 28f9b1c28d
			
		
	
	
		28f9b1c28d
		
	
	
	
	
		
			
			Previously if a non-void function implictly returned, a dummy variable was created as return value. Now instead it returns the result of the OpUndef instruction. This better conveys the presence of undefined behavior to SPIR-V consuming tools (and humans). It also saves one ID per occurrence...
		
			
				
	
	
		
			587 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			587 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| //
 | |
| //Copyright (C) 2014 LunarG, Inc.
 | |
| //
 | |
| //All rights reserved.
 | |
| //
 | |
| //Redistribution and use in source and binary forms, with or without
 | |
| //modification, are permitted provided that the following conditions
 | |
| //are met:
 | |
| //
 | |
| //    Redistributions of source code must retain the above copyright
 | |
| //    notice, this list of conditions and the following disclaimer.
 | |
| //
 | |
| //    Redistributions in binary form must reproduce the above
 | |
| //    copyright notice, this list of conditions and the following
 | |
| //    disclaimer in the documentation and/or other materials provided
 | |
| //    with the distribution.
 | |
| //
 | |
| //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
 | |
| //    contributors may be used to endorse or promote products derived
 | |
| //    from this software without specific prior written permission.
 | |
| //
 | |
| //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | |
| //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | |
| //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
| //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
| //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
| //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
| //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | |
| //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| //POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| //
 | |
| // Author: John Kessenich, LunarG
 | |
| //
 | |
| 
 | |
| //
 | |
| // "Builder" is an interface to fully build SPIR-V IR.   Allocate one of
 | |
| // these to build (a thread safe) internal SPIR-V representation (IR),
 | |
| // and then dump it as a binary stream according to the SPIR-V specification.
 | |
| //
 | |
| // A Builder has a 1:1 relationship with a SPIR-V module.
 | |
| //
 | |
| 
 | |
| #pragma once
 | |
| #ifndef SpvBuilder_H
 | |
| #define SpvBuilder_H
 | |
| 
 | |
| #include "spirv.hpp"
 | |
| #include "spvIR.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <stack>
 | |
| #include <map>
 | |
| 
 | |
| namespace spv {
 | |
| 
 | |
| class Builder {
 | |
| public:
 | |
|     Builder(unsigned int userNumber);
 | |
|     virtual ~Builder();
 | |
| 
 | |
|     static const int maxMatrixSize = 4;
 | |
| 
 | |
|     void setSource(spv::SourceLanguage lang, int version)
 | |
|     {
 | |
|         source = lang;
 | |
|         sourceVersion = version;
 | |
|     }
 | |
|     void addSourceExtension(const char* ext) { extensions.push_back(ext); }
 | |
|     Id import(const char*);
 | |
|     void setMemoryModel(spv::AddressingModel addr, spv::MemoryModel mem)
 | |
|     {
 | |
|         addressModel = addr;
 | |
|         memoryModel = mem;
 | |
|     }
 | |
| 
 | |
|     void addCapability(spv::Capability cap) { capabilities.push_back(cap); }
 | |
| 
 | |
|     // To get a new <id> for anything needing a new one.
 | |
|     Id getUniqueId() { return ++uniqueId; }
 | |
| 
 | |
|     // To get a set of new <id>s, e.g., for a set of function parameters
 | |
|     Id getUniqueIds(int numIds)
 | |
|     {
 | |
|         Id id = uniqueId + 1;
 | |
|         uniqueId += numIds;
 | |
|         return id;
 | |
|     }
 | |
| 
 | |
|     // For creating new types (will return old type if the requested one was already made).
 | |
|     Id makeVoidType();
 | |
|     Id makeBoolType();
 | |
|     Id makePointer(StorageClass, Id type);
 | |
|     Id makeIntegerType(int width, bool hasSign);   // generic
 | |
|     Id makeIntType(int width) { return makeIntegerType(width, true); }
 | |
|     Id makeUintType(int width) { return makeIntegerType(width, false); }
 | |
|     Id makeFloatType(int width);
 | |
|     Id makeStructType(std::vector<Id>& members, const char*);
 | |
|     Id makeVectorType(Id component, int size);
 | |
|     Id makeMatrixType(Id component, int cols, int rows);
 | |
|     Id makeArrayType(Id element, unsigned size);
 | |
|     Id makeFunctionType(Id returnType, std::vector<Id>& paramTypes);
 | |
|     Id makeImageType(Id sampledType, Dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format);
 | |
|     Id makeSampledImageType(Id imageType);
 | |
| 
 | |
|     // For querying about types.
