1066 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1066 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2015-2016 The Khronos Group Inc.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
 | |
| #define LIBSPIRV_UTIL_HEX_FLOAT_H_
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cctype>
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <iomanip>
 | |
| #include <limits>
 | |
| #include <sstream>
 | |
| 
 | |
| #include "bitutils.h"
 | |
| 
 | |
| namespace spvutils {
 | |
| 
 | |
| class Float16 {
 | |
|  public:
 | |
|   Float16(uint16_t v) : val(v) {}
 | |
|   Float16() {}
 | |
|   static bool isNan(const Float16& val) {
 | |
|     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
 | |
|   }
 | |
|   // Returns true if the given value is any kind of infinity.
 | |
|   static bool isInfinity(const Float16& val) {
 | |
|     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
 | |
|   }
 | |
|   Float16(const Float16& other) { val = other.val; }
 | |
|   uint16_t get_value() const { return val; }
 | |
| 
 | |
|   // Returns the maximum normal value.
 | |
|   static Float16 max() { return Float16(0x7bff); }
 | |
|   // Returns the lowest normal value.
 | |
|   static Float16 lowest() { return Float16(0xfbff); }
 | |
| 
 | |
|  private:
 | |
|   uint16_t val;
 | |
| };
 | |
| 
 | |
| // To specialize this type, you must override uint_type to define
 | |
| // an unsigned integer that can fit your floating point type.
 | |
| // You must also add a isNan function that returns true if
 | |
| // a value is Nan.
 | |
| template <typename T>
 | |
| struct FloatProxyTraits {
 | |
|   typedef void uint_type;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct FloatProxyTraits<float> {
 | |
|   typedef uint32_t uint_type;
 | |
|   static bool isNan(float f) { return std::isnan(f); }
 | |
|   // Returns true if the given value is any kind of infinity.
 | |
|   static bool isInfinity(float f) { return std::isinf(f); }
 | |
|   // Returns the maximum normal value.
 | |
|   static float max() { return std::numeric_limits<float>::max(); }
 | |
|   // Returns the lowest normal value.
 | |
|   static float lowest() { return std::numeric_limits<float>::lowest(); }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct FloatProxyTraits<double> {
 | |
|   typedef uint64_t uint_type;
 | |
|   static bool isNan(double f) { return std::isnan(f); }
 | |
|   // Returns true if the given value is any kind of infinity.
 | |
|   static bool isInfinity(double f) { return std::isinf(f); }
 | |
|   // Returns the maximum normal value.
 | |
|   static double max() { return std::numeric_limits<double>::max(); }
 | |
|   // Returns the lowest normal value.
 | |
|   static double lowest() { return std::numeric_limits<double>::lowest(); }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct FloatProxyTraits<Float16> {
 | |
|   typedef uint16_t uint_type;
 | |
|   static bool isNan(Float16 f) { return Float16::isNan(f); }
 | |
|   // Returns true if the given value is any kind of infinity.
 | |
|   static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
 | |
|   // Returns the maximum normal value.
 | |
|   static Float16 max() { return Float16::max(); }
 | |
|   // Returns the lowest normal value.
 | |
|   static Float16 lowest() { return Float16::lowest(); }
 | |
| };
 | |
| 
 | |
| // Since copying a floating point number (especially if it is NaN)
 | |
| // does not guarantee that bits are preserved, this class lets us
 | |
| // store the type and use it as a float when necessary.
 | |
| template <typename T>
 | |
| class FloatProxy {
 | |
|  public:
 | |
|   typedef typename FloatProxyTraits<T>::uint_type uint_type;
 | |
| 
 | |
|   // Since this is to act similar to the normal floats,
 | |
|   // do not initialize the data by default.
 | |
|   FloatProxy() {}
 | |
| 
 | |
|   // Intentionally non-explicit. This is a proxy type so
 | |
|   // implicit conversions allow us to use it more transparently.
 | |
|   FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
 | |
| 
 | |
|   // Intentionally non-explicit. This is a proxy type so
 | |
|   // implicit conversions allow us to use it more transparently.
 | |
|   FloatProxy(uint_type val) { data_ = val; }
 | |
| 
 | |
|   // This is helpful to have and is guaranteed not to stomp bits.
 | |
|   FloatProxy<T> operator-() const {
 | |
|     return static_cast<uint_type>(data_ ^
 | |
|                                   (uint_type(0x1) << (sizeof(T) * 8 - 1)));
 | |
|   }
 | |
| 
 | |
|   // Returns the data as a floating point value.
 | |
|   T getAsFloat() const { return BitwiseCast<T>(data_); }
 | |
| 
 | |
|   // Returns the raw data.
 | |
|   uint_type data() const { return data_; }
 | |
| 
 | |
|   // Returns true if the value represents any type of NaN.
 | |
|   bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
 | |
|   // Returns true if the value represents any type of infinity.
 | |
|   bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
 | |
| 
 | |
|   // Returns the maximum normal value.
 | |
|   static FloatProxy<T> max() {
 | |
|     return FloatProxy<T>(FloatProxyTraits<T>::max());
 | |
|   }
 | |
|   // Returns the lowest normal value.
 | |
|   static FloatProxy<T> lowest() {
 | |
|     return FloatProxy<T>(FloatProxyTraits<T>::lowest());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   uint_type data_;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
 | |
|   return first.data() == second.data();
 | |
| }
 | |
| 
 | |
| // Reads a FloatProxy value as a normal float from a stream.
 | |
| template <typename T>
 | |
| std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
 | |
|   T float_val;
 | |
|   is >> float_val;
 | |
|   value = FloatProxy<T>(float_val);
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| // This is an example traits. It is not meant to be used in practice, but will
 | |
| // be the default for any non-specialized type.
