git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@22565 e7fa87d3-cd2b-0410-9028-fcbf551c1848
469 lines
16 KiB
C++
469 lines
16 KiB
C++
//
|
|
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
|
|
//Copyright (C) 2013 LunarG, Inc.
|
|
//
|
|
//All rights reserved.
|
|
//
|
|
//Redistribution and use in source and binary forms, with or without
|
|
//modification, are permitted provided that the following conditions
|
|
//are met:
|
|
//
|
|
// Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
//
|
|
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
//POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
|
|
#ifndef _SYMBOL_TABLE_INCLUDED_
|
|
#define _SYMBOL_TABLE_INCLUDED_
|
|
|
|
//
|
|
// Symbol table for parsing. Has these design characteristics:
|
|
//
|
|
// * Same symbol table can be used to compile many shaders, to preserve
|
|
// effort of creating and loading with the large numbers of built-in
|
|
// symbols.
|
|
//
|
|
// --> This requires a copy mechanism, so initial pools used to create
|
|
// the shared information can be popped. So, care is taken with
|
|
// copying pointers to point to new copies. Done through "clone"
|
|
// methods.
|
|
//
|
|
// * Name mangling will be used to give each function a unique name
|
|
// so that symbol table lookups are never ambiguous. This allows
|
|
// a simpler symbol table structure.
|
|
//
|
|
// * Pushing and popping of scope, so symbol table will really be a stack
|
|
// of symbol tables. Searched from the top, with new inserts going into
|
|
// the top.
|
|
//
|
|
// * Constants: Compile time constant symbols will keep their values
|
|
// in the symbol table. The parser can substitute constants at parse
|
|
// time, including doing constant folding and constant propagation.
|
|
//
|
|
// * No temporaries: Temporaries made from operations (+, --, .xy, etc.)
|
|
// are tracked in the intermediate representation, not the symbol table.
|
|
//
|
|
|
|
#include "../Include/Common.h"
|
|
#include "../Include/intermediate.h"
|
|
#include "../Include/InfoSink.h"
|
|
|
|
//
|
|
// Symbol base class. (Can build functions or variables out of these...)
|
|
//
|
|
class TVariable;
|
|
class TFunction;
|
|
class TAnonMember;
|
|
class TSymbol {
|
|
public:
|
|
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
|
|
explicit TSymbol(const TString *n) : name(n) { }
|
|
virtual TSymbol* clone(TStructureMap& remapper) = 0;
|
|
virtual ~TSymbol() { }
|
|
|
|
const TString& getName() const { return *name; }
|
|
void changeName(const char* buf) { name = new TString(buf); }
|
|
virtual const TString& getMangledName() const { return getName(); }
|
|
virtual TFunction* getAsFunction() { return 0; }
|
|
virtual TVariable* getAsVariable() { return 0; }
|
|
virtual TAnonMember* getAsAnonMember() { return 0; }
|
|
void setUniqueId(int id) { uniqueId = id; }
|
|
int getUniqueId() const { return uniqueId; }
|
|
virtual void dump(TInfoSink &infoSink) const = 0;
|
|
|
|
protected:
|
|
explicit TSymbol(const TSymbol&);
|
|
TSymbol& operator=(const TSymbol&);
|
|
|
|
const TString *name;
|
|
unsigned int uniqueId; // For cross-scope comparing during code generation
|
|
};
|
|
|
|
//
|
|
// Variable class, meaning a symbol that's not a function.
|
|
//
|
|
// There could be a separate class heirarchy for Constant variables;
|
|
// Only one of int, bool, or float, (or none) is correct for
|
|
// any particular use, but it's easy to do this way, and doesn't
|
|
// seem worth having separate classes, and "getConst" can't simply return
|
|
// different values for different types polymorphically, so this is
|
|
// just simple and pragmatic.
|
|
//
|
|
class TVariable : public TSymbol {
|
|
public:
|
|
TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0), arrayInformationType(0) { }
|
|
virtual TVariable* clone(TStructureMap& remapper);
|
|
virtual ~TVariable() { }
|
|
|
|
virtual TVariable* getAsVariable() { return this; }
|
|
TType& getType() { return type; }
|
|
const TType& getType() const { return type; }
|
|
bool isUserType() const { return userType; }
|
|
void setStorageQualifier(TStorageQualifier qualifier) { type.getQualifier().storage = qualifier; }
|
|
void updateArrayInformationType(TType *t) { arrayInformationType = t; }
|
|
TType* getArrayInformationType() { return arrayInformationType; }
|
|
|
|
virtual void dump(TInfoSink &infoSink) const;
|
|
|
|
constUnion* getConstUnionPointer() {
|
|
if (!unionArray)
|
|
unionArray = new constUnion[type.getObjectSize()];
|
|
|
|
return unionArray;
|
|
}
|
|
|
|
constUnion* getConstUnionPointer() const { return unionArray; }
|
|
|
|
void shareConstPointer( constUnion *constArray)
|
|
{
|
|
delete unionArray;
|
|
unionArray = constArray;
|
|
}
|
|
|
|
protected:
|
|
explicit TVariable(TVariable&);
|
|
TVariable(const TVariable&, TStructureMap& remapper);
|
|
TVariable& operator=(TVariable&);
|
|
|
|
TType type;
|
|
bool userType;
|
|
// we are assuming that Pool Allocator will free the memory allocated to unionArray
|
|
// when this object is destroyed
|
|
constUnion *unionArray;
|
|
TType *arrayInformationType; // this is used for updating maxArraySize in all the references to a given symbol
|
|
};
|
|
|
|
//
|
|
// The function sub-class of symbols and the parser will need to
|
|
// share this definition of a function parameter.
