             dst->getSequence().push_back(src1w);
 | |
|             dst->setType(TType(EbtFloat, EvqTemporary, 4));
 | |
|             dst->setLoc(loc);
 | |
|             node = dst;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
 | |
|     case EOpInterlockedMin: // ...
 | |
|     case EOpInterlockedMax: // ...
 | |
|     case EOpInterlockedAnd: // ...
 | |
|     case EOpInterlockedOr:  // ...
 | |
|     case EOpInterlockedXor: // ...
 | |
|     case EOpInterlockedExchange: // always has output arg
 | |
|         {
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // value
 | |
|             TIntermTyped* arg2 = nullptr;
 | |
| 
 | |
|             if (argAggregate->getSequence().size() > 2)
 | |
|                 arg2 = argAggregate->getSequence()[2]->getAsTyped();
 | |
| 
 | |
|             const bool isImage = isImageParam(arg0);
 | |
|             const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
 | |
|             TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
 | |
|             atomic->setType(arg0->getType());
 | |
|             atomic->getWritableType().getQualifier().makeTemporary();
 | |
|             atomic->setLoc(loc);
 | |
| 
 | |
|             if (isImage) {
 | |
|                 // orig_value = imageAtomicOp(image, loc, data)
 | |
|                 imageAtomicParams(atomic, arg0);
 | |
|                 atomic->getSequence().push_back(arg1);
 | |
| 
 | |
|                 if (argAggregate->getSequence().size() > 2) {
 | |
|                     node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
 | |
|                 } else {
 | |
|                     node = atomic; // no assignment needed, as there was no out var.
 | |
|                 }
 | |
|             } else {
 | |
|                 // Normal memory variable:
 | |
|                 // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
 | |
|                 if (argAggregate->getSequence().size() > 2) {
 | |
|                     // optional output param is present.  return value goes to arg2.
 | |
|                     atomic->getSequence().push_back(arg0);
 | |
|                     atomic->getSequence().push_back(arg1);
 | |
| 
 | |
|                     node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
 | |
|                 } else {
 | |
|                     // Set the matching operator.  Since output is absent, this is all we need to do.
 | |
|                     node->getAsAggregate()->setOperator(atomicOp);
 | |
|                     node->setType(atomic->getType());
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpInterlockedCompareExchange:
 | |
|         {
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // dest
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // cmp
 | |
|             TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();  // value
 | |
|             TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped();  // orig
 | |
| 
 | |
|             const bool isImage = isImageParam(arg0);
 | |
|             TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
 | |
|             atomic->setLoc(loc);
 | |
|             atomic->setType(arg2->getType());
 | |
|             atomic->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|             if (isImage) {
 | |
|                 imageAtomicParams(atomic, arg0);
 | |
|             } else {
 | |
|                 atomic->getSequence().push_back(arg0);
 | |
|             }
 | |
| 
 | |
|             atomic->getSequence().push_back(arg1);
 | |
|             atomic->getSequence().push_back(arg2);
 | |
|             node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpEvaluateAttributeSnapped:
 | |
|         {
 | |
|             // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
 | |
|             // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
 | |
|             //   iU = (iU<<28)>>28
 | |
|             //   fU = ((float)iU)/16
 | |
|             // Targets might handle this natively, in which case they can disable
 | |
|             // decompositions.
 | |
| 
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();  // value
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();  // offset
 | |
| 
 | |
|             TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
 | |
|             TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
 | |
|                                                 handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
 | |
|                                                 i28);
 | |
| 
 | |
|             TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
 | |
|             TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
 | |
|                                                          intermediate.addConversion(EOpConstructFloat,
 | |
|                                                                                     TType(EbtFloat, EvqTemporary, 2), iU),
 | |
|                                                          recip16);
 | |
| 
 | |
|             TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
 | |
|             interp->getSequence().push_back(arg0);
 | |
|             interp->getSequence().push_back(floatOffset);
 | |
|             interp->setLoc(loc);
 | |
|             interp->setType(arg0->getType());
 | |
|             interp->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|             node = interp;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpLit:
 | |
|         {
 | |
|             TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
 | |
|             TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
 | |
| 
 | |
|             TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
 | |
| 
 | |
|             // Ambient
 | |
|             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
 | |
| 
 | |
|             // Diffuse:
 | |
|             TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
 | |
|             TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
 | |
|             diffuse->getSequence().push_back(n_dot_l);
 | |
|             diffuse->getSequence().push_back(zero);
 | |
|             diffuse->setLoc(loc);
 | |
|             diffuse->setType(TType(EbtFloat));
 | |
|             dst->getSequence().push_back(diffuse);
 | |
| 
 | |
|             // Specular:
 | |
|             TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
 | |
|             min_ndot->getSequence().push_back(n_dot_l);
 | |
|             min_ndot->getSequence().push_back(n_dot_h);
 | |
|             min_ndot->setLoc(loc);
 | |
|             min_ndot->setType(TType(EbtFloat));
 | |
| 
 | |
|             TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
 | |
|             TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m);  // n_dot_h * m
 | |
| 
 | |
|             dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
 | |
| 
 | |
|             // One:
 | |
|             dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
 | |
| 
 | |
|             dst->setLoc(loc);
 | |
|             dst->setType(TType(EbtFloat, EvqTemporary, 4));
 | |
|             node = dst;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpAsDouble:
 | |
|         {
 | |
|             // asdouble accepts two 32 bit ints.  we can use EOpUint64BitsToDouble, but must
 | |
|             // first construct a uint64.
 | |
|             TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
 | |
|             TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
 | |
| 
 | |
|             if (arg0->getType().isVector()) { // TODO: ...
 | |
|                 error(loc, "double2 conversion not implemented", "asdouble", "");
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
 | |
| 
 | |
|             uint64->getSequence().push_back(arg0);
 | |
|             uint64->getSequence().push_back(arg1);
 | |
|             uint64->setType(TType(EbtUint, EvqTemporary, 2));  // convert 2 uints to a uint2
 | |
|             uint64->setLoc(loc);
 | |
| 
 | |
|             // bitcast uint2 to a double
 | |
|             TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
 | |
|             convert->getAsUnaryNode()->setOperand(uint64);
 | |
|             convert->setLoc(loc);
 | |
|             convert->setType(TType(EbtDouble, EvqTemporary));
 | |
|             node = convert;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpF16tof32:
 | |
|         {
 | |
|             // input uvecN with low 16 bits of each component holding a float16.  convert to float32.
 | |
|             TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
 | |
|             TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
 | |
|             const int vecSize = argValue->getType().getVectorSize();
 | |
| 
 | |
|             TOperator constructOp = EOpNull;
 | |
|             switch (vecSize) {
 | |
|             case 1: constructOp = EOpNull;          break; // direct use, no construct needed
 | |
|             case 2: constructOp = EOpConstructVec2; break;
 | |
|             case 3: constructOp = EOpConstructVec3; break;
 | |
|             case 4: constructOp = EOpConstructVec4; break;
 | |
|             default: assert(0); break;
 | |
|             }
 | |
| 
 | |
|             // For scalar case, we don't need to construct another type.
 | |
|             TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
 | |
| 
 | |
|             if (result) {
 | |
|                 result->setType(TType(EbtFloat, EvqTemporary, vecSize));
 | |
|                 result->setLoc(loc);
 | |
|             }
 | |
| 
 | |
|             for (int idx = 0; idx < vecSize; ++idx) {
 | |
|                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
 | |
|                 TIntermTyped* component = argValue->getType().isVector() ? 
 | |
|                     intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
 | |
| 
 | |
|                 if (component != argValue)
 | |
|                     component->setType(TType(argValue->getBasicType(), EvqTemporary));
 | |
| 
 | |
|                 TIntermTyped* unpackOp  = new TIntermUnary(EOpUnpackHalf2x16);
 | |
|                 unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
 | |
|                 unpackOp->getAsUnaryNode()->setOperand(component);
 | |
|                 unpackOp->setLoc(loc);
 | |
| 
 | |
|                 TIntermTyped* lowOrder  = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
 | |
|                 
 | |
|                 if (result != nullptr) {
 | |
|                     result->getSequence().push_back(lowOrder);
 | |
|                     node = result;
 | |
|                 } else {
 | |
|                     node = lowOrder;
 | |
|                 }
 | |
|             }
 | |
|             
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpF32tof16:
 | |
|         {
 | |
|             // input floatN converted to 16 bit float in low order bits of each component of uintN
 | |
|             TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
 | |
| 
 | |
|             TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
 | |
|             const int vecSize = argValue->getType().getVectorSize();
 | |
| 
 | |
|             TOperator constructOp = EOpNull;
 | |
|             switch (vecSize) {
 | |
|             case 1: constructOp = EOpNull;           break; // direct use, no construct needed
 | |
|             case 2: constructOp = EOpConstructUVec2; break;
 | |
|             case 3: constructOp = EOpConstructUVec3; break;
 | |
|             case 4: constructOp = EOpConstructUVec4; break;
 | |
|             default: assert(0); break;
 | |
|             }
 | |
| 
 | |
|             // For scalar case, we don't need to construct another type.
 | |
|             TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
 | |
| 
 | |
|             if (result) {
 | |
|                 result->setType(TType(EbtUint, EvqTemporary, vecSize));
 | |
|                 result->setLoc(loc);
 | |
|             }
 | |
| 
 | |
|             for (int idx = 0; idx < vecSize; ++idx) {
 | |
|                 TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
 | |
|                 TIntermTyped* component = argValue->getType().isVector() ? 
 | |
|                     intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
 | |
| 
 | |
|                 if (component != argValue)
 | |
|                     component->setType(TType(argValue->getBasicType(), EvqTemporary));
 | |
| 
 | |
|                 TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
 | |
|                 vec2ComponentAndZero->getSequence().push_back(component);
 | |
|                 vec2ComponentAndZero->getSequence().push_back(zero);
 | |
|                 vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
 | |
|                 vec2ComponentAndZero->setLoc(loc);
 | |
|                 
 | |
|                 TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
 | |
|                 packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
 | |
|                 packOp->setLoc(loc);
 | |
|                 packOp->setType(TType(EbtUint, EvqTemporary));
 | |
| 
 | |
|                 if (result != nullptr) {
 | |
|                     result->getSequence().push_back(packOp);
 | |
|                     node = result;
 | |
|                 } else {
 | |
|                     node = packOp;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpD3DCOLORtoUBYTE4:
 | |
|         {
 | |
|             // ivec4 ( x.zyxw * 255.001953 );
 | |
|             TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
 | |
|             TSwizzleSelectors<TVectorSelector> selectors;
 | |
|             selectors.push_back(2);
 | |
|             selectors.push_back(1);
 | |
|             selectors.push_back(0);
 | |
|             selectors.push_back(3);
 | |
|             TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
 | |
|             TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
 | |
|             swizzled->setType(arg0->getType());
 | |
|             swizzled->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|             TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
 | |
|             TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
 | |
|             rangeConverted->setType(arg0->getType());
 | |
|             rangeConverted->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|             node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
 | |
|             node->setLoc(loc);
 | |
|             node->setType(TType(EbtInt, EvqTemporary, 4));
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case EOpIsFinite:
 | |
|         {
 | |
|             // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
 | |
|             // it to !isnan && !isinf
 | |
| 
 | |
|             TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
 | |
| 
 | |
|             // We'll make a temporary in case the RHS is cmoplex
 | |
|             TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
 | |
|             tempArg->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|             TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
 | |
|                                                                 intermediate.addSymbol(*tempArg, loc),
 | |
|                                                                 arg0, loc);
 | |
| 
 | |
|             TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
 | |
| 
 | |
|             const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
 | |
|                                  arg0->getMatrixRows());
 | |
| 
 | |
|             TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
 | |
|             isnan->setType(boolType);
 | |
| 
 | |
|             TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
 | |
|             notnan->setType(boolType);
 | |
| 
 | |
|             TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
 | |
|             isinf->setType(boolType);
 | |
| 
 | |
|             TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
 | |
|             notinf->setType(boolType);
 | |
|             
 | |
|             TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
 | |
|             andNode->setType(boolType);
 | |
| 
 | |
|             compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
 | |
|             compoundStatement->setOperator(EOpSequence);
 | |
|             compoundStatement->setLoc(loc);
 | |
|             compoundStatement->setType(boolType);
 | |
| 
 | |
|             node = compoundStatement;
 | |
| 
 | |
|             break;
 | |
|         }
 | |
|     case EOpWaveGetLaneCount:
 | |
|         {
 | |
|             // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol
 | |
|             // so that it inhabits the symbol table, but has a user-invalid name
 | |
|             // in-case some source HLSL defined the symbol also).
 | |
|             TType type(EbtUint, EvqVaryingIn);
 | |
|             node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type);
 | |
|             break;
 | |
|         }
 | |
|     case EOpWaveGetLaneIndex:
 | |
|         {
 | |
|             // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the
 | |
|             // symbol so that it inhabits the symbol table, but has a
 | |
|             // user-invalid name in-case some source HLSL defined the symbol
 | |
|             // also).
 | |
|             TType type(EbtUint, EvqVaryingIn);
 | |
|             node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type);
 | |
|             break;
 | |
|         }
 | |
|     case EOpWaveActiveCountBits:
 | |
|         {
 | |
|             // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin
 | |
| 
 | |
|             // uvec4 type.
 | |
|             TType uvec4Type(EbtUint, EvqTemporary, 4);
 | |
| 
 | |
|             // Get the uvec4 return from subgroupBallot().
 | |
|             TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
 | |
|                 EOpSubgroupBallot, true, arguments, uvec4Type);
 | |
| 
 | |
|             // uint type.
 | |
|             TType uintType(EbtUint, EvqTemporary);
 | |
| 
 | |
|             node = intermediate.addBuiltInFunctionCall(loc,
 | |
|                 EOpSubgroupBallotBitCount, true, res, uintType);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
|     case EOpWavePrefixCountBits:
 | |
|         {
 | |
|             // Mapped to subgroupBallotInclusiveBitCount(subgroupBallot())
 | |
|             // builtin
 | |
| 
 | |
|             // uvec4 type.
 | |
|             TType uvec4Type(EbtUint, EvqTemporary, 4);
 | |
| 
 | |
|             // Get the uvec4 return from subgroupBallot().
 | |
|             TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
 | |
|                 EOpSubgroupBallot, true, arguments, uvec4Type);
 | |
| 
 | |
|             // uint type.
 | |
|             TType uintType(EbtUint, EvqTemporary);
 | |
| 
 | |
|             node = intermediate.addBuiltInFunctionCall(loc,
 | |
|                 EOpSubgroupBallotInclusiveBitCount, true, res, uintType);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     default:
 | |
|         break; // most pass through unchanged
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing function call syntax in the grammar, which could be any of
 | |
| //  - .length() method
 | |
| //  - constructor
 | |
| //  - a call to a built-in function mapped to an operator
 | |
| //  - a call to a built-in function that will remain a function call (e.g., texturing)
 | |
| //  - user function
 | |
| //  - subroutine call (not implemented yet)
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
 | |
| {
 | |
|     TIntermTyped* result = nullptr;
 | |
| 
 | |
|     TOperator op = function->getBuiltInOp();
 | |
|     if (op != EOpNull) {
 | |
|         //
 | |
|         // Then this should be a constructor.
 | |
|         // Don't go through the symbol table for constructors.
 | |
|         // Their parameters will be verified algorithmically.
 | |
|         //
 | |
|         TType type(EbtVoid);  // use this to get the type back
 | |
|         if (! constructorError(loc, arguments, *function, op, type)) {
 | |
|             //
 | |
|             // It's a constructor, of type 'type'.
 | |
|             //
 | |
|             result = handleConstructor(loc, arguments, type);
 | |
|             if (result == nullptr) {
 | |
|                 error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
 | |
|                 return nullptr;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         //
 | |
|         // Find it in the symbol table.
 | |
|         //
 | |
|         const TFunction* fnCandidate = nullptr;
 | |
|         bool builtIn = false;
 | |
|         int thisDepth = 0;
 | |
| 
 | |
|         // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes,
 | |
|         // and clamp the opposite arg.  Since that's complex, we farm it off to a separate method.
 | |
|         // It doesn't naturally fall out of processing an argument at a time in isolation.
 | |
|         if (function->getName() == "mul")
 | |
|             addGenMulArgumentConversion(loc, *function, arguments);
 | |
| 
 | |
|         TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | |
| 
 | |
|         // TODO: this needs improvement: there's no way at present to look up a signature in
 | |
|         // the symbol table for an arbitrary type.  This is a temporary hack until that ability exists.
 | |
|         // It will have false positives, since it doesn't check arg counts or types.
 | |
|         if (arguments) {
 | |
|             // Check if first argument is struct buffer type.  It may be an aggregate or a symbol, so we
 | |
|             // look for either case.
 | |
| 
 | |
|             TIntermTyped* arg0 = nullptr;
 | |
| 
 | |
|             if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0])
 | |
|                 arg0 = aggregate->getSequence()[0]->getAsTyped();
 | |
|             else if (arguments->getAsSymbolNode())
 | |
|                 arg0 = arguments->getAsSymbolNode();
 | |
| 
 | |
|             if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
 | |
|                 static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
 | |
| 
 | |
|                 if (function->getName().length() > methodPrefixSize &&
 | |
|                     isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
 | |
|                     const TString mangle = function->getName() + "(";
 | |
|                     TSymbol* symbol = symbolTable.find(mangle, &builtIn);
 | |
| 
 | |
|                     if (symbol)
 | |
|                         fnCandidate = symbol->getAsFunction();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (fnCandidate == nullptr)
 | |
|             fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
 | |
| 
 | |
|         if (fnCandidate) {
 | |
|             // This is a declared function that might map to
 | |
|             //  - a built-in operator,
 | |
|             //  - a built-in function not mapped to an operator, or
 | |
|             //  - a user function.
 | |
| 
 | |
|             // turn an implicit member-function resolution into an explicit call
 | |
|             TString callerName;
 | |
|             if (thisDepth == 0)
 | |
|                 callerName = fnCandidate->getMangledName();
 | |
|             else {
 | |
|                 // get the explicit (full) name of the function
 | |
|                 callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
 | |
|                 callerName += fnCandidate->getMangledName();
 | |
|                 // insert the implicit calling argument
 | |
|                 pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
 | |
|             }
 | |
| 
 | |
|             // Convert 'in' arguments, so that types match.
 | |
|             // However, skip those that need expansion, that is covered next.
 | |
|             if (arguments)
 | |
|                 addInputArgumentConversions(*fnCandidate, arguments);
 | |
| 
 | |
|             // Expand arguments.  Some arguments must physically expand to a different set
 | |
|             // than what the shader declared and passes.
 | |
|             if (arguments && !builtIn)
 | |
|                 expandArguments(loc, *fnCandidate, arguments);
 | |
| 
 | |
|             // Expansion may have changed the form of arguments
 | |
|             aggregate = arguments ? arguments->getAsAggregate() : nullptr;
 | |
| 
 | |
|             op = fnCandidate->getBuiltInOp();
 | |
|             if (builtIn && op != EOpNull) {
 | |
|                 // A function call mapped to a built-in operation.
 | |
|                 result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
 | |
|                                                              fnCandidate->getType());
 | |
|                 if (result == nullptr)  {
 | |
|                     error(arguments->getLoc(), " wrong operand type", "Internal Error",
 | |
|                         "built in unary operator function.  Type: %s",
 | |
|                         static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
 | |
|                 } else if (result->getAsOperator()) {
 | |
|                     builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
 | |
|                 }
 | |
|             } else {
 | |
|                 // This is a function call not mapped to built-in operator.
 | |
|                 // It could still be a built-in function, but only if PureOperatorBuiltins == false.
 | |
|                 result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
 | |
|                 TIntermAggregate* call = result->getAsAggregate();
 | |
|                 call->setName(callerName);
 | |
| 
 | |
|                 // this is how we know whether the given function is a built-in function or a user-defined function
 | |
|                 // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
 | |
|                 // if builtIn == true, it's definitely a built-in function with EOpNull
 | |
|                 if (! builtIn) {
 | |
|                     call->setUserDefined();
 | |
|                     intermediate.addToCallGraph(infoSink, currentCaller, callerName);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // for decompositions, since we want to operate on the function node, not the aggregate holding
 | |
|             // output conversions.
 | |
|             const TIntermTyped* fnNode = result;
 | |
| 
 | |
|             decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
 | |
|             decomposeIntrinsic(loc, result, arguments);           // HLSL->AST intrinsic decompositions
 | |
|             decomposeSampleMethods(loc, result, arguments);       // HLSL->AST sample method decompositions
 | |
|             decomposeGeometryMethods(loc, result, arguments);     // HLSL->AST geometry method decompositions
 | |
| 
 | |
|             // Create the qualifier list, carried in the AST for the call.
 | |
|             // Because some arguments expand to multiple arguments, the qualifier list will
 | |
|             // be longer than the formal parameter list.
 | |
|             if (result == fnNode && result->getAsAggregate()) {
 | |
|                 TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
 | |
|                 for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
 | |
|                     TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
 | |
|                     if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
 | |
|                         // add buffer and counter buffer argument qualifier
 | |
|                         qualifierList.push_back(qual);
 | |
|                         qualifierList.push_back(qual);
 | |
|                     } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage,
 | |
|                                              true)) {
 | |
|                         // add structure member expansion
 | |
|                         for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
 | |
|                             qualifierList.push_back(qual);
 | |
|                     } else {
 | |
|                         // Normal 1:1 case
 | |
|                         qualifierList.push_back(qual);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Convert 'out' arguments.  If it was a constant folded built-in, it won't be an aggregate anymore.
 | |
|             // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
 | |
|             // Also, build the qualifier list for user function calls, which are always called with an aggregate.
 | |
|             // We don't do this is if there has been a decomposition, which will have added its own conversions
 | |
|             // for output parameters.
 | |
|             if (result == fnNode && result->getAsAggregate())
 | |
|                 result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // generic error recovery
 | |
|     // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
 | |
|     //       reduce cascades
 | |
|     if (result == nullptr)
 | |
|         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // An initial argument list is difficult: it can be null, or a single node,
 | |
| // or an aggregate if more than one argument.  Add one to the front, maintaining
 | |
| // this lack of uniformity.
 | |
| void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
 | |
| {
 | |
|     if (arguments == nullptr)
 | |
|         arguments = front;
 | |
|     else if (arguments->getAsAggregate() != nullptr)
 | |
|         arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
 | |
|     else
 | |
|         arguments = intermediate.growAggregate(front, arguments);
 | |
| }
 | |
| 
 | |
| //
 | |
| // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat.  This is a
 | |
| // situation not well suited to resolution in intrinsic selection, but we can do so here, since we
 | |
| // can look at both arguments insert explicit shape changes if required.
 | |
| //
 | |
| void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args)
 | |
| {
 | |
|     TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr;
 | |
| 
 | |
|     if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) {
 | |
|         // It really ought to have two arguments.
 | |
|         error(loc, "expected: mul arguments", "", "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
 | |
|     TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
 | |
| 
 | |
|     if (arg0->isVector() && arg1->isVector()) {
 | |
|         // For:
 | |
|         //    vec * vec: it's handled during intrinsic selection, so while we could do it here,
 | |
|         //               we can also ignore it, which is easier.
 | |
|     } else if (arg0->isVector() && arg1->isMatrix()) {
 | |
|         // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col.