 | |
| template <typename T>
 | |
| struct HexFloatTraits {
 | |
|   // Integer type that can store this hex-float.
 | |
|   typedef void uint_type;
 | |
|   // Signed integer type that can store this hex-float.
 | |
|   typedef void int_type;
 | |
|   // The numerical type that this HexFloat represents.
 | |
|   typedef void underlying_type;
 | |
|   // The type needed to construct the underlying type.
 | |
|   typedef void native_type;
 | |
|   // The number of bits that are actually relevant in the uint_type.
 | |
|   // This allows us to deal with, for example, 24-bit values in a 32-bit
 | |
|   // integer.
 | |
|   static const uint32_t num_used_bits = 0;
 | |
|   // Number of bits that represent the exponent.
 | |
|   static const uint32_t num_exponent_bits = 0;
 | |
|   // Number of bits that represent the fractional part.
 | |
|   static const uint32_t num_fraction_bits = 0;
 | |
|   // The bias of the exponent. (How much we need to subtract from the stored
 | |
|   // value to get the correct value.)
 | |
|   static const uint32_t exponent_bias = 0;
 | |
| };
 | |
| 
 | |
| // Traits for IEEE float.
 | |
| // 1 sign bit, 8 exponent bits, 23 fractional bits.
 | |
| template <>
 | |
| struct HexFloatTraits<FloatProxy<float>> {
 | |
|   typedef uint32_t uint_type;
 | |
|   typedef int32_t int_type;
 | |
|   typedef FloatProxy<float> underlying_type;
 | |
|   typedef float native_type;
 | |
|   static const uint_type num_used_bits = 32;
 | |
|   static const uint_type num_exponent_bits = 8;
 | |
|   static const uint_type num_fraction_bits = 23;
 | |
|   static const uint_type exponent_bias = 127;
 | |
| };
 | |
| 
 | |
| // Traits for IEEE double.
 | |
| // 1 sign bit, 11 exponent bits, 52 fractional bits.
 | |
| template <>
 | |
| struct HexFloatTraits<FloatProxy<double>> {
 | |
|   typedef uint64_t uint_type;
 | |
|   typedef int64_t int_type;
 | |
|   typedef FloatProxy<double> underlying_type;
 | |
|   typedef double native_type;
 | |
|   static const uint_type num_used_bits = 64;
 | |
|   static const uint_type num_exponent_bits = 11;
 | |
|   static const uint_type num_fraction_bits = 52;
 | |
|   static const uint_type exponent_bias = 1023;
 | |
| };
 | |
| 
 | |
| // Traits for IEEE half.
 | |
| // 1 sign bit, 5 exponent bits, 10 fractional bits.
 | |
| template <>
 | |
| struct HexFloatTraits<FloatProxy<Float16>> {
 | |
|   typedef uint16_t uint_type;
 | |
|   typedef int16_t int_type;
 | |
|   typedef uint16_t underlying_type;
 | |
|   typedef uint16_t native_type;
 | |
|   static const uint_type num_used_bits = 16;
 | |
|   static const uint_type num_exponent_bits = 5;
 | |
|   static const uint_type num_fraction_bits = 10;
 | |
|   static const uint_type exponent_bias = 15;
 | |
| };
 | |
| 
 | |
| enum round_direction {
 | |
|   kRoundToZero,
 | |
|   kRoundToNearestEven,
 | |
|   kRoundToPositiveInfinity,
 | |
|   kRoundToNegativeInfinity
 | |
| };
 | |
| 
 | |
| // Template class that houses a floating pointer number.
 | |
| // It exposes a number of constants based on the provided traits to
 | |
| // assist in interpreting the bits of the value.
 | |
| template <typename T, typename Traits = HexFloatTraits<T>>
 | |
| class HexFloat {
 | |
|  public:
 | |
|   typedef typename Traits::uint_type uint_type;
 | |
|   typedef typename Traits::int_type int_type;
 | |
|   typedef typename Traits::underlying_type underlying_type;
 | |
|   typedef typename Traits::native_type native_type;
 | |
| 
 | |
|   explicit HexFloat(T f) : value_(f) {}
 | |
| 
 | |
|   T value() const { return value_; }
 | |
|   void set_value(T f) { value_ = f; }
 | |
| 
 | |
|   // These are all written like this because it is convenient to have
 | |
|   // compile-time constants for all of these values.
 | |
| 
 | |
|   // Pass-through values to save typing.
 | |
|   static const uint32_t num_used_bits = Traits::num_used_bits;
 | |
|   static const uint32_t exponent_bias = Traits::exponent_bias;
 | |
|   static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
 | |
|   static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
 | |
| 
 | |
|   // Number of bits to shift left to set the highest relevant bit.
 | |
|   static const uint32_t top_bit_left_shift = num_used_bits - 1;
 | |
|   // How many nibbles (hex characters) the fractional part takes up.
 | |
|   static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
 | |
|   // If the fractional part does not fit evenly into a hex character (4-bits)
 | |
|   // then we have to left-shift to get rid of leading 0s. This is the amount
 | |
|   // we have to shift (might be 0).
 | |
|   static const uint32_t num_overflow_bits =
 | |
|       fraction_nibbles * 4 - num_fraction_bits;
 | |
| 
 | |
|   // The representation of the fraction, not the actual bits. This
 | |
|   // includes the leading bit that is usually implicit.
 | |
|   static const uint_type fraction_represent_mask =
 | |
|       spvutils::SetBits<uint_type, 0,
 | |
|                         num_fraction_bits + num_overflow_bits>::get;
 | |
| 
 | |
|   // The topmost bit in the nibble-aligned fraction.