 | |
|     Id getTypeId(Id resultId) const { return module.getTypeId(resultId); }
 | |
|     Id getDerefTypeId(Id resultId) const;
 | |
|     Op getOpCode(Id id) const { return module.getInstruction(id)->getOpCode(); }
 | |
|     Op getTypeClass(Id typeId) const { return getOpCode(typeId); }
 | |
|     Op getMostBasicTypeClass(Id typeId) const;
 | |
|     int getNumComponents(Id resultId) const { return getNumTypeComponents(getTypeId(resultId)); }
 | |
|     int getNumTypeComponents(Id typeId) const;
 | |
|     Id getScalarTypeId(Id typeId) const;
 | |
|     Id getContainedTypeId(Id typeId) const;
 | |
|     Id getContainedTypeId(Id typeId, int) const;
 | |
| 
 | |
|     bool isPointer(Id resultId)     const { return isPointerType(getTypeId(resultId)); }
 | |
|     bool isScalar(Id resultId)      const { return isScalarType(getTypeId(resultId)); }
 | |
|     bool isVector(Id resultId)      const { return isVectorType(getTypeId(resultId)); }
 | |
|     bool isMatrix(Id resultId)      const { return isMatrixType(getTypeId(resultId)); }
 | |
|     bool isAggregate(Id resultId)   const { return isAggregateType(getTypeId(resultId)); }
 | |
| 
 | |
|     bool isPointerType(Id typeId)   const { return getTypeClass(typeId) == OpTypePointer; }
 | |
|     bool isScalarType(Id typeId)    const { return getTypeClass(typeId) == OpTypeFloat  || getTypeClass(typeId) == OpTypeInt || getTypeClass(typeId) == OpTypeBool; }
 | |
|     bool isVectorType(Id typeId)    const { return getTypeClass(typeId) == OpTypeVector; }
 | |
|     bool isMatrixType(Id typeId)    const { return getTypeClass(typeId) == OpTypeMatrix; }
 | |
|     bool isStructType(Id typeId)    const { return getTypeClass(typeId) == OpTypeStruct; }
 | |
|     bool isArrayType(Id typeId)     const { return getTypeClass(typeId) == OpTypeArray; }
 | |
|     bool isAggregateType(Id typeId) const { return isArrayType(typeId) || isStructType(typeId); }
 | |
|     bool isImageType(Id typeId)     const { return getTypeClass(typeId) == OpTypeImage; }
 | |
|     bool isSamplerType(Id typeId)   const { return getTypeClass(typeId) == OpTypeSampler; }
 | |
|     bool isSampledImageType(Id typeId)   const { return getTypeClass(typeId) == OpTypeSampledImage; }
 | |
| 
 | |
|     bool isConstantScalar(Id resultId) const { return getOpCode(resultId) == OpConstant; }
 | |
|     unsigned int getConstantScalar(Id resultId) const { return module.getInstruction(resultId)->getImmediateOperand(0); }
 | |
| 
 | |
|     int getTypeNumColumns(Id typeId) const
 | |
|     {
 | |
|         assert(isMatrixType(typeId));
 | |
|         return getNumTypeComponents(typeId);
 | |
|     }
 | |
|     int getNumColumns(Id resultId) const { return getTypeNumColumns(getTypeId(resultId)); }
 | |
|     int getTypeNumRows(Id typeId) const
 | |
|     {
 | |
|         assert(isMatrixType(typeId));
 | |
|         return getNumTypeComponents(getContainedTypeId(typeId));
 | |
|     }
 | |
|     int getNumRows(Id resultId) const { return getTypeNumRows(getTypeId(resultId)); }
 | |
| 
 | |
|     Dim getTypeDimensionality(Id typeId) const
 | |
|     {
 | |
|         assert(isImageType(typeId));
 | |
|         return (Dim)module.getInstruction(typeId)->getImmediateOperand(1);
 | |
|     }
 | |
|     Id getImageType(Id resultId) const
 | |
|     {
 | |
|         assert(isSampledImageType(getTypeId(resultId)));
 | |
|         return module.getInstruction(getTypeId(resultId))->getIdOperand(0);
 | |
|     }
 | |
|     bool isArrayedImageType(Id typeId) const
 | |
|     {
 | |
|         assert(isImageType(typeId));
 | |
|         return module.getInstruction(typeId)->getImmediateOperand(3) != 0;
 | |
|     }
 | |
| 
 | |
|     // For making new constants (will return old constant if the requested one was already made).