 | |
|         if (arg0->getVectorSize() < arg1->getMatrixCols()) {
 | |
|             // vec is smaller, so truncate larger mat dimension
 | |
|             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
 | |
|                                   0, arg0->getVectorSize(), arg1->getMatrixRows());
 | |
|             arg1 = addConstructor(loc, arg1, truncType);
 | |
|         } else if (arg0->getVectorSize() > arg1->getMatrixCols()) {
 | |
|             // vec is larger, so truncate vec to mat size
 | |
|             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
 | |
|                                   arg1->getMatrixCols());
 | |
|             arg0 = addConstructor(loc, arg0, truncType);
 | |
|         }
 | |
|     } else if (arg0->isMatrix() && arg1->isVector()) {
 | |
|         // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col.
 | |
|         if (arg1->getVectorSize() < arg0->getMatrixRows()) {
 | |
|             // vec is smaller, so truncate larger mat dimension
 | |
|             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
 | |
|                                   0, arg0->getMatrixCols(), arg1->getVectorSize());
 | |
|             arg0 = addConstructor(loc, arg0, truncType);
 | |
|         } else if (arg1->getVectorSize() > arg0->getMatrixRows()) {
 | |
|             // vec is larger, so truncate vec to mat size
 | |
|             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
 | |
|                                   arg0->getMatrixRows());
 | |
|             arg1 = addConstructor(loc, arg1, truncType);
 | |
|         }
 | |
|     } else if (arg0->isMatrix() && arg1->isMatrix()) {
 | |
|         // mat * mat: we clamp the smaller inner dimension to match the other matrix size.
 | |
|         // Remember, HLSL Mrc = GLSL/SPIRV Mcr.
 | |
|         if (arg0->getMatrixRows() > arg1->getMatrixCols()) {
 | |
|             const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
 | |
|                                   0, arg0->getMatrixCols(), arg1->getMatrixCols());
 | |
|             arg0 = addConstructor(loc, arg0, truncType);
 | |
|         } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) {
 | |
|             const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
 | |
|                                   0, arg0->getMatrixRows(), arg1->getMatrixRows());
 | |
|             arg1 = addConstructor(loc, arg1, truncType);
 | |
|         }
 | |
|     } else {
 | |
|         // It's something with scalars: we'll just leave it alone.  Function selection will handle it
 | |
|         // downstream.
 | |
|     }
 | |
| 
 | |
|     // Warn if we altered one of the arguments
 | |
|     if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1])
 | |
|         warn(loc, "mul() matrix size mismatch", "", "");
 | |
| 
 | |
|     // Put arguments back.  (They might be unchanged, in which case this is harmless).
 | |
|     argAggregate->getSequence()[0] = arg0;
 | |
|     argAggregate->getSequence()[1] = arg1;
 | |
| 
 | |
|     call[0].type = &arg0->getWritableType();
 | |
|     call[1].type = &arg1->getWritableType();
 | |
| }
 | |
| 
 | |
| //
 | |
| // Add any needed implicit conversions for function-call arguments to input parameters.
 | |
| //
 | |
| void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
 | |
| {
 | |
|     TIntermAggregate* aggregate = arguments->getAsAggregate();
 | |
| 
 | |
|     // Replace a single argument with a single argument.
 | |
|     const auto setArg = [&](int paramNum, TIntermTyped* arg) {
 | |
|         if (function.getParamCount() == 1)
 | |
|             arguments = arg;
 | |
|         else {
 | |
|             if (aggregate == nullptr)
 | |
|                 arguments = arg;
 | |
|             else
 | |
|                 aggregate->getSequence()[paramNum] = arg;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // Process each argument's conversion
 | |
|     for (int param = 0; param < function.getParamCount(); ++param) {
 | |
|         if (! function[param].type->getQualifier().isParamInput())
 | |
|             continue;
 | |
| 
 | |
|         // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
 | |
|         // is the single argument itself or its children are the arguments.  Only one argument
 | |
|         // means take 'arguments' itself as the one argument.
 | |
|         TIntermTyped* arg = function.getParamCount() == 1
 | |
|                                    ? arguments->getAsTyped()
 | |
|                                    : (aggregate ? 
 | |
|                                         aggregate->getSequence()[param]->getAsTyped() :
 | |
|                                         arguments->getAsTyped());
 | |
|         if (*function[param].type != arg->getType()) {
 | |
|             // In-qualified arguments just need an extra node added above the argument to
 | |
|             // convert to the correct type.
 | |
|             TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
 | |
|             if (convArg != nullptr)
 | |
|                 convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
 | |
|             if (convArg != nullptr)
 | |
|                 setArg(param, convArg);
 | |
|             else
 | |
|                 error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
 | |
|         } else {
 | |
|             if (wasFlattened(arg)) {
 | |
|                 // If both formal and calling arg are to be flattened, leave that to argument
 | |
|                 // expansion, not conversion.
 | |
|                 if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
 | |
|                     // Will make a two-level subtree.
 | |
|                     // The deepest will copy member-by-member to build the structure to pass.
 | |
|                     // The level above that will be a two-operand EOpComma sequence that follows the copy by the
 | |
|                     // object itself.
 | |
|                     TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
 | |
|                     internalAggregate->getWritableType().getQualifier().makeTemporary();
 | |
|                     TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
 | |
|                                                                           internalAggregate->getName(),
 | |
|                                                                           internalAggregate->getType());
 | |
|                     internalSymbolNode->setLoc(arg->getLoc());
 | |
|                     // This makes the deepest level, the member-wise copy
 | |
|                     TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
 | |
|                                                                internalSymbolNode, arg)->getAsAggregate();
 | |
| 
 | |
|                     // Now, pair that with the resulting aggregate.
 | |
|                     assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
 | |
|                     assignAgg->setOperator(EOpComma);
 | |
|                     assignAgg->setType(internalAggregate->getType());
 | |
|                     setArg(param, assignAgg);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Add any needed implicit expansion of calling arguments from what the shader listed to what's
 | |
| // internally needed for the AST (given the constraints downstream).
 | |
| //
 | |
| void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
 | |
| {
 | |
|     TIntermAggregate* aggregate = arguments->getAsAggregate();
 | |
|     int functionParamNumberOffset = 0;
 | |
| 
 | |
|     // Replace a single argument with a single argument.
 | |
|     const auto setArg = [&](int paramNum, TIntermTyped* arg) {
 | |
|         if (function.getParamCount() + functionParamNumberOffset == 1)
 | |
|             arguments = arg;
 | |
|         else {
 | |
|             if (aggregate == nullptr)
 | |
|                 arguments = arg;
 | |
|             else
 | |
|                 aggregate->getSequence()[paramNum] = arg;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // Replace a single argument with a list of arguments
 | |
|     const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
 | |
|         if (args.size() == 1)
 | |
|             setArg(paramNum, args.front());
 | |
|         else if (args.size() > 1) {
 | |
|             if (function.getParamCount() + functionParamNumberOffset == 1) {
 | |
|                 arguments = intermediate.makeAggregate(args.front());
 | |
|                 std::for_each(args.begin() + 1, args.end(), 
 | |
|                     [&](TIntermTyped* arg) {
 | |
|                         arguments = intermediate.growAggregate(arguments, arg);
 | |
|                     });
 | |
|             } else {
 | |
|                 auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
 | |
|                 aggregate->getSequence().insert(it, args.begin(), args.end());
 | |
|             }
 | |
|             functionParamNumberOffset += (int)(args.size() - 1);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // Process each argument's conversion
 | |
|     for (int param = 0; param < function.getParamCount(); ++param) {
 | |
|         // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
 | |
|         // is the single argument itself or its children are the arguments.  Only one argument
 | |
|         // means take 'arguments' itself as the one argument.
 | |
|         TIntermTyped* arg = function.getParamCount() == 1
 | |
|                                    ? arguments->getAsTyped()
 | |
|                                    : (aggregate ? 
 | |
|                                         aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
 | |
|                                         arguments->getAsTyped());
 | |
| 
 | |
|         if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
 | |
|             // Need to pass the structure members instead of the structure.
 | |
|             TVector<TIntermTyped*> memberArgs;
 | |
|             for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
 | |
|                 memberArgs.push_back(flattenAccess(arg, memb));
 | |
|             setArgList(param + functionParamNumberOffset, memberArgs);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // TODO: if we need both hidden counter args (below) and struct expansion (above)
 | |
|     // the two algorithms need to be merged: Each assumes the list starts out 1:1 between
 | |
|     // parameters and arguments.
 | |
| 
 | |
|     // If any argument is a pass-by-reference struct buffer with an associated counter
 | |
|     // buffer, we have to add another hidden parameter for that counter.
 | |
|     if (aggregate)
 | |
|         addStructBuffArguments(loc, aggregate);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Add any needed implicit output conversions for function-call arguments.  This
 | |
| // can require a new tree topology, complicated further by whether the function
 | |
| // has a return value.
 | |
| //
 | |
| // Returns a node of a subtree that evaluates to the return value of the function.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
 | |
| {
 | |
|     assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
 | |
| 
 | |
|     const TSourceLoc& loc = intermNode.getLoc();
 | |
| 
 | |
|     TIntermSequence argSequence; // temp sequence for unary node args
 | |
| 
 | |
|     if (intermNode.getAsUnaryNode())
 | |
|         argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
 | |
| 
 | |
|     TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
 | |
| 
 | |
|     const auto needsConversion = [&](int argNum) {
 | |
|         return function[argNum].type->getQualifier().isParamOutput() &&
 | |
|                (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
 | |
|                 shouldConvertLValue(arguments[argNum]) ||
 | |
|                 wasFlattened(arguments[argNum]->getAsTyped()));
 | |
|     };
 | |
| 
 | |
|     // Will there be any output conversions?
 | |
|     bool outputConversions = false;
 | |
|     for (int i = 0; i < function.getParamCount(); ++i) {
 | |
|         if (needsConversion(i)) {
 | |
|             outputConversions = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (! outputConversions)
 | |
|         return &intermNode;
 | |
| 
 | |
|     // Setup for the new tree, if needed:
 | |
|     //
 | |
|     // Output conversions need a different tree topology.
 | |
|     // Out-qualified arguments need a temporary of the correct type, with the call
 | |
|     // followed by an assignment of the temporary to the original argument:
 | |
|     //     void: function(arg, ...)  ->        (          function(tempArg, ...), arg = tempArg, ...)
 | |
|     //     ret = function(arg, ...)  ->  ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
 | |
|     // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
 | |
|     TIntermTyped* conversionTree = nullptr;
 | |
|     TVariable* tempRet = nullptr;
 | |
|     if (intermNode.getBasicType() != EbtVoid) {
 | |
|         // do the "tempRet = function(...), " bit from above
 | |
|         tempRet = makeInternalVariable("tempReturn", intermNode.getType());
 | |
|         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
 | |
|         conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
 | |
|     } else
 | |
|         conversionTree = &intermNode;
 | |
| 
 | |
|     conversionTree = intermediate.makeAggregate(conversionTree);
 | |
| 
 | |
|     // Process each argument's conversion
 | |
|     for (int i = 0; i < function.getParamCount(); ++i) {
 | |
|         if (needsConversion(i)) {
 | |
|             // Out-qualified arguments needing conversion need to use the topology setup above.
 | |
|             // Do the " ...(tempArg, ...), arg = tempArg" bit from above.
 | |
| 
 | |
|             // Make a temporary for what the function expects the argument to look like.
 | |
|             TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
 | |
|             tempArg->getWritableType().getQualifier().makeTemporary();
 | |
|             TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
 | |
| 
 | |
|             // This makes the deepest level, the member-wise copy
 | |
|             TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
 | |
|                                                     tempArgNode);
 | |
|             tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
 | |
|             conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
 | |
| 
 | |
|             // replace the argument with another node for the same tempArg variable
 | |
|             arguments[i] = intermediate.addSymbol(*tempArg, loc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Finalize the tree topology (see bigger comment above).
 | |
|     if (tempRet) {
 | |
|         // do the "..., tempRet" bit from above
 | |
|         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
 | |
|         conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
 | |
|     }
 | |
| 
 | |
|     conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
 | |
| 
 | |
|     return conversionTree;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Add any needed "hidden" counter buffer arguments for function calls.
 | |
| //
 | |
| // Modifies the 'aggregate' argument if needed.  Otherwise, is no-op.
 | |
| //
 | |
| void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
 | |
| {
 | |
|     // See if there are any SB types with counters.
 | |
|     const bool hasStructBuffArg =
 | |
|         std::any_of(aggregate->getSequence().begin(),
 | |
|                     aggregate->getSequence().end(),
 | |
|                     [this](const TIntermNode* node) {
 | |
|                         return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
 | |
|                     });
 | |
| 
 | |
|     // Nothing to do, if we didn't find one.
 | |
|     if (! hasStructBuffArg)
 | |
|         return;
 | |
| 
 | |
|     TIntermSequence argsWithCounterBuffers;
 | |
| 
 | |
|     for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
 | |
|         argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
 | |
| 
 | |
|         if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
 | |
|             const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
 | |
|             if (blockSym != nullptr) {
 | |
|                 TType counterType;
 | |
|                 counterBufferType(loc, counterType);
 | |
| 
 | |
|                 const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName()));
 | |
| 
 | |
|                 TVariable* variable = makeInternalVariable(counterBlockName, counterType);
 | |
| 
 | |
|                 // Mark this buffer's counter block as being in use
 | |
|                 structBufferCounter[counterBlockName] = true;
 | |
| 
 | |
|                 TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
 | |
|                 argsWithCounterBuffers.push_back(sym);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Swap with the temp list we've built up.
 | |
|     aggregate->getSequence().swap(argsWithCounterBuffers);
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // Do additional checking of built-in function calls that is not caught
 | |
| // by normal semantic checks on argument type, extension tagging, etc.
 | |
| //
 | |
| // Assumes there has been a semantically correct match to a built-in function prototype.
 | |
| //
 | |
| void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
 | |
| {
 | |
|     // Set up convenience accessors to the argument(s).  There is almost always
 | |
|     // multiple arguments for the cases below, but when there might be one,
 | |
|     // check the unaryArg first.
 | |
|     const TIntermSequence* argp = nullptr;   // confusing to use [] syntax on a pointer, so this is to help get a reference
 | |
|     const TIntermTyped* unaryArg = nullptr;
 | |
|     const TIntermTyped* arg0 = nullptr;
 | |
|     if (callNode.getAsAggregate()) {
 | |
|         argp = &callNode.getAsAggregate()->getSequence();
 | |
|         if (argp->size() > 0)
 | |
|             arg0 = (*argp)[0]->getAsTyped();
 | |
|     } else {
 | |
|         assert(callNode.getAsUnaryNode());
 | |
|         unaryArg = callNode.getAsUnaryNode()->getOperand();
 | |
|         arg0 = unaryArg;
 | |
|     }
 | |
|     const TIntermSequence& aggArgs = *argp;  // only valid when unaryArg is nullptr
 | |
| 
 | |
|     switch (callNode.getOp()) {
 | |
|     case EOpTextureGather:
 | |
|     case EOpTextureGatherOffset:
 | |
|     case EOpTextureGatherOffsets:
 | |
|     {
 | |
|         // Figure out which variants are allowed by what extensions,
 | |
|         // and what arguments must be constant for which situations.
 | |
| 
 | |
|         TString featureString = fnCandidate.getName() + "(...)";
 | |
|         const char* feature = featureString.c_str();
 | |
|         int compArg = -1;  // track which argument, if any, is the constant component argument
 | |
|         switch (callNode.getOp()) {
 | |
|         case EOpTextureGather:
 | |
|             // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
 | |
|             // otherwise, need GL_ARB_texture_gather.
 | |
|             if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
 | |
|                 fnCandidate[0].type->getSampler().shadow) {
 | |
|                 if (! fnCandidate[0].type->getSampler().shadow)
 | |
|                     compArg = 2;
 | |
|             }
 | |
|             break;
 | |
|         case EOpTextureGatherOffset:
 | |
|             // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
 | |
|             if (! fnCandidate[0].type->getSampler().shadow)
 | |
|                 compArg = 3;
 | |
|             break;
 | |
|         case EOpTextureGatherOffsets:
 | |
|             if (! fnCandidate[0].type->getSampler().shadow)
 | |
|                 compArg = 3;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
 | |
|             if (aggArgs[compArg]->getAsConstantUnion()) {
 | |
|                 int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
 | |
|                 if (value < 0 || value > 3)
 | |
|                     error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
 | |
|             } else
 | |
|                 error(loc, "must be a compile-time constant:", feature, "component argument");
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     case EOpTextureOffset:
 | |
|     case EOpTextureFetchOffset:
 | |
|     case EOpTextureProjOffset:
 | |
|     case EOpTextureLodOffset:
 | |
|     case EOpTextureProjLodOffset:
 | |
|     case EOpTextureGradOffset:
 | |
|     case EOpTextureProjGradOffset:
 | |
|     {
 | |
|         // Handle texture-offset limits checking
 | |
|         // Pick which argument has to hold constant offsets
 | |
|         int arg = -1;
 | |
|         switch (callNode.getOp()) {
 | |
|         case EOpTextureOffset:          arg = 2;  break;
 | |
|         case EOpTextureFetchOffset:     arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
 | |
|         case EOpTextureProjOffset:      arg = 2;  break;
 | |
|         case EOpTextureLodOffset:       arg = 3;  break;
 | |
|         case EOpTextureProjLodOffset:   arg = 3;  break;
 | |
|         case EOpTextureGradOffset:      arg = 4;  break;
 | |
|         case EOpTextureProjGradOffset:  arg = 4;  break;
 | |
|         default:
 | |
|             assert(0);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (arg > 0) {
 | |
|             if (aggArgs[arg]->getAsConstantUnion() == nullptr)
 | |
|                 error(loc, "argument must be compile-time constant", "texel offset", "");
 | |
|             else {
 | |
|                 const TType& type = aggArgs[arg]->getAsTyped()->getType();
 | |
|                 for (int c = 0; c < type.getVectorSize(); ++c) {
 | |
|                     int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
 | |
|                     if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
 | |
|                         error(loc, "value is out of range:", "texel offset",
 | |
|                               "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     case EOpTextureQuerySamples:
 | |
|     case EOpImageQuerySamples:
 | |
|         break;
 | |
| 
 | |
|     case EOpImageAtomicAdd:
 | |
|     case EOpImageAtomicMin:
 | |
|     case EOpImageAtomicMax:
 | |
|     case EOpImageAtomicAnd:
 | |
|     case EOpImageAtomicOr:
 | |
|     case EOpImageAtomicXor:
 | |
|     case EOpImageAtomicExchange:
 | |
|     case EOpImageAtomicCompSwap:
 | |
|         break;
 | |
| 
 | |
|     case EOpInterpolateAtCentroid:
 | |
|     case EOpInterpolateAtSample:
 | |
|     case EOpInterpolateAtOffset:
 | |
|         // Make sure the first argument is an interpolant, or an array element of an interpolant
 | |
|         if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
 | |
|             // It might still be an array element.
 | |
|             //
 | |
|             // We could check more, but the semantics of the first argument are already met; the
 | |
|             // only way to turn an array into a float/vec* is array dereference and swizzle.
 | |
|             //
 | |
|             // ES and desktop 4.3 and earlier:  swizzles may not be used
 | |
|             // desktop 4.4 and later: swizzles may be used
 | |
|             const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
 | |
|             if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
 | |
|                 error(loc, "first argument must be an interpolant, or interpolant-array element",
 | |
|                       fnCandidate.getName().c_str(), "");
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing something in a grammar production that can be done by calling
 | |
| // a constructor.
 | |
| //
 | |
| // The constructor still must be "handled" by handleFunctionCall(), which will
 | |
| // then call handleConstructor().
 | |
| //
 | |
| TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
 | |
| {
 | |
|     TOperator op = intermediate.mapTypeToConstructorOp(type);
 | |
| 
 | |
|     if (op == EOpNull) {
 | |
|         error(loc, "cannot construct this type", type.getBasicString(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     TString empty("");
 | |
| 
 | |
|     return new TFunction(&empty, type, op);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a "COLON semantic" at the end of a type declaration,
 | |
| // by updating the type according to the semantic.
 | |
| //
 | |
| void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
 | |
|                                       const TString& upperCase)
 | |
| {
 | |
|     // Parse and return semantic number.  If limit is 0, it will be ignored.  Otherwise, if the parsed
 | |
|     // semantic number is >= limit, errorMsg is issued and 0 is returned.
 | |
|     // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
 | |
|     // accept those in lambda functions.
 | |
|     const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
 | |
|         size_t pos = semantic.find_last_not_of("0123456789");
 | |
|         if (pos == std::string::npos)
 | |
|             return 0u;
 | |
| 
 | |
|         unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
 | |
| 
 | |
|         if (limit != 0 && semanticNum >= limit) {
 | |
|             error(loc, errorMsg, semantic.c_str(), "");
 | |
|             return 0u;
 | |
|         }
 | |
| 
 | |
|         return semanticNum;
 | |
|     };
 | |
| 
 | |
|     switch(builtIn) {
 | |
|     case EbvNone:
 | |
|         // Get location numbers from fragment outputs, instead of
 | |
|         // auto-assigning them.
 | |
|         if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
 | |
|             qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
 | |
|             nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
 | |
|         } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
 | |
|             builtIn = EbvClipDistance;
 | |
|             qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
 | |
|         } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
 | |
|             builtIn = EbvCullDistance;
 | |
|             qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
 | |
|         }
 | |
|         break;
 | |
|     case EbvPosition:
 | |
|         // adjust for stage in/out
 | |
|         if (language == EShLangFragment)
 | |
|             builtIn = EbvFragCoord;
 | |
|         break;
 | |
|     case EbvFragStencilRef:
 | |
|         error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
 | |
|         break;
 | |
|     case EbvTessLevelInner:
 | |
|     case EbvTessLevelOuter:
 | |
|         qualifier.patch = true;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (qualifier.builtIn == EbvNone)
 | |
|         qualifier.builtIn = builtIn;
 | |
|     qualifier.semanticName = intermediate.addSemanticName(upperCase);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
 | |
| //
 | |
| // 'location' has the "c[Subcomponent]" part.
 | |
| // 'component' points to the "component" part, or nullptr if not present.
 | |
| //
 | |
| void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
 | |
|                                         const glslang::TString* component)
 | |
| {
 | |
|     if (location.size() == 0 || location[0] != 'c') {
 | |
|         error(loc, "expected 'c'", "packoffset", "");
 | |
|         return;
 | |
|     }
 | |
|     if (location.size() == 1)
 | |
|         return;
 | |
|     if (! isdigit(location[1])) {
 | |
|         error(loc, "expected number after 'c'", "packoffset", "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
 | |
|     if (component != nullptr) {
 | |
|         int componentOffset = 0;
 | |
|         switch ((*component)[0]) {
 | |
|         case 'x': componentOffset =  0; break;
 | |
|         case 'y': componentOffset =  4; break;
 | |
|         case 'z': componentOffset =  8; break;
 | |
|         case 'w': componentOffset = 12; break;
 | |
|         default:
 | |
|             componentOffset = -1;
 | |
|             break;
 | |
|         }
 | |
|         if (componentOffset < 0 || component->size() > 1) {
 | |
|             error(loc, "expected {x, y, z, w} for component", "packoffset", "");
 | |
|             return;
 | |
|         }
 | |
|         qualifier.layoutOffset += componentOffset;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
 | |
| //
 | |
| // 'profile' points to the shader_profile part, or nullptr if not present.
 | |
| // 'desc' is the type# part.