 | |
|   static const uint_type fraction_top_bit =
 | |
|       uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
 | |
| 
 | |
|   // The least significant bit in the exponent, which is also the bit
 | |
|   // immediately to the left of the significand.
 | |
|   static const uint_type first_exponent_bit = uint_type(1)
 | |
|                                               << (num_fraction_bits);
 | |
| 
 | |
|   // The mask for the encoded fraction. It does not include the
 | |
|   // implicit bit.
 | |
|   static const uint_type fraction_encode_mask =
 | |
|       spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
 | |
| 
 | |
|   // The bit that is used as a sign.
 | |
|   static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
 | |
| 
 | |
|   // The bits that represent the exponent.
 | |
|   static const uint_type exponent_mask =
 | |
|       spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
 | |
| 
 | |
|   // How far left the exponent is shifted.
 | |
|   static const uint32_t exponent_left_shift = num_fraction_bits;
 | |
| 
 | |
|   // How far from the right edge the fraction is shifted.
 | |
|   static const uint32_t fraction_right_shift =
 | |
|       static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
 | |
| 
 | |
|   // The maximum representable unbiased exponent.
 | |
|   static const int_type max_exponent =
 | |
|       (exponent_mask >> num_fraction_bits) - exponent_bias;
 | |
|   // The minimum representable exponent for normalized numbers.
 | |
|   static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
 | |
| 
 | |
|   // Returns the bits associated with the value.
 | |
|   uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
 | |
| 
 | |
|   // Returns the bits associated with the value, without the leading sign bit.
 | |
|   uint_type getUnsignedBits() const {
 | |
|     return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
 | |
|                                   ~sign_mask);
 | |
|   }
 | |
| 
 | |
|   // Returns the bits associated with the exponent, shifted to start at the
 | |
|   // lsb of the type.
 | |
|   const uint_type getExponentBits() const {
 | |
|     return static_cast<uint_type>((getBits() & exponent_mask) >>
 | |
|                                   num_fraction_bits);
 | |
|   }
 | |
| 
 | |
|   // Returns the exponent in unbiased form. This is the exponent in the
 | |
|   // human-friendly form.
 | |
|   const int_type getUnbiasedExponent() const {
 | |
|     return static_cast<int_type>(getExponentBits() - exponent_bias);
 | |
|   }
 | |
| 
 | |
|   // Returns just the significand bits from the value.
 | |
|   const uint_type getSignificandBits() const {
 | |
|     return getBits() & fraction_encode_mask;
 | |
|   }
 | |
| 
 | |
|   // If the number was normalized, returns the unbiased exponent.
 | |
|   // If the number was denormal, normalize the exponent first.
 | |
|   const int_type getUnbiasedNormalizedExponent() const {
 | |
|     if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0
 | |
|       return 0;
 | |
|     }
 | |
|     int_type exp = getUnbiasedExponent();
 | |
|     if (exp == min_exponent) {  // We are in denorm land.
 | |
|       uint_type significand_bits = getSignificandBits();
 | |
|       while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
 | |
|         significand_bits = static_cast<uint_type>(significand_bits << 1);
 | |
|         exp = static_cast<int_type>(exp - 1);
 | |
|       }
 | |
|       significand_bits &= fraction_encode_mask;
 | |
|     }
 | |
|     return exp;
 | |
|   }
 | |
| 
 | |
|   // Returns the signficand after it has been normalized.
 | |
|   const uint_type getNormalizedSignificand() const {
 | |
|     int_type unbiased_exponent = getUnbiasedNormalizedExponent();
 | |
|     uint_type significand = getSignificandBits();
 | |
|     for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
 | |
|       significand = static_cast<uint_type>(significand << 1);
 | |
|     }
 | |
|     significand &= fraction_encode_mask;
 | |
|     return significand;
 | |
|   }
 | |
| 
 | |
|   // Returns true if this number represents a negative value.
 | |
|   bool isNegative() const { return (getBits() & sign_mask) != 0; }
 | |
| 
 | |
|   // Sets this HexFloat from the individual components.
 | |
|   // Note this assumes EVERY significand is normalized, and has an implicit
 | |
|   // leading one. This means that the only way that this method will set 0,
 | |
|   // is if you set a number so denormalized that it underflows.
 | |
|   // Do not use this method with raw bits extracted from a subnormal number,
 | |
|   // since subnormals do not have an implicit leading 1 in the significand.
 | |
|   // The significand is also expected to be in the
 | |
|   // lowest-most num_fraction_bits of the uint_type.
 | |
|   // The exponent is expected to be unbiased, meaning an exponent of
 | |
|   // 0 actually means 0.
 | |
|   // If underflow_round_up is set, then on underflow, if a number is non-0
 | |
|   // and would underflow, we round up to the smallest denorm.
 | |
|   void setFromSignUnbiasedExponentAndNormalizedSignificand(
 | |
|       bool negative, int_type exponent, uint_type significand,
 | |
|       bool round_denorm_up) {
 | |
|     bool significand_is_zero = significand == 0;
 | |
| 
 | |
|     if (exponent <= min_exponent) {
 | |
|       // If this was denormalized, then we have to shift the bit on, meaning
 | |
|       // the significand is not zero.