 | |
|     Id makeBoolConstant(bool b);
 | |
|     Id makeIntConstant(Id typeId, unsigned value);
 | |
|     Id makeIntConstant(int i)         { return makeIntConstant(makeIntType(32),  (unsigned)i); }
 | |
|     Id makeUintConstant(unsigned u)   { return makeIntConstant(makeUintType(32),           u); }
 | |
|     Id makeFloatConstant(float f);
 | |
|     Id makeDoubleConstant(double d);
 | |
| 
 | |
|     // Turn the array of constants into a proper spv constant of the requested type.
 | |
|     Id makeCompositeConstant(Id type, std::vector<Id>& comps);
 | |
| 
 | |
|     // Methods for adding information outside the CFG.
 | |
|     void addEntryPoint(ExecutionModel, Function*, const char* name);
 | |
|     void addExecutionMode(Function*, ExecutionMode mode, int value = -1);
 | |
|     void addName(Id, const char* name);
 | |
|     void addMemberName(Id, int member, const char* name);
 | |
|     void addLine(Id target, Id fileName, int line, int column);
 | |
|     void addDecoration(Id, Decoration, int num = -1);
 | |
|     void addMemberDecoration(Id, unsigned int member, Decoration, int num = -1);
 | |
| 
 | |
|     // At the end of what block do the next create*() instructions go?
 | |
|     void setBuildPoint(Block* bp) { buildPoint = bp; }
 | |
|     Block* getBuildPoint() const { return buildPoint; }
 | |
| 
 | |
|     // Make the main function.
 | |
|     Function* makeMain();
 | |
| 
 | |
|     // Return from main. Implicit denotes a return at the very end of main.
 | |
|     void makeMainReturn(bool implicit = false) { makeReturn(implicit, 0, true); }
 | |
| 
 | |
|     // Close the main function.
 | |
|     void closeMain();
 | |
| 
 | |
|     // Make a shader-style function, and create its entry block if entry is non-zero.
 | |
|     // Return the function, pass back the entry.
 | |
|     Function* makeFunctionEntry(Id returnType, const char* name, std::vector<Id>& paramTypes, Block **entry = 0);
 | |
| 
 | |
|     // Create a return. Pass whether it is a return form main, and the return
 | |
|     // value (if applicable). In the case of an implicit return, no post-return
 | |
|     // block is inserted.
 | |
|     void makeReturn(bool implicit = false, Id retVal = 0, bool isMain = false);
 | |
| 
 | |
|     // Generate all the code needed to finish up a function.
 | |
|     void leaveFunction(bool main);
 | |
| 
 | |
|     // Create a discard.
 | |
|     void makeDiscard();
 | |
| 
 | |
|     // Create a global or function local or IO variable.
 | |
|     Id createVariable(StorageClass, Id type, const char* name = 0);
 | |
| 
 | |
|     // Create an imtermediate with an undefined value.
 | |
|     Id createUndefined(Id type);
 | |
| 
 | |
|     // Store into an Id and return the l-value
 | |
|     void createStore(Id rValue, Id lValue);
 | |
| 
 | |
|     // Load from an Id and return it
 | |
|     Id createLoad(Id lValue);
 | |
| 
 | |
|     // Create an OpAccessChain instruction
 | |
|     Id createAccessChain(StorageClass, Id base, std::vector<Id>& offsets);
 | |
| 
 | |
|     // Create an OpCompositeExtract instruction
 | |
|     Id createCompositeExtract(Id composite, Id typeId, unsigned index);
 | |
|     Id createCompositeExtract(Id composite, Id typeId, std::vector<unsigned>& indexes);
 | |
|     Id createCompositeInsert(Id object, Id composite, Id typeId, unsigned index);
 | |
|     Id createCompositeInsert(Id object, Id composite, Id typeId, std::vector<unsigned>& indexes);
 | |
| 
 | |
|     Id createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex);
 | |
|     Id createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex);
 | |
| 
 | |
|     void createNoResultOp(Op);
 | |
|     void createNoResultOp(Op, Id operand);
 | |
|     void createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask);
 | |
|     void createMemoryBarrier(unsigned executionScope, unsigned memorySemantics);
 | |
|     Id createUnaryOp(Op, Id typeId, Id operand);
 | |
|     Id createBinOp(Op, Id typeId, Id operand1, Id operand2);
 | |
|     Id createTriOp(Op, Id typeId, Id operand1, Id operand2, Id operand3);
 | |
|     Id createOp(Op, Id typeId, const std::vector<Id>& operands);
 | |
|     Id createFunctionCall(spv::Function*, std::vector<spv::Id>&);
 | |
| 
 | |
|     // Take an rvalue (source) and a set of channels to extract from it to
 | |
|     // make a new rvalue, which is returned.
