2204 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2204 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| //Copyright (C) 2014 LunarG, Inc.
 | |
| //
 | |
| //All rights reserved.
 | |
| //
 | |
| //Redistribution and use in source and binary forms, with or without
 | |
| //modification, are permitted provided that the following conditions
 | |
| //are met:
 | |
| //
 | |
| //    Redistributions of source code must retain the above copyright
 | |
| //    notice, this list of conditions and the following disclaimer.
 | |
| //
 | |
| //    Redistributions in binary form must reproduce the above
 | |
| //    copyright notice, this list of conditions and the following
 | |
| //    disclaimer in the documentation and/or other materials provided
 | |
| //    with the distribution.
 | |
| //
 | |
| //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
 | |
| //    contributors may be used to endorse or promote products derived
 | |
| //    from this software without specific prior written permission.
 | |
| //
 | |
| //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | |
| //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | |
| //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
| //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
| //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
| //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
| //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | |
| //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| //POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| //
 | |
| // Author: John Kessenich, LunarG
 | |
| //
 | |
| 
 | |
| //
 | |
| // Helper for making SPIR-V IR.  Generally, this is documented in the header
 | |
| // SpvBuilder.h.
 | |
| //
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include <unordered_set>
 | |
| 
 | |
| #include "SpvBuilder.h"
 | |
| 
 | |
| #ifndef _WIN32
 | |
|     #include <cstdio>
 | |
| #endif
 | |
| 
 | |
| namespace spv {
 | |
| 
 | |
| const int SpvBuilderMagic = 0xBB;
 | |
| 
 | |
| Builder::Builder(unsigned int userNumber) :
 | |
|     source(SourceLanguageUnknown),
 | |
|     sourceVersion(0),
 | |
|     addressModel(AddressingModelLogical),
 | |
|     memoryModel(MemoryModelGLSL450),
 | |
|     builderNumber(userNumber << 16 | SpvBuilderMagic),
 | |
|     buildPoint(0),
 | |
|     uniqueId(0),
 | |
|     mainFunction(0),
 | |
|     stageExit(0)
 | |
| {
 | |
|     clearAccessChain();
 | |
| }
 | |
| 
 | |
| Builder::~Builder()
 | |
| {
 | |
| }
 | |
| 
 | |
| Id Builder::import(const char* name)
 | |
| {
 | |
|     Instruction* import = new Instruction(getUniqueId(), NoType, OpExtInstImport);
 | |
|     import->addStringOperand(name);
 | |
|     
 | |
|     imports.push_back(import);
 | |
|     return import->getResultId();
 | |
| }
 | |
| 
 | |
| // For creating new groupedTypes (will return old type if the requested one was already made).
 | |
| Id Builder::makeVoidType()
 | |
| {
 | |
|     Instruction* type;
 | |
|     if (groupedTypes[OpTypeVoid].size() == 0) {
 | |
|         type = new Instruction(getUniqueId(), NoType, OpTypeVoid);
 | |
|         groupedTypes[OpTypeVoid].push_back(type);
 | |
|         constantsTypesGlobals.push_back(type);
 | |
|         module.mapInstruction(type);
 | |
|     } else
 | |
|         type = groupedTypes[OpTypeVoid].back();
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeBoolType()
 | |
| {
 | |
|     Instruction* type;
 | |
|     if (groupedTypes[OpTypeBool].size() == 0) {
 | |
|         type = new Instruction(getUniqueId(), NoType, OpTypeBool);
 | |
|         groupedTypes[OpTypeBool].push_back(type);
 | |
|         constantsTypesGlobals.push_back(type);
 | |
|         module.mapInstruction(type);
 | |
|     } else
 | |
|         type = groupedTypes[OpTypeBool].back();
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makePointer(StorageClass storageClass, Id pointee)
 | |
| {
 | |
|     // try to find it
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
 | |
|         type = groupedTypes[OpTypePointer][t];
 | |
|         if (type->getImmediateOperand(0) == (unsigned)storageClass &&
 | |
|             type->getIdOperand(1) == pointee)
 | |
|             return type->getResultId();
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypePointer);
 | |
|     type->addImmediateOperand(storageClass);
 | |
|     type->addIdOperand(pointee);
 | |
|     groupedTypes[OpTypePointer].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeIntegerType(int width, bool hasSign)
 | |
| {
 | |
|     // try to find it
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypeInt].size(); ++t) {
 | |
|         type = groupedTypes[OpTypeInt][t];
 | |
|         if (type->getImmediateOperand(0) == (unsigned)width &&
 | |
|             type->getImmediateOperand(1) == (hasSign ? 1u : 0u))
 | |
|             return type->getResultId();
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypeInt);
 | |
|     type->addImmediateOperand(width);
 | |
|     type->addImmediateOperand(hasSign ? 1 : 0);
 | |
|     groupedTypes[OpTypeInt].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeFloatType(int width)
 | |
| {
 | |
|     // try to find it
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypeFloat].size(); ++t) {
 | |
|         type = groupedTypes[OpTypeFloat][t];
 | |
|         if (type->getImmediateOperand(0) == (unsigned)width)
 | |
|             return type->getResultId();
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypeFloat);
 | |
|     type->addImmediateOperand(width);
 | |
|     groupedTypes[OpTypeFloat].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeStructType(std::vector<Id>& members, const char* name)
 | |
| {
 | |
|     // not found, make it
 | |
|     Instruction* type = new Instruction(getUniqueId(), NoType, OpTypeStruct);
 | |
|     for (int op = 0; op < (int)members.size(); ++op)
 | |
|         type->addIdOperand(members[op]);
 | |
|     groupedTypes[OpTypeStruct].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
|     addName(type->getResultId(), name);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeVectorType(Id component, int size)
 | |
| {
 | |
|     // try to find it
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypeVector].size(); ++t) {
 | |
|         type = groupedTypes[OpTypeVector][t];
 | |
|         if (type->getIdOperand(0) == component &&
 | |
|             type->getImmediateOperand(1) == (unsigned)size)
 | |
|             return type->getResultId();
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypeVector);
 | |
|     type->addIdOperand(component);
 | |
|     type->addImmediateOperand(size);
 | |
|     groupedTypes[OpTypeVector].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeMatrixType(Id component, int cols, int rows)
 | |
| {
 | |
|     assert(cols <= maxMatrixSize && rows <= maxMatrixSize);
 | |
| 
 | |
|     Id column = makeVectorType(component, rows);
 | |
| 
 | |
|     // try to find it
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypeMatrix].size(); ++t) {
 | |
|         type = groupedTypes[OpTypeMatrix][t];
 | |
|         if (type->getIdOperand(0) == column &&
 | |
|             type->getImmediateOperand(1) == (unsigned)cols)
 | |
|             return type->getResultId();
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypeMatrix);
 | |
|     type->addIdOperand(column);
 | |
|     type->addImmediateOperand(cols);
 | |
|     groupedTypes[OpTypeMatrix].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeArrayType(Id element, unsigned size)
 | |
| {
 | |
|     // First, we need a constant instruction for the size
 | |
|     Id sizeId = makeUintConstant(size);
 | |
| 
 | |
|     // try to find existing type
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypeArray].size(); ++t) {
 | |
|         type = groupedTypes[OpTypeArray][t];
 | |
|         if (type->getIdOperand(0) == element &&
 | |
|             type->getIdOperand(1) == sizeId)
 | |
|             return type->getResultId();
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypeArray);
 | |
|     type->addIdOperand(element);
 | |
|     type->addIdOperand(sizeId);
 | |
|     groupedTypes[OpTypeArray].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeFunctionType(Id returnType, std::vector<Id>& paramTypes)
 | |
| {
 | |
|     // try to find it
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypeFunction].size(); ++t) {
 | |
|         type = groupedTypes[OpTypeFunction][t];
 | |
|         if (type->getIdOperand(0) != returnType || (int)paramTypes.size() != type->getNumOperands() - 1)
 | |
|             continue;
 | |
|         bool mismatch = false;
 | |
|         for (int p = 0; p < (int)paramTypes.size(); ++p) {
 | |
|             if (paramTypes[p] != type->getIdOperand(p + 1)) {
 | |
|                 mismatch = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (! mismatch)
 | |
|             return type->getResultId();            
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypeFunction);
 | |
|     type->addIdOperand(returnType);
 | |
|     for (int p = 0; p < (int)paramTypes.size(); ++p)
 | |
|         type->addIdOperand(paramTypes[p]);
 | |
|     groupedTypes[OpTypeFunction].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeSampler(Id sampledType, Dim dim, samplerContent content, bool arrayed, bool shadow, bool ms)
 | |
| {
 | |
|     // try to find it
 | |
|     Instruction* type;
 | |
|     for (int t = 0; t < (int)groupedTypes[OpTypeSampler].size(); ++t) {
 | |
|         type = groupedTypes[OpTypeSampler][t];
 | |
|         if (type->getIdOperand(0) == sampledType &&
 | |
|             type->getImmediateOperand(1) == (unsigned int)dim &&
 | |
|             type->getImmediateOperand(2) == (unsigned int)content &&
 | |
|             type->getImmediateOperand(3) == (arrayed ? 1u : 0u) &&
 | |
|             type->getImmediateOperand(4) == ( shadow ? 1u : 0u) &&
 | |
|             type->getImmediateOperand(5) == (     ms ? 1u : 0u))
 | |
|             return type->getResultId();
 | |
|     }
 | |
| 
 | |
|     // not found, make it
 | |
|     type = new Instruction(getUniqueId(), NoType, OpTypeSampler);
 | |
|     type->addIdOperand(sampledType);
 | |
|     type->addImmediateOperand(   dim);
 | |
|     type->addImmediateOperand(content);
 | |
|     type->addImmediateOperand(arrayed ? 1 : 0);
 | |
|     type->addImmediateOperand( shadow ? 1 : 0);
 | |
|     type->addImmediateOperand(     ms ? 1 : 0);
 | |
| 
 | |
|     groupedTypes[OpTypeSampler].push_back(type);
 | |
|     constantsTypesGlobals.push_back(type);
 | |
|     module.mapInstruction(type);
 | |
| 
 | |
|     return type->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::getDerefTypeId(Id resultId) const
 | |
| {
 | |
|     Id typeId = getTypeId(resultId);
 | |
|     assert(isPointerType(typeId));
 | |
| 
 | |
|     return module.getInstruction(typeId)->getImmediateOperand(1);
 | |
| }
 | |
| 
 | |
| Op Builder::getMostBasicTypeClass(Id typeId) const
 | |
| {
 | |
|     Instruction* instr = module.getInstruction(typeId);
 | |
| 
 | |
|     Op typeClass = instr->getOpCode();
 | |
|     switch (typeClass)
 | |
|     {
 | |
|     case OpTypeVoid:
 | |
|     case OpTypeBool:
 | |
|     case OpTypeInt:
 | |
|     case OpTypeFloat:
 | |
|     case OpTypeStruct:
 | |
|         return typeClass;
 | |
|     case OpTypeVector:
 | |
|     case OpTypeMatrix:
 | |
|     case OpTypeArray:
 | |
|     case OpTypeRuntimeArray:
 | |
|         return getMostBasicTypeClass(instr->getIdOperand(0));
 | |
|     case OpTypePointer:
 | |
|         return getMostBasicTypeClass(instr->getIdOperand(1));
 | |
|     default:
 | |
|         MissingFunctionality("getMostBasicTypeClass");
 | |
|         return OpTypeFloat;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int Builder::getNumTypeComponents(Id typeId) const
 | |
| {
 | |
|     Instruction* instr = module.getInstruction(typeId);
 | |
| 
 | |
|     switch (instr->getOpCode())
 | |
|     {
 | |
|     case OpTypeBool:
 | |
|     case OpTypeInt:
 | |
|     case OpTypeFloat:
 | |
|         return 1;
 | |
|     case OpTypeVector:
 | |
|     case OpTypeMatrix:
 | |
|         return instr->getImmediateOperand(1);
 | |
|     default:
 | |
|         MissingFunctionality("getNumTypeComponents on non bool/int/float/vector/matrix");
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Return the lowest-level type of scalar that an homogeneous composite is made out of.