 | |
| //
 | |
| void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
 | |
|                                       const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
 | |
| {
 | |
|     if (profile != nullptr)
 | |
|         warn(loc, "ignoring shader_profile", "register", "");
 | |
| 
 | |
|     if (desc.size() < 1) {
 | |
|         error(loc, "expected register type", "register", "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int regNumber = 0;
 | |
|     if (desc.size() > 1) {
 | |
|         if (isdigit(desc[1]))
 | |
|             regNumber = atoi(desc.substr(1, desc.size()).c_str());
 | |
|         else {
 | |
|             error(loc, "expected register number after register type", "register", "");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // more information about register types see
 | |
|     // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register
 | |
|     const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
 | |
|     switch (std::tolower(desc[0])) {
 | |
|     case 'c':
 | |
|         // c register is the register slot in the global const buffer
 | |
|         // each slot is a vector of 4 32 bit components
 | |
|         qualifier.layoutOffset = regNumber * 4 * 4;
 | |
|         break;
 | |
|         // const buffer register slot
 | |
|     case 'b':
 | |
|         // textrues and structured buffers
 | |
|     case 't':
 | |
|         // samplers
 | |
|     case 's':
 | |
|         // uav resources
 | |
|     case 'u':
 | |
|         // if nothing else has set the binding, do so now
 | |
|         // (other mechanisms override this one)
 | |
|         if (!qualifier.hasBinding())
 | |
|             qualifier.layoutBinding = regNumber + subComponent;
 | |
| 
 | |
|         // This handles per-register layout sets numbers.  For the global mode which sets
 | |
|         // every symbol to the same value, see setLinkageLayoutSets().
 | |
|         if ((resourceInfo.size() % 3) == 0) {
 | |
|             // Apply per-symbol resource set and binding.
 | |
|             for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
 | |
|                 if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
 | |
|                     qualifier.layoutSet = atoi(it[1].c_str());
 | |
|                     qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // space
 | |
|     unsigned int setNumber;
 | |
|     const auto crackSpace = [&]() -> bool {
 | |
|         const int spaceLen = 5;
 | |
|         if (spaceDesc->size() < spaceLen + 1)
 | |
|             return false;
 | |
|         if (spaceDesc->compare(0, spaceLen, "space") != 0)
 | |
|             return false;
 | |
|         if (! isdigit((*spaceDesc)[spaceLen]))
 | |
|             return false;
 | |
|         setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
 | |
|         return true;
 | |
|     };
 | |
| 
 | |
|     // if nothing else has set the set, do so now
 | |
|     // (other mechanisms override this one)
 | |
|     if (spaceDesc && !qualifier.hasSet()) {
 | |
|         if (! crackSpace()) {
 | |
|             error(loc, "expected spaceN", "register", "");
 | |
|             return;
 | |
|         }
 | |
|         qualifier.layoutSet = setNumber;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Convert to a scalar boolean, or if not allowed by HLSL semantics,
 | |
| // report an error and return nullptr.
 | |
| TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
 | |
|                                                              bool mustBeScalar)
 | |
| {
 | |
|     if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
 | |
|         error(loc, "requires a scalar", "conditional expression", "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
 | |
|                                       condition);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Same error message for all places assignments don't work.
 | |
| //
 | |
| void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
 | |
| {
 | |
|     error(loc, "", op, "cannot convert from '%s' to '%s'",
 | |
|         right.c_str(), left.c_str());
 | |
| }
 | |
| 
 | |
| //
 | |
| // Same error message for all places unary operations don't work.
 | |
| //
 | |
| void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
 | |
| {
 | |
|     error(loc, " wrong operand type", op,
 | |
|         "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
 | |
|         op, operand.c_str());
 | |
| }
 | |
| 
 | |
| //
 | |
| // Same error message for all binary operations don't work.
 | |
| //
 | |
| void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
 | |
| {
 | |
|     error(loc, " wrong operand types:", op,
 | |
|         "no operation '%s' exists that takes a left-hand operand of type '%s' and "
 | |
|         "a right operand of type '%s' (or there is no acceptable conversion)",
 | |
|         op, left.c_str(), right.c_str());
 | |
| }
 | |
| 
 | |
| //
 | |
| // A basic type of EbtVoid is a key that the name string was seen in the source, but
 | |
| // it was not found as a variable in the symbol table.  If so, give the error
 | |
| // message and insert a dummy variable in the symbol table to prevent future errors.
 | |
| //
 | |
| void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
 | |
| {
 | |
|     TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
 | |
|     if (! symbol)
 | |
|         return;
 | |
| 
 | |
|     if (symbol->getType().getBasicType() == EbtVoid) {
 | |
|         error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
 | |
| 
 | |
|         // Add to symbol table to prevent future error messages on the same name
 | |
|         if (symbol->getName().size() > 0) {
 | |
|             TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
 | |
|             symbolTable.insert(*fakeVariable);
 | |
| 
 | |
|             // substitute a symbol node for this new variable
 | |
|             nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Both test, and if necessary spit out an error, to see if the node is really
 | |
| // a constant.
 | |
| //
 | |
| void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
 | |
| {
 | |
|     if (node->getQualifier().storage != EvqConst)
 | |
|         error(node->getLoc(), "constant expression required", token, "");
 | |
| }
 | |
| 
 | |
| //
 | |
| // Both test, and if necessary spit out an error, to see if the node is really
 | |
| // an integer.
 | |
| //
 | |
| void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
 | |
| {
 | |
|     if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
 | |
|         return;
 | |
| 
 | |
|     error(node->getLoc(), "scalar integer expression required", token, "");
 | |
| }
 | |
| 
 | |
| //
 | |
| // Both test, and if necessary spit out an error, to see if we are currently
 | |
| // globally scoped.
 | |
| //
 | |
| void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
 | |
| {
 | |
|     if (! symbolTable.atGlobalLevel())
 | |
|         error(loc, "not allowed in nested scope", token, "");
 | |
| }
 | |
| 
 | |
| bool HlslParseContext::builtInName(const TString& /*identifier*/)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Make sure there is enough data and not too many arguments provided to the
 | |
| // constructor to build something of the type of the constructor.  Also returns
 | |
| // the type of the constructor.
 | |
| //
 | |
| // Returns true if there was an error in construction.
 | |
| //
 | |
| bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
 | |
|                                         TOperator op, TType& type)
 | |
| {
 | |
|     type.shallowCopy(function.getType());
 | |
| 
 | |
|     bool constructingMatrix = false;
 | |
|     switch (op) {
 | |
|     case EOpConstructTextureSampler:
 | |
|         error(loc, "unhandled texture constructor", "constructor", "");
 | |
|         return true;
 | |
|     case EOpConstructMat2x2:
 | |
|     case EOpConstructMat2x3:
 | |
|     case EOpConstructMat2x4:
 | |
|     case EOpConstructMat3x2:
 | |
|     case EOpConstructMat3x3:
 | |
|     case EOpConstructMat3x4:
 | |
|     case EOpConstructMat4x2:
 | |
|     case EOpConstructMat4x3:
 | |
|     case EOpConstructMat4x4:
 | |
|     case EOpConstructDMat2x2:
 | |
|     case EOpConstructDMat2x3:
 | |
|     case EOpConstructDMat2x4:
 | |
|     case EOpConstructDMat3x2:
 | |
|     case EOpConstructDMat3x3:
 | |
|     case EOpConstructDMat3x4:
 | |
|     case EOpConstructDMat4x2:
 | |
|     case EOpConstructDMat4x3:
 | |
|     case EOpConstructDMat4x4:
 | |
|     case EOpConstructIMat2x2:
 | |
|     case EOpConstructIMat2x3:
 | |
|     case EOpConstructIMat2x4:
 | |
|     case EOpConstructIMat3x2:
 | |
|     case EOpConstructIMat3x3:
 | |
|     case EOpConstructIMat3x4:
 | |
|     case EOpConstructIMat4x2:
 | |
|     case EOpConstructIMat4x3:
 | |
|     case EOpConstructIMat4x4:
 | |
|     case EOpConstructUMat2x2:
 | |
|     case EOpConstructUMat2x3:
 | |
|     case EOpConstructUMat2x4:
 | |
|     case EOpConstructUMat3x2:
 | |
|     case EOpConstructUMat3x3:
 | |
|     case EOpConstructUMat3x4:
 | |
|     case EOpConstructUMat4x2:
 | |
|     case EOpConstructUMat4x3:
 | |
|     case EOpConstructUMat4x4:
 | |
|     case EOpConstructBMat2x2:
 | |
|     case EOpConstructBMat2x3:
 | |
|     case EOpConstructBMat2x4:
 | |
|     case EOpConstructBMat3x2:
 | |
|     case EOpConstructBMat3x3:
 | |
|     case EOpConstructBMat3x4:
 | |
|     case EOpConstructBMat4x2:
 | |
|     case EOpConstructBMat4x3:
 | |
|     case EOpConstructBMat4x4:
 | |
|         constructingMatrix = true;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Walk the arguments for first-pass checks and collection of information.
 | |
|     //
 | |
| 
 | |
|     int size = 0;
 | |
|     bool constType = true;
 | |
|     bool full = false;
 | |
|     bool overFull = false;
 | |
|     bool matrixInMatrix = false;
 | |
|     bool arrayArg = false;
 | |
|     for (int arg = 0; arg < function.getParamCount(); ++arg) {
 | |
|         if (function[arg].type->isArray()) {
 | |
|             if (function[arg].type->isUnsizedArray()) {
 | |
|                 // Can't construct from an unsized array.
 | |
|                 error(loc, "array argument must be sized", "constructor", "");
 | |
|                 return true;
 | |
|             }
 | |
|             arrayArg = true;
 | |
|         }
 | |
|         if (constructingMatrix && function[arg].type->isMatrix())
 | |
|             matrixInMatrix = true;
 | |
| 
 | |
|         // 'full' will go to true when enough args have been seen.  If we loop
 | |
|         // again, there is an extra argument.
 | |
|         if (full) {
 | |
|             // For vectors and matrices, it's okay to have too many components
 | |
|             // available, but not okay to have unused arguments.
 | |
|             overFull = true;
 | |
|         }
 | |
| 
 | |
|         size += function[arg].type->computeNumComponents();
 | |
|         if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
 | |
|             full = true;
 | |
| 
 | |
|         if (function[arg].type->getQualifier().storage != EvqConst)
 | |
|             constType = false;
 | |
|     }
 | |
| 
 | |
|     if (constType)
 | |
|         type.getQualifier().storage = EvqConst;
 | |
| 
 | |
|     if (type.isArray()) {
 | |
|         if (function.getParamCount() == 0) {
 | |
|             error(loc, "array constructor must have at least one argument", "constructor", "");
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if (type.isUnsizedArray()) {
 | |
|             // auto adapt the constructor type to the number of arguments
 | |
|             type.changeOuterArraySize(function.getParamCount());
 | |
|         } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) {
 | |
|             error(loc, "array constructor needs one argument per array element", "constructor", "");
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if (type.isArrayOfArrays()) {
 | |
|             // Types have to match, but we're still making the type.
 | |
|             // Finish making the type, and the comparison is done later
 | |
|             // when checking for conversion.
 | |
|             TArraySizes& arraySizes = *type.getArraySizes();
 | |
| 
 | |
|             // At least the dimensionalities have to match.
 | |
|             if (! function[0].type->isArray() ||
 | |
|                 arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
 | |
|                 error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
 | |
|                 return true;
 | |
|             }
 | |
| 
 | |
|             if (arraySizes.isInnerUnsized()) {
 | |
|                 // "Arrays of arrays ..., and the size for any dimension is optional"
 | |
|                 // That means we need to adopt (from the first argument) the other array sizes into the type.
 | |
|                 for (int d = 1; d < arraySizes.getNumDims(); ++d) {
 | |
|                     if (arraySizes.getDimSize(d) == UnsizedArraySize) {
 | |
|                         arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Some array -> array type casts are okay
 | |
|     if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
 | |
|         !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
 | |
|         type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
 | |
|         return false;
 | |
| 
 | |
|     if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
 | |
|         error(loc, "constructing non-array constituent from array argument", "constructor", "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (matrixInMatrix && ! type.isArray()) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (overFull) {
 | |
|         error(loc, "too many arguments", "constructor", "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (op == EOpConstructStruct && ! type.isArray()) {
 | |
|         if (isScalarConstructor(node))
 | |
|             return false;
 | |
| 
 | |
|         // Self-type construction: e.g, we can construct a struct from a single identically typed object.
 | |
|         if (function.getParamCount() == 1 && type == *function[0].type)
 | |
|             return false;
 | |
| 
 | |
|         if ((int)type.getStruct()->size() != function.getParamCount()) {
 | |
|             error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
 | |
|         (op == EOpConstructStruct && size < type.computeNumComponents())) {
 | |
|         error(loc, "not enough data provided for construction", "constructor", "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // See if 'node', in the context of constructing aggregates, is a scalar argument
 | |
| // to a constructor.
 | |
| //
 | |
| bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
 | |
| {
 | |
|     // Obviously, it must be a scalar, but an aggregate node might not be fully
 | |
|     // completed yet: holding a sequence of initializers under an aggregate
 | |
|     // would not yet be typed, so don't check it's type.  This corresponds to
 | |
|     // the aggregate operator also not being set yet. (An aggregate operation
 | |
|     // that legitimately yields a scalar will have a getOp() of that operator,
 | |
|     // not EOpNull.)
 | |
| 
 | |
|     return node->getAsTyped() != nullptr &&
 | |
|            node->getAsTyped()->isScalar() &&
 | |
|            (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
 | |
| }
 | |
| 
 | |
| // Checks to see if a void variable has been declared and raise an error message for such a case
 | |
| //
 | |
| // returns true in case of an error
 | |
| //
 | |
| bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
 | |
| {
 | |
|     if (basicType == EbtVoid) {
 | |
|         error(loc, "illegal use of type 'void'", identifier.c_str(), "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
 | |
| //
 | |
| void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
 | |
| {
 | |
|     // move from parameter/unknown qualifiers to pipeline in/out qualifiers
 | |
|     switch (qualifier.storage) {
 | |
|     case EvqIn:
 | |
|         qualifier.storage = EvqVaryingIn;
 | |
|         break;
 | |
|     case EvqOut:
 | |
|         qualifier.storage = EvqVaryingOut;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Merge characteristics of the 'src' qualifier into the 'dst'.
 | |
| // If there is duplication, issue error messages, unless 'force'
 | |
| // is specified, which means to just override default settings.
 | |
| //
 | |
| // Also, when force is false, it will be assumed that 'src' follows
 | |
| // 'dst', for the purpose of error checking order for versions
 | |
| // that require specific orderings of qualifiers.
 | |
| //
 | |
| void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
 | |
| {
 | |
|     // Storage qualification
 | |
|     if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
 | |
|         dst.storage = src.storage;
 | |
|     else if ((dst.storage == EvqIn  && src.storage == EvqOut) ||
 | |
|              (dst.storage == EvqOut && src.storage == EvqIn))
 | |
|         dst.storage = EvqInOut;
 | |
|     else if ((dst.storage == EvqIn    && src.storage == EvqConst) ||
 | |
|              (dst.storage == EvqConst && src.storage == EvqIn))
 | |
|         dst.storage = EvqConstReadOnly;
 | |
| 
 | |
|     // Layout qualifiers
 | |
|     mergeObjectLayoutQualifiers(dst, src, false);
 | |
| 
 | |
|     // individual qualifiers
 | |
|     bool repeated = false;
 | |
| #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
 | |
|     MERGE_SINGLETON(invariant);
 | |
|     MERGE_SINGLETON(noContraction);
 | |
|     MERGE_SINGLETON(centroid);
 | |
|     MERGE_SINGLETON(smooth);
 | |
|     MERGE_SINGLETON(flat);
 | |
|     MERGE_SINGLETON(nopersp);
 | |
|     MERGE_SINGLETON(patch);
 | |
|     MERGE_SINGLETON(sample);
 | |
|     MERGE_SINGLETON(coherent);
 | |
|     MERGE_SINGLETON(volatil);
 | |
|     MERGE_SINGLETON(restrict);
 | |
|     MERGE_SINGLETON(readonly);
 | |
|     MERGE_SINGLETON(writeonly);
 | |
|     MERGE_SINGLETON(specConstant);
 | |
|     MERGE_SINGLETON(nonUniform);
 | |
| }
 | |
| 
 | |
| // used to flatten the sampler type space into a single dimension
 | |
| // correlates with the declaration of defaultSamplerPrecision[]
 | |
| int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
 | |
| {
 | |
|     int arrayIndex = sampler.arrayed ? 1 : 0;
 | |
|     int shadowIndex = sampler.shadow ? 1 : 0;
 | |
|     int externalIndex = sampler.external ? 1 : 0;
 | |
| 
 | |
|     return EsdNumDims *
 | |
|            (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do size checking for an array type's size.
 | |
| //
 | |
| void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
 | |
| {
 | |
|     bool isConst = false;
 | |
|     sizePair.size = 1;
 | |
|     sizePair.node = nullptr;
 | |
| 
 | |
|     TIntermConstantUnion* constant = expr->getAsConstantUnion();
 | |
|     if (constant) {
 | |
|         // handle true (non-specialization) constant
 | |
|         sizePair.size = constant->getConstArray()[0].getIConst();
 | |
|         isConst = true;
 | |
|     } else {
 | |
|         // see if it's a specialization constant instead
 | |
|         if (expr->getQualifier().isSpecConstant()) {
 | |
|             isConst = true;
 | |
|             sizePair.node = expr;
 | |
|             TIntermSymbol* symbol = expr->getAsSymbolNode();
 | |
|             if (symbol && symbol->getConstArray().size() > 0)
 | |
|                 sizePair.size = symbol->getConstArray()[0].getIConst();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
 | |
|         error(loc, "array size must be a constant integer expression", "", "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (sizePair.size <= 0) {
 | |
|         error(loc, "array size must be a positive integer", "", "");
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Require array to be completely sized
 | |
| //
 | |
| void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
 | |
| {
 | |
|     if (arraySizes.hasUnsized())
 | |
|         error(loc, "array size required", "", "");
 | |
| }
 | |
| 
 | |
| void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
 | |
| {
 | |
|     const TTypeList& structure = *type.getStruct();
 | |
|     for (int m = 0; m < (int)structure.size(); ++m) {
 | |
|         const TType& member = *structure[m].type;
 | |
|         if (member.isArray())
 | |
|             arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do all the semantic checking for declaring or redeclaring an array, with and
 | |
| // without a size, and make the right changes to the symbol table.
 | |
| //
 | |
| void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
 | |
|                                     TSymbol*& symbol, bool track)
 | |
| {
 | |
|     if (symbol == nullptr) {
 | |
|         bool currentScope;
 | |
|         symbol = symbolTable.find(identifier, nullptr, ¤tScope);
 | |
| 
 | |
|         if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
 | |
|             // bad shader (errors already reported) trying to redeclare a built-in name as an array
 | |
|             return;
 | |
|         }
 | |
|         if (symbol == nullptr || ! currentScope) {
 | |
|             //
 | |
|             // Successfully process a new definition.
 | |
|             // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
 | |
|             //
 | |
|             symbol = new TVariable(&identifier, type);
 | |
|             symbolTable.insert(*symbol);
 | |
|             if (track && symbolTable.atGlobalLevel())
 | |
|                 trackLinkage(*symbol);
 | |
| 
 | |
|             return;
 | |
|         }
 | |
|         if (symbol->getAsAnonMember()) {
 | |
|             error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
 | |
|             symbol = nullptr;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Process a redeclaration.
 | |
|     //
 | |
| 
 | |
|     if (symbol == nullptr) {
 | |
|         error(loc, "array variable name expected", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // redeclareBuiltinVariable() should have already done the copyUp()
 | |
|     TType& existingType = symbol->getWritableType();
 | |
| 
 | |
|     if (existingType.isSizedArray()) {
 | |
|         // be more lenient for input arrays to geometry shaders and tessellation control outputs,
 | |
|         // where the redeclaration is the same size
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     existingType.updateArraySizes(type);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Enforce non-initializer type/qualifier rules.
 | |
| //
 | |
| void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
 | |
|                                     TIntermTyped*& initializer)
 | |
| {
 | |
|     //
 | |
|     // Make the qualifier make sense, given that there is an initializer.
 | |
|     //
 | |
|     if (initializer == nullptr) {
 | |
|         if (type.getQualifier().storage == EvqConst ||
 | |
|             type.getQualifier().storage == EvqConstReadOnly) {
 | |
|             initializer = intermediate.makeAggregate(loc);
 | |
|             warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // See if the identifier is a built-in symbol that can be redeclared, and if so,
 | |
| // copy the symbol table's read-only built-in variable to the current
 | |
| // global level, where it can be modified based on the passed in type.
 | |
| //
 | |
| // Returns nullptr if no redeclaration took place; meaning a normal declaration still
 | |
| // needs to occur for it, not necessarily an error.
 | |
| //
 | |
| // Returns a redeclared and type-modified variable if a redeclared occurred.
 | |
| //
 | |
| TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
 | |
|                                                     const TQualifier& /*qualifier*/,
 | |
|                                                     const TShaderQualifiers& /*publicType*/)
 | |
| {
 | |
|     if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
 | |
|         return nullptr;
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Generate index to the array element in a structure buffer (SSBO)
 | |
| //
 | |
| TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
 | |
| {
 | |
|     // Bail out if not a struct buffer
 | |
|     if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
 | |
|         return nullptr;
 | |
| 
 | |
|     // Runtime sized array is always the last element.
 | |
|     const TTypeList* bufferStruct = buffer->getType().getStruct();
 | |
|     TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
 | |
| 
 | |
|     TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
 | |
|     argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
 | |
| 
 | |
|     return argArray;
 | |
| }
 | |
| 
 | |
| //
 | |
| // IFF type is a structuredbuffer/byteaddressbuffer type, return the content
 | |
| // (template) type.   E.g, StructuredBuffer<MyType> -> MyType.  Else return nullptr.
 | |
| //
 | |
| TType* HlslParseContext::getStructBufferContentType(const TType& type) const
 | |
| {
 | |
|     if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer)
 | |
|         return nullptr;
 | |
| 
 | |
|     const int memberCount = (int)type.getStruct()->size();
 | |
|     assert(memberCount > 0);
 | |
| 
 | |
|     TType* contentType = (*type.getStruct())[memberCount-1].type;
 | |
| 
 | |
|     return contentType->isUnsizedArray() ? contentType : nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // If an existing struct buffer has a sharable type, then share it.
 | |
| //
 | |
| void HlslParseContext::shareStructBufferType(TType& type)
 | |
| {
 | |
|     // PackOffset must be equivalent to share types on a per-member basis.
 | |
|     // Note: cannot use auto type due to recursion.  Thus, this is a std::function.
 | |
|     const std::function<bool(TType& lhs, TType& rhs)>
 | |
|     compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
 | |
|         if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
 | |
|             return false;
 | |
| 
 | |
|         if (lhs.isStruct() != rhs.isStruct())
 | |
|             return false;
 | |
| 
 | |
|         if (lhs.isStruct() && rhs.isStruct()) {
 | |
|             if (lhs.getStruct()->size() != rhs.getStruct()->size())
 | |
|                 return false;
 | |
| 
 | |
|             for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
 | |
|                 if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
 | |
|                     return false;
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     };
 | |
| 
 | |
|     // We need to compare certain qualifiers in addition to the type.