 | |
|       significand_is_zero = false;
 | |
|       significand |= first_exponent_bit;
 | |
|       significand = static_cast<uint_type>(significand >> 1);
 | |
|     }
 | |
| 
 | |
|     while (exponent < min_exponent) {
 | |
|       significand = static_cast<uint_type>(significand >> 1);
 | |
|       ++exponent;
 | |
|     }
 | |
| 
 | |
|     if (exponent == min_exponent) {
 | |
|       if (significand == 0 && !significand_is_zero && round_denorm_up) {
 | |
|         significand = static_cast<uint_type>(0x1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     uint_type new_value = 0;
 | |
|     if (negative) {
 | |
|       new_value = static_cast<uint_type>(new_value | sign_mask);
 | |
|     }
 | |
|     exponent = static_cast<int_type>(exponent + exponent_bias);
 | |
|     assert(exponent >= 0);
 | |
| 
 | |
|     // put it all together
 | |
|     exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
 | |
|                                       exponent_mask);
 | |
|     significand = static_cast<uint_type>(significand & fraction_encode_mask);
 | |
|     new_value = static_cast<uint_type>(new_value | (exponent | significand));
 | |
|     value_ = BitwiseCast<T>(new_value);
 | |
|   }
 | |
| 
 | |
|   // Increments the significand of this number by the given amount.
 | |
|   // If this would spill the significand into the implicit bit,
 | |
|   // carry is set to true and the significand is shifted to fit into
 | |
|   // the correct location, otherwise carry is set to false.
 | |
|   // All significands and to_increment are assumed to be within the bounds
 | |
|   // for a valid significand.
 | |
|   static uint_type incrementSignificand(uint_type significand,
 | |
|                                         uint_type to_increment, bool* carry) {
 | |
|     significand = static_cast<uint_type>(significand + to_increment);
 | |
|     *carry = false;
 | |
|     if (significand & first_exponent_bit) {
 | |
|       *carry = true;
 | |
|       // The implicit 1-bit will have carried, so we should zero-out the
 | |
|       // top bit and shift back.
 | |
|       significand = static_cast<uint_type>(significand & ~first_exponent_bit);
 | |
|       significand = static_cast<uint_type>(significand >> 1);
 | |
|     }
 | |
|     return significand;
 | |
|   }
 | |
| 
 | |
|   // These exist because MSVC throws warnings on negative right-shifts
 | |
|   // even if they are not going to be executed. Eg:
 | |
|   // constant_number < 0? 0: constant_number
 | |
|   // These convert the negative left-shifts into right shifts.
 | |
| 
 | |
|   template <typename int_type>
 | |
|   uint_type negatable_left_shift(int_type N, uint_type val)
 | |
|   {
 | |
|     if(N >= 0)
 | |
|       return val << N;
 | |
| 
 | |
|     return val >> -N;
 | |
|   }
 | |
| 
 | |
|   template <typename int_type>
 | |
|   uint_type negatable_right_shift(int_type N, uint_type val)
 | |
|   {
 | |
|     if(N >= 0)
 | |
|       return val >> N;
 | |
| 
 | |
|     return val << -N;
 | |
|   }
 | |
| 
 | |
|   // Returns the significand, rounded to fit in a significand in
 | |
|   // other_T. This is shifted so that the most significant
 | |
|   // bit of the rounded number lines up with the most significant bit
 | |
|   // of the returned significand.
 | |
|   template <typename other_T>
 | |
|   typename other_T::uint_type getRoundedNormalizedSignificand(
 | |
|       round_direction dir, bool* carry_bit) {
 | |
|     typedef typename other_T::uint_type other_uint_type;
 | |
|     static const int_type num_throwaway_bits =
 | |
|         static_cast<int_type>(num_fraction_bits) -
 | |
|         static_cast<int_type>(other_T::num_fraction_bits);
 | |
| 
 | |
|     static const uint_type last_significant_bit =
 | |
|         (num_throwaway_bits < 0)
 | |
|             ? 0
 | |
|             : negatable_left_shift(num_throwaway_bits, 1u);
 | |
|     static const uint_type first_rounded_bit =
 | |
|         (num_throwaway_bits < 1)
 | |
|             ? 0
 | |
|             : negatable_left_shift(num_throwaway_bits - 1, 1u);
 | |
| 
 | |
|     static const uint_type throwaway_mask_bits =
 | |
|         num_throwaway_bits > 0 ? num_throwaway_bits : 0;
 | |
|     static const uint_type throwaway_mask =
 | |
|         spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
 | |
| 
 | |
|     *carry_bit = false;
 | |
|     other_uint_type out_val = 0;
 | |
|     uint_type significand = getNormalizedSignificand();
 | |
|     // If we are up-casting, then we just have to shift to the right location.
 | |
|     if (num_throwaway_bits <= 0) {
 | |
|       out_val = static_cast<other_uint_type>(significand);
 | |
|       uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
 | |
|       out_val = static_cast<other_uint_type>(out_val << shift_amount);
 | |
|       return out_val;
 | |
|     }
 | |
| 
 | |
|     // If every non-representable bit is 0, then we don't have any casting to
 | |
|     // do.
 | |
|     if ((significand & throwaway_mask) == 0) {
 | |
|       return static_cast<other_uint_type>(
 | |
|           negatable_right_shift(num_throwaway_bits, significand));
 | |
|     }
 | |
| 
 | |
|     bool round_away_from_zero = false;
 | |
|     // We actually have to narrow the significand here, so we have to follow the
 | |
|     // rounding rules.
 | |
|     switch (dir) {
 | |
|       case kRoundToZero:
 | |
|         break;
 | |
|       case kRoundToPositiveInfinity:
 | |
|         round_away_from_zero = !isNegative();
 | |
|         break;
 | |
|       case kRoundToNegativeInfinity:
 | |
|         round_away_from_zero = isNegative();
 | |
|         break;
 | |
|       case kRoundToNearestEven:
 | |
|         // Have to round down, round bit is 0
 | |
|         if ((first_rounded_bit & significand) == 0) {
 | |
|           break;
 | |
|         }
 | |
|         if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
 | |
|           // If any subsequent bit of the rounded portion is non-0 then we round
 | |
|           // up.
 | |
|           round_away_from_zero = true;
 | |
|           break;
 | |
|         }
 | |
|         // We are exactly half-way between 2 numbers, pick even.