 | |
| // Typically, this is just to find out if something is made out of ints or floats.
 | |
| // However, it includes returning a structure, if say, it is an array of structure.
 | |
| Id Builder::getScalarTypeId(Id typeId) const
 | |
| {
 | |
|     Instruction* instr = module.getInstruction(typeId);
 | |
| 
 | |
|     Op typeClass = instr->getOpCode();
 | |
|     switch (typeClass)
 | |
|     {
 | |
|     case OpTypeVoid:
 | |
|     case OpTypeBool:
 | |
|     case OpTypeInt:
 | |
|     case OpTypeFloat:
 | |
|     case OpTypeStruct:
 | |
|         return instr->getResultId();
 | |
|     case OpTypeVector:
 | |
|     case OpTypeMatrix:
 | |
|     case OpTypeArray:
 | |
|     case OpTypeRuntimeArray:
 | |
|     case OpTypePointer:
 | |
|         return getScalarTypeId(getContainedTypeId(typeId));
 | |
|     default:
 | |
|         MissingFunctionality("getScalarTypeId");
 | |
|         return NoResult;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Return the type of 'member' of a composite.
 | |
| Id Builder::getContainedTypeId(Id typeId, int member) const
 | |
| {
 | |
|     Instruction* instr = module.getInstruction(typeId);
 | |
| 
 | |
|     Op typeClass = instr->getOpCode();
 | |
|     switch (typeClass)
 | |
|     {
 | |
|     case OpTypeVector:
 | |
|     case OpTypeMatrix:
 | |
|     case OpTypeArray:
 | |
|     case OpTypeRuntimeArray:
 | |
|         return instr->getIdOperand(0);
 | |
|     case OpTypePointer:
 | |
|         return instr->getIdOperand(1);
 | |
|     case OpTypeStruct:
 | |
|         return instr->getIdOperand(member);
 | |
|     default:
 | |
|         MissingFunctionality("getContainedTypeId");
 | |
|         return NoResult;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Return the immediately contained type of a given composite type.
 | |
| Id Builder::getContainedTypeId(Id typeId) const
 | |
| {
 | |
|     return getContainedTypeId(typeId, 0);
 | |
| }
 | |
| 
 | |
| // See if a scalar constant of this type has already been created, so it
 | |
| // can be reused rather than duplicated.  (Required by the specification).
 | |
| Id Builder::findScalarConstant(Op typeClass, Id typeId, unsigned value) const
 | |
| {
 | |
|     Instruction* constant;
 | |
|     for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
 | |
|         constant = groupedConstants[typeClass][i];
 | |
|         if (constant->getNumOperands() == 1 &&
 | |
|             constant->getTypeId() == typeId &&
 | |
|             constant->getImmediateOperand(0) == value)
 | |
|             return constant->getResultId();
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Version of findScalarConstant (see above) for scalars that take two operands (e.g. a 'double').
 | |
| Id Builder::findScalarConstant(Op typeClass, Id typeId, unsigned v1, unsigned v2) const
 | |
| {
 | |
|     Instruction* constant;
 | |
|     for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
 | |
|         constant = groupedConstants[typeClass][i];
 | |
|         if (constant->getNumOperands() == 2 &&
 | |
|             constant->getTypeId() == typeId &&
 | |
|             constant->getImmediateOperand(0) == v1 &&
 | |
|             constant->getImmediateOperand(1) == v2)
 | |
|             return constant->getResultId();
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| Id Builder::makeBoolConstant(bool b)
 | |
| {
 | |
|     Id typeId = makeBoolType();
 | |
|     Instruction* constant;
 | |
| 
 | |
|     // See if we already made it
 | |
|     Id existing = 0;
 | |
|     for (int i = 0; i < (int)groupedConstants[OpTypeBool].size(); ++i) {
 | |
|         constant = groupedConstants[OpTypeBool][i];
 | |
|         if (constant->getTypeId() == typeId &&
 | |
|             (b ? (constant->getOpCode() == OpConstantTrue) : 
 | |
|                  (constant->getOpCode() == OpConstantFalse)))
 | |
|             existing = constant->getResultId();
 | |
|     }
 | |
| 
 | |
|     if (existing)
 | |
|         return existing;
 | |
| 
 | |
|     // Make it
 | |
|     Instruction* c = new Instruction(getUniqueId(), typeId, b ? OpConstantTrue : OpConstantFalse);
 | |
|     constantsTypesGlobals.push_back(c);
 | |
|     groupedConstants[OpTypeBool].push_back(c);
 | |
|     module.mapInstruction(c);
 | |
| 
 | |
|     return c->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeIntConstant(Id typeId, unsigned value)
 | |
| {
 | |
|     Id existing = findScalarConstant(OpTypeInt, typeId, value);
 | |
|     if (existing)
 | |
|         return existing;
 | |
| 
 | |
|     Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
 | |
|     c->addImmediateOperand(value);
 | |
|     constantsTypesGlobals.push_back(c);
 | |
|     groupedConstants[OpTypeInt].push_back(c);
 | |
|     module.mapInstruction(c);
 | |
| 
 | |
|     return c->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeFloatConstant(float f)
 | |
| {
 | |
|     Id typeId = makeFloatType(32);
 | |
|     unsigned value = *(unsigned int*)&f;
 | |
|     Id existing = findScalarConstant(OpTypeFloat, typeId, value);
 | |
|     if (existing)
 | |
|         return existing;
 | |
| 
 | |
|     Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
 | |
|     c->addImmediateOperand(value);
 | |
|     constantsTypesGlobals.push_back(c);
 | |
|     groupedConstants[OpTypeFloat].push_back(c);
 | |
|     module.mapInstruction(c);
 | |
| 
 | |
|     return c->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::makeDoubleConstant(double d)
 | |
| {
 | |
|     Id typeId = makeFloatType(64);
 | |
|     unsigned long long value = *(unsigned long long*)&d;
 | |
|     unsigned op1 = value & 0xFFFFFFFF;
 | |
|     unsigned op2 = value >> 32;
 | |
|     Id existing = findScalarConstant(OpTypeFloat, typeId, op1, op2);
 | |
|     if (existing)
 | |
|         return existing;
 | |
| 
 | |
|     Instruction* c = new Instruction(getUniqueId(), typeId, OpConstant);
 | |
|     c->addImmediateOperand(op1);
 | |
|     c->addImmediateOperand(op2);
 | |
|     constantsTypesGlobals.push_back(c);
 | |
|     groupedConstants[OpTypeFloat].push_back(c);
 | |
|     module.mapInstruction(c);
 | |
| 
 | |
|     return c->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::findCompositeConstant(Op typeClass, std::vector<Id>& comps) const
 | |
| {
 | |
|     Instruction* constant = 0;
 | |
|     bool found = false;
 | |
|     for (int i = 0; i < (int)groupedConstants[typeClass].size(); ++i) {
 | |
|         constant = groupedConstants[typeClass][i];
 | |
| 
 | |
|         // same shape?
 | |
|         if (constant->getNumOperands() != (int)comps.size())
 | |
|             continue;
 | |
| 
 | |
|         // same contents?