 | |
|     const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
 | |
|         if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
 | |
|             return false;
 | |
| 
 | |
|         // If both are structures, recursively look for packOffset equality
 | |
|         // as well as type equality.
 | |
|         return compareQualifiers(lhs, rhs) && lhs == rhs;
 | |
|     };
 | |
| 
 | |
|     // This is an exhaustive O(N) search, but real world shaders have
 | |
|     // only a small number of these.
 | |
|     for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
 | |
|         // If the deep structure matches, modulo qualifiers, use it
 | |
|         if (typeEqual(*structBufferTypes[idx], type)) {
 | |
|             type.shallowCopy(*structBufferTypes[idx]);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, remember it:
 | |
|     TType* typeCopy = new TType;
 | |
|     typeCopy->shallowCopy(type);
 | |
|     structBufferTypes.push_back(typeCopy);
 | |
| }
 | |
| 
 | |
| void HlslParseContext::paramFix(TType& type)
 | |
| {
 | |
|     switch (type.getQualifier().storage) {
 | |
|     case EvqConst:
 | |
|         type.getQualifier().storage = EvqConstReadOnly;
 | |
|         break;
 | |
|     case EvqGlobal:
 | |
|     case EvqUniform:
 | |
|     case EvqTemporary:
 | |
|         type.getQualifier().storage = EvqIn;
 | |
|         break;
 | |
|     case EvqBuffer:
 | |
|         {
 | |
|             // SSBO parameter.  These do not go through the declareBlock path since they are fn parameters.
 | |
|             correctUniform(type.getQualifier());
 | |
|             TQualifier bufferQualifier = globalBufferDefaults;
 | |
|             mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
 | |
|             bufferQualifier.storage = type.getQualifier().storage;
 | |
|             bufferQualifier.readonly = type.getQualifier().readonly;
 | |
|             bufferQualifier.coherent = type.getQualifier().coherent;
 | |
|             bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
 | |
|             type.getQualifier() = bufferQualifier;
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
 | |
| {
 | |
|     if (type.containsSpecializationSize())
 | |
|         error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
 | |
| }
 | |
| 
 | |
| //
 | |
| // Layout qualifier stuff.
 | |
| //
 | |
| 
 | |
| // Put the id's layout qualification into the public type, for qualifiers not having a number set.
 | |
| // This is before we know any type information for error checking.
 | |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
 | |
| {
 | |
|     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
 | |
| 
 | |
|     if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
 | |
|         qualifier.layoutMatrix = ElmRowMajor;
 | |
|         return;
 | |
|     }
 | |
|     if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
 | |
|         qualifier.layoutMatrix = ElmColumnMajor;
 | |
|         return;
 | |
|     }
 | |
|     if (id == "push_constant") {
 | |
|         requireVulkan(loc, "push_constant");
 | |
|         qualifier.layoutPushConstant = true;
 | |
|         return;
 | |
|     }
 | |
|     if (language == EShLangGeometry || language == EShLangTessEvaluation) {
 | |
|         if (id == TQualifier::getGeometryString(ElgTriangles)) {
 | |
|             // publicType.shaderQualifiers.geometry = ElgTriangles;
 | |
|             warn(loc, "ignored", id.c_str(), "");
 | |
|             return;
 | |
|         }
 | |
|         if (language == EShLangGeometry) {
 | |
|             if (id == TQualifier::getGeometryString(ElgPoints)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgPoints;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgLineStrip)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgLineStrip;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgLines)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgLines;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgTriangleStrip;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             assert(language == EShLangTessEvaluation);
 | |
| 
 | |
|             // input primitive
 | |
|             if (id == TQualifier::getGeometryString(ElgTriangles)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgTriangles;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgQuads)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgQuads;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgIsolines)) {
 | |
|                 // publicType.shaderQualifiers.geometry = ElgIsolines;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // vertex spacing
 | |
|             if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
 | |
|                 // publicType.shaderQualifiers.spacing = EvsEqual;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
 | |
|                 // publicType.shaderQualifiers.spacing = EvsFractionalEven;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
 | |
|                 // publicType.shaderQualifiers.spacing = EvsFractionalOdd;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // triangle order
 | |
|             if (id == TQualifier::getVertexOrderString(EvoCw)) {
 | |
|                 // publicType.shaderQualifiers.order = EvoCw;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getVertexOrderString(EvoCcw)) {
 | |
|                 // publicType.shaderQualifiers.order = EvoCcw;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // point mode
 | |
|             if (id == "point_mode") {
 | |
|                 // publicType.shaderQualifiers.pointMode = true;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (language == EShLangFragment) {
 | |
|         if (id == "origin_upper_left") {
 | |
|             // publicType.shaderQualifiers.originUpperLeft = true;
 | |
|             warn(loc, "ignored", id.c_str(), "");
 | |
|             return;
 | |
|         }
 | |
|         if (id == "pixel_center_integer") {
 | |
|             // publicType.shaderQualifiers.pixelCenterInteger = true;
 | |
|             warn(loc, "ignored", id.c_str(), "");
 | |
|             return;
 | |
|         }
 | |
|         if (id == "early_fragment_tests") {
 | |
|             // publicType.shaderQualifiers.earlyFragmentTests = true;
 | |
|             warn(loc, "ignored", id.c_str(), "");
 | |
|             return;
 | |
|         }
 | |
|         for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
 | |
|             if (id == TQualifier::getLayoutDepthString(depth)) {
 | |
|                 // publicType.shaderQualifiers.layoutDepth = depth;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         if (id.compare(0, 13, "blend_support") == 0) {
 | |
|             bool found = false;
 | |
|             for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
 | |
|                 if (id == TQualifier::getBlendEquationString(be)) {
 | |
|                     requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
 | |
|                     intermediate.addBlendEquation(be);
 | |
|                     // publicType.shaderQualifiers.blendEquation = true;
 | |
|                     warn(loc, "ignored", id.c_str(), "");
 | |
|                     found = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (! found)
 | |
|                 error(loc, "unknown blend equation", "blend_support", "");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
 | |
| }
 | |
| 
 | |
| // Put the id's layout qualifier value into the public type, for qualifiers having a number set.
 | |
| // This is before we know any type information for error checking.
 | |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
 | |
|                                           const TIntermTyped* node)
 | |
| {
 | |
|     const char* feature = "layout-id value";
 | |
|     // const char* nonLiteralFeature = "non-literal layout-id value";
 | |
| 
 | |
|     integerCheck(node, feature);
 | |
|     const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
 | |
|     int value = 0;
 | |
|     if (constUnion) {
 | |
|         value = constUnion->getConstArray()[0].getIConst();
 | |
|     }
 | |
| 
 | |
|     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
 | |
| 
 | |
|     if (id == "offset") {
 | |
|         qualifier.layoutOffset = value;
 | |
|         return;
 | |
|     } else if (id == "align") {
 | |
|         // "The specified alignment must be a power of 2, or a compile-time error results."
 | |
|         if (! IsPow2(value))
 | |
|             error(loc, "must be a power of 2", "align", "");
 | |
|         else
 | |
|             qualifier.layoutAlign = value;
 | |
|         return;
 | |
|     } else if (id == "location") {
 | |
|         if ((unsigned int)value >= TQualifier::layoutLocationEnd)
 | |
|             error(loc, "location is too large", id.c_str(), "");
 | |
|         else
 | |
|             qualifier.layoutLocation = value;
 | |
|         return;
 | |
|     } else if (id == "set") {
 | |
|         if ((unsigned int)value >= TQualifier::layoutSetEnd)
 | |
|             error(loc, "set is too large", id.c_str(), "");
 | |
|         else
 | |
|             qualifier.layoutSet = value;
 | |
|         return;
 | |
|     } else if (id == "binding") {
 | |
|         if ((unsigned int)value >= TQualifier::layoutBindingEnd)
 | |
|             error(loc, "binding is too large", id.c_str(), "");
 | |
|         else
 | |
|             qualifier.layoutBinding = value;
 | |
|         return;
 | |
|     } else if (id == "component") {
 | |
|         if ((unsigned)value >= TQualifier::layoutComponentEnd)
 | |
|             error(loc, "component is too large", id.c_str(), "");
 | |
|         else
 | |
|             qualifier.layoutComponent = value;
 | |
|         return;
 | |
|     } else if (id.compare(0, 4, "xfb_") == 0) {
 | |
|         // "Any shader making any static use (after preprocessing) of any of these
 | |
|         // *xfb_* qualifiers will cause the shader to be in a transform feedback
 | |
|         // capturing mode and hence responsible for describing the transform feedback
 | |
|         // setup."
 | |
|         intermediate.setXfbMode();
 | |
|         if (id == "xfb_buffer") {
 | |
|             // "It is a compile-time error to specify an *xfb_buffer* that is greater than
 | |
|             // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
 | |
|             if (value >= resources.maxTransformFeedbackBuffers)
 | |
|                 error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
 | |
|                       resources.maxTransformFeedbackBuffers);
 | |
|             if (value >= (int)TQualifier::layoutXfbBufferEnd)
 | |
|                 error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
 | |
|             else
 | |
|                 qualifier.layoutXfbBuffer = value;
 | |
|             return;
 | |
|         } else if (id == "xfb_offset") {
 | |
|             if (value >= (int)TQualifier::layoutXfbOffsetEnd)
 | |
|                 error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
 | |
|             else
 | |
|                 qualifier.layoutXfbOffset = value;
 | |
|             return;
 | |
|         } else if (id == "xfb_stride") {
 | |
|             // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
 | |
|             // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
 | |
|             if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
 | |
|                 error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
 | |
|                       resources.maxTransformFeedbackInterleavedComponents);
 | |
|             else if (value >= (int)TQualifier::layoutXfbStrideEnd)
 | |
|                 error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
 | |
|             if (value < (int)TQualifier::layoutXfbStrideEnd)
 | |
|                 qualifier.layoutXfbStride = value;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (id == "input_attachment_index") {
 | |
|         requireVulkan(loc, "input_attachment_index");
 | |
|         if (value >= (int)TQualifier::layoutAttachmentEnd)
 | |
|             error(loc, "attachment index is too large", id.c_str(), "");
 | |
|         else
 | |
|             qualifier.layoutAttachment = value;
 | |
|         return;
 | |
|     }
 | |
|     if (id == "constant_id") {
 | |
|         setSpecConstantId(loc, qualifier, value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (language) {
 | |
|     case EShLangVertex:
 | |
|         break;
 | |
| 
 | |
|     case EShLangTessControl:
 | |
|         if (id == "vertices") {
 | |
|             if (value == 0)
 | |
|                 error(loc, "must be greater than 0", "vertices", "");
 | |
|             else
 | |
|                 // publicType.shaderQualifiers.vertices = value;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EShLangTessEvaluation:
 | |
|         break;
 | |
| 
 | |
|     case EShLangGeometry:
 | |
|         if (id == "invocations") {
 | |
|             if (value == 0)
 | |
|                 error(loc, "must be at least 1", "invocations", "");
 | |
|             else
 | |
|                 // publicType.shaderQualifiers.invocations = value;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|             return;
 | |
|         }
 | |
|         if (id == "max_vertices") {
 | |
|             // publicType.shaderQualifiers.vertices = value;
 | |
|             warn(loc, "ignored", id.c_str(), "");
 | |
|             if (value > resources.maxGeometryOutputVertices)
 | |
|                 error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
 | |
|             return;
 | |
|         }
 | |
|         if (id == "stream") {
 | |
|             qualifier.layoutStream = value;
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EShLangFragment:
 | |
|         if (id == "index") {
 | |
|             qualifier.layoutIndex = value;
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EShLangCompute:
 | |
|         if (id.compare(0, 11, "local_size_") == 0) {
 | |
|             if (id == "local_size_x") {
 | |
|                 // publicType.shaderQualifiers.localSize[0] = value;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == "local_size_y") {
 | |
|                 // publicType.shaderQualifiers.localSize[1] = value;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (id == "local_size_z") {
 | |
|                 // publicType.shaderQualifiers.localSize[2] = value;
 | |
|                 warn(loc, "ignored", id.c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
|             if (spvVersion.spv != 0) {
 | |
|                 if (id == "local_size_x_id") {
 | |
|                     // publicType.shaderQualifiers.localSizeSpecId[0] = value;
 | |
|                     warn(loc, "ignored", id.c_str(), "");
 | |
|                     return;
 | |
|                 }
 | |
|                 if (id == "local_size_y_id") {
 | |
|                     // publicType.shaderQualifiers.localSizeSpecId[1] = value;
 | |
|                     warn(loc, "ignored", id.c_str(), "");
 | |
|                     return;
 | |
|                 }
 | |
|                 if (id == "local_size_z_id") {
 | |
|                     // publicType.shaderQualifiers.localSizeSpecId[2] = value;
 | |
|                     warn(loc, "ignored", id.c_str(), "");
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
 | |
| }
 | |
| 
 | |
| void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value)
 | |
| {
 | |
|     if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
 | |
|         error(loc, "specialization-constant id is too large", "constant_id", "");
 | |
|     } else {
 | |
|         qualifier.layoutSpecConstantId = value;
 | |
|         qualifier.specConstant = true;
 | |
|         if (! intermediate.addUsedConstantId(value))
 | |
|             error(loc, "specialization-constant id already used", "constant_id", "");
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| // Merge any layout qualifier information from src into dst, leaving everything else in dst alone
 | |
| //
 | |
| // "More than one layout qualifier may appear in a single declaration.
 | |
| // Additionally, the same layout-qualifier-name can occur multiple times
 | |
| // within a layout qualifier or across multiple layout qualifiers in the
 | |
| // same declaration. When the same layout-qualifier-name occurs
 | |
| // multiple times, in a single declaration, the last occurrence overrides
 | |
| // the former occurrence(s).  Further, if such a layout-qualifier-name
 | |
| // will effect subsequent declarations or other observable behavior, it
 | |
| // is only the last occurrence that will have any effect, behaving as if
 | |
| // the earlier occurrence(s) within the declaration are not present.
 | |
| // This is also true for overriding layout-qualifier-names, where one
 | |
| // overrides the other (e.g., row_major vs. column_major); only the last
 | |
| // occurrence has any effect."
 | |
| //
 | |
| void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
 | |
| {
 | |
|     if (src.hasMatrix())
 | |
|         dst.layoutMatrix = src.layoutMatrix;
 | |
|     if (src.hasPacking())
 | |
|         dst.layoutPacking = src.layoutPacking;
 | |
| 
 | |
|     if (src.hasStream())
 | |
|         dst.layoutStream = src.layoutStream;
 | |
| 
 | |
|     if (src.hasFormat())
 | |
|         dst.layoutFormat = src.layoutFormat;
 | |
| 
 | |
|     if (src.hasXfbBuffer())
 | |
|         dst.layoutXfbBuffer = src.layoutXfbBuffer;
 | |
| 
 | |
|     if (src.hasAlign())
 | |
|         dst.layoutAlign = src.layoutAlign;
 | |
| 
 | |
|     if (! inheritOnly) {
 | |
|         if (src.hasLocation())
 | |
|             dst.layoutLocation = src.layoutLocation;
 | |
|         if (src.hasComponent())
 | |
|             dst.layoutComponent = src.layoutComponent;
 | |
|         if (src.hasIndex())
 | |
|             dst.layoutIndex = src.layoutIndex;
 | |
| 
 | |
|         if (src.hasOffset())
 | |
|             dst.layoutOffset = src.layoutOffset;
 | |
| 
 | |
|         if (src.hasSet())
 | |
|             dst.layoutSet = src.layoutSet;
 | |
|         if (src.layoutBinding != TQualifier::layoutBindingEnd)
 | |
|             dst.layoutBinding = src.layoutBinding;
 | |
| 
 | |
|         if (src.hasXfbStride())
 | |
|             dst.layoutXfbStride = src.layoutXfbStride;
 | |
|         if (src.hasXfbOffset())
 | |
|             dst.layoutXfbOffset = src.layoutXfbOffset;
 | |
|         if (src.hasAttachment())
 | |
|             dst.layoutAttachment = src.layoutAttachment;
 | |
|         if (src.hasSpecConstantId())
 | |
|             dst.layoutSpecConstantId = src.layoutSpecConstantId;
 | |
| 
 | |
|         if (src.layoutPushConstant)
 | |
|             dst.layoutPushConstant = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // Look up a function name in the symbol table, and make sure it is a function.
 | |
| //
 | |
| // First, look for an exact match.  If there is none, use the generic selector
 | |
| // TParseContextBase::selectFunction() to find one, parameterized by the
 | |
| // convertible() and better() predicates defined below.
 | |
| //
 | |
| // Return the function symbol if found, otherwise nullptr.
 | |
| //
 | |
| const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
 | |
|                                                 TIntermTyped*& args)
 | |
| {
 | |
|     if (symbolTable.isFunctionNameVariable(call.getName())) {
 | |
|         error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // first, look for an exact match
 | |
|     bool dummyScope;
 | |
|     TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
 | |
|     if (symbol)
 | |
|         return symbol->getAsFunction();
 | |
| 
 | |
|     // no exact match, use the generic selector, parameterized by the GLSL rules
 | |
| 
 | |
|     // create list of candidates to send
 | |
|     TVector<const TFunction*> candidateList;
 | |
|     symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
 | |
| 
 | |
|     // These built-in ops can accept any type, so we bypass the argument selection
 | |
|     if (candidateList.size() == 1 && builtIn &&
 | |
|         (candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
 | |
|          candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
 | |
|          candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
 | |
|          candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
 | |
|          candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
 | |
|          candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
 | |
|         return candidateList[0];
 | |
|     }
 | |
| 
 | |
|     bool allowOnlyUpConversions = true;
 | |
| 
 | |
|     // can 'from' convert to 'to'?
 | |
|     const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
 | |
|         if (from == to)
 | |
|             return true;
 | |
| 
 | |
|         // no aggregate conversions
 | |
|         if (from.isArray()  || to.isArray() ||
 | |
|             from.isStruct() || to.isStruct())
 | |
|             return false;
 | |
| 
 | |
|         switch (op) {
 | |
|         case EOpInterlockedAdd:
 | |
|         case EOpInterlockedAnd:
 | |
|         case EOpInterlockedCompareExchange:
 | |
|         case EOpInterlockedCompareStore:
 | |
|         case EOpInterlockedExchange:
 | |
|         case EOpInterlockedMax:
 | |
|         case EOpInterlockedMin:
 | |
|         case EOpInterlockedOr:
 | |
|         case EOpInterlockedXor:
 | |
|             // We do not promote the texture or image type for these ocodes.  Normally that would not
 | |
|             // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
 | |
|             // stage it's merely e.g, a basic integer type.
 | |
|             //
 | |
|             // Instead, we want to promote other arguments, but stay within the same family.  In other
 | |
|             // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
 | |
|             // but it is allowed to promote its other arguments.
 | |
|             if (arg == 0)
 | |
|                 return false;
 | |
|             break;
 | |
|         case EOpMethodSample:
 | |
|         case EOpMethodSampleBias:
 | |
|         case EOpMethodSampleCmp:
 | |
|         case EOpMethodSampleCmpLevelZero:
 | |
|         case EOpMethodSampleGrad:
 | |
|         case EOpMethodSampleLevel:
 | |
|         case EOpMethodLoad:
 | |
|         case EOpMethodGetDimensions:
 | |
|         case EOpMethodGetSamplePosition:
 | |
|         case EOpMethodGather:
 | |
|         case EOpMethodCalculateLevelOfDetail:
 | |
|         case EOpMethodCalculateLevelOfDetailUnclamped:
 | |
|         case EOpMethodGatherRed:
 | |
|         case EOpMethodGatherGreen:
 | |
|         case EOpMethodGatherBlue:
 | |
|         case EOpMethodGatherAlpha:
 | |
|         case EOpMethodGatherCmp:
 | |
|         case EOpMethodGatherCmpRed:
 | |
|         case EOpMethodGatherCmpGreen:
 | |
|         case EOpMethodGatherCmpBlue:
 | |
|         case EOpMethodGatherCmpAlpha:
 | |
|         case EOpMethodAppend:
 | |
|         case EOpMethodRestartStrip:
 | |
|             // those are method calls, the object type can not be changed
 | |
|             // they are equal if the dim and type match (is dim sufficient?)
 | |
|             if (arg == 0)
 | |
|                 return from.getSampler().type == to.getSampler().type &&
 | |
|                        from.getSampler().arrayed == to.getSampler().arrayed &&
 | |
|                        from.getSampler().shadow == to.getSampler().shadow &&
 | |
|                        from.getSampler().ms == to.getSampler().ms &&
 | |
|                        from.getSampler().dim == to.getSampler().dim;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // basic types have to be convertible
 | |
|         if (allowOnlyUpConversions)
 | |
|             if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
 | |
|                 return false;
 | |
| 
 | |
|         // shapes have to be convertible
 | |
|         if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
 | |
|             (from.isScalarOrVec1() && to.isVector())    ||
 | |
|             (from.isScalarOrVec1() && to.isMatrix())    ||
 | |
|             (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
 | |
|             return true;
 | |
| 
 | |
|         // TODO: what are the matrix rules? they go here
 | |
| 
 | |
|         return false;
 | |
|     };
 | |
| 
 | |
|     // Is 'to2' a better conversion than 'to1'?
 | |
|     // Ties should not be considered as better.
 | |
|     // Assumes 'convertible' already said true.
 | |
|     const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
 | |
|         // exact match is always better than mismatch
 | |
|         if (from == to2)
 | |
|             return from != to1;
 | |
|         if (from == to1)
 | |
|             return false;
 | |
| 
 | |
|         // shape changes are always worse
 | |
|         if (from.isScalar() || from.isVector()) {
 | |
|             if (from.getVectorSize() == to2.getVectorSize() &&
 | |
|                 from.getVectorSize() != to1.getVectorSize())
 | |
|                 return true;
 | |
|             if (from.getVectorSize() == to1.getVectorSize() &&
 | |
|                 from.getVectorSize() != to2.getVectorSize())
 | |
|                 return false;
 | |
|         }
 | |
| 
 | |
|         // Handle sampler betterness: An exact sampler match beats a non-exact match.
 | |
|         // (If we just looked at basic type, all EbtSamplers would look the same).
 | |
|         // If any type is not a sampler, just use the linearize function below.
 | |
|         if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
 | |
|             // We can ignore the vector size in the comparison.
 | |
|             TSampler to1Sampler = to1.getSampler();
 | |
|             TSampler to2Sampler = to2.getSampler();
 | |
| 
 | |
|             to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
 | |
| 
 | |
|             if (from.getSampler() == to2Sampler)
 | |
|                 return from.getSampler() != to1Sampler;
 | |
|             if (from.getSampler() == to1Sampler)
 | |
|                 return false;
 | |
|         }
 | |
| 
 | |
|         // Might or might not be changing shape, which means basic type might
 | |
|         // or might not match, so within that, the question is how big a
 | |
|         // basic-type conversion is being done.
 | |
|         //
 | |
|         // Use a hierarchy of domains, translated to order of magnitude
 | |
|         // in a linearized view:
 | |
|         //   - floating-point vs. integer
 | |
|         //     - 32 vs. 64 bit (or width in general)
 | |
|         //       - bool vs. non bool
 | |
|         //         - signed vs. not signed
 | |
|         const auto linearize = [](const TBasicType& basicType) -> int {
 | |
|             switch (basicType) {
 | |
|             case EbtBool:     return 1;
 | |
|             case EbtInt:      return 10;
 | |
|             case EbtUint:     return 11;
 | |
|             case EbtInt64:    return 20;
 | |
|             case EbtUint64:   return 21;
 | |
|             case EbtFloat:    return 100;
 | |
|             case EbtDouble:   return 110;
 | |
|             default:          return 0;
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
 | |
|                abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
 | |
|     };
 | |
| 
 | |
|     // for ambiguity reporting
 | |
|     bool tie = false;
 | |
| 
 | |
|     // send to the generic selector
 | |
|     const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
 | |
| 
 | |
|     if (bestMatch == nullptr) {
 | |
|         // If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
 | |
|         // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
 | |
|         // upconversions possible.