 | |
|         if ((significand & last_significant_bit) != 0) {
 | |
|           // 1 for our last bit, round up.
 | |
|           round_away_from_zero = true;
 | |
|           break;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (round_away_from_zero) {
 | |
|       return static_cast<other_uint_type>(
 | |
|           negatable_right_shift(num_throwaway_bits, incrementSignificand(
 | |
|               significand, last_significant_bit, carry_bit)));
 | |
|     } else {
 | |
|       return static_cast<other_uint_type>(
 | |
|           negatable_right_shift(num_throwaway_bits, significand));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Casts this value to another HexFloat. If the cast is widening,
 | |
|   // then round_dir is ignored. If the cast is narrowing, then
 | |
|   // the result is rounded in the direction specified.
 | |
|   // This number will retain Nan and Inf values.
 | |
|   // It will also saturate to Inf if the number overflows, and
 | |
|   // underflow to (0 or min depending on rounding) if the number underflows.
 | |
|   template <typename other_T>
 | |
|   void castTo(other_T& other, round_direction round_dir) {
 | |
|     other = other_T(static_cast<typename other_T::native_type>(0));
 | |
|     bool negate = isNegative();
 | |
|     if (getUnsignedBits() == 0) {
 | |
|       if (negate) {
 | |
|         other.set_value(-other.value());
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     uint_type significand = getSignificandBits();
 | |
|     bool carried = false;
 | |
|     typename other_T::uint_type rounded_significand =
 | |
|         getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
 | |
| 
 | |
|     int_type exponent = getUnbiasedExponent();
 | |
|     if (exponent == min_exponent) {
 | |
|       // If we are denormal, normalize the exponent, so that we can encode
 | |
|       // easily.
 | |
|       exponent = static_cast<int_type>(exponent + 1);
 | |
|       for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
 | |
|            check_bit = static_cast<uint_type>(check_bit >> 1)) {
 | |
|         exponent = static_cast<int_type>(exponent - 1);
 | |
|         if (check_bit & significand) break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool is_nan =
 | |
|         (getBits() & exponent_mask) == exponent_mask && significand != 0;
 | |
|     bool is_inf =
 | |
|         !is_nan &&
 | |
|         ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
 | |
|          (significand == 0 && (getBits() & exponent_mask) == exponent_mask));
 | |
| 
 | |
|     // If we are Nan or Inf we should pass that through.
 | |
|     if (is_inf) {
 | |
|       other.set_value(BitwiseCast<typename other_T::underlying_type>(
 | |
|           static_cast<typename other_T::uint_type>(
 | |
|               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
 | |
|       return;
 | |
|     }
 | |
|     if (is_nan) {
 | |
|       typename other_T::uint_type shifted_significand;
 | |
|       shifted_significand = static_cast<typename other_T::uint_type>(
 | |
|           negatable_left_shift(
 | |
|               static_cast<int_type>(other_T::num_fraction_bits) -
 | |
|               static_cast<int_type>(num_fraction_bits), significand));
 | |
| 
 | |
|       // We are some sort of Nan. We try to keep the bit-pattern of the Nan
 | |
|       // as close as possible. If we had to shift off bits so we are 0, then we
 | |
|       // just set the last bit.
 | |
|       other.set_value(BitwiseCast<typename other_T::underlying_type>(
 | |
|           static_cast<typename other_T::uint_type>(
 | |
|               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
 | |
|               (shifted_significand == 0 ? 0x1 : shifted_significand))));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     bool round_underflow_up =
 | |
|         isNegative() ? round_dir == kRoundToNegativeInfinity
 | |
|                      : round_dir == kRoundToPositiveInfinity;
 | |
|     typedef typename other_T::int_type other_int_type;
 | |
|     // setFromSignUnbiasedExponentAndNormalizedSignificand will
 | |
|     // zero out any underflowing value (but retain the sign).
 | |
|     other.setFromSignUnbiasedExponentAndNormalizedSignificand(
 | |
|         negate, static_cast<other_int_type>(exponent), rounded_significand,
 | |
|         round_underflow_up);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   T value_;
 | |
| 
 | |
|   static_assert(num_used_bits ==
 | |
|                     Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
 | |
|                 "The number of bits do not fit");
 | |
|   static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
 | |
| };
 | |
| 
 | |
| // Returns 4 bits represented by the hex character.
 | |
| inline uint8_t get_nibble_from_character(int character) {
 | |
|   const char* dec = "0123456789";
 | |
|   const char* lower = "abcdef";
 | |
|   const char* upper = "ABCDEF";
 | |
|   const char* p = nullptr;
 | |
|   if ((p = strchr(dec, character))) {
 | |
|     return static_cast<uint8_t>(p - dec);
 | |
|   } else if ((p = strchr(lower, character))) {
 | |
|     return static_cast<uint8_t>(p - lower + 0xa);
 | |
|   } else if ((p = strchr(upper, character))) {
 | |
|     return static_cast<uint8_t>(p - upper + 0xa);
 | |
|   }
 | |
| 
 | |
|   assert(false && "This was called with a non-hex character");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Outputs the given HexFloat to the stream.