 | |
|         bool mismatch = false;
 | |
|         for (int op = 0; op < constant->getNumOperands(); ++op) {
 | |
|             if (constant->getIdOperand(op) != comps[op]) {
 | |
|                 mismatch = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (! mismatch) {
 | |
|             found = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return found ? constant->getResultId() : NoResult;
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::makeCompositeConstant(Id typeId, std::vector<Id>& members)
 | |
| {
 | |
|     assert(typeId);
 | |
|     Op typeClass = getTypeClass(typeId);
 | |
| 
 | |
|     switch (typeClass) {
 | |
|     case OpTypeVector:
 | |
|     case OpTypeArray:
 | |
|     case OpTypeStruct:
 | |
|     case OpTypeMatrix:
 | |
|         break;
 | |
|     default:
 | |
|         MissingFunctionality("Constant composite type in Builder");
 | |
|         return makeFloatConstant(0.0);
 | |
|     }
 | |
| 
 | |
|     Id existing = findCompositeConstant(typeClass, members);
 | |
|     if (existing)
 | |
|         return existing;
 | |
| 
 | |
|     Instruction* c = new Instruction(getUniqueId(), typeId, OpConstantComposite);
 | |
|     for (int op = 0; op < (int)members.size(); ++op)
 | |
|         c->addIdOperand(members[op]);
 | |
|     constantsTypesGlobals.push_back(c);
 | |
|     groupedConstants[typeClass].push_back(c);
 | |
|     module.mapInstruction(c);
 | |
| 
 | |
|     return c->getResultId();
 | |
| }
 | |
| 
 | |
| void Builder::addEntryPoint(ExecutionModel model, Function* function)
 | |
| {
 | |
|     Instruction* entryPoint = new Instruction(OpEntryPoint);
 | |
|     entryPoint->addImmediateOperand(model);
 | |
|     entryPoint->addIdOperand(function->getId());
 | |
| 
 | |
|     entryPoints.push_back(entryPoint);
 | |
| }
 | |
| 
 | |
| void Builder::addExecutionMode(Function* entryPoint, ExecutionMode mode, int value)
 | |
| {
 | |
|     // TODO: handle multiple optional arguments
 | |
|     Instruction* instr = new Instruction(OpExecutionMode);
 | |
|     instr->addIdOperand(entryPoint->getId());
 | |
|     instr->addImmediateOperand(mode);
 | |
|     if (value >= 0)
 | |
|         instr->addImmediateOperand(value);
 | |
| 
 | |
|     executionModes.push_back(instr);
 | |
| }
 | |
| 
 | |
| void Builder::addName(Id id, const char* string)
 | |
| {
 | |
|     Instruction* name = new Instruction(OpName);
 | |
|     name->addIdOperand(id);
 | |
|     name->addStringOperand(string);
 | |
| 
 | |
|     names.push_back(name);
 | |
| }
 | |
| 
 | |
| void Builder::addMemberName(Id id, int memberNumber, const char* string)
 | |
| {
 | |
|     Instruction* name = new Instruction(OpMemberName);
 | |
|     name->addIdOperand(id);
 | |
|     name->addImmediateOperand(memberNumber);
 | |
|     name->addStringOperand(string);
 | |
| 
 | |
|     names.push_back(name);
 | |
| }
 | |
| 
 | |
| void Builder::addLine(Id target, Id fileName, int lineNum, int column)
 | |
| {
 | |
|     Instruction* line = new Instruction(OpLine);
 | |
|     line->addIdOperand(target);
 | |
|     line->addIdOperand(fileName);
 | |
|     line->addImmediateOperand(lineNum);
 | |
|     line->addImmediateOperand(column);
 | |
| 
 | |
|     lines.push_back(line);
 | |
| }
 | |
| 
 | |
| void Builder::addDecoration(Id id, Decoration decoration, int num)
 | |
| {
 | |
|     Instruction* dec = new Instruction(OpDecorate);
 | |
|     dec->addIdOperand(id);
 | |
|     dec->addImmediateOperand(decoration);
 | |
|     if (num >= 0)
 | |
|         dec->addImmediateOperand(num);
 | |
| 
 | |
|     decorations.push_back(dec);
 | |
| }
 | |
| 
 | |
| void Builder::addMemberDecoration(Id id, unsigned int member, Decoration decoration, int num)
 | |
| {
 | |
|     Instruction* dec = new Instruction(OpMemberDecorate);
 | |
|     dec->addIdOperand(id);
 | |
|     dec->addImmediateOperand(member);
 | |
|     dec->addImmediateOperand(decoration);
 | |
|     if (num >= 0)
 | |
|         dec->addImmediateOperand(num);
 | |
| 
 | |
|     decorations.push_back(dec);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Function* Builder::makeMain()
 | |
| {
 | |
|     assert(! mainFunction);
 | |
| 
 | |
|     Block* entry;
 | |
|     std::vector<Id> params;
 | |
| 
 | |
|     mainFunction = makeFunctionEntry(makeVoidType(), "main", params, &entry);
 | |
|     stageExit = new Block(getUniqueId(), *mainFunction);
 | |
| 
 | |
|     return mainFunction;
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::closeMain()
 | |
| {
 | |
|     setBuildPoint(stageExit);
 | |
|     stageExit->addInstruction(new Instruction(NoResult, NoType, OpReturn));
 | |
|     mainFunction->addBlock(stageExit);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Function* Builder::makeFunctionEntry(Id returnType, const char* name, std::vector<Id>& paramTypes, Block **entry)
 | |
| {
 | |
|     Id typeId = makeFunctionType(returnType, paramTypes);
 | |
|     Id firstParamId = paramTypes.size() == 0 ? 0 : getUniqueIds((int)paramTypes.size());
 | |
|     Function* function = new Function(getUniqueId(), returnType, typeId, firstParamId, module);
 | |
| 
 | |
|     if (entry) {
 | |
|         *entry = new Block(getUniqueId(), *function);
 | |
|         function->addBlock(*entry);
 | |
|         setBuildPoint(*entry);
 | |
|     }
 | |
| 
 | |
|     if (name)
 | |
|         addName(function->getId(), name);
 | |
| 
 | |
|     return function;
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::makeReturn(bool implicit, Id retVal, bool isMain)
 | |
| {
 | |
|     if (isMain && retVal)
 | |
|         MissingFunctionality("return value from main()");
 | |
| 
 | |
|     if (isMain)
 | |
|         createBranch(stageExit);
 | |
|     else if (retVal) {
 | |
|         Instruction* inst = new Instruction(NoResult, NoType, OpReturnValue);
 | |
|         inst->addIdOperand(retVal);
 | |
|         buildPoint->addInstruction(inst);
 | |
|     } else
 | |
|         buildPoint->addInstruction(new Instruction(NoResult, NoType, OpReturn));
 | |
| 
 | |
|     if (! implicit)
 | |
|         createAndSetNoPredecessorBlock("post-return");
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::leaveFunction(bool main)
 | |
| {
 | |
|     Block* block = buildPoint;
 | |
|     Function& function = buildPoint->getParent();
 | |
|     assert(block);
 | |
| 
 | |
|     // If our function did not contain a return, add a return void now.
 | |
|     if (! block->isTerminated()) {
 | |
| 
 | |
|         // Whether we're in an unreachable (non-entry) block.
 | |
|         bool unreachable = function.getEntryBlock() != block && block->getNumPredecessors() == 0;
 | |
| 
 | |
|         if (unreachable) {
 | |
|             // Given that this block is at the end of a function, it must be right after an
 | |
|             // explicit return, just remove it.
 | |
|             function.popBlock(block);
 | |
|         } else if (main)
 | |
|             makeMainReturn(true);
 | |
|         else {
 | |
|             // We're get a return instruction at the end of the current block,
 | |
|             // which for a non-void function is really error recovery (?), as the source
 | |
|             // being translated should have had an explicit return, which would have been
 | |
|             // followed by an unreachable block, which was handled above.
 | |
|             if (function.getReturnType() == makeVoidType())
 | |
|                 makeReturn(true);
 | |
|             else {
 | |
|                 Id retStorage = createVariable(StorageClassFunction, function.getReturnType(), "dummyReturn");
 | |
|                 Id retValue = createLoad(retStorage);
 | |
|                 makeReturn(true, retValue);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (main)
 | |
|         closeMain();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::makeDiscard()
 | |
| {
 | |
|     buildPoint->addInstruction(new Instruction(OpKill));
 | |
|     createAndSetNoPredecessorBlock("post-discard");
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createVariable(StorageClass storageClass, Id type, const char* name)
 | |
| {
 | |
|     Id pointerType = makePointer(storageClass, type);
 | |
|     Instruction* inst = new Instruction(getUniqueId(), pointerType, OpVariable);
 | |
|     inst->addImmediateOperand(storageClass);
 | |
| 
 | |
|     switch (storageClass) {
 | |
|     case StorageClassUniformConstant:
 | |
|     case StorageClassUniform:
 | |
|     case StorageClassInput:
 | |
|     case StorageClassOutput:
 | |
|     case StorageClassWorkgroupLocal:
 | |
|     case StorageClassPrivateGlobal:
 | |
|     case StorageClassWorkgroupGlobal:
 | |
|         constantsTypesGlobals.push_back(inst);
 | |
|         module.mapInstruction(inst);
 | |
|         break;
 | |
| 
 | |
|     case StorageClassFunction:
 | |
|         // Validation rules require the declaration in the entry block
 | |
|         buildPoint->getParent().addLocalVariable(inst);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         MissingFunctionality("storage class in createVariable");
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (name)
 | |
|         addName(inst->getResultId(), name);
 | |
| 
 | |
|     return inst->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::createStore(Id rValue, Id lValue)
 | |
| {
 | |
|     Instruction* store = new Instruction(OpStore);
 | |
|     store->addIdOperand(lValue);
 | |
|     store->addIdOperand(rValue);
 | |
|     buildPoint->addInstruction(store);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createLoad(Id lValue)
 | |
| {
 | |
|     Instruction* load = new Instruction(getUniqueId(), getDerefTypeId(lValue), OpLoad);
 | |
|     load->addIdOperand(lValue);
 | |
|     buildPoint->addInstruction(load);
 | |
| 
 | |
|     return load->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createAccessChain(StorageClass storageClass, Id base, std::vector<Id>& offsets)
 | |
| {
 | |
|     // Figure out the final resulting type.