 | |
|         allowOnlyUpConversions = false;
 | |
|         bestMatch = selectFunction(candidateList, call, convertible, better, tie);
 | |
|     }
 | |
| 
 | |
|     if (bestMatch == nullptr) {
 | |
|         error(loc, "no matching overloaded function found", call.getName().c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // For built-ins, we can convert across the arguments.  This will happen in several steps:
 | |
|     // Step 1:  If there's an exact match, use it.
 | |
|     // Step 2a: Otherwise, get the operator from the best match and promote arguments:
 | |
|     // Step 2b: reconstruct the TFunction based on the new arg types
 | |
|     // Step 3:  Re-select after type promotion is applied, to find proper candidate.
 | |
|     if (builtIn) {
 | |
|         // Step 1: If there's an exact match, use it.
 | |
|         if (call.getMangledName() == bestMatch->getMangledName())
 | |
|             return bestMatch;
 | |
| 
 | |
|         // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
 | |
|         // are that kind of operator.
 | |
|         if (args != nullptr) {
 | |
|             // The arg list can be a unary node, or an aggregate.  We have to handle both.
 | |
|             // We will use the normal promote() facilities, which require an interm node.
 | |
|             TIntermOperator* promote = nullptr;
 | |
| 
 | |
|             if (call.getParamCount() == 1) {
 | |
|                 promote = new TIntermUnary(bestMatch->getBuiltInOp());
 | |
|                 promote->getAsUnaryNode()->setOperand(args->getAsTyped());
 | |
|             } else {
 | |
|                 promote = new TIntermAggregate(bestMatch->getBuiltInOp());
 | |
|                 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
 | |
|             }
 | |
| 
 | |
|             if (! intermediate.promote(promote))
 | |
|                 return nullptr;
 | |
| 
 | |
|             // Obtain the promoted arg list.
 | |
|             if (call.getParamCount() == 1) {
 | |
|                 args = promote->getAsUnaryNode()->getOperand();
 | |
|             } else {
 | |
|                 promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Step 2b: reconstruct the TFunction based on the new arg types
 | |
|         TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
 | |
| 
 | |
|         if (args->getAsAggregate()) {
 | |
|             // Handle aggregates: put all args into the new function call
 | |
|             for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) {
 | |
|                 // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
 | |
|                 TParameter param = { 0, new TType, nullptr };
 | |
|                 param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
 | |
|                 convertedCall.addParameter(param);
 | |
|             }
 | |
|         } else if (args->getAsUnaryNode()) {
 | |
|             // Handle unaries: put all args into the new function call
 | |
|             TParameter param = { 0, new TType, nullptr };
 | |
|             param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
 | |
|             convertedCall.addParameter(param);
 | |
|         } else if (args->getAsTyped()) {
 | |
|             // Handle bare e.g, floats, not in an aggregate.
 | |
|             TParameter param = { 0, new TType, nullptr };
 | |
|             param.type->shallowCopy(args->getAsTyped()->getType());
 | |
|             convertedCall.addParameter(param);
 | |
|         } else {
 | |
|             assert(0); // unknown argument list.
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         // Step 3: Re-select after type promotion, to find proper candidate
 | |
|         // send to the generic selector
 | |
|         bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
 | |
| 
 | |
|         // At this point, there should be no tie.
 | |
|     }
 | |
| 
 | |
|     if (tie)
 | |
|         error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
 | |
| 
 | |
|     // Append default parameter values if needed
 | |
|     if (!tie && bestMatch != nullptr) {
 | |
|         for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
 | |
|             handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return bestMatch;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do everything necessary to handle a typedef declaration, for a single symbol.
 | |
| //
 | |
| // 'parseType' is the type part of the declaration (to the left)
 | |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right)
 | |
| //
 | |
| void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
 | |
| {
 | |
|     TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
 | |
|     if (! symbolTable.insert(*typeSymbol))
 | |
|         error(loc, "name already defined", "typedef", identifier.c_str());
 | |
| }
 | |
| 
 | |
| // Do everything necessary to handle a struct declaration, including
 | |
| // making IO aliases because HLSL allows mixed IO in a struct that specializes
 | |
| // based on the usage (input, output, uniform, none).
 | |
| void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
 | |
| {
 | |
|     // If it was named, which means the type can be reused later, add
 | |
|     // it to the symbol table.  (Unless it's a block, in which
 | |
|     // case the name is not a type.)
 | |
|     if (type.getBasicType() == EbtBlock || structName.size() == 0)
 | |
|         return;
 | |
| 
 | |
|     TVariable* userTypeDef = new TVariable(&structName, type, true);
 | |
|     if (! symbolTable.insert(*userTypeDef)) {
 | |
|         error(loc, "redefinition", structName.c_str(), "struct");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // See if we need IO aliases for the structure typeList
 | |
| 
 | |
|     const auto condAlloc = [](bool pred, TTypeList*& list) {
 | |
|         if (pred && list == nullptr)
 | |
|             list = new TTypeList;
 | |
|     };
 | |
| 
 | |
|     tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
 | |
|     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
 | |
|         condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
 | |
|         condAlloc(  hasInput(member->type->getQualifier()), newLists.input);
 | |
|         condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
 | |
| 
 | |
|         if (member->type->isStruct()) {
 | |
|             auto it = ioTypeMap.find(member->type->getStruct());
 | |
|             if (it != ioTypeMap.end()) {
 | |
|                 condAlloc(it->second.uniform != nullptr, newLists.uniform);
 | |
|                 condAlloc(it->second.input   != nullptr, newLists.input);
 | |
|                 condAlloc(it->second.output  != nullptr, newLists.output);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (newLists.uniform == nullptr &&
 | |
|         newLists.input   == nullptr &&
 | |
|         newLists.output  == nullptr) {
 | |
|         // Won't do any IO caching, clear up the type and get out now.
 | |
|         for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
 | |
|             clearUniformInputOutput(member->type->getQualifier());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // We have IO involved.
 | |
| 
 | |
|     // Make a pure typeList for the symbol table, and cache side copies of IO versions.
 | |
|     for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
 | |
|         const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
 | |
|             if (s != nullptr) {
 | |
|                 ioMember.type = new TType;
 | |
|                 ioMember.type->shallowCopy(*member->type);
 | |
|                 ioMember.type->setStruct(s);
 | |
|             }
 | |
|         };
 | |
|         const auto newMember = [&](TTypeLoc& m) {
 | |
|             if (m.type == nullptr) {
 | |
|                 m.type = new TType;
 | |
|                 m.type->shallowCopy(*member->type);
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         TTypeLoc newUniformMember = { nullptr, member->loc };
 | |
|         TTypeLoc newInputMember   = { nullptr, member->loc };
 | |
|         TTypeLoc newOutputMember  = { nullptr, member->loc };
 | |
|         if (member->type->isStruct()) {
 | |
|             // swap in an IO child if there is one
 | |
|             auto it = ioTypeMap.find(member->type->getStruct());
 | |
|             if (it != ioTypeMap.end()) {
 | |
|                 inheritStruct(it->second.uniform, newUniformMember);
 | |
|                 inheritStruct(it->second.input,   newInputMember);
 | |
|                 inheritStruct(it->second.output,  newOutputMember);
 | |
|             }
 | |
|         }
 | |
|         if (newLists.uniform) {
 | |
|             newMember(newUniformMember);
 | |
| 
 | |
|             // inherit default matrix layout (changeable via #pragma pack_matrix), if none given.
 | |
|             if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone)
 | |
|                 newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix;
 | |
| 
 | |
|             correctUniform(newUniformMember.type->getQualifier());
 | |
|             newLists.uniform->push_back(newUniformMember);
 | |
|         }
 | |
|         if (newLists.input) {
 | |
|             newMember(newInputMember);
 | |
|             correctInput(newInputMember.type->getQualifier());
 | |
|             newLists.input->push_back(newInputMember);
 | |
|         }
 | |
|         if (newLists.output) {
 | |
|             newMember(newOutputMember);
 | |
|             correctOutput(newOutputMember.type->getQualifier());
 | |
|             newLists.output->push_back(newOutputMember);
 | |
|         }
 | |
| 
 | |
|         // make original pure
 | |
|         clearUniformInputOutput(member->type->getQualifier());
 | |
|     }
 | |
|     ioTypeMap[type.getStruct()] = newLists;
 | |
| }
 | |
| 
 | |
| // Lookup a user-type by name.
 | |
| // If found, fill in the type and return the defining symbol.
 | |
| // If not found, return nullptr.
 | |
| TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
 | |
| {
 | |
|     TSymbol* symbol = symbolTable.find(typeName);
 | |
|     if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
 | |
|         type.shallowCopy(symbol->getType());
 | |
|         return symbol;
 | |
|     } else
 | |
|         return nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do everything necessary to handle a variable (non-block) declaration.
 | |
| // Either redeclaring a variable, or making a new one, updating the symbol
 | |
| // table, and all error checking.
 | |
| //
 | |
| // Returns a subtree node that computes an initializer, if needed.
 | |
| // Returns nullptr if there is no code to execute for initialization.
 | |
| //
 | |
| // 'parseType' is the type part of the declaration (to the left)
 | |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right)
 | |
| //
 | |
| TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
 | |
|                                                TIntermTyped* initializer)
 | |
| {
 | |
|     if (voidErrorCheck(loc, identifier, type.getBasicType()))
 | |
|         return nullptr;
 | |
| 
 | |
|     // Global consts with initializers that are non-const act like EvqGlobal in HLSL.
 | |
|     // This test is implicitly recursive, because initializers propagate constness
 | |
|     // up the aggregate node tree during creation.  E.g, for:
 | |
|     //    { { 1, 2 }, { 3, 4 } }
 | |
|     // the initializer list is marked EvqConst at the top node, and remains so here.  However:
 | |
|     //    { 1, { myvar, 2 }, 3 }
 | |
|     // is not a const intializer, and still becomes EvqGlobal here.
 | |
| 
 | |
|     const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
 | |
| 
 | |
|     if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
 | |
|         // Force to global
 | |
|         type.getQualifier().storage = EvqGlobal;
 | |
|     }
 | |
| 
 | |
|     // make const and initialization consistent
 | |
|     fixConstInit(loc, identifier, type, initializer);
 | |
| 
 | |
|     // Check for redeclaration of built-ins and/or attempting to declare a reserved name
 | |
|     TSymbol* symbol = nullptr;
 | |
| 
 | |
|     inheritGlobalDefaults(type.getQualifier());
 | |
| 
 | |
|     const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true);
 | |
| 
 | |
|     // correct IO in the type
 | |
|     switch (type.getQualifier().storage) {
 | |
|     case EvqGlobal:
 | |
|     case EvqTemporary:
 | |
|         clearUniformInputOutput(type.getQualifier());
 | |
|         break;
 | |
|     case EvqUniform:
 | |
|     case EvqBuffer:
 | |
|         correctUniform(type.getQualifier());
 | |
|         if (type.isStruct()) {
 | |
|             auto it = ioTypeMap.find(type.getStruct());
 | |
|             if (it != ioTypeMap.end())
 | |
|                 type.setStruct(it->second.uniform);
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Declare the variable
 | |
|     if (type.isArray()) {
 | |
|         // array case
 | |
|         declareArray(loc, identifier, type, symbol, !flattenVar);
 | |
|     } else {
 | |
|         // non-array case
 | |
|         if (symbol == nullptr)
 | |
|             symbol = declareNonArray(loc, identifier, type, !flattenVar);
 | |
|         else if (type != symbol->getType())
 | |
|             error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
 | |
|     }
 | |
| 
 | |
|     if (symbol == nullptr)
 | |
|         return nullptr;
 | |
| 
 | |
|     if (flattenVar)
 | |
|         flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
 | |
| 
 | |
|     if (initializer == nullptr)
 | |
|         return nullptr;
 | |
| 
 | |
|     // Deal with initializer
 | |
|     TVariable* variable = symbol->getAsVariable();
 | |
|     if (variable == nullptr) {
 | |
|         error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
|     return executeInitializer(loc, initializer, variable);
 | |
| }
 | |
| 
 | |
| // Pick up global defaults from the provide global defaults into dst.
 | |
| void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
 | |
| {
 | |
|     if (dst.storage == EvqVaryingOut) {
 | |
|         if (! dst.hasStream() && language == EShLangGeometry)
 | |
|             dst.layoutStream = globalOutputDefaults.layoutStream;
 | |
|         if (! dst.hasXfbBuffer())
 | |
|             dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Make an internal-only variable whose name is for debug purposes only
 | |
| // and won't be searched for.  Callers will only use the return value to use
 | |
| // the variable, not the name to look it up.  It is okay if the name
 | |
| // is the same as other names; there won't be any conflict.
 | |
| //
 | |
| TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
 | |
| {
 | |
|     TString* nameString = NewPoolTString(name);
 | |
|     TVariable* variable = new TVariable(nameString, type);
 | |
|     symbolTable.makeInternalVariable(*variable);
 | |
| 
 | |
|     return variable;
 | |
| }
 | |
| 
 | |
| // Make a symbol node holding a new internal temporary variable.
 | |
| TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
 | |
|                                                           const TType& type) const
 | |
| {
 | |
|     TVariable* tmpVar = makeInternalVariable(name, type);
 | |
|     tmpVar->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|     return intermediate.addSymbol(*tmpVar, loc);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Declare a non-array variable, the main point being there is no redeclaration
 | |
| // for resizing allowed.
 | |
| //
 | |
| // Return the successfully declared variable.
 | |
| //
 | |
| TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
 | |
|                                              bool track)
 | |
| {
 | |
|     // make a new variable
 | |
|     TVariable* variable = new TVariable(&identifier, type);
 | |
| 
 | |
|     // add variable to symbol table
 | |
|     if (symbolTable.insert(*variable)) {
 | |
|         if (track && symbolTable.atGlobalLevel())
 | |
|             trackLinkage(*variable);
 | |
|         return variable;
 | |
|     }
 | |
| 
 | |
|     error(loc, "redefinition", variable->getName().c_str(), "");
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle all types of initializers from the grammar.
 | |
| //
 | |
| // Returning nullptr just means there is no code to execute to handle the
 | |
| // initializer, which will, for example, be the case for constant initializers.
 | |
| //
 | |
| // Returns a subtree that accomplished the initialization.
 | |
| //
 | |
| TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
 | |
| {
 | |
|     //
 | |
|     // Identifier must be of type constant, a global, or a temporary, and
 | |
|     // starting at version 120, desktop allows uniforms to have initializers.
 | |
|     //
 | |
|     TStorageQualifier qualifier = variable->getType().getQualifier().storage;
 | |
| 
 | |
|     //
 | |
|     // If the initializer was from braces { ... }, we convert the whole subtree to a
 | |
|     // constructor-style subtree, allowing the rest of the code to operate
 | |
|     // identically for both kinds of initializers.
 | |
|     //
 | |
|     //
 | |
|     // Type can't be deduced from the initializer list, so a skeletal type to
 | |
|     // follow has to be passed in.  Constness and specialization-constness
 | |
|     // should be deduced bottom up, not dictated by the skeletal type.
 | |
|     //
 | |
|     TType skeletalType;
 | |
|     skeletalType.shallowCopy(variable->getType());
 | |
|     skeletalType.getQualifier().makeTemporary();
 | |
|     if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
 | |
|         initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
 | |
|     if (initializer == nullptr) {
 | |
|         // error recovery; don't leave const without constant values
 | |
|         if (qualifier == EvqConst)
 | |
|             variable->getWritableType().getQualifier().storage = EvqTemporary;
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Fix outer arrayness if variable is unsized, getting size from the initializer
 | |
|     if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
 | |
|         variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
 | |
| 
 | |
|     // Inner arrayness can also get set by an initializer
 | |
|     if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
 | |
|         initializer->getType().getArraySizes()->getNumDims() ==
 | |
|         variable->getType().getArraySizes()->getNumDims()) {
 | |
|         // adopt unsized sizes from the initializer's sizes
 | |
|         for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
 | |
|             if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
 | |
|                 variable->getWritableType().getArraySizes()->setDimSize(d,
 | |
|                     initializer->getType().getArraySizes()->getDimSize(d));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Uniform and global consts require a constant initializer
 | |
|     if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
 | |
|         error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
 | |
|         variable->getWritableType().getQualifier().storage = EvqTemporary;
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Const variables require a constant initializer
 | |
|     if (qualifier == EvqConst) {
 | |
|         if (initializer->getType().getQualifier().storage != EvqConst) {
 | |
|             variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
 | |
|             qualifier = EvqConstReadOnly;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (qualifier == EvqConst || qualifier == EvqUniform) {
 | |
|         // Compile-time tagging of the variable with its constant value...
 | |
| 
 | |
|         initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
 | |
|         if (initializer != nullptr && variable->getType() != initializer->getType())
 | |
|             initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
 | |
|         if (initializer == nullptr || !initializer->getAsConstantUnion() ||
 | |
|                                       variable->getType() != initializer->getType()) {
 | |
|             error(loc, "non-matching or non-convertible constant type for const initializer",
 | |
|                 variable->getType().getStorageQualifierString(), "");
 | |
|             variable->getWritableType().getQualifier().storage = EvqTemporary;
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
 | |
|     } else {
 | |
|         // normal assigning of a value to a variable...
 | |
|         specializationCheck(loc, initializer->getType(), "initializer");
 | |
|         TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
 | |
|         TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
 | |
|         if (initNode == nullptr)
 | |
|             assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
 | |
|         return initNode;
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Reprocess any initializer-list { ... } parts of the initializer.
 | |
| // Need to hierarchically assign correct types and implicit
 | |
| // conversions. Will do this mimicking the same process used for
 | |
| // creating a constructor-style initializer, ensuring we get the
 | |
| // same form.
 | |
| //
 | |
| // Returns a node representing an expression for the initializer list expressed
 | |
| // as the correct type.
 | |
| //
 | |
| // Returns nullptr if there is an error.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
 | |
|                                                        TIntermTyped* initializer, TIntermTyped* scalarInit)
 | |
| {
 | |
|     // Will operate recursively.  Once a subtree is found that is constructor style,
 | |
|     // everything below it is already good: Only the "top part" of the initializer
 | |
|     // can be an initializer list, where "top part" can extend for several (or all) levels.
 | |
| 
 | |
|     // see if we have bottomed out in the tree within the initializer-list part
 | |
|     TIntermAggregate* initList = initializer->getAsAggregate();
 | |
|     if (initList == nullptr || initList->getOp() != EOpNull) {
 | |
|         // We don't have a list, but if it's a scalar and the 'type' is a
 | |
|         // composite, we need to lengthen below to make it useful.
 | |
|         // Otherwise, this is an already formed object to initialize with.
 | |
|         if (type.isScalar() || !initializer->getType().isScalar())
 | |
|             return initializer;
 | |
|         else
 | |
|             initList = intermediate.makeAggregate(initializer);
 | |
|     }
 | |
| 
 | |
|     // Of the initializer-list set of nodes, need to process bottom up,
 | |
|     // so recurse deep, then process on the way up.
 | |
| 
 | |
|     // Go down the tree here...
 | |
|     if (type.isArray()) {
 | |
|         // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
 | |
|         // Later on, initializer execution code will deal with array size logic.
 | |
|         TType arrayType;
 | |
|         arrayType.shallowCopy(type);                     // sharing struct stuff is fine
 | |
|         arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
 | |
| 
 | |
|         // edit array sizes to fill in unsized dimensions
 | |
|         if (type.isUnsizedArray())
 | |
|             arrayType.changeOuterArraySize((int)initList->getSequence().size());
 | |
| 
 | |
|         // set unsized array dimensions that can be derived from the initializer's first element
 | |
|         if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
 | |
|             TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
 | |
|             if (firstInit->getType().isArray() &&
 | |
|                 arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
 | |
|                 for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
 | |
|                     if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
 | |
|                         arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // lengthen list to be long enough
 | |
|         lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
 | |
| 
 | |
|         // recursively process each element
 | |
|         TType elementType(arrayType, 0); // dereferenced type
 | |
|         for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
 | |
|             initList->getSequence()[i] = convertInitializerList(loc, elementType,
 | |
|                                                                 initList->getSequence()[i]->getAsTyped(), scalarInit);
 | |
|             if (initList->getSequence()[i] == nullptr)
 | |
|                 return nullptr;
 | |
|         }
 | |
| 
 | |
|         return addConstructor(loc, initList, arrayType);
 | |
|     } else if (type.isStruct()) {
 | |
|         // do we have implicit assignments to opaques?
 | |
|         for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) {
 | |
|             if ((*type.getStruct())[i].type->containsOpaque()) {
 | |
|                 error(loc, "cannot implicitly initialize opaque members", "initializer list", "");
 | |
|                 return nullptr;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // lengthen list to be long enough
 | |
|         lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
 | |
| 
 | |
|         if (type.getStruct()->size() != initList->getSequence().size()) {
 | |
|             error(loc, "wrong number of structure members", "initializer list", "");
 | |
|             return nullptr;
 | |
|         }
 | |
|         for (size_t i = 0; i < type.getStruct()->size(); ++i) {
 | |
|             initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
 | |
|                                                                 initList->getSequence()[i]->getAsTyped(), scalarInit);
 | |
|             if (initList->getSequence()[i] == nullptr)
 | |
|                 return nullptr;
 | |
|         }
 | |
|     } else if (type.isMatrix()) {
 | |
|         if (type.computeNumComponents() == (int)initList->getSequence().size()) {
 | |
|             // This means the matrix is initialized component-wise, rather than as
 | |
|             // a series of rows and columns.  We can just use the list directly as
 | |
|             // a constructor; no further processing needed.
 | |
|         } else {
 | |
|             // lengthen list to be long enough
 | |
|             lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
 | |
| 
 | |
|             if (type.getMatrixCols() != (int)initList->getSequence().size()) {
 | |
|                 error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
 | |
|                 return nullptr;
 | |
|             }
 | |
|             TType vectorType(type, 0); // dereferenced type
 | |
|             for (int i = 0; i < type.getMatrixCols(); ++i) {
 | |
|                 initList->getSequence()[i] = convertInitializerList(loc, vectorType,
 | |
|                                                                     initList->getSequence()[i]->getAsTyped(), scalarInit);
 | |
|                 if (initList->getSequence()[i] == nullptr)
 | |
|                     return nullptr;
 | |
|             }
 | |
|         }
 | |
|     } else if (type.isVector()) {
 | |
|         // lengthen list to be long enough
 | |
|         lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
 | |
| 
 | |
|         // error check; we're at bottom, so work is finished below
 | |
|         if (type.getVectorSize() != (int)initList->getSequence().size()) {
 | |
|             error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
 | |
|                   type.getCompleteString().c_str());
 | |
|             return nullptr;
 | |
|         }
 | |
|     } else if (type.isScalar()) {
 | |
|         // lengthen list to be long enough
 | |
|         lengthenList(loc, initList->getSequence(), 1, scalarInit);
 | |
| 
 | |
|         if ((int)initList->getSequence().size() != 1) {
 | |
|             error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
 | |
|             return nullptr;
 | |
|         }
 | |
|     } else {
 | |
|         error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Now that the subtree is processed, process this node as if the
 | |
|     // initializer list is a set of arguments to a constructor.