 | |
| template <typename T, typename Traits>
 | |
| std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
 | |
|   typedef HexFloat<T, Traits> HF;
 | |
|   typedef typename HF::uint_type uint_type;
 | |
|   typedef typename HF::int_type int_type;
 | |
| 
 | |
|   static_assert(HF::num_used_bits != 0,
 | |
|                 "num_used_bits must be non-zero for a valid float");
 | |
|   static_assert(HF::num_exponent_bits != 0,
 | |
|                 "num_exponent_bits must be non-zero for a valid float");
 | |
|   static_assert(HF::num_fraction_bits != 0,
 | |
|                 "num_fractin_bits must be non-zero for a valid float");
 | |
| 
 | |
|   const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
 | |
|   const char* const sign = (bits & HF::sign_mask) ? "-" : "";
 | |
|   const uint_type exponent = static_cast<uint_type>(
 | |
|       (bits & HF::exponent_mask) >> HF::num_fraction_bits);
 | |
| 
 | |
|   uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
 | |
|                                               << HF::num_overflow_bits);
 | |
| 
 | |
|   const bool is_zero = exponent == 0 && fraction == 0;
 | |
|   const bool is_denorm = exponent == 0 && !is_zero;
 | |
| 
 | |
|   // exponent contains the biased exponent we have to convert it back into
 | |
|   // the normal range.
 | |
|   int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
 | |
|   // If the number is all zeros, then we actually have to NOT shift the
 | |
|   // exponent.
 | |
|   int_exponent = is_zero ? 0 : int_exponent;
 | |
| 
 | |
|   // If we are denorm, then start shifting, and decreasing the exponent until
 | |
|   // our leading bit is 1.
 | |
| 
 | |
|   if (is_denorm) {
 | |
|     while ((fraction & HF::fraction_top_bit) == 0) {
 | |
|       fraction = static_cast<uint_type>(fraction << 1);
 | |
|       int_exponent = static_cast<int_type>(int_exponent - 1);
 | |
|     }
 | |
|     // Since this is denormalized, we have to consume the leading 1 since it
 | |
|     // will end up being implicit.
 | |
|     fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1
 | |
|     fraction &= HF::fraction_represent_mask;
 | |
|   }
 | |
| 
 | |
|   uint_type fraction_nibbles = HF::fraction_nibbles;
 | |
|   // We do not have to display any trailing 0s, since this represents the
 | |
|   // fractional part.
 | |
|   while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
 | |
|     // Shift off any trailing values;
 | |
|     fraction = static_cast<uint_type>(fraction >> 4);
 | |
|     --fraction_nibbles;
 | |
|   }
 | |
| 
 | |
|   const auto saved_flags = os.flags();
 | |
|   const auto saved_fill = os.fill();
 | |
| 
 | |
|   os << sign << "0x" << (is_zero ? '0' : '1');
 | |
|   if (fraction_nibbles) {
 | |
|     // Make sure to keep the leading 0s in place, since this is the fractional
 | |
|     // part.
 | |
|     os << "." << std::setw(static_cast<int>(fraction_nibbles))
 | |
|        << std::setfill('0') << std::hex << fraction;
 | |
|   }
 | |
|   os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
 | |
| 
 | |
|   os.flags(saved_flags);
 | |
|   os.fill(saved_fill);
 | |
| 
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| // Returns true if negate_value is true and the next character on the
 | |
| // input stream is a plus or minus sign.  In that case we also set the fail bit
 | |
| // on the stream and set the value to the zero value for its type.
 | |
| template <typename T, typename Traits>
 | |
| inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
 | |
|                                         HexFloat<T, Traits>& value) {
 | |
|   if (negate_value) {
 | |
|     auto next_char = is.peek();
 | |
|     if (next_char == '-' || next_char == '+') {
 | |
|       // Fail the parse.  Emulate standard behaviour by setting the value to
 | |
|       // the zero value, and set the fail bit on the stream.
 | |
|       value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
 | |
|       is.setstate(std::ios_base::failbit);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Parses a floating point number from the given stream and stores it into the
 | |
| // value parameter.
 | |
| // If negate_value is true then the number may not have a leading minus or
 | |
| // plus, and if it successfully parses, then the number is negated before
 | |
| // being stored into the value parameter.
 | |
| // If the value cannot be correctly parsed or overflows the target floating
 | |
| // point type, then set the fail bit on the stream.
 | |
| // TODO(dneto): Promise C++11 standard behavior in how the value is set in
 | |
| // the error case, but only after all target platforms implement it correctly.
 | |
| // In particular, the Microsoft C++ runtime appears to be out of spec.
 | |
| template <typename T, typename Traits>
 | |
| inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
 | |
|                                       HexFloat<T, Traits>& value) {
 | |
|   if (RejectParseDueToLeadingSign(is, negate_value, value)) {
 | |
|     return is;
 | |
|   }
 | |
|   T val;
 | |
|   is >> val;
 | |
|   if (negate_value) {
 | |
|     val = -val;
 | |
|   }
 | |
|   value.set_value(val);
 | |
|   // In the failure case, map -0.0 to 0.0.
 | |
|   if (is.fail() && value.getUnsignedBits() == 0u) {
 | |
|     value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
 | |
|   }
 | |
|   if (val.isInfinity()) {
 | |
|     // Fail the parse.  Emulate standard behaviour by setting the value to
 | |
|     // the closest normal value, and set the fail bit on the stream.
 | |
|     value.set_value((value.isNegative() || negate_value) ? T::lowest()
 | |
|                                                          : T::max());
 | |
|     is.setstate(std::ios_base::failbit);
 | |
|   }
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| // Specialization of ParseNormalFloat for FloatProxy<Float16> values.
 | |
| // This will parse the float as it were a 32-bit floating point number,
 | |
| // and then round it down to fit into a Float16 value.
 | |
| // The number is rounded towards zero.
 | |
| // If negate_value is true then the number may not have a leading minus or
 | |
| // plus, and if it successfully parses, then the number is negated before
 | |
| // being stored into the value parameter.
 | |
| // If the value cannot be correctly parsed or overflows the target floating
 | |
| // point type, then set the fail bit on the stream.
 | |
| // TODO(dneto): Promise C++11 standard behavior in how the value is set in
 | |
| // the error case, but only after all target platforms implement it correctly.