 | |
|     spv::Id typeId = getTypeId(base);
 | |
|     assert(isPointerType(typeId) && offsets.size() > 0);
 | |
|     typeId = getContainedTypeId(typeId);
 | |
|     for (int i = 0; i < (int)offsets.size(); ++i) {
 | |
|         if (isStructType(typeId)) {
 | |
|             assert(isConstantScalar(offsets[i]));
 | |
|             typeId = getContainedTypeId(typeId, getConstantScalar(offsets[i]));
 | |
|         } else
 | |
|             typeId = getContainedTypeId(typeId, offsets[i]);
 | |
|     }
 | |
|     typeId = makePointer(storageClass, typeId);
 | |
| 
 | |
|     // Make the instruction
 | |
|     Instruction* chain = new Instruction(getUniqueId(), typeId, OpAccessChain);
 | |
|     chain->addIdOperand(base);
 | |
|     for (int i = 0; i < (int)offsets.size(); ++i)
 | |
|         chain->addIdOperand(offsets[i]);
 | |
|     buildPoint->addInstruction(chain);
 | |
| 
 | |
|     return chain->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createCompositeExtract(Id composite, Id typeId, unsigned index)
 | |
| {
 | |
|     Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
 | |
|     extract->addIdOperand(composite);
 | |
|     extract->addImmediateOperand(index);
 | |
|     buildPoint->addInstruction(extract);
 | |
| 
 | |
|     return extract->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createCompositeExtract(Id composite, Id typeId, std::vector<unsigned>& indexes)
 | |
| {
 | |
|     Instruction* extract = new Instruction(getUniqueId(), typeId, OpCompositeExtract);
 | |
|     extract->addIdOperand(composite);
 | |
|     for (int i = 0; i < (int)indexes.size(); ++i)
 | |
|         extract->addImmediateOperand(indexes[i]);
 | |
|     buildPoint->addInstruction(extract);
 | |
| 
 | |
|     return extract->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, unsigned index)
 | |
| {
 | |
|     Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
 | |
|     insert->addIdOperand(object);
 | |
|     insert->addIdOperand(composite);
 | |
|     insert->addImmediateOperand(index);
 | |
|     buildPoint->addInstruction(insert);
 | |
| 
 | |
|     return insert->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createCompositeInsert(Id object, Id composite, Id typeId, std::vector<unsigned>& indexes)
 | |
| {
 | |
|     Instruction* insert = new Instruction(getUniqueId(), typeId, OpCompositeInsert);
 | |
|     insert->addIdOperand(object);
 | |
|     insert->addIdOperand(composite);
 | |
|     for (int i = 0; i < (int)indexes.size(); ++i)
 | |
|         insert->addImmediateOperand(indexes[i]);
 | |
|     buildPoint->addInstruction(insert);
 | |
| 
 | |
|     return insert->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex)
 | |
| {
 | |
|     Instruction* extract = new Instruction(getUniqueId(), typeId, OpVectorExtractDynamic);
 | |
|     extract->addIdOperand(vector);
 | |
|     extract->addIdOperand(componentIndex);
 | |
|     buildPoint->addInstruction(extract);
 | |
| 
 | |
|     return extract->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex)
 | |
| {
 | |
|     Instruction* insert = new Instruction(getUniqueId(), typeId, OpVectorInsertDynamic);
 | |
|     insert->addIdOperand(vector);
 | |
|     insert->addIdOperand(component);
 | |
|     insert->addIdOperand(componentIndex);
 | |
|     buildPoint->addInstruction(insert);
 | |
| 
 | |
|     return insert->getResultId();
 | |
| }
 | |
| 
 | |
| // An opcode that has no operands, no result id, and no type
 | |
| void Builder::createNoResultOp(Op opCode)
 | |
| {
 | |
|     Instruction* op = new Instruction(opCode);
 | |
|     buildPoint->addInstruction(op);
 | |
| }
 | |
| 
 | |
| // An opcode that has one operand, no result id, and no type
 | |
| void Builder::createNoResultOp(Op opCode, Id operand)
 | |
| {
 | |
|     Instruction* op = new Instruction(opCode);
 | |
|     op->addIdOperand(operand);
 | |
|     buildPoint->addInstruction(op);
 | |
| }
 | |
| 
 | |
| void Builder::createControlBarrier(unsigned executionScope)
 | |
| {
 | |
|     Instruction* op = new Instruction(OpControlBarrier);
 | |
|     op->addImmediateOperand(executionScope);
 | |
|     buildPoint->addInstruction(op);
 | |
| }
 | |
| 
 | |
| void Builder::createMemoryBarrier(unsigned executionScope, unsigned memorySemantics)
 | |
| {
 | |
|     Instruction* op = new Instruction(OpMemoryBarrier);
 | |
|     op->addImmediateOperand(executionScope);
 | |
|     op->addImmediateOperand(memorySemantics);
 | |
|     buildPoint->addInstruction(op);
 | |
| }
 | |
| 
 | |
| // An opcode that has one operands, a result id, and a type
 | |
| Id Builder::createUnaryOp(Op opCode, Id typeId, Id operand)
 | |
| {
 | |
|     Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | |
|     op->addIdOperand(operand);
 | |
|     buildPoint->addInstruction(op);
 | |
| 
 | |
|     return op->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createBinOp(Op opCode, Id typeId, Id left, Id right)
 | |
| {
 | |
|     Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | |
|     op->addIdOperand(left);
 | |
|     op->addIdOperand(right);
 | |
|     buildPoint->addInstruction(op);
 | |
| 
 | |
|     return op->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createTriOp(Op opCode, Id typeId, Id op1, Id op2, Id op3)
 | |
| {
 | |
|     Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | |
|     op->addIdOperand(op1);
 | |
|     op->addIdOperand(op2);
 | |
|     op->addIdOperand(op3);
 | |
|     buildPoint->addInstruction(op);
 | |
| 
 | |
|     return op->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createOp(Op opCode, Id typeId, std::vector<Id>& operands)
 | |
| {
 | |
|     Instruction* op = new Instruction(getUniqueId(), typeId, opCode);
 | |
|     for (auto operand : operands)
 | |
|         op->addIdOperand(operand);
 | |
|     buildPoint->addInstruction(op);
 | |
| 
 | |
|     return op->getResultId();
 | |
| }
 | |
| 
 | |
| Id Builder::createFunctionCall(spv::Function* function, std::vector<spv::Id>& args)
 | |
| {
 | |
|     Instruction* op = new Instruction(getUniqueId(), function->getReturnType(), OpFunctionCall);
 | |
|     op->addIdOperand(function->getId());
 | |
|     for (int a = 0; a < (int)args.size(); ++a)
 | |
|         op->addIdOperand(args[a]);
 | |
|     buildPoint->addInstruction(op);
 | |
| 
 | |
|     return op->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createRvalueSwizzle(Id typeId, Id source, std::vector<unsigned>& channels)
 | |
| {
 | |
|     if (channels.size() == 1)
 | |
|         return createCompositeExtract(source, typeId, channels.front());
 | |
| 
 | |
|     Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
 | |
|     assert(isVector(source));
 | |
|     swizzle->addIdOperand(source);
 | |
|     swizzle->addIdOperand(source);
 | |
|     for (int i = 0; i < (int)channels.size(); ++i)
 | |
|         swizzle->addImmediateOperand(channels[i]);
 | |
|     buildPoint->addInstruction(swizzle);
 | |
| 
 | |
|     return swizzle->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createLvalueSwizzle(Id typeId, Id target, Id source, std::vector<unsigned>& channels)
 | |
| {
 | |
|     assert(getNumComponents(source) == (int)channels.size());
 | |
|     if (channels.size() == 1 && getNumComponents(source) == 1)
 | |
|         return createCompositeInsert(source, target, typeId, channels.front());
 | |
| 
 | |
|     Instruction* swizzle = new Instruction(getUniqueId(), typeId, OpVectorShuffle);
 | |
|     assert(isVector(source));
 | |
|     assert(isVector(target));
 | |
|     swizzle->addIdOperand(target);
 | |
|     swizzle->addIdOperand(source);
 | |
| 
 | |
|     // Set up an identity shuffle from the base value to the result value
 | |
|     unsigned int components[4];
 | |
|     int numTargetComponents = getNumComponents(target);
 | |
|     for (int i = 0; i < numTargetComponents; ++i)
 | |
|         components[i] = i;
 | |
| 
 | |
|     // Punch in the l-value swizzle
 | |
|     for (int i = 0; i < (int)channels.size(); ++i)
 | |
|         components[channels[i]] = numTargetComponents + i;
 | |
| 
 | |
|     // finish the instruction with these components selectors
 | |
|     for (int i = 0; i < numTargetComponents; ++i)
 | |
|         swizzle->addImmediateOperand(components[i]);
 | |
|     buildPoint->addInstruction(swizzle);
 | |
| 
 | |
|     return swizzle->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::promoteScalar(Decoration precision, Id& left, Id& right)
 | |
| {
 | |
|     int direction = getNumComponents(right) - getNumComponents(left);
 | |
| 
 | |
|     if (direction > 0)
 | |
|         left = smearScalar(precision, left, getTypeId(right));
 | |
|     else if (direction < 0)
 | |
|         right = smearScalar(precision, right, getTypeId(left));
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::smearScalar(Decoration /*precision*/, Id scalar, Id vectorType)
 | |
| {
 | |
|     assert(getNumComponents(scalar) == 1);
 | |
| 
 | |
|     int numComponents = getNumTypeComponents(vectorType);
 | |
|     if (numComponents == 1)
 | |
|         return scalar;
 | |
| 
 | |
|     Instruction* smear = new Instruction(getUniqueId(), vectorType, OpCompositeConstruct);
 | |
|     for (int c = 0; c < numComponents; ++c)
 | |
|         smear->addIdOperand(scalar);
 | |
|     buildPoint->addInstruction(smear);
 | |
| 
 | |
|     return smear->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createBuiltinCall(Decoration /*precision*/, Id resultType, Id builtins, int entryPoint, std::vector<Id>& args)
 | |
| {
 | |
|     Instruction* inst = new Instruction(getUniqueId(), resultType, OpExtInst);
 | |
|     inst->addIdOperand(builtins);
 | |
|     inst->addImmediateOperand(entryPoint);
 | |
|     for (int arg = 0; arg < (int)args.size(); ++arg)
 | |
|         inst->addIdOperand(args[arg]);
 | |
| 
 | |
|     buildPoint->addInstruction(inst);
 | |
|     return inst->getResultId();
 | |
| }
 | |
| 
 | |
| // Accept all parameters needed to create a texture instruction.
 | |
| // Create the correct instruction based on the inputs, and make the call.