 | |
|     Id createRvalueSwizzle(Id typeId, Id source, std::vector<unsigned>& channels);
 | |
| 
 | |
|     // Take a copy of an lvalue (target) and a source of components, and set the
 | |
|     // source components into the lvalue where the 'channels' say to put them.
 | |
|     // An updated version of the target is returned.
 | |
|     // (No true lvalue or stores are used.)
 | |
|     Id createLvalueSwizzle(Id typeId, Id target, Id source, std::vector<unsigned>& channels);
 | |
| 
 | |
|     // If the value passed in is an instruction and the precision is not EMpNone,
 | |
|     // it gets tagged with the requested precision.
 | |
|     void setPrecision(Id /* value */, Decoration /* precision */)
 | |
|     {
 | |
|         // TODO
 | |
|     }
 | |
| 
 | |
|     // Can smear a scalar to a vector for the following forms:
 | |
|     //   - promoteScalar(scalar, vector)  // smear scalar to width of vector
 | |
|     //   - promoteScalar(vector, scalar)  // smear scalar to width of vector
 | |
|     //   - promoteScalar(pointer, scalar) // smear scalar to width of what pointer points to
 | |
|     //   - promoteScalar(scalar, scalar)  // do nothing
 | |
|     // Other forms are not allowed.
 | |
|     //
 | |
|     // Note: One of the arguments will change, with the result coming back that way rather than 
 | |
|     // through the return value.
 | |
|     void promoteScalar(Decoration precision, Id& left, Id& right);
 | |
| 
 | |
|     // make a value by smearing the scalar to fill the type
 | |
|     Id smearScalar(Decoration precision, Id scalarVal, Id);
 | |
| 
 | |
|     // Create a call to a built-in function.
 | |
|     Id createBuiltinCall(Decoration precision, Id resultType, Id builtins, int entryPoint, std::vector<Id>& args);
 | |
| 
 | |
|     // List of parameters used to create a texture operation
 | |
|     struct TextureParameters {
 | |
|         Id sampler;
 | |
|         Id coords;
 | |
|         Id bias;
 | |
|         Id lod;
 | |
|         Id Dref;
 | |
|         Id offset;
 | |
|         Id offsets;
 | |
|         Id gradX;
 | |
|         Id gradY;
 | |
|         Id sample;
 | |
|     };
 | |
| 
 | |
|     // Select the correct texture operation based on all inputs, and emit the correct instruction
 | |
|     Id createTextureCall(Decoration precision, Id resultType, bool proj, const TextureParameters&);
 | |
| 
 | |
|     // Emit the OpTextureQuery* instruction that was passed in.
 | |
|     // Figure out the right return value and type, and return it.
 | |
|     Id createTextureQueryCall(Op, const TextureParameters&);
 | |
| 
 | |
|     Id createSamplePositionCall(Decoration precision, Id, Id);
 | |
| 
 | |
|     Id createBitFieldExtractCall(Decoration precision, Id, Id, Id, bool isSigned);
 | |
|     Id createBitFieldInsertCall(Decoration precision, Id, Id, Id, Id);
 | |
| 
 | |
|     // Reduction comparision for composites:  For equal and not-equal resulting in a scalar.
 | |
|     Id createCompare(Decoration precision, Id, Id, bool /* true if for equal, fales if for not-equal */);
 | |
| 
 | |
|     // OpCompositeConstruct
 | |
|     Id createCompositeConstruct(Id typeId, std::vector<Id>& constituents);
 | |
| 
 | |
|     // vector or scalar constructor
 | |
|     Id createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId);
 | |
| 
 | |
|     // matrix constructor
 | |
|     Id createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id constructee);
 | |
| 
 | |
|     // Helper to use for building nested control flow with if-then-else.