 | |
| // In particular, the Microsoft C++ runtime appears to be out of spec.
 | |
| template <>
 | |
| inline std::istream&
 | |
| ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
 | |
|     std::istream& is, bool negate_value,
 | |
|     HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
 | |
|   // First parse as a 32-bit float.
 | |
|   HexFloat<FloatProxy<float>> float_val(0.0f);
 | |
|   ParseNormalFloat(is, negate_value, float_val);
 | |
| 
 | |
|   // Then convert to 16-bit float, saturating at infinities, and
 | |
|   // rounding toward zero.
 | |
|   float_val.castTo(value, kRoundToZero);
 | |
| 
 | |
|   // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
 | |
|   // fail bit and set the lowest or highest value.
 | |
|   if (Float16::isInfinity(value.value().getAsFloat())) {
 | |
|     value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
 | |
|     is.setstate(std::ios_base::failbit);
 | |
|   }
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| // Reads a HexFloat from the given stream.
 | |
| // If the float is not encoded as a hex-float then it will be parsed
 | |
| // as a regular float.
 | |
| // This may fail if your stream does not support at least one unget.
 | |
| // Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
 | |
| // This would normally overflow a float and round to
 | |
| // infinity but this special pattern is the exact representation for a NaN,
 | |
| // and therefore is actually encoded as the correct NaN. To encode inf,
 | |
| // either 0x0p+exponent_bias can be specified or any exponent greater than
 | |
| // exponent_bias.
 | |
| // Examples using IEEE 32-bit float encoding.
 | |
| //    0x1.0p+128 (+inf)
 | |
| //    -0x1.0p-128 (-inf)
 | |
| //
 | |
| //    0x1.1p+128 (+Nan)
 | |
| //    -0x1.1p+128 (-Nan)
 | |
| //
 | |
| //    0x1p+129 (+inf)
 | |
| //    -0x1p+129 (-inf)
 | |
| template <typename T, typename Traits>
 | |
| std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
 | |
|   using HF = HexFloat<T, Traits>;
 | |
|   using uint_type = typename HF::uint_type;
 | |
|   using int_type = typename HF::int_type;
 | |
| 
 | |
|   value.set_value(static_cast<typename HF::native_type>(0.f));
 | |
| 
 | |
|   if (is.flags() & std::ios::skipws) {
 | |
|     // If the user wants to skip whitespace , then we should obey that.
 | |
|     while (std::isspace(is.peek())) {
 | |
|       is.get();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto next_char = is.peek();
 | |
|   bool negate_value = false;
 | |
| 
 | |
|   if (next_char != '-' && next_char != '0') {
 | |
|     return ParseNormalFloat(is, negate_value, value);
 | |
|   }
 | |
| 
 | |
|   if (next_char == '-') {
 | |
|     negate_value = true;
 | |
|     is.get();
 | |
|     next_char = is.peek();
 | |
|   }
 | |
| 
 | |
|   if (next_char == '0') {
 | |
|     is.get();  // We may have to unget this.
 | |
|     auto maybe_hex_start = is.peek();
 | |
|     if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
 | |
|       is.unget();
 | |
|       return ParseNormalFloat(is, negate_value, value);
 | |
|     } else {
 | |
|       is.get();  // Throw away the 'x';
 | |
|     }
 | |
|   } else {
 | |
|     return ParseNormalFloat(is, negate_value, value);
 | |
|   }
 | |
| 
 | |
|   // This "looks" like a hex-float so treat it as one.
 | |
|   bool seen_p = false;
 | |
|   bool seen_dot = false;
 | |
|   uint_type fraction_index = 0;
 | |
| 
 | |
|   uint_type fraction = 0;
 | |
|   int_type exponent = HF::exponent_bias;
 | |
| 
 | |
|   // Strip off leading zeros so we don't have to special-case them later.
 | |
|   while ((next_char = is.peek()) == '0') {
 | |
|     is.get();
 | |
|   }
 | |
| 
 | |
|   bool is_denorm =
 | |
|       true;  // Assume denorm "representation" until we hear otherwise.
 | |
|              // NB: This does not mean the value is actually denorm,
 | |
|              // it just means that it was written 0.
 | |
|   bool bits_written = false;  // Stays false until we write a bit.
 | |
|   while (!seen_p && !seen_dot) {
 | |
|     // Handle characters that are left of the fractional part.
 | |
|     if (next_char == '.') {
 | |
|       seen_dot = true;
 | |
|     } else if (next_char == 'p') {
 | |
|       seen_p = true;
 | |
|     } else if (::isxdigit(next_char)) {
 | |
|       // We know this is not denormalized since we have stripped all leading
 | |
|       // zeroes and we are not a ".".
 | |
|       is_denorm = false;
 | |
|       int number = get_nibble_from_character(next_char);
 | |
|       for (int i = 0; i < 4; ++i, number <<= 1) {
 | |
|         uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
 | |
|         if (bits_written) {
 | |
|           // If we are here the bits represented belong in the fractional
 | |
|           // part of the float, and we have to adjust the exponent accordingly.
 | |
|           fraction = static_cast<uint_type>(
 | |
|               fraction |
 | |
|               static_cast<uint_type>(
 | |
|                   write_bit << (HF::top_bit_left_shift - fraction_index++)));
 | |
|           exponent = static_cast<int_type>(exponent + 1);
 | |
|         }
 | |
|         bits_written |= write_bit != 0;
 | |
|       }
 | |
|     } else {
 | |
|       // We have not found our exponent yet, so we have to fail.
 | |
|       is.setstate(std::ios::failbit);
 | |
|       return is;
 | |
|     }
 | |
|     is.get();
 | |
|     next_char = is.peek();
 | |
|   }
 | |
|   bits_written = false;
 | |
|   while (seen_dot && !seen_p) {
 | |
|     // Handle only fractional parts now.