 | |
| Id Builder::createTextureCall(Decoration precision, Id resultType, bool proj, const TextureParameters& parameters)
 | |
| {
 | |
|     static const int maxTextureArgs = 5;
 | |
|     Id texArgs[maxTextureArgs] = {};
 | |
| 
 | |
|     //
 | |
|     // Set up the arguments
 | |
|     //
 | |
| 
 | |
|     int numArgs = 0;
 | |
|     texArgs[numArgs++] = parameters.sampler;
 | |
|     texArgs[numArgs++] = parameters.coords;
 | |
| 
 | |
|     if (parameters.gradX) {
 | |
|         texArgs[numArgs++] = parameters.gradX;
 | |
|         texArgs[numArgs++] = parameters.gradY;
 | |
|     }
 | |
|     if (parameters.lod)
 | |
|         texArgs[numArgs++] = parameters.lod;
 | |
|     if (parameters.offset)
 | |
|         texArgs[numArgs++] = parameters.offset;
 | |
|     if (parameters.bias)
 | |
|         texArgs[numArgs++] = parameters.bias;
 | |
|     if (parameters.Dref)
 | |
|         texArgs[numArgs++] = parameters.Dref;
 | |
| 
 | |
|     //
 | |
|     // Set up the instruction
 | |
|     //
 | |
| 
 | |
|     Op opCode;
 | |
|     if (proj && parameters.gradX && parameters.offset)
 | |
|         opCode = OpTextureSampleProjGradOffset;
 | |
|     else if (proj && parameters.lod && parameters.offset)
 | |
|         opCode = OpTextureSampleProjLodOffset;
 | |
|     else if (parameters.gradX && parameters.offset)
 | |
|         opCode = OpTextureSampleGradOffset;
 | |
|     else if (proj && parameters.offset)
 | |
|         opCode = OpTextureSampleProjOffset;
 | |
|     else if (parameters.lod && parameters.offset)
 | |
|         opCode = OpTextureSampleLodOffset;
 | |
|     else if (proj && parameters.gradX)
 | |
|         opCode = OpTextureSampleProjGrad;
 | |
|     else if (proj && parameters.lod)
 | |
|         opCode = OpTextureSampleProjLod;
 | |
|     else if (parameters.offset)
 | |
|         opCode = OpTextureSampleOffset;
 | |
|     else if (parameters.gradX)
 | |
|         opCode = OpTextureSampleGrad;
 | |
|     else if (proj)
 | |
|         opCode = OpTextureSampleProj;
 | |
|     else if (parameters.lod)
 | |
|         opCode = OpTextureSampleLod;
 | |
|     else if (parameters.Dref)
 | |
|         opCode = OpTextureSampleDref;
 | |
|     else
 | |
|         opCode = OpTextureSample;
 | |
| 
 | |
|     Instruction* textureInst = new Instruction(getUniqueId(), resultType, opCode);
 | |
|     for (int op = 0; op < numArgs; ++op)
 | |
|         textureInst->addIdOperand(texArgs[op]);
 | |
|     setPrecision(textureInst->getResultId(), precision);
 | |
|     buildPoint->addInstruction(textureInst);
 | |
| 
 | |
|     return textureInst->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createTextureQueryCall(Op opCode, const TextureParameters& parameters)
 | |
| {
 | |
|     // Figure out the result type
 | |
|     Id resultType = NoType;
 | |
|     switch (opCode) {
 | |
|     case OpTextureQuerySize:
 | |
|     case OpTextureQuerySizeLod:
 | |
|     {
 | |
|         int numComponents;
 | |
|         switch (getDimensionality(parameters.sampler)) {
 | |
|         case Dim1D:
 | |
|         case DimBuffer:
 | |
|             numComponents = 1;
 | |
|             break;
 | |
|         case Dim2D:
 | |
|         case DimCube:
 | |
|         case DimRect:
 | |
|             numComponents = 2;
 | |
|             break;
 | |
|         case Dim3D:
 | |
|             numComponents = 3;
 | |
|             break;
 | |
|         default:
 | |
|             MissingFunctionality("texture query dimensionality");
 | |
|             break;
 | |
|         }
 | |
|         if (isArrayedSampler(parameters.sampler))
 | |
|             ++numComponents;
 | |
|         if (numComponents == 1)
 | |
|             resultType = makeIntType(32);
 | |
|         else
 | |
|             resultType = makeVectorType(makeIntType(32), numComponents);
 | |
| 
 | |
|         break;
 | |
|     }
 | |
|     case OpTextureQueryLod:
 | |
|         resultType = makeVectorType(makeFloatType(32), 2);
 | |
|         break;
 | |
|     case OpTextureQueryLevels:
 | |
|     case OpTextureQuerySamples:
 | |
|         resultType = makeIntType(32);
 | |
|         break;
 | |
|     default:
 | |
|         MissingFunctionality("Texture query op code");
 | |
|     }
 | |
| 
 | |
|     Instruction* query = new Instruction(getUniqueId(), resultType, opCode);
 | |
|     query->addIdOperand(parameters.sampler);
 | |
|     if (parameters.coords)
 | |
|         query->addIdOperand(parameters.coords);
 | |
|     if (parameters.lod)
 | |
|         query->addIdOperand(parameters.lod);
 | |
|     buildPoint->addInstruction(query);
 | |
| 
 | |
|     return query->getResultId();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| //Id Builder::createSamplePositionCall(Decoration precision, Id returnType, Id sampleIdx)
 | |
| //{
 | |
| //    // Return type is only flexible type
 | |
| //    Function* opCode = (fSamplePosition, returnType);
 | |
| //
 | |
| //    Instruction* instr = (opCode, sampleIdx);
 | |
| //    setPrecision(instr, precision);
 | |
| //
 | |
| //    return instr;
 | |
| //}
 | |
| 
 | |
| // Comments in header
 | |
| //Id Builder::createBitFieldExtractCall(Decoration precision, Id id, Id offset, Id bits, bool isSigned)
 | |
| //{
 | |
| //    Op opCode = isSigned ? sBitFieldExtract
 | |
| //                                               : uBitFieldExtract;
 | |
| //
 | |
| //    if (isScalar(offset) == false || isScalar(bits) == false)
 | |
| //        MissingFunctionality("bitFieldExtract operand types");
 | |
| //
 | |
| //    // Dest and value are matching flexible types
 | |
| //    Function* opCode = (opCode, id->getType(), id->getType());
 | |
| //
 | |
| //    assert(opCode);
 | |
| //
 | |
| //    Instruction* instr = (opCode, id, offset, bits);
 | |
| //    setPrecision(instr, precision);
 | |
| //
 | |
| //    return instr;
 | |
| //}
 | |
| 
 | |
| // Comments in header
 | |
| //Id Builder::createBitFieldInsertCall(Decoration precision, Id base, Id insert, Id offset, Id bits)
 | |
| //{
 | |
| //    Op opCode = bitFieldInsert;
 | |
| //
 | |
| //    if (isScalar(offset) == false || isScalar(bits) == false)
 | |
| //        MissingFunctionality("bitFieldInsert operand types");
 | |
| //
 | |
| //    // Dest, base, and insert are matching flexible types
 | |
| //    Function* opCode = (opCode, base->getType(), base->getType(), base->getType());
 | |
| //
 | |
| //    assert(opCode);
 | |
| //
 | |
| //    Instruction* instr = (opCode, base, insert, offset, bits);
 | |
| //    setPrecision(instr, precision);
 | |
| //
 | |
| //    return instr;
 | |
| //}
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createCompare(Decoration precision, Id value1, Id value2, bool equal)
 | |
| {
 | |
|     Id boolType = makeBoolType();
 | |
|     Id valueType = getTypeId(value1);
 | |
| 
 | |
|     assert(valueType == getTypeId(value2));
 | |
|     assert(! isScalar(value1));
 | |
| 
 | |
|     // Vectors
 | |
| 
 | |
|     if (isVectorType(valueType)) {
 | |
|         Id boolVectorType = makeVectorType(boolType, getNumTypeComponents(valueType));
 | |
|         Id boolVector;
 | |
|         Op op;
 | |
|         if (getMostBasicTypeClass(valueType) == OpTypeFloat)
 | |
|             op = equal ? OpFOrdEqual : OpFOrdNotEqual;
 | |
|         else
 | |
|             op = equal ? OpIEqual : OpINotEqual;
 | |
| 
 | |
|         boolVector = createBinOp(op, boolVectorType, value1, value2);
 | |
|         setPrecision(boolVector, precision);
 | |
| 
 | |
|         // Reduce vector compares with any() and all().
 | |
| 
 | |
|         op = equal ? OpAll : OpAny;
 | |
| 
 | |
|         return createUnaryOp(op, boolType, boolVector);
 | |
|     }
 | |
| 
 | |
|     spv::MissingFunctionality("Composite comparison of non-vectors");
 | |
| 
 | |
|     return NoResult;
 | |
| 
 | |
|     // Recursively handle aggregates, which include matrices, arrays, and structures
 | |
|     // and accumulate the results.
 | |
| 
 | |
|     // Matrices
 | |
| 
 | |
|     // Arrays
 | |
| 
 | |
|     //int numElements;
 | |
|     //const llvm::ArrayType* arrayType = llvm::dyn_cast<llvm::ArrayType>(value1->getType());
 | |
|     //if (arrayType)
 | |
|     //    numElements = (int)arrayType->getNumElements();
 | |
|     //else {
 | |
|     //    // better be structure
 | |
|     //    const llvm::StructType* structType = llvm::dyn_cast<llvm::StructType>(value1->getType());
 | |
|     //    assert(structType);
 | |
|     //    numElements = structType->getNumElements();
 | |
|     //}
 | |
| 
 | |
|     //assert(numElements > 0);
 | |
| 
 | |
|     //for (int element = 0; element < numElements; ++element) {
 | |
|     //    // Get intermediate comparison values
 | |
|     //    llvm::Value* element1 = builder.CreateExtractValue(value1, element, "element1");
 | |
|     //    setInstructionPrecision(element1, precision);
 | |
|     //    llvm::Value* element2 = builder.CreateExtractValue(value2, element, "element2");
 | |
|     //    setInstructionPrecision(element2, precision);
 | |
| 
 | |
|     //    llvm::Value* subResult = createCompare(precision, element1, element2, equal, "comp");
 | |
| 
 | |
|     //    // Accumulate intermediate comparison
 | |
|     //    if (element == 0)
 | |
|     //        result = subResult;
 | |
|     //    else {
 | |
|     //        if (equal)
 | |
|     //            result = builder.CreateAnd(result, subResult);
 | |
|     //        else
 | |
|     //            result = builder.CreateOr(result, subResult);
 | |
|     //        setInstructionPrecision(result, precision);
 | |
|     //    }
 | |
|     //}
 | |
| 
 | |
|     //return result;
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| //Id Builder::createOperation(Decoration precision, Op opCode, Id operand)
 | |
| //{
 | |
| //    Op* opCode = 0;
 | |
| //
 | |
| //    // Handle special return types here.  Things that don't have same result type as parameter
 | |
| //    switch (opCode) {
 | |
| //    case fIsNan:
 | |
| //    case fIsInf:
 | |
| //        break;
 | |
| //    case fFloatBitsToInt:
 | |
| //        break;
 | |
| //    case fIntBitsTofloat:
 | |
| //        break;
 | |
| //    case fPackSnorm2x16:
 | |
| //    case fPackUnorm2x16:
 | |
| //    case fPackHalf2x16:
 | |
| //        break;
 | |
| //    case fUnpackUnorm2x16:
 | |
| //    case fUnpackSnorm2x16:
 | |
| //    case fUnpackHalf2x16:
 | |
| //        break;
 | |
| //
 | |
| //    case fFrexp:
 | |
| //    case fLdexp:
 | |
| //    case fPackUnorm4x8:
 | |
| //    case fPackSnorm4x8:
 | |
| //    case fUnpackUnorm4x8:
 | |
| //    case fUnpackSnorm4x8:
 | |
| //    case fPackDouble2x32:
 | |
| //    case fUnpackDouble2x32:
 | |
| //        break;
 | |
| //    case fLength:
 | |
| //       // scalar result type
 | |
| //       break;
 | |
| //    case any:
 | |
| //    case all:
 | |
| //        // fixed result type
 | |
| //        break;
 | |
| //    case fModF:
 | |
| //        // modf() will return a struct that the caller must decode
 | |
| //        break;
 | |
| //    default:
 | |
| //        // Unary operations that have operand and dest with same flexible type
 | |
| //        break;
 | |
| //    }
 | |
| //
 | |
| //    assert(opCode);
 | |
| //
 | |
| //    Instruction* instr = (opCode, operand);
 | |
| //    setPrecision(instr, precision);
 | |
| //
 | |
| //    return instr;
 | |
| //}
 | |
| //
 | |
| //// Comments in header
 | |
| //Id Builder::createOperation(Decoration precision, Op opCode, Id operand0, Id operand1)
 | |
| //{
 | |
| //    Function* opCode = 0;
 | |
| //
 | |
| //    // Handle special return types here.  Things that don't have same result type as parameter
 | |
| //    switch (opCode) {
 | |
| //    case fDistance:
 | |
| //    case fDot2:
 | |
| //    case fDot3:
 | |
| //    case fDot4:
 | |
| //        // scalar result type
 | |
| //        break;
 | |
| //    case fStep:
 | |
| //        // first argument can be scalar, return and second argument match
 | |
| //        break;
 | |
| //    case fSmoothStep:
 | |
| //        // first argument can be scalar, return and second argument match
 | |
| //        break;
 | |
| //    default:
 | |
| //        // Binary operations that have operand and dest with same flexible type
 | |