 | |
|     class If {
 | |
|     public:
 | |
|         If(Id condition, Builder& builder);
 | |
|         ~If() {}
 | |
| 
 | |
|         void makeBeginElse();
 | |
|         void makeEndIf();
 | |
| 
 | |
|     private:
 | |
|         If(const If&);
 | |
|         If& operator=(If&);
 | |
| 
 | |
|         Builder& builder;
 | |
|         Id condition;
 | |
|         Function* function;
 | |
|         Block* headerBlock;
 | |
|         Block* thenBlock;
 | |
|         Block* elseBlock;
 | |
|         Block* mergeBlock;
 | |
|     };
 | |
| 
 | |
|     // Make a switch statement.  A switch has 'numSegments' of pieces of code, not containing
 | |
|     // any case/default labels, all separated by one or more case/default labels.  Each possible
 | |
|     // case value v is a jump to the caseValues[v] segment.  The defaultSegment is also in this
 | |
|     // number space.  How to compute the value is given by 'condition', as in switch(condition).
 | |
|     //
 | |
|     // The SPIR-V Builder will maintain the stack of post-switch merge blocks for nested switches.
 | |
|     //
 | |
|     // Use a defaultSegment < 0 if there is no default segment (to branch to post switch).
 | |
|     //
 | |
|     // Returns the right set of basic blocks to start each code segment with, so that the caller's
 | |
|     // recursion stack can hold the memory for it.
 | |
|     //
 | |
|     void makeSwitch(Id condition, int numSegments, std::vector<int>& caseValues, std::vector<int>& valueToSegment, int defaultSegment,
 | |
|                     std::vector<Block*>& segmentBB);  // return argument
 | |
| 
 | |
|     // Add a branch to the innermost switch's merge block.
 | |
|     void addSwitchBreak();
 | |
| 
 | |
|     // Move to the next code segment, passing in the return argument in makeSwitch()
 | |
|     void nextSwitchSegment(std::vector<Block*>& segmentBB, int segment);
 | |
| 
 | |
|     // Finish off the innermost switch.
 | |
|     void endSwitch(std::vector<Block*>& segmentBB);
 | |
| 
 | |
|     // Start the beginning of a new loop, and prepare the builder to
 | |
|     // generate code for the loop test.
 | |
|     // The loopTestFirst parameter is true when the loop test executes before
 | |
|     // the body.  (It is false for do-while loops.)
 | |
|     void makeNewLoop(bool loopTestFirst);
 | |
| 
 | |
|     // Add the branch for the loop test, based on the given condition.
 | |
|     // The true branch goes to the first block in the loop body, and
 | |
|     // the false branch goes to the loop's merge block.  The builder insertion
 | |
|     // point will be placed at the start of the body.
 | |
|     void createLoopTestBranch(Id condition);
 | |
| 
 | |
|     // Generate an unconditional branch to the loop body.  The builder insertion
 | |
|     // point will be placed at the start of the body.  Use this when there is
 | |
|     // no loop test.
 | |
|     void createBranchToBody();
 | |
| 
 | |
|     // Add a branch to the test of the current (innermost) loop.
 | |
|     // The way we generate code, that's also the loop header.
 | |
|     void createLoopContinue();
 | |
| 
 | |
|     // Add an exit (e.g. "break") for the innermost loop that you're in
 | |
|     void createLoopExit();
 | |
| 
 | |
|     // Close the innermost loop that you're in
 | |
|     void closeLoop();
 | |
| 
 | |
|     //
 | |
|     // Access chain design for an R-Value vs. L-Value:
 | |
|     //
 | |
|     // There is a single access chain the builder is building at
 | |
|     // any particular time.  Such a chain can be used to either to a load or
 | |
|     // a store, when desired.
 | |
|     //
 | |
|     // Expressions can be r-values, l-values, or both, or only r-values:
 | |
|     //    a[b.c].d = ....  // l-value
 | |
|     //    ... = a[b.c].d;  // r-value, that also looks like an l-value
 | |
|     //    ++a[b.c].d;      // r-value and l-value
 | |
|     //    (x + y)[2];      // r-value only, can't possibly be l-value
 | |
|     //
 | |
|     // Computing an r-value means generating code.  Hence,
 | |
|     // r-values should only be computed when they are needed, not speculatively.