 | |
|     TIntermTyped* emulatedConstructorArguments;
 | |
|     if (initList->getSequence().size() == 1)
 | |
|         emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
 | |
|     else
 | |
|         emulatedConstructorArguments = initList;
 | |
| 
 | |
|     return addConstructor(loc, emulatedConstructorArguments, type);
 | |
| }
 | |
| 
 | |
| // Lengthen list to be long enough to cover any gap from the current list size
 | |
| // to 'size'. If the list is longer, do nothing.
 | |
| // The value to lengthen with is the default for short lists.
 | |
| //
 | |
| // By default, lists that are too short due to lack of initializers initialize to zero.
 | |
| // Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
 | |
| // based on whether something is passed in as 'scalarInit'.
 | |
| //
 | |
| // 'scalarInit' must be safe to use each time this is called (no side effects replication).
 | |
| //
 | |
| void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
 | |
| {
 | |
|     for (int c = (int)list.size(); c < size; ++c) {
 | |
|         if (scalarInit == nullptr)
 | |
|             list.push_back(intermediate.addConstantUnion(0, loc));
 | |
|         else
 | |
|             list.push_back(scalarInit);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Test for the correctness of the parameters passed to various constructor functions
 | |
| // and also convert them to the right data type, if allowed and required.
 | |
| //
 | |
| // Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
 | |
| {
 | |
|     if (node == nullptr)
 | |
|         return nullptr;
 | |
| 
 | |
|     // Construct identical type
 | |
|     if (type == node->getType())
 | |
|         return node;
 | |
| 
 | |
|     // Handle the idiom "(struct type)<scalar value>"
 | |
|     if (type.isStruct() && isScalarConstructor(node)) {
 | |
|         // 'node' will almost always get used multiple times, so should not be used directly,
 | |
|         // it would create a DAG instead of a tree, which might be okay (would
 | |
|         // like to formalize that for constants and symbols), but if it has
 | |
|         // side effects, they would get executed multiple times, which is not okay.
 | |
|         if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
 | |
|             TIntermAggregate* seq = intermediate.makeAggregate(loc);
 | |
|             TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
 | |
|             seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
 | |
|             seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
 | |
|             seq->setOp(EOpComma);
 | |
|             seq->setType(type);
 | |
|             return seq;
 | |
|         } else
 | |
|             return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
 | |
|     }
 | |
| 
 | |
|     return addConstructor(loc, node, type);
 | |
| }
 | |
| 
 | |
| // Add a constructor, either from the grammar, or other programmatic reasons.
 | |
| //
 | |
| // 'node' is what to construct from.
 | |
| // 'type' is what type to construct.
 | |
| //
 | |
| // Returns the constructed object.
 | |
| // Return nullptr if it can't be done.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
 | |
| {
 | |
|     TIntermAggregate* aggrNode = node->getAsAggregate();
 | |
|     TOperator op = intermediate.mapTypeToConstructorOp(type);
 | |
| 
 | |
|     if (op == EOpConstructTextureSampler)
 | |
|         return intermediate.setAggregateOperator(aggrNode, op, type, loc);
 | |
| 
 | |
|     TTypeList::const_iterator memberTypes;
 | |
|     if (op == EOpConstructStruct)
 | |
|         memberTypes = type.getStruct()->begin();
 | |
| 
 | |
|     TType elementType;
 | |
|     if (type.isArray()) {
 | |
|         TType dereferenced(type, 0);
 | |
|         elementType.shallowCopy(dereferenced);
 | |
|     } else
 | |
|         elementType.shallowCopy(type);
 | |
| 
 | |
|     bool singleArg;
 | |
|     if (aggrNode != nullptr) {
 | |
|         if (aggrNode->getOp() != EOpNull)
 | |
|             singleArg = true;
 | |
|         else
 | |
|             singleArg = false;
 | |
|     } else
 | |
|         singleArg = true;
 | |
| 
 | |
|     TIntermTyped *newNode;
 | |
|     if (singleArg) {
 | |
|         // Handle array -> array conversion
 | |
|         // Constructing an array of one type from an array of another type is allowed,
 | |
|         // assuming there are enough components available (semantic-checked earlier).
 | |
|         if (type.isArray() && node->isArray())
 | |
|             newNode = convertArray(node, type);
 | |
| 
 | |
|         // If structure constructor or array constructor is being called
 | |
|         // for only one parameter inside the aggregate, we need to call constructAggregate function once.
 | |
|         else if (type.isArray())
 | |
|             newNode = constructAggregate(node, elementType, 1, node->getLoc());
 | |
|         else if (op == EOpConstructStruct)
 | |
|             newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
 | |
|         else {
 | |
|             // shape conversion for matrix constructor from scalar.  HLSL semantics are: scalar
 | |
|             // is replicated into every element of the matrix (not just the diagnonal), so
 | |
|             // that is handled specially here.
 | |
|             if (type.isMatrix() && node->getType().isScalarOrVec1())
 | |
|                 node = intermediate.addShapeConversion(type, node);
 | |
| 
 | |
|             newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
 | |
|         }
 | |
| 
 | |
|         if (newNode && (type.isArray() || op == EOpConstructStruct))
 | |
|             newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
 | |
| 
 | |
|         return newNode;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Handle list of arguments.
 | |
|     //
 | |
|     TIntermSequence& sequenceVector = aggrNode->getSequence();    // Stores the information about the parameter to the constructor
 | |
|     // if the structure constructor contains more than one parameter, then construct
 | |
|     // each parameter
 | |
| 
 | |
|     int paramCount = 0;  // keeps a track of the constructor parameter number being checked
 | |
| 
 | |
|     // for each parameter to the constructor call, check to see if the right type is passed or convert them
 | |
|     // to the right type if possible (and allowed).
 | |
|     // for structure constructors, just check if the right type is passed, no conversion is allowed.
 | |
| 
 | |
|     for (TIntermSequence::iterator p = sequenceVector.begin();
 | |
|         p != sequenceVector.end(); p++, paramCount++) {
 | |
|         if (type.isArray())
 | |
|             newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
 | |
|         else if (op == EOpConstructStruct)
 | |
|             newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
 | |
|         else
 | |
|             newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
 | |
| 
 | |
|         if (newNode)
 | |
|             *p = newNode;
 | |
|         else
 | |
|             return nullptr;
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
 | |
| 
 | |
|     return constructor;
 | |
| }
 | |
| 
 | |
| // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
 | |
| // for the parameter to the constructor (passed to this function). Essentially, it converts
 | |
| // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
 | |
| // float, then float is converted to int.
 | |
| //
 | |
| // Returns nullptr for an error or the constructed node.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
 | |
|                                                  const TSourceLoc& loc, bool subset)
 | |
| {
 | |
|     TIntermTyped* newNode;
 | |
|     TOperator basicOp;
 | |
| 
 | |
|     //
 | |
|     // First, convert types as needed.
 | |
|     //
 | |
|     switch (op) {
 | |
|     case EOpConstructF16Vec2:
 | |
|     case EOpConstructF16Vec3:
 | |
|     case EOpConstructF16Vec4:
 | |
|     case EOpConstructF16Mat2x2:
 | |
|     case EOpConstructF16Mat2x3:
 | |
|     case EOpConstructF16Mat2x4:
 | |
|     case EOpConstructF16Mat3x2:
 | |
|     case EOpConstructF16Mat3x3:
 | |
|     case EOpConstructF16Mat3x4:
 | |
|     case EOpConstructF16Mat4x2:
 | |
|     case EOpConstructF16Mat4x3:
 | |
|     case EOpConstructF16Mat4x4:
 | |
|     case EOpConstructFloat16:
 | |
|         basicOp = EOpConstructFloat16;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructVec2:
 | |
|     case EOpConstructVec3:
 | |
|     case EOpConstructVec4:
 | |
|     case EOpConstructMat2x2:
 | |
|     case EOpConstructMat2x3:
 | |
|     case EOpConstructMat2x4:
 | |
|     case EOpConstructMat3x2:
 | |
|     case EOpConstructMat3x3:
 | |
|     case EOpConstructMat3x4:
 | |
|     case EOpConstructMat4x2:
 | |
|     case EOpConstructMat4x3:
 | |
|     case EOpConstructMat4x4:
 | |
|     case EOpConstructFloat:
 | |
|         basicOp = EOpConstructFloat;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructDVec2:
 | |
|     case EOpConstructDVec3:
 | |
|     case EOpConstructDVec4:
 | |
|     case EOpConstructDMat2x2:
 | |
|     case EOpConstructDMat2x3:
 | |
|     case EOpConstructDMat2x4:
 | |
|     case EOpConstructDMat3x2:
 | |
|     case EOpConstructDMat3x3:
 | |
|     case EOpConstructDMat3x4:
 | |
|     case EOpConstructDMat4x2:
 | |
|     case EOpConstructDMat4x3:
 | |
|     case EOpConstructDMat4x4:
 | |
|     case EOpConstructDouble:
 | |
|         basicOp = EOpConstructDouble;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructI16Vec2:
 | |
|     case EOpConstructI16Vec3:
 | |
|     case EOpConstructI16Vec4:
 | |
|     case EOpConstructInt16:
 | |
|         basicOp = EOpConstructInt16;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructIVec2:
 | |
|     case EOpConstructIVec3:
 | |
|     case EOpConstructIVec4:
 | |
|     case EOpConstructIMat2x2:
 | |
|     case EOpConstructIMat2x3:
 | |
|     case EOpConstructIMat2x4:
 | |
|     case EOpConstructIMat3x2:
 | |
|     case EOpConstructIMat3x3:
 | |
|     case EOpConstructIMat3x4:
 | |
|     case EOpConstructIMat4x2:
 | |
|     case EOpConstructIMat4x3:
 | |
|     case EOpConstructIMat4x4:
 | |
|     case EOpConstructInt:
 | |
|         basicOp = EOpConstructInt;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructU16Vec2:
 | |
|     case EOpConstructU16Vec3:
 | |
|     case EOpConstructU16Vec4:
 | |
|     case EOpConstructUint16:
 | |
|         basicOp = EOpConstructUint16;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructUVec2:
 | |
|     case EOpConstructUVec3:
 | |
|     case EOpConstructUVec4:
 | |
|     case EOpConstructUMat2x2:
 | |
|     case EOpConstructUMat2x3:
 | |
|     case EOpConstructUMat2x4:
 | |
|     case EOpConstructUMat3x2:
 | |
|     case EOpConstructUMat3x3:
 | |
|     case EOpConstructUMat3x4:
 | |
|     case EOpConstructUMat4x2:
 | |
|     case EOpConstructUMat4x3:
 | |
|     case EOpConstructUMat4x4:
 | |
|     case EOpConstructUint:
 | |
|         basicOp = EOpConstructUint;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructBVec2:
 | |
|     case EOpConstructBVec3:
 | |
|     case EOpConstructBVec4:
 | |
|     case EOpConstructBMat2x2:
 | |
|     case EOpConstructBMat2x3:
 | |
|     case EOpConstructBMat2x4:
 | |
|     case EOpConstructBMat3x2:
 | |
|     case EOpConstructBMat3x3:
 | |
|     case EOpConstructBMat3x4:
 | |
|     case EOpConstructBMat4x2:
 | |
|     case EOpConstructBMat4x3:
 | |
|     case EOpConstructBMat4x4:
 | |
|     case EOpConstructBool:
 | |
|         basicOp = EOpConstructBool;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         error(loc, "unsupported construction", "", "");
 | |
| 
 | |
|         return nullptr;
 | |
|     }
 | |
|     newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
 | |
|     if (newNode == nullptr) {
 | |
|         error(loc, "can't convert", "constructor", "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Now, if there still isn't an operation to do the construction, and we need one, add one.
 | |
|     //
 | |
| 
 | |
|     // Otherwise, skip out early.
 | |
|     if (subset || (newNode != node && newNode->getType() == type))
 | |
|         return newNode;
 | |
| 
 | |
|     // setAggregateOperator will insert a new node for the constructor, as needed.
 | |
|     return intermediate.setAggregateOperator(newNode, op, type, loc);
 | |
| }
 | |
| 
 | |
| // Convert the array in node to the requested type, which is also an array.
 | |
| // Returns nullptr on failure, otherwise returns aggregate holding the list of
 | |
| // elements needed to construct the array.
 | |
| TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
 | |
| {
 | |
|     assert(node->isArray() && type.isArray());
 | |
|     if (node->getType().computeNumComponents() < type.computeNumComponents())
 | |
|         return nullptr;
 | |
| 
 | |
|     // TODO: write an argument replicator, for the case the argument should not be
 | |
|     // executed multiple times, yet multiple copies are needed.
 | |
| 
 | |
|     TIntermTyped* constructee = node->getAsTyped();
 | |
|     // track where we are in consuming the argument
 | |
|     int constructeeElement = 0;
 | |
|     int constructeeComponent = 0;
 | |
| 
 | |
|     // bump up to the next component to consume
 | |
|     const auto getNextComponent = [&]() {
 | |
|         TIntermTyped* component;
 | |
|         component = handleBracketDereference(node->getLoc(), constructee, 
 | |
|                                              intermediate.addConstantUnion(constructeeElement, node->getLoc()));
 | |
|         if (component->isVector())
 | |
|             component = handleBracketDereference(node->getLoc(), component,
 | |
|                                                  intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
 | |
|         // bump component pointer up
 | |
|         ++constructeeComponent;
 | |
|         if (constructeeComponent == constructee->getVectorSize()) {
 | |
|             constructeeComponent = 0;
 | |
|             ++constructeeElement;
 | |
|         }
 | |
|         return component;
 | |
|     };
 | |
| 
 | |
|     // make one subnode per constructed array element
 | |
|     TIntermAggregate* constructor = nullptr;
 | |
|     TType derefType(type, 0);
 | |
|     TType speculativeComponentType(derefType, 0);
 | |
|     TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
 | |
|     TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
 | |
|     TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
 | |
|     for (int e = 0; e < type.getOuterArraySize(); ++e) {
 | |
|         // construct an element
 | |
|         TIntermTyped* elementArg;
 | |
|         if (type.getVectorSize() == constructee->getVectorSize()) {
 | |
|             // same element shape
 | |
|             elementArg = handleBracketDereference(node->getLoc(), constructee,
 | |
|                                                   intermediate.addConstantUnion(e, node->getLoc()));
 | |
|         } else {
 | |
|             // mismatched element shapes
 | |
|             if (type.getVectorSize() == 1)
 | |
|                 elementArg = getNextComponent();
 | |
|             else {
 | |
|                 // make a vector
 | |
|                 TIntermAggregate* elementConstructee = nullptr;
 | |
|                 for (int c = 0; c < type.getVectorSize(); ++c)
 | |
|                     elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
 | |
|                 elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
 | |
|             }
 | |
|         }
 | |
|         // convert basic types
 | |
|         elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
 | |
|         if (elementArg == nullptr)
 | |
|             return nullptr;
 | |
|         // combine with top-level constructor
 | |
|         constructor = intermediate.growAggregate(constructor, elementArg);
 | |
|     }
 | |
| 
 | |
|     return constructor;
 | |
| }
 | |
| 
 | |
| // This function tests for the type of the parameters to the structure or array constructor. Raises
 | |
| // an error message if the expected type does not match the parameter passed to the constructor.
 | |
| //
 | |
| // Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
 | |
|                                                    const TSourceLoc& loc)
 | |
| {
 | |
|     // Handle cases that map more 1:1 between constructor arguments and constructed.
 | |
|     TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
 | |
|     if (converted == nullptr || converted->getType() != type) {
 | |
|         error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
 | |
|             node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
 | |
| 
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return converted;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do everything needed to add an interface block.
 | |
| //
 | |
| void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName)
 | |
| {
 | |
|     assert(type.getWritableStruct() != nullptr);
 | |
| 
 | |
|     // Clean up top-level decorations that don't belong.
 | |
|     switch (type.getQualifier().storage) {
 | |
|     case EvqUniform:
 | |
|     case EvqBuffer:
 | |
|         correctUniform(type.getQualifier());
 | |
|         break;
 | |
|     case EvqVaryingIn:
 | |
|         correctInput(type.getQualifier());
 | |
|         break;
 | |
|     case EvqVaryingOut:
 | |
|         correctOutput(type.getQualifier());
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     TTypeList& typeList = *type.getWritableStruct();
 | |
|     // fix and check for member storage qualifiers and types that don't belong within a block
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TType& memberType = *typeList[member].type;
 | |
|         TQualifier& memberQualifier = memberType.getQualifier();
 | |
|         const TSourceLoc& memberLoc = typeList[member].loc;
 | |
|         globalQualifierFix(memberLoc, memberQualifier);
 | |
|         memberQualifier.storage = type.getQualifier().storage;
 | |
| 
 | |
|         if (memberType.isStruct()) {
 | |
|             // clean up and pick up the right set of decorations
 | |
|             auto it = ioTypeMap.find(memberType.getStruct());
 | |
|             switch (type.getQualifier().storage) {
 | |
|             case EvqUniform:
 | |
|             case EvqBuffer:
 | |
|                 correctUniform(type.getQualifier());
 | |
|                 if (it != ioTypeMap.end() && it->second.uniform)
 | |
|                     memberType.setStruct(it->second.uniform);
 | |
|                 break;
 | |
|             case EvqVaryingIn:
 | |
|                 correctInput(type.getQualifier());
 | |
|                 if (it != ioTypeMap.end() && it->second.input)
 | |
|                     memberType.setStruct(it->second.input);
 | |
|                 break;
 | |
|             case EvqVaryingOut:
 | |
|                 correctOutput(type.getQualifier());
 | |
|                 if (it != ioTypeMap.end() && it->second.output)
 | |
|                     memberType.setStruct(it->second.output);
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Make default block qualification, and adjust the member qualifications
 | |
| 
 | |
|     TQualifier defaultQualification;
 | |
|     switch (type.getQualifier().storage) {
 | |
|     case EvqUniform:    defaultQualification = globalUniformDefaults;    break;
 | |
|     case EvqBuffer:     defaultQualification = globalBufferDefaults;     break;
 | |
|     case EvqVaryingIn:  defaultQualification = globalInputDefaults;      break;
 | |
|     case EvqVaryingOut: defaultQualification = globalOutputDefaults;     break;
 | |
|     default:            defaultQualification.clear();                    break;
 | |
|     }
 | |
| 
 | |
|     // Special case for "push_constant uniform", which has a default of std430,
 | |
|     // contrary to normal uniform defaults, and can't have a default tracked for it.
 | |
|     if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
 | |
|         type.getQualifier().layoutPacking = ElpStd430;
 | |
| 
 | |
|     // fix and check for member layout qualifiers
 | |
| 
 | |
|     mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
 | |
| 
 | |
|     bool memberWithLocation = false;
 | |
|     bool memberWithoutLocation = false;
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|         const TSourceLoc& memberLoc = typeList[member].loc;
 | |
|         if (memberQualifier.hasStream()) {
 | |
|             if (defaultQualification.layoutStream != memberQualifier.layoutStream)
 | |
|                 error(memberLoc, "member cannot contradict block", "stream", "");
 | |
|         }
 | |
| 
 | |
|         // "This includes a block's inheritance of the
 | |
|         // current global default buffer, a block member's inheritance of the block's
 | |
|         // buffer, and the requirement that any *xfb_buffer* declared on a block
 | |
|         // member must match the buffer inherited from the block."
 | |
|         if (memberQualifier.hasXfbBuffer()) {
 | |
|             if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
 | |
|                 error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
 | |
|         }
 | |
| 
 | |
|         if (memberQualifier.hasLocation()) {
 | |
|             switch (type.getQualifier().storage) {
 | |
|             case EvqVaryingIn:
 | |
|             case EvqVaryingOut:
 | |
|                 memberWithLocation = true;
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|         } else
 | |
|             memberWithoutLocation = true;
 | |
| 
 | |
|         TQualifier newMemberQualification = defaultQualification;
 | |
|         mergeQualifiers(newMemberQualification, memberQualifier);
 | |
|         memberQualifier = newMemberQualification;
 | |
|     }
 | |
| 
 | |
|     // Process the members
 | |
|     fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
 | |
|     fixXfbOffsets(type.getQualifier(), typeList);
 | |
|     fixBlockUniformOffsets(type.getQualifier(), typeList);
 | |
| 
 | |
|     // reverse merge, so that currentBlockQualifier now has all layout information
 | |
|     // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
 | |
|     mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
 | |
| 
 | |
|     //
 | |
|     // Build and add the interface block as a new type named 'blockName'
 | |
|     //
 | |
| 
 | |
|     // Use the instance name as the interface name if one exists, else the block name.
 | |
|     const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
 | |
| 
 | |
|     TType blockType(&typeList, interfaceName, type.getQualifier());
 | |
|     if (type.isArray())
 | |
|         blockType.transferArraySizes(type.getArraySizes());
 | |
| 
 | |
|     // Add the variable, as anonymous or named instanceName.
 | |
|     // Make an anonymous variable if no name was provided.
 | |
|     if (instanceName == nullptr)
 | |
|         instanceName = NewPoolTString("");
 | |
| 
 | |
|     TVariable& variable = *new TVariable(instanceName, blockType);
 | |
|     if (! symbolTable.insert(variable)) {
 | |
|         if (*instanceName == "")
 | |
|             error(loc, "nameless block contains a member that already has a name at global scope",
 | |
|                   "" /* blockName->c_str() */, "");
 | |
|         else
 | |
|             error(loc, "block instance name redefinition", variable.getName().c_str(), "");
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Save it in the AST for linker use.
 | |
|     if (symbolTable.atGlobalLevel())
 | |
|         trackLinkage(variable);
 | |
| }
 | |
| 
 | |
| //
 | |
| // "For a block, this process applies to the entire block, or until the first member
 | |
| // is reached that has a location layout qualifier. When a block member is declared with a location
 | |
| // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
 | |
| // declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
 | |
| // until the next member declared with a location qualifier. The values used for locations do not have to be
 | |
| // declared in increasing order."
 | |
| void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
 | |
| {
 | |
|     // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
 | |
|     // have a location layout qualifier, or a compile-time error results."
 | |
|     if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
 | |
|         error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
 | |
|     else {
 | |
|         if (memberWithLocation) {
 | |
|             // remove any block-level location and make it per *every* member
 | |
|             int nextLocation = 0;  // by the rule above, initial value is not relevant
 | |
|             if (qualifier.hasAnyLocation()) {
 | |
|                 nextLocation = qualifier.layoutLocation;
 | |
|                 qualifier.layoutLocation = TQualifier::layoutLocationEnd;
 | |
|                 if (qualifier.hasComponent()) {
 | |
|                     // "It is a compile-time error to apply the *component* qualifier to a ... block"
 | |
|                     error(loc, "cannot apply to a block", "component", "");
 | |
|                 }
 | |
|                 if (qualifier.hasIndex()) {
 | |
|                     error(loc, "cannot apply to a block", "index", "");
 | |
|                 }
 | |
|             }
 | |
|             for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|                 TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|                 const TSourceLoc& memberLoc = typeList[member].loc;
 | |
|                 if (! memberQualifier.hasLocation()) {
 | |
|                     if (nextLocation >= (int)TQualifier::layoutLocationEnd)
 | |
|                         error(memberLoc, "location is too large", "location", "");
 | |
|                     memberQualifier.layoutLocation = nextLocation;
 | |
|                     memberQualifier.layoutComponent = 0;
 | |
|                 }
 | |
|                 nextLocation = memberQualifier.layoutLocation +
 | |
|                                intermediate.computeTypeLocationSize(*typeList[member].type, language);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
 | |
| {
 | |
|     // "If a block is qualified with xfb_offset, all its
 | |
|     // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
 | |
|     // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
 | |
|     // offsets."