| //        break;
 | |
| //    }
 | |
| //
 | |
| //    assert(opCode);
 | |
| //
 | |
| //    Instruction* instr = (opCode, operand0, operand1);
 | |
| //    setPrecision(instr, precision);
 | |
| //
 | |
| //    return instr;
 | |
| //}
 | |
| //
 | |
| //Id Builder::createOperation(Decoration precision, Op opCode, Id operand0, Id operand1, Id operand2)
 | |
| //{
 | |
| //    Function* opCode;
 | |
| //
 | |
| //    // Handle special return types here.  Things that don't have same result type as parameter
 | |
| //    switch (opCode) {
 | |
| //    case fSmoothStep:
 | |
| //        // first argument can be scalar, return and second argument match
 | |
| //        break;
 | |
| //    default:
 | |
| //        // Use operand0 type as result type
 | |
| //        break;
 | |
| //    }
 | |
| //
 | |
| //    assert(opCode);
 | |
| //
 | |
| //    Instruction* instr = (opCode, operand0, operand1, operand2);
 | |
| //    setPrecision(instr, precision);
 | |
| //
 | |
| //    return instr;
 | |
| //}
 | |
| 
 | |
| // OpCompositeConstruct
 | |
| Id Builder::createCompositeConstruct(Id typeId, std::vector<Id>& constituents)
 | |
| {
 | |
|     assert(isAggregateType(typeId) || (getNumTypeComponents(typeId) > 1 && getNumTypeComponents(typeId) == (int)constituents.size()));
 | |
| 
 | |
|     Instruction* op = new Instruction(getUniqueId(), typeId, OpCompositeConstruct);
 | |
|     for (int c = 0; c < (int)constituents.size(); ++c)
 | |
|         op->addIdOperand(constituents[c]);
 | |
|     buildPoint->addInstruction(op);
 | |
| 
 | |
|     return op->getResultId();
 | |
| }
 | |
| 
 | |
| // Vector or scalar constructor
 | |
| Id Builder::createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
 | |
| {
 | |
|     Id result = 0;
 | |
|     unsigned int numTargetComponents = getNumTypeComponents(resultTypeId);
 | |
|     unsigned int targetComponent = 0;
 | |
| 
 | |
|     // Special case: when calling a vector constructor with a single scalar
 | |
|     // argument, smear the scalar
 | |
|     if (sources.size() == 1 && isScalar(sources[0]) && numTargetComponents > 1)
 | |
|         return smearScalar(precision, sources[0], resultTypeId);
 | |
| 
 | |
|     Id scalarTypeId = getScalarTypeId(resultTypeId);
 | |
|     std::vector<Id> constituents;  // accumulate the arguments for OpCompositeConstruct
 | |
|     for (unsigned int i = 0; i < sources.size(); ++i) {
 | |
|         if (isAggregate(sources[i]))
 | |
|             MissingFunctionality("aggregate in vector constructor");
 | |
| 
 | |
|         unsigned int sourceSize = getNumComponents(sources[i]);
 | |
| 
 | |
|         unsigned int sourcesToUse = sourceSize;
 | |
|         if (sourcesToUse + targetComponent > numTargetComponents)
 | |
|             sourcesToUse = numTargetComponents - targetComponent;
 | |
| 
 | |
|         for (unsigned int s = 0; s < sourcesToUse; ++s) {
 | |
|             Id arg = sources[i];
 | |
|             if (sourceSize > 1) {
 | |
|                 std::vector<unsigned> swiz;
 | |
|                 swiz.push_back(s);
 | |
|                 arg = createRvalueSwizzle(scalarTypeId, arg, swiz);
 | |
|             }
 | |
| 
 | |
|             if (numTargetComponents > 1)
 | |
|                 constituents.push_back(arg);
 | |
|             else
 | |
|                 result = arg;
 | |
|             ++targetComponent;
 | |
|         }
 | |
| 
 | |
|         if (targetComponent >= numTargetComponents)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     if (constituents.size() > 0)
 | |
|         result = createCompositeConstruct(resultTypeId, constituents);
 | |
| 
 | |
|     setPrecision(result, precision);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId)
 | |
| {
 | |
|     Id componentTypeId = getScalarTypeId(resultTypeId);
 | |
|     int numCols = getTypeNumColumns(resultTypeId);
 | |
|     int numRows = getTypeNumRows(resultTypeId);
 | |
| 
 | |
|     // Will use a two step process
 | |
|     // 1. make a compile-time 2D array of values
 | |
|     // 2. construct a matrix from that array
 | |
| 
 | |
|     // Step 1.
 | |
| 
 | |
|     // initialize the array to the identity matrix
 | |
|     Id ids[maxMatrixSize][maxMatrixSize];
 | |
|     Id  one = makeFloatConstant(1.0);
 | |
|     Id zero = makeFloatConstant(0.0);
 | |
|     for (int col = 0; col < 4; ++col) {
 | |
|         for (int row = 0; row < 4; ++row) {
 | |
|             if (col == row)
 | |
|                 ids[col][row] = one;
 | |
|             else
 | |
|                 ids[col][row] = zero;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // modify components as dictated by the arguments
 | |
|     if (sources.size() == 1 && isScalar(sources[0])) {
 | |
|         // a single scalar; resets the diagonals
 | |
|         for (int col = 0; col < 4; ++col)
 | |
|             ids[col][col] = sources[0];
 | |
|     } else if (isMatrix(sources[0])) {
 | |
|         // constructing from another matrix; copy over the parts that exist in both the argument and constructee
 | |
|         Id matrix = sources[0];
 | |
|         int minCols = std::min(numCols, getNumColumns(matrix));
 | |
|         int minRows = std::min(numRows, getNumRows(matrix));
 | |
|         for (int col = 0; col < minCols; ++col) {
 | |
|             std::vector<unsigned> indexes;
 | |
|             indexes.push_back(col);
 | |
|             for (int row = 0; row < minRows; ++row) {
 | |
|                 indexes.push_back(row);
 | |
|                 ids[col][row] = createCompositeExtract(matrix, componentTypeId, indexes);
 | |
|                 indexes.pop_back();
 | |
|                 setPrecision(ids[col][row], precision);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         // fill in the matrix in column-major order with whatever argument components are available
 | |
|         int row = 0;
 | |
|         int col = 0;
 | |
| 
 | |
|         for (int arg = 0; arg < (int)sources.size(); ++arg) {
 | |
|             Id argComp = sources[arg];
 | |
|             for (int comp = 0; comp < getNumComponents(sources[arg]); ++comp) {
 | |
|                 if (getNumComponents(sources[arg]) > 1) {
 | |
|                     argComp = createCompositeExtract(sources[arg], componentTypeId, comp);
 | |
|                     setPrecision(argComp, precision);
 | |
|                 }
 | |
|                 ids[col][row++] = argComp;
 | |
|                 if (row == numRows) {
 | |
|                     row = 0;
 | |
|                     col++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Step 2:  Construct a matrix from that array.
 | |
|     // First make the column vectors, then make the matrix.
 | |
| 
 | |
|     // make the column vectors
 | |
|     Id columnTypeId = getContainedTypeId(resultTypeId);
 | |
|     std::vector<Id> matrixColumns;
 | |
|     for (int col = 0; col < numCols; ++col) {
 | |
|         std::vector<Id> vectorComponents;
 | |
|         for (int row = 0; row < numRows; ++row)
 | |
|             vectorComponents.push_back(ids[col][row]);
 | |
|         matrixColumns.push_back(createCompositeConstruct(columnTypeId, vectorComponents));
 | |
|     }
 | |
| 
 | |
|     // make the matrix
 | |
|     return createCompositeConstruct(resultTypeId, matrixColumns);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Builder::If::If(Id cond, Builder& gb) :
 | |
|     builder(gb),
 | |
|     condition(cond),
 | |
|     elseBlock(0)
 | |
| {
 | |
|     function = &builder.getBuildPoint()->getParent();
 | |
| 
 | |
|     // make the blocks, but only put the then-block into the function,
 | |
|     // the else-block and merge-block will be added later, in order, after
 | |
|     // earlier code is emitted
 | |
|     thenBlock = new Block(builder.getUniqueId(), *function);
 | |
|     mergeBlock = new Block(builder.getUniqueId(), *function);
 | |
| 
 | |
|     // Save the current block, so that we can add in the flow control split when
 | |
|     // makeEndIf is called.
 | |
|     headerBlock = builder.getBuildPoint();
 | |
| 
 | |
|     function->addBlock(thenBlock);
 | |
|     builder.setBuildPoint(thenBlock);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::If::makeBeginElse()
 | |
| {
 | |
|     // Close out the "then" by having it jump to the mergeBlock
 | |
|     builder.createBranch(mergeBlock);
 | |
| 
 | |
|     // Make the first else block and add it to the function
 | |
|     elseBlock = new Block(builder.getUniqueId(), *function);
 | |
|     function->addBlock(elseBlock);
 | |
| 
 | |
|     // Start building the else block
 | |
|     builder.setBuildPoint(elseBlock);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::If::makeEndIf()
 | |
| {
 | |
|     // jump to the merge block
 | |
|     builder.createBranch(mergeBlock);
 | |
| 
 | |
|     // Go back to the headerBlock and make the flow control split
 | |
|     builder.setBuildPoint(headerBlock);
 | |
|     builder.createMerge(OpSelectionMerge, mergeBlock, SelectionControlMaskNone);
 | |
|     if (elseBlock)
 | |
|         builder.createConditionalBranch(condition, thenBlock, elseBlock);
 | |
|     else
 | |
|         builder.createConditionalBranch(condition, thenBlock, mergeBlock);
 | |
| 
 | |
|     // add the merge block to the function
 | |
|     function->addBlock(mergeBlock);
 | |
|     builder.setBuildPoint(mergeBlock);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::makeSwitch(Id selector, int numSegments, std::vector<int>& caseValues, std::vector<int>& valueIndexToSegment, int defaultSegment,
 | |
|                          std::vector<Block*>& segmentBlocks)
 | |
| {
 | |
|     Function& function = buildPoint->getParent();
 | |
| 
 | |
|     // make all the blocks
 | |
|     for (int s = 0; s < numSegments; ++s)
 | |
|         segmentBlocks.push_back(new Block(getUniqueId(), function));
 | |
| 
 | |
|     Block* mergeBlock = new Block(getUniqueId(), function);
 | |
| 
 | |
|     // make and insert the switch's selection-merge instruction
 | |
|     createMerge(OpSelectionMerge, mergeBlock, SelectionControlMaskNone);
 | |
| 
 | |
|     // make the switch instruction
 | |
|     Instruction* switchInst = new Instruction(NoResult, NoType, OpSwitch);
 | |
|     switchInst->addIdOperand(selector);
 | |
|     switchInst->addIdOperand(defaultSegment >= 0 ? segmentBlocks[defaultSegment]->getId() : mergeBlock->getId());
 | |
|     for (int i = 0; i < (int)caseValues.size(); ++i) {
 | |
|         switchInst->addImmediateOperand(caseValues[i]);
 | |
|         switchInst->addIdOperand(segmentBlocks[valueIndexToSegment[i]]->getId());
 | |
|     }
 | |
|     buildPoint->addInstruction(switchInst);
 | |
| 
 | |
|     // push the merge block
 | |
|     switchMerges.push(mergeBlock);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::addSwitchBreak()
 | |
| {
 | |
|     // branch to the top of the merge block stack
 | |
|     createBranch(switchMerges.top());
 | |
|     createAndSetNoPredecessorBlock("post-switch-break");
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::nextSwitchSegment(std::vector<Block*>& segmentBlock, int nextSegment)
 | |
| {
 | |
|     int lastSegment = nextSegment - 1;
 | |
|     if (lastSegment >= 0) {
 | |
|         // Close out previous segment by jumping, if necessary, to next segment
 | |
|         if (! buildPoint->isTerminated())
 | |
|             createBranch(segmentBlock[nextSegment]);
 | |
|     }
 | |
|     Block* block = segmentBlock[nextSegment];
 | |
|     block->getParent().addBlock(block);
 | |
|     setBuildPoint(block);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::endSwitch(std::vector<Block*>& /*segmentBlock*/)
 | |
| {
 | |
|     // Close out previous segment by jumping, if necessary, to next segment
 | |
|     if (! buildPoint->isTerminated())
 | |
|         addSwitchBreak();
 | |
| 
 | |
|     switchMerges.top()->getParent().addBlock(switchMerges.top());
 | |
|     setBuildPoint(switchMerges.top());
 | |
| 
 | |
|     switchMerges.pop();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::makeNewLoop(bool loopTestFirst)
 | |
| {
 | |
|     loops.push(Loop(*this, loopTestFirst));
 | |
|     const Loop& loop = loops.top();
 | |
| 
 | |
|     // The loop test is always emitted before the loop body.