 | |
|     //
 | |
|     // Computing an l-value means saving away information for later use in the compiler,
 | |
|     // no code is generated until the l-value is later dereferenced.  It is okay
 | |
|     // to speculatively generate an l-value, just not okay to speculatively dereference it.
 | |
|     //
 | |
|     // The base of the access chain (the left-most variable or expression
 | |
|     // from which everything is based) can be set either as an l-value
 | |
|     // or as an r-value.  Most efficient would be to set an l-value if one
 | |
|     // is available.  If an expression was evaluated, the resulting r-value
 | |
|     // can be set as the chain base.
 | |
|     //
 | |
|     // The users of this single access chain can save and restore if they
 | |
|     // want to nest or manage multiple chains.
 | |
|     //
 | |
| 
 | |
|     struct AccessChain {
 | |
|         Id base;                     // for l-values, pointer to the base object, for r-values, the base object
 | |
|         std::vector<Id> indexChain;
 | |
|         Id instr;                    // the instruction that generates this access chain
 | |
|         std::vector<unsigned> swizzle;
 | |
|         Id component;                // a dynamic component index, can coexist with a swizzle, done after the swizzle
 | |
|         Id resultType;               // dereferenced type, to be exclusive of swizzles
 | |
|         bool isRValue;
 | |
|     };
 | |
| 
 | |
|     //
 | |
|     // the SPIR-V builder maintains a single active chain that
 | |
|     // the following methods operated on
 | |
|     //
 | |
| 
 | |
|     // for external save and restore
 | |
|     AccessChain getAccessChain() { return accessChain; }
 | |
|     void setAccessChain(AccessChain newChain) { accessChain = newChain; }
 | |
| 
 | |
|     // clear accessChain
 | |
|     void clearAccessChain();
 | |
| 
 | |
|     // set new base as an l-value base
 | |
|     void setAccessChainLValue(Id lValue)
 | |
|     {
 | |
|         assert(isPointer(lValue));
 | |
|         accessChain.base = lValue;
 | |
|         accessChain.resultType = getContainedTypeId(getTypeId(lValue));
 | |
|     }
 | |
| 
 | |
|     // set new base value as an r-value
 | |
|     void setAccessChainRValue(Id rValue)
 | |
|     {
 | |
|         accessChain.isRValue = true;
 | |
|         accessChain.base = rValue;
 | |
|         accessChain.resultType = getTypeId(rValue);
 | |
|     }
 | |
| 
 | |
|     // push offset onto the end of the chain
 | |
|     void accessChainPush(Id offset, Id newType)
 | |
|     {
 | |
|         accessChain.indexChain.push_back(offset);
 | |
|         accessChain.resultType = newType;
 | |
|     }
 | |
| 
 | |
|     // push new swizzle onto the end of any existing swizzle, merging into a single swizzle
 | |
|     void accessChainPushSwizzle(std::vector<unsigned>& swizzle);
 | |
| 
 | |
|     // push a variable component selection onto the access chain; supporting only one, so unsided
 | |
|     void accessChainPushComponent(Id component) { accessChain.component = component; }
 | |
| 
 | |
|     // use accessChain and swizzle to store value
 | |
|     void accessChainStore(Id rvalue);
 | |
| 
 | |
|     // use accessChain and swizzle to load an r-value
 | |
|     Id accessChainLoad(Decoration precision);
 | |
| 
 | |
|     // get the direct pointer for an l-value
 | |
|     Id accessChainGetLValue();
 | |
| 
 | |
|     void dump(std::vector<unsigned int>&) const;
 | |
| 
 | |
| protected:
 | |
|     Id findScalarConstant(Op typeClass, Id typeId, unsigned value) const;
 | |
|     Id findScalarConstant(Op typeClass, Id typeId, unsigned v1, unsigned v2) const;
 | |
|     Id findCompositeConstant(Op typeClass, std::vector<Id>& comps) const;
 | |
|     Id collapseAccessChain();
 | |
|     void simplifyAccessChainSwizzle();
 | |
|     void mergeAccessChainSwizzle();
 | |
|     void createAndSetNoPredecessorBlock(const char*);
 | |
|     void createBranch(Block* block);
 | |
|     void createMerge(Op, Block*, unsigned int control);
 | |
|     void createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock);
 | |
|     void dumpInstructions(std::vector<unsigned int>&, const std::vector<Instruction*>&) const;
 | |
| 
 | |
|     struct Loop; // Defined below.