 | |
| 
 | |
|     if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
 | |
|         return;
 | |
| 
 | |
|     int nextOffset = qualifier.layoutXfbOffset;
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|         bool contains64BitType = false;
 | |
| #ifdef AMD_EXTENSIONS
 | |
|         bool contains32BitType = false;
 | |
|         bool contains16BitType = false;
 | |
|         int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType);
 | |
| #else
 | |
|         int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType);
 | |
| #endif
 | |
|         // see if we need to auto-assign an offset to this member
 | |
|         if (! memberQualifier.hasXfbOffset()) {
 | |
|             // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8"
 | |
|             if (contains64BitType)
 | |
|                 RoundToPow2(nextOffset, 8);
 | |
| #ifdef AMD_EXTENSIONS
 | |
|             else if (contains32BitType)
 | |
|                 RoundToPow2(nextOffset, 4);
 | |
|             // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2"
 | |
|             else if (contains16BitType)
 | |
|                 RoundToPow2(nextOffset, 2);
 | |
| #endif
 | |
|             memberQualifier.layoutXfbOffset = nextOffset;
 | |
|         } else
 | |
|             nextOffset = memberQualifier.layoutXfbOffset;
 | |
|         nextOffset += memberSize;
 | |
|     }
 | |
| 
 | |
|     // The above gave all block members an offset, so we can take it off the block now,
 | |
|     // which will avoid double counting the offset usage.
 | |
|     qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
 | |
| }
 | |
| 
 | |
| // Calculate and save the offset of each block member, using the recursively
 | |
| // defined block offset rules and the user-provided offset and align.
 | |
| //
 | |
| // Also, compute and save the total size of the block. For the block's size, arrayness
 | |
| // is not taken into account, as each element is backed by a separate buffer.
 | |
| //
 | |
| void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
 | |
| {
 | |
|     if (! qualifier.isUniformOrBuffer())
 | |
|         return;
 | |
|     if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
 | |
|         return;
 | |
| 
 | |
|     int offset = 0;
 | |
|     int memberSize;
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|         const TSourceLoc& memberLoc = typeList[member].loc;
 | |
| 
 | |
|         // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
 | |
| 
 | |
|         // modify just the children's view of matrix layout, if there is one for this member
 | |
|         TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
 | |
|         int dummyStride;
 | |
|         int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride,
 | |
|                                                               qualifier.layoutPacking,
 | |
|                                                               subMatrixLayout != ElmNone
 | |
|                                                                   ? subMatrixLayout == ElmRowMajor
 | |
|                                                                   : qualifier.layoutMatrix == ElmRowMajor);
 | |
|         if (memberQualifier.hasOffset()) {
 | |
|             // "The specified offset must be a multiple
 | |
|             // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
 | |
|             if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
 | |
|                 error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
 | |
| 
 | |
|             // "The offset qualifier forces the qualified member to start at or after the specified
 | |
|             // integral-constant expression, which will be its byte offset from the beginning of the buffer.
 | |
|             // "The actual offset of a member is computed as
 | |
|             // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
 | |
|             offset = std::max(offset, memberQualifier.layoutOffset);
 | |
|         }
 | |
| 
 | |
|         // "The actual alignment of a member will be the greater of the specified align alignment and the standard
 | |
|         // (e.g., std140) base alignment for the member's type."
 | |
|         if (memberQualifier.hasAlign())
 | |
|             memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
 | |
| 
 | |
|         // "If the resulting offset is not a multiple of the actual alignment,
 | |
|         // increase it to the first offset that is a multiple of
 | |
|         // the actual alignment."
 | |
|         RoundToPow2(offset, memberAlignment);
 | |
|         typeList[member].type->getQualifier().layoutOffset = offset;
 | |
|         offset += memberSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // For an identifier that is already declared, add more qualification to it.
 | |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
 | |
| {
 | |
|     TSymbol* symbol = symbolTable.find(identifier);
 | |
|     if (symbol == nullptr) {
 | |
|         error(loc, "identifier not previously declared", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
|     if (symbol->getAsFunction()) {
 | |
|         error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (qualifier.isAuxiliary() ||
 | |
|         qualifier.isMemory() ||
 | |
|         qualifier.isInterpolation() ||
 | |
|         qualifier.hasLayout() ||
 | |
|         qualifier.storage != EvqTemporary ||
 | |
|         qualifier.precision != EpqNone) {
 | |
|         error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // For read-only built-ins, add a new symbol for holding the modified qualifier.
 | |
|     // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
 | |
|     if (symbol->isReadOnly())
 | |
|         symbol = symbolTable.copyUp(symbol);
 | |
| 
 | |
|     if (qualifier.invariant) {
 | |
|         if (intermediate.inIoAccessed(identifier))
 | |
|             error(loc, "cannot change qualification after use", "invariant", "");
 | |
|         symbol->getWritableType().getQualifier().invariant = true;
 | |
|     } else if (qualifier.noContraction) {
 | |
|         if (intermediate.inIoAccessed(identifier))
 | |
|             error(loc, "cannot change qualification after use", "precise", "");
 | |
|         symbol->getWritableType().getQualifier().noContraction = true;
 | |
|     } else if (qualifier.specConstant) {
 | |
|         symbol->getWritableType().getQualifier().makeSpecConstant();
 | |
|         if (qualifier.hasSpecConstantId())
 | |
|             symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
 | |
|     } else
 | |
|         warn(loc, "unknown requalification", "", "");
 | |
| }
 | |
| 
 | |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
 | |
| {
 | |
|     for (unsigned int i = 0; i < identifiers.size(); ++i)
 | |
|         addQualifierToExisting(loc, qualifier, *identifiers[i]);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Update the intermediate for the given input geometry
 | |
| //
 | |
| bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
 | |
| {
 | |
|     switch (geometry) {
 | |
|     case ElgPoints:             // fall through
 | |
|     case ElgLines:              // ...
 | |
|     case ElgTriangles:          // ...
 | |
|     case ElgLinesAdjacency:     // ...
 | |
|     case ElgTrianglesAdjacency: // ...
 | |
|         if (! intermediate.setInputPrimitive(geometry)) {
 | |
|             error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Update the intermediate for the given output geometry
 | |
| //
 | |
| bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
 | |
| {
 | |
|     // If this is not a geometry shader, ignore.  It might be a mixed shader including several stages.
 | |
|     // Since that's an OK situation, return true for success.
 | |
|     if (language != EShLangGeometry)
 | |
|         return true;
 | |
| 
 | |
|     switch (geometry) {
 | |
|     case ElgPoints:
 | |
|     case ElgLineStrip:
 | |
|     case ElgTriangleStrip:
 | |
|         if (! intermediate.setOutputPrimitive(geometry)) {
 | |
|             error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Selection attributes
 | |
| //
 | |
| void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection,
 | |
|     const TAttributes& attributes)
 | |
| {
 | |
|     if (selection == nullptr)
 | |
|         return;
 | |
| 
 | |
|     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
 | |
|         switch (it->name) {
 | |
|         case EatFlatten:
 | |
|             selection->setFlatten();
 | |
|             break;
 | |
|         case EatBranch:
 | |
|             selection->setDontFlatten();
 | |
|             break;
 | |
|         default:
 | |
|             warn(loc, "attribute does not apply to a selection", "", "");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Switch attributes
 | |
| //
 | |
| void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection,
 | |
|     const TAttributes& attributes)
 | |
| {
 | |
|     if (selection == nullptr)
 | |
|         return;
 | |
| 
 | |
|     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
 | |
|         switch (it->name) {
 | |
|         case EatFlatten:
 | |
|             selection->setFlatten();
 | |
|             break;
 | |
|         case EatBranch:
 | |
|             selection->setDontFlatten();
 | |
|             break;
 | |
|         default:
 | |
|             warn(loc, "attribute does not apply to a switch", "", "");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Loop attributes
 | |
| //
 | |
| void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop,
 | |
|     const TAttributes& attributes)
 | |
| {
 | |
|     if (loop == nullptr)
 | |
|         return;
 | |
| 
 | |
|     for (auto it = attributes.begin(); it != attributes.end(); ++it) {
 | |
|         switch (it->name) {
 | |
|         case EatUnroll:
 | |
|             loop->setUnroll();
 | |
|             break;
 | |
|         case EatLoop:
 | |
|             loop->setDontUnroll();
 | |
|             break;
 | |
|         default:
 | |
|             warn(loc, "attribute does not apply to a loop", "", "");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Updating default qualifier for the case of a declaration with just a qualifier,
 | |
| // no type, block, or identifier.
 | |
| //
 | |
| void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
 | |
| {
 | |
|     if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
 | |
|         assert(language == EShLangTessControl || language == EShLangGeometry);
 | |
|         // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
 | |
|         if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
 | |
|             error(loc, "cannot change previously set layout value", "invocations", "");
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.geometry != ElgNone) {
 | |
|         if (publicType.qualifier.storage == EvqVaryingIn) {
 | |
|             switch (publicType.shaderQualifiers.geometry) {
 | |
|             case ElgPoints:
 | |
|             case ElgLines:
 | |
|             case ElgLinesAdjacency:
 | |
|             case ElgTriangles:
 | |
|             case ElgTrianglesAdjacency:
 | |
|             case ElgQuads:
 | |
|             case ElgIsolines:
 | |
|                 break;
 | |
|             default:
 | |
|                 error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
 | |
|                       "");
 | |
|             }
 | |
|         } else if (publicType.qualifier.storage == EvqVaryingOut) {
 | |
|             handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
 | |
|         } else
 | |
|             error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
 | |
|                   GetStorageQualifierString(publicType.qualifier.storage));
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.spacing != EvsNone)
 | |
|         intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
 | |
|     if (publicType.shaderQualifiers.order != EvoNone)
 | |
|         intermediate.setVertexOrder(publicType.shaderQualifiers.order);
 | |
|     if (publicType.shaderQualifiers.pointMode)
 | |
|         intermediate.setPointMode();
 | |
|     for (int i = 0; i < 3; ++i) {
 | |
|         if (publicType.shaderQualifiers.localSize[i] > 1) {
 | |
|             int max = 0;
 | |
|             switch (i) {
 | |
|             case 0: max = resources.maxComputeWorkGroupSizeX; break;
 | |
|             case 1: max = resources.maxComputeWorkGroupSizeY; break;
 | |
|             case 2: max = resources.maxComputeWorkGroupSizeZ; break;
 | |
|             default: break;
 | |
|             }
 | |
|             if (intermediate.getLocalSize(i) > (unsigned int)max)
 | |
|                 error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
 | |
| 
 | |
|             // Fix the existing constant gl_WorkGroupSize with this new information.
 | |
|             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
 | |
|             workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
 | |
|         }
 | |
|         if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
 | |
|             intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
 | |
|             // Set the workgroup built-in variable as a specialization constant
 | |
|             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
 | |
|             workGroupSize->getWritableType().getQualifier().specConstant = true;
 | |
|         }
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.earlyFragmentTests)
 | |
|         intermediate.setEarlyFragmentTests();
 | |
| 
 | |
|     const TQualifier& qualifier = publicType.qualifier;
 | |
| 
 | |
|     switch (qualifier.storage) {
 | |
|     case EvqUniform:
 | |
|         if (qualifier.hasMatrix())
 | |
|             globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
 | |
|         if (qualifier.hasPacking())
 | |
|             globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
 | |
|         break;
 | |
|     case EvqBuffer:
 | |
|         if (qualifier.hasMatrix())
 | |
|             globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
 | |
|         if (qualifier.hasPacking())
 | |
|             globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
 | |
|         break;
 | |
|     case EvqVaryingIn:
 | |
|         break;
 | |
|     case EvqVaryingOut:
 | |
|         if (qualifier.hasStream())
 | |
|             globalOutputDefaults.layoutStream = qualifier.layoutStream;
 | |
|         if (qualifier.hasXfbBuffer())
 | |
|             globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
 | |
|         if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
 | |
|             if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
 | |
|                 error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
 | |
|                       qualifier.layoutXfbBuffer);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Take the sequence of statements that has been built up since the last case/default,
 | |
| // put it on the list of top-level nodes for the current (inner-most) switch statement,
 | |
| // and follow that by the case/default we are on now.  (See switch topology comment on
 | |
| // TIntermSwitch.)
 | |
| //
 | |
| void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
 | |
| {
 | |
|     TIntermSequence* switchSequence = switchSequenceStack.back();
 | |
| 
 | |
|     if (statements) {
 | |
|         statements->setOperator(EOpSequence);
 | |
|         switchSequence->push_back(statements);
 | |
|     }
 | |
|     if (branchNode) {
 | |
|         // check all previous cases for the same label (or both are 'default')
 | |
|         for (unsigned int s = 0; s < switchSequence->size(); ++s) {
 | |
|             TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
 | |
|             if (prevBranch) {
 | |
|                 TIntermTyped* prevExpression = prevBranch->getExpression();
 | |
|                 TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
 | |
|                 if (prevExpression == nullptr && newExpression == nullptr)
 | |
|                     error(branchNode->getLoc(), "duplicate label", "default", "");
 | |
|                 else if (prevExpression != nullptr &&
 | |
|                     newExpression != nullptr &&
 | |
|                     prevExpression->getAsConstantUnion() &&
 | |
|                     newExpression->getAsConstantUnion() &&
 | |
|                     prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
 | |
|                     newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
 | |
|                     error(branchNode->getLoc(), "duplicated value", "case", "");
 | |
|             }
 | |
|         }
 | |
|         switchSequence->push_back(branchNode);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Turn the top-level node sequence built up of wrapupSwitchSubsequence
 | |
| // into a switch node.
 | |
| //
 | |
| TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
 | |
|                                          TIntermAggregate* lastStatements, const TAttributes& attributes)
 | |
| {
 | |
|     wrapupSwitchSubsequence(lastStatements, nullptr);
 | |
| 
 | |
|     if (expression == nullptr ||
 | |
|         (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
 | |
|         expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
 | |
|         error(loc, "condition must be a scalar integer expression", "switch", "");
 | |
| 
 | |
|     // If there is nothing to do, drop the switch but still execute the expression
 | |
|     TIntermSequence* switchSequence = switchSequenceStack.back();
 | |
|     if (switchSequence->size() == 0)
 | |
|         return expression;
 | |
| 
 | |
|     if (lastStatements == nullptr) {
 | |
|         // emulate a break for error recovery
 | |
|         lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
 | |
|         lastStatements->setOperator(EOpSequence);
 | |
|         switchSequence->push_back(lastStatements);
 | |
|     }
 | |
| 
 | |
|     TIntermAggregate* body = new TIntermAggregate(EOpSequence);
 | |
|     body->getSequence() = *switchSequenceStack.back();
 | |
|     body->setLoc(loc);
 | |
| 
 | |
|     TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
 | |
|     switchNode->setLoc(loc);
 | |
|     handleSwitchAttributes(loc, switchNode, attributes);
 | |
| 
 | |
|     return switchNode;
 | |
| }
 | |
| 
 | |
| // Make a new symbol-table level that is made out of the members of a structure.
 | |
| // This should be done as an anonymous struct (name is "") so that the symbol table
 | |
| // finds the members with no explicit reference to a 'this' variable.
 | |
| void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
 | |
| {
 | |
|     // member variables
 | |
|     TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
 | |
|     symbolTable.pushThis(thisVariable);
 | |
| 
 | |
|     // member functions
 | |
|     for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
 | |
|         // member should have a prefix matching currentTypePrefix.back()
 | |
|         // but, symbol lookup within the class scope will just use the
 | |
|         // unprefixed name. Hence, there are two: one fully prefixed and
 | |
|         // one with no prefix.
 | |
|         TFunction& member = *it->function->clone();
 | |
|         member.removePrefix(currentTypePrefix.back());
 | |
|         symbolTable.insert(member);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Track levels of class/struct/namespace nesting with a prefix string using
 | |
| // the type names separated by the scoping operator. E.g., two levels
 | |
| // would look like:
 | |
| //
 | |
| //   outer::inner
 | |
| //
 | |
| // The string is empty when at normal global level.
 | |
| //
 | |
| void HlslParseContext::pushNamespace(const TString& typeName)
 | |
| {
 | |
|     // make new type prefix
 | |
|     TString newPrefix;
 | |
|     if (currentTypePrefix.size() > 0)
 | |
|         newPrefix = currentTypePrefix.back();
 | |
|     newPrefix.append(typeName);
 | |
|     newPrefix.append(scopeMangler);
 | |
|     currentTypePrefix.push_back(newPrefix);
 | |
| }
 | |
| 
 | |
| // Opposite of pushNamespace(), see above
 | |
| void HlslParseContext::popNamespace()
 | |
| {
 | |
|     currentTypePrefix.pop_back();
 | |
| }
 | |
| 
 | |
| // Use the class/struct nesting string to create a global name for
 | |
| // a member of a class/struct.
 | |
| void HlslParseContext::getFullNamespaceName(TString*& name) const
 | |
| {
 | |
|     if (currentTypePrefix.size() == 0)
 | |
|         return;
 | |
| 
 | |
|     TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
 | |
|     fullName->append(*name);
 | |
|     name = fullName;
 | |
| }
 | |
| 
 | |
| // Helper function to add the namespace scope mangling syntax to a string.
 | |
| void HlslParseContext::addScopeMangler(TString& name)
 | |
| {
 | |
|     name.append(scopeMangler);
 | |
| }
 | |
| 
 | |
| // Return true if this has uniform-interface like decorations.
 | |
| bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
 | |
| {
 | |
|     return qualifier.hasUniformLayout() ||
 | |
|            qualifier.layoutPushConstant;
 | |
| }
 | |
| 
 | |
| // Potentially not the opposite of hasUniform(), as if some characteristic is
 | |
| // ever used for more than one thing (e.g., uniform or input), hasUniform() should
 | |
| // say it exists, but clearUniform() should leave it in place.
 | |
| void HlslParseContext::clearUniform(TQualifier& qualifier)
 | |
| {
 | |
|     qualifier.clearUniformLayout();
 | |
|     qualifier.layoutPushConstant = false;
 | |
| }
 | |
| 
 | |
| // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
 | |
| bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
 | |
| {
 | |
|     switch (qualifier.builtIn) {
 | |
|     case EbvPosition:
 | |
|     case EbvPointSize:
 | |
|         return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
 | |
|     case EbvClipDistance:
 | |
|     case EbvCullDistance:
 | |
|         return language != EShLangVertex && language != EShLangCompute;
 | |
|     case EbvFragCoord:
 | |
|     case EbvFace:
 | |
|     case EbvHelperInvocation:
 | |
|     case EbvLayer:
 | |
|     case EbvPointCoord:
 | |
|     case EbvSampleId:
 | |
|     case EbvSampleMask:
 | |
|     case EbvSamplePosition:
 | |
|     case EbvViewportIndex:
 | |
|         return language == EShLangFragment;
 | |
|     case EbvGlobalInvocationId:
 | |
|     case EbvLocalInvocationIndex:
 | |
|     case EbvLocalInvocationId:
 | |
|     case EbvNumWorkGroups:
 | |
|     case EbvWorkGroupId:
 | |
|     case EbvWorkGroupSize:
 | |
|         return language == EShLangCompute;
 | |
|     case EbvInvocationId:
 | |
|         return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
 | |
|     case EbvPatchVertices:
 | |
|         return language == EShLangTessControl || language == EShLangTessEvaluation;
 | |
|     case EbvInstanceId:
 | |
|     case EbvInstanceIndex:
 | |
|     case EbvVertexId:
 | |
|     case EbvVertexIndex:
 | |
|         return language == EShLangVertex;
 | |
|     case EbvPrimitiveId:
 | |
|         return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl;
 | |
|     case EbvTessLevelInner:
 | |
|     case EbvTessLevelOuter:
 | |
|         return language == EShLangTessEvaluation;
 | |
|     case EbvTessCoord:
 | |
|         return language == EShLangTessEvaluation;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Return true if there are decorations to preserve for input-like storage.
 | |
| bool HlslParseContext::hasInput(const TQualifier& qualifier) const
 | |
| {
 | |
|     if (qualifier.hasAnyLocation())
 | |
|         return true;
 | |
| 
 | |
|     if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
 | |
|         return true;
 | |
| 
 | |
|     if (language == EShLangTessEvaluation && qualifier.patch)
 | |
|         return true;
 | |
| 
 | |
|     if (isInputBuiltIn(qualifier))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
 | |
| bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
 | |
| {
 | |
|     switch (qualifier.builtIn) {
 | |
|     case EbvPosition:
 | |
|     case EbvPointSize:
 | |
|     case EbvClipVertex:
 | |
|     case EbvClipDistance:
 | |
|     case EbvCullDistance:
 | |
|         return language != EShLangFragment && language != EShLangCompute;
 | |
|     case EbvFragDepth:
 | |
|     case EbvFragDepthGreater:
 | |
|     case EbvFragDepthLesser:
 | |
|     case EbvSampleMask:
 | |
|         return language == EShLangFragment;
 | |
|     case EbvLayer:
 | |
|     case EbvViewportIndex:
 | |
|         return language == EShLangGeometry || language == EShLangVertex;
 | |
|     case EbvPrimitiveId:
 | |
|         return language == EShLangGeometry;
 | |
|     case EbvTessLevelInner:
 | |
|     case EbvTessLevelOuter:
 | |
|         return language == EShLangTessControl;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Return true if there are decorations to preserve for output-like storage.
 | |
| bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
 | |
| {
 | |
|     if (qualifier.hasAnyLocation())
 | |
|         return true;
 | |
| 
 | |
|     if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
 | |
|         return true;
 | |
| 
 | |
|     if (language == EShLangTessControl && qualifier.patch)
 | |
|         return true;
 | |
| 
 | |
|     if (language == EShLangGeometry && qualifier.hasStream())
 | |
|         return true;
 | |
| 
 | |
|     if (isOutputBuiltIn(qualifier))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Make the IO decorations etc. be appropriate only for an input interface.
 | |
| void HlslParseContext::correctInput(TQualifier& qualifier)
 | |
| {
 | |
|     clearUniform(qualifier);
 | |
|     if (language == EShLangVertex)
 | |
|         qualifier.clearInterstage();
 | |
|     if (language != EShLangTessEvaluation)
 | |
|         qualifier.patch = false;
 | |
|     if (language != EShLangFragment) {
 | |
|         qualifier.clearInterpolation();
 | |
|         qualifier.sample = false;
 | |
|     }
 | |
| 
 | |
|     qualifier.clearStreamLayout();
 | |
|     qualifier.clearXfbLayout();
 | |
| 
 | |
|     if (! isInputBuiltIn(qualifier))
 | |
|         qualifier.builtIn = EbvNone;
 | |
| }
 | |
| 
 | |
| // Make the IO decorations etc. be appropriate only for an output interface.