 | |
|     // But if the loop test executes at the bottom of the loop, then
 | |
|     // execute the test only on the second and subsequent iterations.
 | |
| 
 | |
|     // Remember the block that branches to the loop header.  This
 | |
|     // is required for the test-after-body case.
 | |
|     Block* preheader = getBuildPoint();
 | |
| 
 | |
|     // Branch into the loop
 | |
|     createBranch(loop.header);
 | |
| 
 | |
|     // Set ourselves inside the loop
 | |
|     loop.function->addBlock(loop.header);
 | |
|     setBuildPoint(loop.header);
 | |
| 
 | |
|     if (!loopTestFirst) {
 | |
|         // Generate code to defer the loop test until the second and
 | |
|         // subsequent iterations.
 | |
| 
 | |
|         // It's always the first iteration when coming from the preheader.
 | |
|         // All other branches to this loop header will need to indicate "false",
 | |
|         // but we don't yet know where they will come from.
 | |
|         loop.isFirstIteration->addIdOperand(makeBoolConstant(true));
 | |
|         loop.isFirstIteration->addIdOperand(preheader->getId());
 | |
|         getBuildPoint()->addInstruction(loop.isFirstIteration);
 | |
| 
 | |
|         // Mark the end of the structured loop. This must exist in the loop header block.
 | |
|         createMerge(OpLoopMerge, loop.merge, LoopControlMaskNone);
 | |
| 
 | |
|         // Generate code to see if this is the first iteration of the loop.
 | |
|         // It needs to be in its own block, since the loop merge and
 | |
|         // the selection merge instructions can't both be in the same
 | |
|         // (header) block.
 | |
|         Block* firstIterationCheck = new Block(getUniqueId(), *loop.function);
 | |
|         createBranch(firstIterationCheck);
 | |
|         loop.function->addBlock(firstIterationCheck);
 | |
|         setBuildPoint(firstIterationCheck);
 | |
| 
 | |
|         // Control flow after this "if" normally reconverges at the loop body.
 | |
|         // However, the loop test has a "break branch" out of this selection
 | |
|         // construct because it can transfer control to the loop merge block.
 | |
|         createMerge(OpSelectionMerge, loop.body, SelectionControlMaskNone);
 | |
| 
 | |
|         Block* loopTest = new Block(getUniqueId(), *loop.function);
 | |
|         createConditionalBranch(loop.isFirstIteration->getResultId(), loop.body, loopTest);
 | |
| 
 | |
|         loop.function->addBlock(loopTest);
 | |
|         setBuildPoint(loopTest);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Builder::createLoopTestBranch(Id condition)
 | |
| {
 | |
|     const Loop& loop = loops.top();
 | |
| 
 | |
|     // Generate the merge instruction. If the loop test executes before
 | |
|     // the body, then this is a loop merge.  Otherwise the loop merge
 | |
|     // has already been generated and this is a conditional merge.
 | |
|     if (loop.testFirst) {
 | |
|         createMerge(OpLoopMerge, loop.merge, LoopControlMaskNone);
 | |
|         // Branching to the "body" block will keep control inside
 | |
|         // the loop.
 | |
|         createConditionalBranch(condition, loop.body, loop.merge);
 | |
|         loop.function->addBlock(loop.body);
 | |
|         setBuildPoint(loop.body);
 | |
|     } else {
 | |
|         // The branch to the loop merge block is the allowed exception
 | |
|         // to the structured control flow.  Otherwise, control flow will
 | |
|         // continue to loop.body block.  Since that is already the target
 | |
|         // of a merge instruction, and a block can't be the target of more
 | |
|         // than one merge instruction, we need to make an intermediate block.
 | |
|         Block* stayInLoopBlock = new Block(getUniqueId(), *loop.function);
 | |
|         createMerge(OpSelectionMerge, stayInLoopBlock, SelectionControlMaskNone);
 | |
| 
 | |
|         // This is the loop test.
 | |
|         createConditionalBranch(condition, stayInLoopBlock, loop.merge);
 | |
| 
 | |
|         // The dummy block just branches to the real loop body.
 | |
|         loop.function->addBlock(stayInLoopBlock);
 | |
|         setBuildPoint(stayInLoopBlock);
 | |
|         createBranchToBody();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Builder::createBranchToBody()
 | |
| {
 | |
|     const Loop& loop = loops.top();
 | |
|     assert(loop.body);
 | |
| 
 | |
|     // This is a reconvergence of control flow, so no merge instruction
 | |
|     // is required.
 | |
|     createBranch(loop.body);
 | |
|     loop.function->addBlock(loop.body);
 | |
|     setBuildPoint(loop.body);
 | |
| }
 | |
| 
 | |
| void Builder::createLoopContinue()
 | |
| {
 | |
|     createBranchToLoopHeaderFromInside(loops.top());
 | |
|     // Set up a block for dead code.
 | |
|     createAndSetNoPredecessorBlock("post-loop-continue");
 | |
| }
 | |
| 
 | |
| // Add an exit (e.g. "break") for the innermost loop that you're in
 | |
| void Builder::createLoopExit()
 | |
| {
 | |
|     createBranch(loops.top().merge);
 | |
|     // Set up a block for dead code.
 | |
|     createAndSetNoPredecessorBlock("post-loop-break");
 | |
| }
 | |
| 
 | |
| // Close the innermost loop
 | |
| void Builder::closeLoop()
 | |
| {
 | |
|     const Loop& loop = loops.top();
 | |
| 
 | |
|     // Branch back to the top
 | |
|     createBranchToLoopHeaderFromInside(loop);
 | |
| 
 | |
|     // Add the merge block and set the build point to it
 | |
|     loop.function->addBlock(loop.merge);
 | |
|     setBuildPoint(loop.merge);
 | |
| 
 | |
|     loops.pop();
 | |
| }
 | |
| 
 | |
| // Create a branch to the header of the given loop, from inside
 | |
| // the loop body.
 | |
| // Adjusts the phi node for the first-iteration value if needeed.
 | |
| void Builder::createBranchToLoopHeaderFromInside(const Loop& loop)
 | |
| {
 | |
|     createBranch(loop.header);
 | |
|     if (loop.isFirstIteration) {
 | |
|         loop.isFirstIteration->addIdOperand(makeBoolConstant(false));
 | |
|         loop.isFirstIteration->addIdOperand(getBuildPoint()->getId());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Builder::clearAccessChain()
 | |
| {
 | |
|     accessChain.base = 0;
 | |
|     accessChain.indexChain.clear();
 | |
|     accessChain.instr = 0;
 | |
|     accessChain.swizzle.clear();
 | |
|     accessChain.component = 0;
 | |
|     accessChain.resultType = NoType;
 | |
|     accessChain.isRValue = false;
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::accessChainPushSwizzle(std::vector<unsigned>& swizzle)
 | |
| {
 | |
|     // if needed, propagate the swizzle for the current access chain
 | |
|     if (accessChain.swizzle.size()) {
 | |
|         std::vector<unsigned> oldSwizzle = accessChain.swizzle;
 | |
|         accessChain.swizzle.resize(0);
 | |
|         for (unsigned int i = 0; i < swizzle.size(); ++i) {
 | |
|             accessChain.swizzle.push_back(oldSwizzle[swizzle[i]]);
 | |
|         }
 | |
|     } else
 | |
|         accessChain.swizzle = swizzle;
 | |
| 
 | |
|     // determine if we need to track this swizzle anymore
 | |
|     simplifyAccessChainSwizzle();
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::accessChainStore(Id rvalue)
 | |
| {
 | |
|     assert(accessChain.isRValue == false);
 | |
| 
 | |
|     Id base = collapseAccessChain();
 | |
| 
 | |
|     if (accessChain.swizzle.size() && accessChain.component)
 | |
|         MissingFunctionality("simultaneous l-value swizzle and dynamic component selection");
 | |
| 
 | |
|     // If swizzle exists, it is out-of-order or not full, we must load the target vector,
 | |
|     // extract and insert elements to perform writeMask and/or swizzle.