 | |
|     void createBranchToLoopHeaderFromInside(const Loop& loop);
 | |
| 
 | |
|     SourceLanguage source;
 | |
|     int sourceVersion;
 | |
|     std::vector<const char*> extensions;
 | |
|     AddressingModel addressModel;
 | |
|     MemoryModel memoryModel;
 | |
|     std::vector<spv::Capability> capabilities;
 | |
|     int builderNumber;
 | |
|     Module module;
 | |
|     Block* buildPoint;
 | |
|     Id uniqueId;
 | |
|     Function* mainFunction;
 | |
|     Block* stageExit;
 | |
|     AccessChain accessChain;
 | |
| 
 | |
|     // special blocks of instructions for output
 | |
|     std::vector<Instruction*> imports;
 | |
|     std::vector<Instruction*> entryPoints;
 | |
|     std::vector<Instruction*> executionModes;
 | |
|     std::vector<Instruction*> names;
 | |
|     std::vector<Instruction*> lines;
 | |
|     std::vector<Instruction*> decorations;
 | |
|     std::vector<Instruction*> constantsTypesGlobals;
 | |
|     std::vector<Instruction*> externals;
 | |
| 
 | |
|      // not output, internally used for quick & dirty canonical (unique) creation
 | |
|     std::vector<Instruction*> groupedConstants[OpConstant];  // all types appear before OpConstant
 | |
|     std::vector<Instruction*> groupedTypes[OpConstant];
 | |
| 
 | |
|     // stack of switches
 | |
|     std::stack<Block*> switchMerges;
 | |
| 
 | |
|     // Data that needs to be kept in order to properly handle loops.
 | |
|     struct Loop {
 | |
|         // Constructs a default Loop structure containing new header, merge, and
 | |
|         // body blocks for the current function.
 | |
|         // The testFirst argument indicates whether the loop test executes at
 | |
|         // the top of the loop rather than at the bottom.  In the latter case,
 | |
|         // also create a phi instruction whose value indicates whether we're on
 | |
|         // the first iteration of the loop.  The phi instruction is initialized
 | |
|         // with no values or predecessor operands.
 | |
|         Loop(Builder& builder, bool testFirst);
 | |
| 
 | |
|         // The function containing the loop.
 | |
|         Function* const function;
 | |
|         // The header is the first block generated for the loop.
 | |
|         // It dominates all the blocks in the loop, i.e. it is always
 | |
|         // executed before any others.
 | |
|         // If the loop test is executed before the body (as in "while" and
 | |
|         // "for" loops), then the header begins with the test code.
 | |
|         // Otherwise, the loop is a "do-while" loop and the header contains the
 | |
|         // start of the body of the loop (if the body exists).
 | |
|         Block* const header;
 | |
|         // The merge block marks the end of the loop.  Control is transferred
 | |
|         // to the merge block when either the loop test fails, or when a
 | |
|         // nested "break" is encountered.
 | |
|         Block* const merge;
 | |
|         // The body block is the first basic block in the body of the loop, i.e.
 | |
|         // the code that is to be repeatedly executed, aside from loop control.
 | |
|         // This member is null until we generate code that references the loop
 | |
|         // body block.
 | |
|         Block* const body;
 | |
|         // True when the loop test executes before the body.
 | |
|         const bool testFirst;
 | |
|         // When the test executes after the body, this is defined as the phi
 | |
|         // instruction that tells us whether we are on the first iteration of
 | |
|         // the loop.  Otherwise this is null.
 | |
|         Instruction* const isFirstIteration;
 | |
|     };
 | |
| 
 | |
|     // Our loop stack.
 | |
|     std::stack<Loop> loops;
 | |
| };  // end Builder class
 | |
| 
 | |
| // Use for non-fatal notes about what's not complete
 | |
| void TbdFunctionality(const char*);
 | |
| 
 | |
| // Use for fatal missing functionality
 | |
| void MissingFunctionality(const char*);
 | |
| 
 | |
| };  // end spv namespace
 | |
| 
 | |
| #endif // SpvBuilder_H
 |