 | |
| void HlslParseContext::correctOutput(TQualifier& qualifier)
 | |
| {
 | |
|     clearUniform(qualifier);
 | |
|     if (language == EShLangFragment)
 | |
|         qualifier.clearInterstage();
 | |
|     if (language != EShLangGeometry)
 | |
|         qualifier.clearStreamLayout();
 | |
|     if (language == EShLangFragment)
 | |
|         qualifier.clearXfbLayout();
 | |
|     if (language != EShLangTessControl)
 | |
|         qualifier.patch = false;
 | |
| 
 | |
|     switch (qualifier.builtIn) {
 | |
|     case EbvFragDepth:
 | |
|         intermediate.setDepthReplacing();
 | |
|         intermediate.setDepth(EldAny);
 | |
|         break;
 | |
|     case EbvFragDepthGreater:
 | |
|         intermediate.setDepthReplacing();
 | |
|         intermediate.setDepth(EldGreater);
 | |
|         qualifier.builtIn = EbvFragDepth;
 | |
|         break;
 | |
|     case EbvFragDepthLesser:
 | |
|         intermediate.setDepthReplacing();
 | |
|         intermediate.setDepth(EldLess);
 | |
|         qualifier.builtIn = EbvFragDepth;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (! isOutputBuiltIn(qualifier))
 | |
|         qualifier.builtIn = EbvNone;
 | |
| }
 | |
| 
 | |
| // Make the IO decorations etc. be appropriate only for uniform type interfaces.
 | |
| void HlslParseContext::correctUniform(TQualifier& qualifier)
 | |
| {
 | |
|     if (qualifier.declaredBuiltIn == EbvNone)
 | |
|         qualifier.declaredBuiltIn = qualifier.builtIn;
 | |
| 
 | |
|     qualifier.builtIn = EbvNone;
 | |
|     qualifier.clearInterstage();
 | |
|     qualifier.clearInterstageLayout();
 | |
| }
 | |
| 
 | |
| // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
 | |
| void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
 | |
| {
 | |
|     clearUniform(qualifier);
 | |
|     correctUniform(qualifier);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Set texture return type.  Returns success (not all types are valid).
 | |
| bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc)
 | |
| {
 | |
|     // Seed the output with an invalid index.  We will set it to a valid one if we can.
 | |
|     sampler.structReturnIndex = TSampler::noReturnStruct;
 | |
| 
 | |
|     // Arrays aren't supported.
 | |
|     if (retType.isArray()) {
 | |
|         error(loc, "Arrays not supported in texture template types", "", "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If return type is a vector, remember the vector size in the sampler, and return.
 | |
|     if (retType.isVector() || retType.isScalar()) {
 | |
|         sampler.vectorSize = retType.getVectorSize();
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // If it wasn't a vector, it must be a struct meeting certain requirements.  The requirements
 | |
|     // are checked below: just check for struct-ness here.
 | |
|     if (!retType.isStruct()) {
 | |
|         error(loc, "Invalid texture template type", "", "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading.
 | |
|     if (sampler.isSubpass()) {
 | |
|         error(loc, "Unimplemented: structure template type in subpass input", "", "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     TTypeList* members = retType.getWritableStruct();
 | |
| 
 | |
|     // Check for too many or not enough structure members.
 | |
|     if (members->size() > 4 || members->size() == 0) {
 | |
|         error(loc, "Invalid member count in texture template structure", "", "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Error checking: We must have <= 4 total components, all of the same basic type.
 | |
|     unsigned totalComponents = 0;
 | |
|     for (unsigned m = 0; m < members->size(); ++m) {
 | |
|         // Check for bad member types
 | |
|         if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) {
 | |
|             error(loc, "Invalid texture template struct member type", "", "");
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         const unsigned memberVectorSize = (*members)[m].type->getVectorSize();
 | |
|         totalComponents += memberVectorSize;
 | |
| 
 | |
|         // too many total member components
 | |
|         if (totalComponents > 4) {
 | |
|             error(loc, "Too many components in texture template structure type", "", "");
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // All members must be of a common basic type
 | |
|         if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) {
 | |
|             error(loc, "Texture template structure members must same basic type", "", "");
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If the structure in the return type already exists in the table, we'll use it.  Otherwise, we'll make
 | |
|     // a new entry.  This is a linear search, but it hardly ever happens, and the list cannot be very large.
 | |
|     for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) {
 | |
|         if (textureReturnStruct[idx] == members) {
 | |
|             sampler.structReturnIndex = idx;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // It wasn't found as an existing entry.  See if we have room for a new one.
 | |
|     if (textureReturnStruct.size() >= TSampler::structReturnSlots) {
 | |
|         error(loc, "Texture template struct return slots exceeded", "", "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Insert it in the vector that tracks struct return types.
 | |
|     sampler.structReturnIndex = unsigned(textureReturnStruct.size());
 | |
|     textureReturnStruct.push_back(members);
 | |
|     
 | |
|     // Success!
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Return the sampler return type in retType.
 | |
| void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const
 | |
| {
 | |
|     if (sampler.hasReturnStruct()) {
 | |
|         assert(textureReturnStruct.size() >= sampler.structReturnIndex);
 | |
| 
 | |
|         // We land here if the texture return is a structure.
 | |
|         TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex];
 | |
| 
 | |
|         const TType resultType(blockStruct, "");
 | |
|         retType.shallowCopy(resultType);
 | |
|     } else {
 | |
|         // We land here if the texture return is a vector or scalar.
 | |
|         const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize());
 | |
|         retType.shallowCopy(resultType);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
 | |
| TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
 | |
| {
 | |
|     const auto it = builtInTessLinkageSymbols.find(biType);
 | |
|     if (it == builtInTessLinkageSymbols.end())  // if it wasn't declared by the user, return nullptr
 | |
|         return nullptr;
 | |
| 
 | |
|     return intermediate.addSymbol(*it->second->getAsVariable());
 | |
| }
 | |
| 
 | |
| // Find the patch constant function (issues error, returns nullptr if not found)
 | |
| const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc)
 | |
| {
 | |
|     if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
 | |
|         error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     const TString mangledName = patchConstantFunctionName + "(";
 | |
| 
 | |
|     // create list of PCF candidates
 | |
|     TVector<const TFunction*> candidateList;
 | |
|     bool builtIn;
 | |
|     symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
 | |
|     
 | |
|     // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
 | |
|     // allow any disambiguation of overloads.
 | |
|     if (candidateList.empty()) {
 | |
|         error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
 | |
|     // HLSL picks the last one in shader source order.  Since that isn't yet implemented here, error
 | |
|     // out if there is more than one candidate.
 | |
|     if (candidateList.size() > 1) {
 | |
|         error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return candidateList[0];
 | |
| }
 | |
| 
 | |
| // Finalization step: Add patch constant function invocation
 | |
| void HlslParseContext::addPatchConstantInvocation()
 | |
| {
 | |
|     TSourceLoc loc;
 | |
|     loc.init();
 | |
| 
 | |
|     // If there's no patch constant function, or we're not a HS, do nothing.
 | |
|     if (patchConstantFunctionName.empty() || language != EShLangTessControl)
 | |
|         return;
 | |
| 
 | |
|     // Look for built-in variables in a function's parameter list.
 | |
|     const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
 | |
|         for (int p=0; p<function.getParamCount(); ++p) {
 | |
|             TStorageQualifier storage = function[p].type->getQualifier().storage;
 | |
| 
 | |
|             if (storage == EvqConstReadOnly) // treated identically to input
 | |
|                 storage = EvqIn;
 | |
| 
 | |
|             if (function[p].getDeclaredBuiltIn() != EbvNone)
 | |
|                 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
 | |
|             else
 | |
|                 builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // If we synthesize a built-in interface variable, we must add it to the linkage.
 | |
|     const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
 | |
|         if (name == nullptr) {
 | |
|             error(loc, "unable to locate patch function parameter name", "", "");
 | |
|             return;
 | |
|         } else {
 | |
|             TVariable& variable = *new TVariable(name, type);
 | |
|             if (! symbolTable.insert(variable)) {
 | |
|                 error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             globalQualifierFix(loc, variable.getWritableType().getQualifier());
 | |
| 
 | |
|             if (symbolNode != nullptr)
 | |
|                 *symbolNode = intermediate.addSymbol(variable);
 | |
| 
 | |
|             trackLinkage(variable);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) {
 | |
|         const TType& type = *patchConstantFunction[param].type;
 | |
|         const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
 | |
| 
 | |
|         return type.isSizedArray() && biType == EbvOutputPatch;
 | |
|     };
 | |
|     
 | |
|     // We will perform these steps.  Each is in a scoped block for separation: they could
 | |
|     // become separate functions to make addPatchConstantInvocation shorter.
 | |
|     // 
 | |
|     // 1. Union the interfaces, and create built-ins for anything present in the PCF and
 | |
|     //    declared as a built-in variable that isn't present in the entry point's signature.
 | |
|     //
 | |
|     // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
 | |
|     //    or the ones we created.  Matching is based on built-in type.  We may use synthesized
 | |
|     //    variables from (1) above.
 | |
|     // 
 | |
|     // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
 | |
|     //
 | |
|     // 3. Create a return sequence: copy the return value (if any) from the PCF to a
 | |
|     //    (non-sanitized) output variable.  In case this may involve multiple copies, such as for
 | |
|     //    an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
 | |
|     //    indirections into a complex R-value coming from the call to the PCF.
 | |
|     // 
 | |
|     // 4. Create a barrier.
 | |
|     // 
 | |
|     // 5/5B. Call the PCF inside an if test for (invocation id == 0).
 | |
| 
 | |
|     TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc));
 | |
| 
 | |
|     if (patchConstantFunctionPtr == nullptr)
 | |
|         return;
 | |
| 
 | |
|     TFunction& patchConstantFunction = *patchConstantFunctionPtr;
 | |
| 
 | |
|     const int pcfParamCount = patchConstantFunction.getParamCount();
 | |
|     TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
 | |
|     TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
 | |
| 
 | |
|     int outPatchParam = -1; // -1 means there isn't one.
 | |
| 
 | |
|     // ================ Step 1A: Union Interfaces ================
 | |
|     // Our patch constant function.
 | |
|     {
 | |
|         std::set<tInterstageIoData> pcfBuiltIns;  // patch constant function built-ins
 | |
|         std::set<tInterstageIoData> epfBuiltIns;  // entry point function built-ins
 | |
| 
 | |
|         assert(entryPointFunction);
 | |
|         assert(entryPointFunctionBody);
 | |
| 
 | |
|         findBuiltIns(patchConstantFunction, pcfBuiltIns);
 | |
|         findBuiltIns(*entryPointFunction,   epfBuiltIns);
 | |
| 
 | |
|         // Find the set of built-ins in the PCF that are not present in the entry point.
 | |
|         std::set<tInterstageIoData> notInEntryPoint;
 | |
| 
 | |
|         notInEntryPoint = pcfBuiltIns;
 | |
| 
 | |
|         // std::set_difference not usable on unordered containers
 | |
|         for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
 | |
|             notInEntryPoint.erase(*bi);
 | |
| 
 | |
|         // Now we'll add those to the entry and to the linkage.
 | |
|         for (int p=0; p<pcfParamCount; ++p) {
 | |
|             const TBuiltInVariable biType   = patchConstantFunction[p].getDeclaredBuiltIn();
 | |
|             TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
 | |
| 
 | |
|             // Track whether there is an output patch param
 | |
|             if (isOutputPatch(patchConstantFunction, p)) {
 | |
|                 if (outPatchParam >= 0) {
 | |
|                     // Presently we only support one per ctrl pt input.
 | |
|                     error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
 | |
|                     return;
 | |
|                 }
 | |
|                 outPatchParam = p;
 | |
|             }
 | |
| 
 | |
|             if (biType != EbvNone) {
 | |
|                 TType* paramType = patchConstantFunction[p].type->clone();
 | |
| 
 | |
|                 if (storage == EvqConstReadOnly) // treated identically to input
 | |
|                     storage = EvqIn;
 | |
| 
 | |
|                 // Presently, the only non-built-in we support is InputPatch, which is treated as
 | |
|                 // a pseudo-built-in.
 | |
|                 if (biType == EbvInputPatch) {
 | |
|                     builtInTessLinkageSymbols[biType] = inputPatch;
 | |
|                 } else if (biType == EbvOutputPatch) {
 | |
|                     // Nothing...
 | |
|                 } else {
 | |
|                     // Use the original declaration type for the linkage
 | |
|                     paramType->getQualifier().builtIn = biType;
 | |
| 
 | |
|                     if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
 | |
|                         addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // If we didn't find it because the shader made one, add our own.
 | |
|         if (invocationIdSym == nullptr) {
 | |
|             TType invocationIdType(EbtUint, EvqIn, 1);
 | |
|             TString* invocationIdName = NewPoolTString("InvocationId");
 | |
|             invocationIdType.getQualifier().builtIn = EbvInvocationId;
 | |
|             addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
 | |
|         }
 | |
| 
 | |
|         assert(invocationIdSym);
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* pcfArguments = nullptr;
 | |
|     TVariable* perCtrlPtVar = nullptr;
 | |
| 
 | |
|     // ================ Step 1B: Argument synthesis ================
 | |
|     // Create pcfArguments for synthesis of patchconstantfunction invocation
 | |
|     {
 | |
|         for (int p=0; p<pcfParamCount; ++p) {
 | |
|             TIntermTyped* inputArg = nullptr;
 | |
| 
 | |
|             if (p == outPatchParam) {
 | |
|                 if (perCtrlPtVar == nullptr) {
 | |
|                     perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
 | |
|                                                         *patchConstantFunction[outPatchParam].type);
 | |
| 
 | |
|                     perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
 | |
|                 }
 | |
|                 inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
 | |
|             } else {
 | |
|                 // find which built-in it is
 | |
|                 const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
 | |
|                 
 | |
|                 if (biType == EbvInputPatch && inputPatch == nullptr) {
 | |
|                     error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", "");
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 inputArg = findTessLinkageSymbol(biType);
 | |
| 
 | |
|                 if (inputArg == nullptr) {
 | |
|                     error(loc, "unable to find patch constant function built-in variable", "", "");
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (pcfParamCount == 1)
 | |
|                 pcfArguments = inputArg;
 | |
|             else
 | |
|                 pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // ================ Step 2: Synthesize call to PCF ================
 | |
|     TIntermAggregate* pcfCallSequence = nullptr;
 | |
|     TIntermTyped* pcfCall = nullptr;
 | |
| 
 | |
|     {
 | |
|         // Create a function call to the patchconstantfunction
 | |
|         if (pcfArguments)
 | |
|             addInputArgumentConversions(patchConstantFunction, pcfArguments);
 | |
| 
 | |
|         // Synthetic call.
 | |
|         pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
 | |
|         pcfCall->getAsAggregate()->setUserDefined();
 | |
|         pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
 | |
|         intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
 | |
|                                     patchConstantFunction.getMangledName());
 | |
| 
 | |
|         if (pcfCall->getAsAggregate()) {
 | |
|             TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
 | |
|             for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
 | |
|                 TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
 | |
|                 qualifierList.push_back(qual);
 | |
|             }
 | |
|             pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // ================ Step 2B: Per Control Point synthesis ================
 | |
|     // If there is per control point data, we must either emulate that with multiple
 | |
|     // invocations of the entry point to build up an array, or (TODO:) use a yet
 | |
|     // unavailable extension to look across the SIMD lanes.  This is the former
 | |
|     // as a placeholder for the latter.
 | |
|     if (outPatchParam >= 0) {
 | |
|         // We must introduce a local temp variable of the type wanted by the PCF input.
 | |
|         const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
 | |
| 
 | |
|         if (entryPointFunction->getType().getBasicType() == EbtVoid) {
 | |
|             error(loc, "entry point must return a value for use with patch constant function", "", "");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Create calls to wrapped main to fill in the array.  We will substitute fixed values
 | |
|         // of invocation ID when calling the wrapped main.
 | |
| 
 | |
|         // This is the type of the each member of the per ctrl point array.
 | |
|         const TType derefType(perCtrlPtVar->getType(), 0);
 | |
| 
 | |
|         for (int cpt = 0; cpt < arraySize; ++cpt) {
 | |
|             // TODO: improve.  substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
 | |
|             // for this function.
 | |
|             const TString origName = entryPointFunction->getName().substr(1);
 | |
|             TFunction callee(&origName, TType(EbtVoid));
 | |
|             TIntermTyped* callingArgs = nullptr;
 | |
| 
 | |
|             for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
 | |
|                 TParameter& param = (*entryPointFunction)[i];
 | |
|                 TType& paramType = *param.type;
 | |
| 
 | |
|                 if (paramType.getQualifier().isParamOutput()) {
 | |
|                     error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 if (paramType.getQualifier().isParamInput())  {
 | |
|                     TIntermTyped* arg = nullptr;
 | |
|                     if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
 | |
|                         // substitute invocation ID with the array element ID
 | |
|                         arg = intermediate.addConstantUnion(cpt, loc);
 | |
|                     } else {
 | |
|                         TVariable* argVar = makeInternalVariable(*param.name, *param.type);
 | |
|                         argVar->getWritableType().getQualifier().makeTemporary();
 | |
|                         arg = intermediate.addSymbol(*argVar);
 | |
|                     }
 | |
| 
 | |
|                     handleFunctionArgument(&callee, callingArgs, arg);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Call and assign to per ctrl point variable
 | |
|             currentCaller = intermediate.getEntryPointMangledName().c_str();
 | |
|             TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
 | |
|             TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
 | |
|             TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
 | |
|             TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
 | |
|             element->setType(derefType);
 | |
|             element->setLoc(loc);
 | |
| 
 | |
|             pcfCallSequence = intermediate.growAggregate(pcfCallSequence, 
 | |
|                                                          handleAssign(loc, EOpAssign, element, callReturn));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // ================ Step 3: Create return Sequence ================
 | |
|     // Return sequence: copy PCF result to a temporary, then to shader output variable.
 | |
|     if (pcfCall->getBasicType() != EbtVoid) {
 | |
|         const TType* retType = &patchConstantFunction.getType();  // return type from the PCF
 | |
|         TType outType; // output type that goes with the return type.
 | |
|         outType.shallowCopy(*retType);
 | |
| 
 | |
|         // substitute the output type
 | |
|         const auto newLists = ioTypeMap.find(retType->getStruct());
 | |
|         if (newLists != ioTypeMap.end())
 | |
|             outType.setStruct(newLists->second.output);
 | |
| 
 | |
|         // Substitute the top level type's built-in type
 | |
|         if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
 | |
|             outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
 | |
| 
 | |
|         outType.getQualifier().patch = true; // make it a per-patch variable
 | |
| 
 | |
|         TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
 | |
|         pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
 | |
| 
 | |
|         if (pcfOutput->getType().containsBuiltIn())
 | |
|             split(*pcfOutput);
 | |
| 
 | |
|         assignToInterface(*pcfOutput);
 | |
| 
 | |
|         TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
 | |
| 
 | |
|         // The call to the PCF is a complex R-value: we want to store it in a temp to avoid
 | |
|         // repeated calls to the PCF:
 | |
|         TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
 | |
|         pcfCallResult->getWritableType().getQualifier().makeTemporary();
 | |
| 
 | |
|         TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
 | |
|         TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
 | |
|         TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
 | |
|                                                    intermediate.addSymbol(*pcfCallResult, loc));
 | |
| 
 | |
|         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
 | |
|         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
 | |
|     } else {
 | |
|         pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
 | |
|     }
 | |
| 
 | |
|     // ================ Step 4: Barrier ================    
 | |
|     TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
 | |
|     barrier->setLoc(loc);
 | |
|     barrier->setType(TType(EbtVoid));
 | |
|     epBodySeq.insert(epBodySeq.end(), barrier);
 | |
| 
 | |
|     // ================ Step 5: Test on invocation ID ================
 | |
|     TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
 | |
|     TIntermTyped* cmp =  intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
 | |
| 
 | |
| 
 | |
|     // ================ Step 5B: Create if statement on Invocation ID == 0 ================
 | |
|     intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
 | |
|     TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
 | |
|     invocationIdTest->setLoc(loc);
 | |
| 
 | |
|     // add our test sequence before the return.
 | |
|     epBodySeq.insert(epBodySeq.end(), invocationIdTest);
 | |
| }
 | |
| 
 | |
| // Finalization step: remove unused buffer blocks from linkage (we don't know until the
 | |
| // shader is entirely compiled).
 | |
| // Preserve order of remaining symbols.
 | |
| void HlslParseContext::removeUnusedStructBufferCounters()
 | |
| {
 | |
|     const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
 | |
|                                       [this](const TSymbol* sym) {
 | |
|                                           const auto sbcIt = structBufferCounter.find(sym->getName());
 | |
|                                           return sbcIt != structBufferCounter.end() && !sbcIt->second;
 | |
|                                       });
 | |
| 
 | |
|     linkageSymbols.erase(endIt, linkageSymbols.end());
 | |
| }
 | |
| 
 | |
| // Finalization step: patch texture shadow modes to match samplers they were combined with
 | |
| void HlslParseContext::fixTextureShadowModes()
 | |
| {
 | |
|     for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) {
 | |
|         TSampler& sampler = (*symbol)->getWritableType().getSampler();
 | |
| 
 | |
|         if (sampler.isTexture()) {
 | |
|             const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId());
 | |
|             if (shadowMode != textureShadowVariant.end()) {
 | |
| 
 | |
|                 if (shadowMode->second->overloaded())
 | |
|                     // Texture needs legalization if it's been seen with both shadow and non-shadow modes.
 | |
|                     intermediate.setNeedsLegalization();
 | |
| 
 | |
|                 sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Finalization step: patch append methods to use proper stream output, which isn't known until
 | |
| // main is parsed, which could happen after the append method is parsed.
 | |
| void HlslParseContext::finalizeAppendMethods()
 | |
| {
 | |
|     TSourceLoc loc;
 | |
|     loc.init();
 | |
| 
 | |
|     // Nothing to do: bypass test for valid stream output.
 | |
|     if (gsAppends.empty())
 | |
|         return;
 | |
| 
 | |
|     if (gsStreamOutput == nullptr) {
 | |
|         error(loc, "unable to find output symbol for Append()", "", "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Patch append sequences, now that we know the stream output symbol.
 | |
|     for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) {
 | |
|         append->node->getSequence()[0] = 
 | |
|             handleAssign(append->loc, EOpAssign,
 | |
|                          intermediate.addSymbol(*gsStreamOutput, append->loc),
 | |
|                          append->node->getSequence()[0]->getAsTyped());
 | |
|     }
 | |
| }
 | |
| 
 | |
| // post-processing
 | |
| void HlslParseContext::finish()
 | |
| {
 | |
|     // Error check: There was a dangling .mips operator.  These are not nested constructs in the grammar, so
 | |
|     // cannot be detected there.  This is not strictly needed in a non-validating parser; it's just helpful.
 | |
|     if (! mipsOperatorMipArg.empty()) {
 | |
|         error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
 | |
|     }
 | |
| 
 | |
|     removeUnusedStructBufferCounters();
 | |
|     addPatchConstantInvocation();
 | |
|     fixTextureShadowModes();
 | |
|     finalizeAppendMethods();
 | |
| 
 | |
|     // Communicate out (esp. for command line) that we formed AST that will make
 | |
|     // illegal AST SPIR-V and it needs transforms to legalize it.
 | |
|     if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization))
 | |
|         infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize";
 | |
| 
 | |
|     TParseContextBase::finish();
 | |
| }
 | |
| 
 | |
| } // end namespace glslang
 | 