 | |
|     Id source = NoResult;
 | |
|     if (accessChain.swizzle.size()) {
 | |
|         Id tempBaseId = createLoad(base);
 | |
|         source = createLvalueSwizzle(getTypeId(tempBaseId), tempBaseId, rvalue, accessChain.swizzle);
 | |
|     }
 | |
| 
 | |
|     // dynamic component selection
 | |
|     if (accessChain.component) {
 | |
|         Id tempBaseId = (source == NoResult) ? createLoad(base) : source;
 | |
|         source = createVectorInsertDynamic(tempBaseId, getTypeId(tempBaseId), rvalue, accessChain.component);
 | |
|     }
 | |
| 
 | |
|     if (source == NoResult)
 | |
|         source = rvalue;
 | |
| 
 | |
|     createStore(source, base);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| Id Builder::accessChainLoad(Decoration /*precision*/)
 | |
| {
 | |
|     Id id;
 | |
| 
 | |
|     if (accessChain.isRValue) {
 | |
|         if (accessChain.indexChain.size() > 0) {
 | |
|             mergeAccessChainSwizzle();  // TODO: optimization: look at applying this optimization more widely
 | |
|             // if all the accesses are constants, we can use OpCompositeExtract
 | |
|             std::vector<unsigned> indexes;
 | |
|             bool constant = true;
 | |
|             for (int i = 0; i < (int)accessChain.indexChain.size(); ++i) {
 | |
|                 if (isConstantScalar(accessChain.indexChain[i]))
 | |
|                     indexes.push_back(getConstantScalar(accessChain.indexChain[i]));
 | |
|                 else {
 | |
|                     constant = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (constant)
 | |
|                 id = createCompositeExtract(accessChain.base, accessChain.resultType, indexes);
 | |
|             else {
 | |
|                 // make a new function variable for this r-value
 | |
|                 Id lValue = createVariable(StorageClassFunction, getTypeId(accessChain.base), "indexable");
 | |
| 
 | |
|                 // store into it
 | |
|                 createStore(accessChain.base, lValue);
 | |
| 
 | |
|                 // move base to the new variable
 | |
|                 accessChain.base = lValue;
 | |
|                 accessChain.isRValue = false;
 | |
| 
 | |
|                 // load through the access chain
 | |
|                 id = createLoad(collapseAccessChain());
 | |
|             }
 | |
|         } else
 | |
|             id = accessChain.base;
 | |
|     } else {
 | |
|         // load through the access chain
 | |
|         id = createLoad(collapseAccessChain());
 | |
|     }
 | |
| 
 | |
|     // Done, unless there are swizzles to do
 | |
|     if (accessChain.swizzle.size() == 0 && accessChain.component == 0)
 | |
|         return id;
 | |
| 
 | |
|     Id componentType = getScalarTypeId(accessChain.resultType);
 | |
| 
 | |
|     // Do remaining swizzling
 | |
|     // First, static swizzling
 | |
|     if (accessChain.swizzle.size()) {
 | |
|         // static swizzle
 | |
|         Id resultType = componentType;
 | |
|         if (accessChain.swizzle.size() > 1)
 | |
|             resultType = makeVectorType(componentType, (int)accessChain.swizzle.size());
 | |
|         id = createRvalueSwizzle(resultType, id, accessChain.swizzle);
 | |
|     }
 | |
| 
 | |
|     // dynamic single-component selection
 | |
|     if (accessChain.component)
 | |
|         id = createVectorExtractDynamic(id, componentType, accessChain.component);
 | |
| 
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| Id Builder::accessChainGetLValue()
 | |
| {
 | |
|     assert(accessChain.isRValue == false);
 | |
| 
 | |
|     Id lvalue = collapseAccessChain();
 | |
| 
 | |
|     // If swizzle exists, it is out-of-order or not full, we must load the target vector,
 | |
|     // extract and insert elements to perform writeMask and/or swizzle.  This does not
 | |
|     // go with getting a direct l-value pointer.
 | |
|     assert(accessChain.swizzle.size() == 0);
 | |
|     assert(accessChain.component == spv::NoResult);
 | |
| 
 | |
|     return lvalue;
 | |
| }
 | |
| 
 | |
| void Builder::dump(std::vector<unsigned int>& out) const
 | |
| {
 | |
|     // Header, before first instructions:
 | |
|     out.push_back(MagicNumber);
 | |
|     out.push_back(Version);
 | |
|     out.push_back(builderNumber);
 | |
|     out.push_back(uniqueId + 1);
 | |
|     out.push_back(0);
 | |
| 
 | |
|     // First instructions, some created on the spot here:
 | |
|     if (source != SourceLanguageUnknown) {
 | |
|         Instruction sourceInst(0, 0, OpSource);
 | |
|         sourceInst.addImmediateOperand(source);
 | |
|         sourceInst.addImmediateOperand(sourceVersion);
 | |
|         sourceInst.dump(out);
 | |
|     }
 | |
|     for (int e = 0; e < (int)extensions.size(); ++e) {
 | |
|         Instruction extInst(0, 0, OpSourceExtension);
 | |
|         extInst.addStringOperand(extensions[e]);
 | |
|         extInst.dump(out);
 | |
|     }
 | |
|     // TBD: OpExtension ...
 | |
|     dumpInstructions(out, imports);
 | |
|     Instruction memInst(0, 0, OpMemoryModel);
 | |
|     memInst.addImmediateOperand(addressModel);
 | |
|     memInst.addImmediateOperand(memoryModel);
 | |
|     memInst.dump(out);
 | |
| 
 | |
|     // Instructions saved up while building:
 | |
|     dumpInstructions(out, entryPoints);
 | |
|     dumpInstructions(out, executionModes);
 | |
|     dumpInstructions(out, names);
 | |
|     dumpInstructions(out, lines);
 | |
|     dumpInstructions(out, decorations);
 | |
|     dumpInstructions(out, constantsTypesGlobals);
 | |
|     dumpInstructions(out, externals);
 | |
| 
 | |
|     // The functions
 | |
|     module.dump(out);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Protected methods.
 | |
| //
 | |
| 
 | |
| Id Builder::collapseAccessChain()
 | |
| {
 | |
|     // TODO: bring in an individual component swizzle here, so that a pointer 
 | |
|     // all the way to the component level can be created.
 | |
|     assert(accessChain.isRValue == false);
 | |
| 
 | |
|     if (accessChain.indexChain.size() > 0) {
 | |
|         if (accessChain.instr == 0) {
 | |
|             StorageClass storageClass = (StorageClass)module.getStorageClass(getTypeId(accessChain.base));
 | |
|             accessChain.instr = createAccessChain(storageClass, accessChain.base, accessChain.indexChain);
 | |
|         }
 | |
| 
 | |
|         return accessChain.instr;
 | |
|     } else
 | |
|         return accessChain.base;
 | |
| }
 | |
| 
 | |
| // clear out swizzle if it is redundant
 | |
| void Builder::simplifyAccessChainSwizzle()
 | |
| {
 | |
|     // If the swizzle has fewer components than the vector, it is subsetting, and must stay
 | |
|     // to preserve that fact.
 | |
|     if (getNumTypeComponents(accessChain.resultType) > (int)accessChain.swizzle.size())
 | |
|         return;
 | |
| 
 | |
|     // if components are out of order, it is a swizzle
 | |
|     for (unsigned int i = 0; i < accessChain.swizzle.size(); ++i) {
 | |
|         if (i != accessChain.swizzle[i])
 | |
|             return;
 | |
|     }
 | |
| 
 | |
|     // otherwise, there is no need to track this swizzle
 | |
|     accessChain.swizzle.clear();
 | |
| }
 | |
| 
 | |
| // clear out swizzle if it can become part of the indexes
 | |
| void Builder::mergeAccessChainSwizzle()
 | |
| {
 | |
|     // is there even a chance of doing something?  Need a single-component swizzle
 | |
|     if ((accessChain.swizzle.size() > 1) ||
 | |
|         (accessChain.swizzle.size() == 0 && accessChain.component == 0))
 | |
|         return;
 | |
| 
 | |
|     // TODO: optimization: remove this, but for now confine this to non-dynamic accesses
 | |
|     // (the above test is correct when this is removed.)
 | |
|     if (accessChain.component)
 | |
|         return;
 | |
| 
 | |
|     // move the swizzle over to the indexes
 | |
|     if (accessChain.swizzle.size() == 1)
 | |
|         accessChain.indexChain.push_back(makeUintConstant(accessChain.swizzle.front()));
 | |
|     else
 | |
|         accessChain.indexChain.push_back(accessChain.component);
 | |
|     accessChain.resultType = getScalarTypeId(accessChain.resultType);
 | |
| 
 | |
|     // now there is no need to track this swizzle
 | |
|     accessChain.component = NoResult;
 | |
|     accessChain.swizzle.clear();
 | |
| }
 | |
| 
 | |
| // Utility method for creating a new block and setting the insert point to
 | |
| // be in it. This is useful for flow-control operations that need a "dummy"
 | |
| // block proceeding them (e.g. instructions after a discard, etc).
 | |
| void Builder::createAndSetNoPredecessorBlock(const char* /*name*/)
 | |
| {
 | |
|     Block* block = new Block(getUniqueId(), buildPoint->getParent());
 | |
|     block->setUnreachable();
 | |
|     buildPoint->getParent().addBlock(block);
 | |
|     setBuildPoint(block);
 | |
| 
 | |
|     //if (name)
 | |
|     //    addName(block->getId(), name);
 | |
| }
 | |
| 
 | |
| // Comments in header
 | |
| void Builder::createBranch(Block* block)
 | |
| {
 | |
|     Instruction* branch = new Instruction(OpBranch);
 | |
|     branch->addIdOperand(block->getId());
 | |
|     buildPoint->addInstruction(branch);
 | |
|     block->addPredecessor(buildPoint);
 | |
| }
 | |
| 
 | |
| void Builder::createMerge(Op mergeCode, Block* mergeBlock, unsigned int control)
 | |
| {
 | |
|     Instruction* merge = new Instruction(mergeCode);
 | |
|     merge->addIdOperand(mergeBlock->getId());
 | |
|     merge->addImmediateOperand(control);
 | |
|     buildPoint->addInstruction(merge);
 | |
| }
 | |
| 
 | |
| void Builder::createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock)
 | |
| {
 | |
|     Instruction* branch = new Instruction(OpBranchConditional);
 | |
|     branch->addIdOperand(condition);
 | |
|     branch->addIdOperand(thenBlock->getId());
 | |
|     branch->addIdOperand(elseBlock->getId());
 | |
|     buildPoint->addInstruction(branch);
 | |
|     thenBlock->addPredecessor(buildPoint);
 | |
|     elseBlock->addPredecessor(buildPoint);
 | |
| }
 | |
| 
 | |
| void Builder::dumpInstructions(std::vector<unsigned int>& out, const std::vector<Instruction*>& instructions) const
 | |
| {
 | |
|     for (int i = 0; i < (int)instructions.size(); ++i) {
 | |
|         instructions[i]->dump(out);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void TbdFunctionality(const char* tbd)
 | |
| {
 | |
|     static std::unordered_set<const char*> issued;
 | |
| 
 | |
|     if (issued.find(tbd) == issued.end()) {
 | |
|         printf("TBD functionality: %s\n", tbd);
 | |
|         issued.insert(tbd);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MissingFunctionality(const char* fun)
 | |
| {
 | |
|     printf("Missing functionality: %s\n", fun);
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| Builder::Loop::Loop(Builder& builder, bool testFirstArg)
 | |
|   : function(&builder.getBuildPoint()->getParent()),
 | |
|     header(new Block(builder.getUniqueId(), *function)),
 | |
|     merge(new Block(builder.getUniqueId(), *function)),
 | |
|     body(new Block(builder.getUniqueId(), *function)),
 | |
|     testFirst(testFirstArg),
 | |
|     isFirstIteration(testFirst
 | |
|                      ? nullptr
 | |
|                      : new Instruction(builder.getUniqueId(), builder.makeBoolType(), OpPhi))
 | |
|   {}
 | |
| 
 | |
| }; // end spv namespace
 | 