 | |
|     if (next_char == 'p') {
 | |
|       seen_p = true;
 | |
|     } else if (::isxdigit(next_char)) {
 | |
|       int number = get_nibble_from_character(next_char);
 | |
|       for (int i = 0; i < 4; ++i, number <<= 1) {
 | |
|         uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
 | |
|         bits_written |= write_bit != 0;
 | |
|         if (is_denorm && !bits_written) {
 | |
|           // Handle modifying the exponent here this way we can handle
 | |
|           // an arbitrary number of hex values without overflowing our
 | |
|           // integer.
 | |
|           exponent = static_cast<int_type>(exponent - 1);
 | |
|         } else {
 | |
|           fraction = static_cast<uint_type>(
 | |
|               fraction |
 | |
|               static_cast<uint_type>(
 | |
|                   write_bit << (HF::top_bit_left_shift - fraction_index++)));
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // We still have not found our 'p' exponent yet, so this is not a valid
 | |
|       // hex-float.
 | |
|       is.setstate(std::ios::failbit);
 | |
|       return is;
 | |
|     }
 | |
|     is.get();
 | |
|     next_char = is.peek();
 | |
|   }
 | |
| 
 | |
|   bool seen_sign = false;
 | |
|   int8_t exponent_sign = 1;
 | |
|   int_type written_exponent = 0;
 | |
|   while (true) {
 | |
|     if ((next_char == '-' || next_char == '+')) {
 | |
|       if (seen_sign) {
 | |
|         is.setstate(std::ios::failbit);
 | |
|         return is;
 | |
|       }
 | |
|       seen_sign = true;
 | |
|       exponent_sign = (next_char == '-') ? -1 : 1;
 | |
|     } else if (::isdigit(next_char)) {
 | |
|       // Hex-floats express their exponent as decimal.
 | |
|       written_exponent = static_cast<int_type>(written_exponent * 10);
 | |
|       written_exponent =
 | |
|           static_cast<int_type>(written_exponent + (next_char - '0'));
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     is.get();
 | |
|     next_char = is.peek();
 | |
|   }
 | |
| 
 | |
|   written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
 | |
|   exponent = static_cast<int_type>(exponent + written_exponent);
 | |
| 
 | |
|   bool is_zero = is_denorm && (fraction == 0);
 | |
|   if (is_denorm && !is_zero) {
 | |
|     fraction = static_cast<uint_type>(fraction << 1);
 | |
|     exponent = static_cast<int_type>(exponent - 1);
 | |
|   } else if (is_zero) {
 | |
|     exponent = 0;
 | |
|   }
 | |
| 
 | |
|   if (exponent <= 0 && !is_zero) {
 | |
|     fraction = static_cast<uint_type>(fraction >> 1);
 | |
|     fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
 | |
|   }
 | |
| 
 | |
|   fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
 | |
| 
 | |
|   const int_type max_exponent =
 | |
|       SetBits<uint_type, 0, HF::num_exponent_bits>::get;
 | |
| 
 | |
|   // Handle actual denorm numbers
 | |
|   while (exponent < 0 && !is_zero) {
 | |
|     fraction = static_cast<uint_type>(fraction >> 1);
 | |
|     exponent = static_cast<int_type>(exponent + 1);
 | |
| 
 | |
|     fraction &= HF::fraction_encode_mask;
 | |
|     if (fraction == 0) {
 | |
|       // We have underflowed our fraction. We should clamp to zero.
 | |
|       is_zero = true;
 | |
|       exponent = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have overflowed so we should be inf/-inf.
 | |
|   if (exponent > max_exponent) {
 | |
|     exponent = max_exponent;
 | |
|     fraction = 0;
 | |
|   }
 | |
| 
 | |
|   uint_type output_bits = static_cast<uint_type>(
 | |
|       static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
 | |
|   output_bits |= fraction;
 | |
| 
 | |
|   uint_type shifted_exponent = static_cast<uint_type>(
 | |
|       static_cast<uint_type>(exponent << HF::exponent_left_shift) &
 | |
|       HF::exponent_mask);
 | |
|   output_bits |= shifted_exponent;
 | |
| 
 | |
|   T output_float = spvutils::BitwiseCast<T>(output_bits);
 | |
|   value.set_value(output_float);
 | |
| 
 | |
|   return is;
 | |
| }
 | |
| 
 | |
| // Writes a FloatProxy value to a stream.
 | |
| // Zero and normal numbers are printed in the usual notation, but with
 | |
| // enough digits to fully reproduce the value.  Other values (subnormal,
 | |
| // NaN, and infinity) are printed as a hex float.
 | |
| template <typename T>
 | |
| std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
 | |
|   auto float_val = value.getAsFloat();
 | |
|   switch (std::fpclassify(float_val)) {
 | |
|     case FP_ZERO:
 | |
|     case FP_NORMAL: {
 | |
|       auto saved_precision = os.precision();
 | |
|       os.precision(std::numeric_limits<T>::digits10);
 | |
|       os << float_val;
 | |
|       os.precision(saved_precision);
 | |
|     } break;
 | |
|     default:
 | |
|       os << HexFloat<FloatProxy<T>>(value);
 | |
|       break;
 | |
|   }
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline std::ostream& operator<<<Float16>(std::ostream& os,
 | |
|                                          const FloatProxy<Float16>& value) {
 | |
|   os << HexFloat<FloatProxy<Float16>>(value);
 | |
|   return os;
 | |
| }
 | |
| }
 | |
| 
 | |
| #endif  // LIBSPIRV_UTIL_HEX_FLOAT_H_
 | 