|
|
//
|
|
struct TParameter {
|
|
TString *name;
|
|
TType* type;
|
|
void copyParam(const TParameter& param, const TStructureMap& remapper)
|
|
{
|
|
if (param.name)
|
|
name = NewPoolTString(param.name->c_str());
|
|
else
|
|
name = 0;
|
|
type = param.type->clone(remapper);
|
|
}
|
|
};
|
|
|
|
//
|
|
// The function sub-class of a symbol.
|
|
//
|
|
class TFunction : public TSymbol {
|
|
public:
|
|
explicit TFunction(TOperator o) :
|
|
TSymbol(0),
|
|
returnType(TType(EbtVoid)),
|
|
op(o),
|
|
defined(false) { }
|
|
TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull) :
|
|
TSymbol(name),
|
|
returnType(retType),
|
|
mangledName(*name + '('),
|
|
op(tOp),
|
|
defined(false) { }
|
|
virtual TFunction* clone(TStructureMap& remapper);
|
|
virtual ~TFunction();
|
|
|
|
virtual TFunction* getAsFunction() { return this; }
|
|
|
|
void addParameter(TParameter& p)
|
|
{
|
|
parameters.push_back(p);
|
|
mangledName = mangledName + p.type->getMangledName();
|
|
}
|
|
|
|
const TString& getMangledName() const { return mangledName; }
|
|
const TType& getReturnType() const { return returnType; }
|
|
void relateToOperator(TOperator o) { op = o; }
|
|
TOperator getBuiltInOp() const { return op; }
|
|
void setDefined() { defined = true; }
|
|
bool isDefined() { return defined; }
|
|
|
|
int getParamCount() const { return static_cast<int>(parameters.size()); }
|
|
TParameter& operator [](int i) { return parameters[i]; }
|
|
const TParameter& operator [](int i) const { return parameters[i]; }
|
|
|
|
virtual void dump(TInfoSink &infoSink) const;
|
|
|
|
protected:
|
|
explicit TFunction(TFunction&);
|
|
TFunction(const TFunction&, const TStructureMap& remapper);
|
|
TFunction& operator=(TFunction&);
|
|
|
|
typedef TVector<TParameter> TParamList;
|
|
TParamList parameters;
|
|
TType returnType;
|
|
TString mangledName;
|
|
TOperator op;
|
|
bool defined;
|
|
};
|
|
|
|
class TAnonMember : public TSymbol {
|
|
public:
|
|
TAnonMember(const TString* n, unsigned int m, TSymbol& a) : TSymbol(n), anonContainer(a), memberNumber(m) { }
|
|
virtual TAnonMember* clone(TStructureMap& remapper);
|
|
virtual ~TAnonMember() { }
|
|
|
|
TAnonMember* getAsAnonMember() { return this; }
|
|
TSymbol& getAnonContainer() const { return anonContainer; }
|
|
unsigned int getMemberNumber() const { return memberNumber; }
|
|
virtual void dump(TInfoSink &infoSink) const;
|
|
|
|
protected:
|
|
explicit TAnonMember(TAnonMember&);
|
|
TAnonMember& operator=(TAnonMember&);
|
|
|
|
TSymbol& anonContainer;
|
|
unsigned int memberNumber;
|
|
};
|
|
|
|
class TSymbolTableLevel {
|
|
public:
|
|
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
|
|
TSymbolTableLevel() : defaultPrecision (0), anonId(0) { }
|
|
~TSymbolTableLevel();
|
|
|
|
bool insert(TSymbol& symbol)
|
|
{
|
|
//
|
|
// returning true means symbol was added to the table with no semantic errors
|
|
//
|
|
tInsertResult result;
|
|
const TString& name = symbol.getName();
|
|
if (name == "") {
|
|
// An empty name means an anonymous container, exposing its members to the external scope.
|
|
// Give it a name and insert its members in the symbol table, pointing to the container.
|
|
char buf[20];
|
|
snprintf(buf, 20, "__anon__%d", anonId++);
|
|
symbol.changeName(buf);
|
|
|
|
bool isOkay = true;
|
|
TTypeList& types = *symbol.getAsVariable()->getType().getStruct();
|
|
for (unsigned int m = 0; m < types.size(); ++m) {
|
|
TAnonMember* member = new TAnonMember(&types[m].type->getFieldName(), m, symbol);
|
|
result = level.insert(tLevelPair(member->getMangledName(), member));
|
|
if (! result.second)
|
|
isOkay = false;
|
|
}
|
|
|
|
return isOkay;
|
|
} else {
|
|
// Check for redefinition errors:
|
|
// - STL itself will tell us if there is a direct name collision at this level
|
|
// - additionally, check for function/variable name collisions
|
|
// - for ES, for overriding or hiding built-in function
|
|
const TString& insertName = symbol.getMangledName();
|
|
if (symbol.getAsFunction()) {
|
|
// make sure there isn't a variable of this name
|
|
if (level.find(name) != level.end())
|
|
return false;
|
|
|
|
// insert, and whatever happens is okay
|
|
level.insert(tLevelPair(insertName, &symbol));
|
|
|
|
return true;
|
|
} else {
|
|
result = level.insert(tLevelPair(insertName, &symbol));
|
|
|
|
return result.second;
|
|
}
|
|
}
|
|
}
|
|
|
|
TSymbol* find(const TString& name) const
|
|
{
|
|
tLevel::const_iterator it = level.find(name);
|
|
if (it == level.end())
|
|
return 0;
|
|
else
|
|
return (*it).second;
|
|
}
|
|
|
|
bool hasFunctionName(const TString& name) const
|
|
{
|
|
tLevel::const_iterator candidate = level.lower_bound(name);
|
|
if (candidate != level.end()) {
|
|
const TString& candidateName = (*candidate).first;
|
|
TString::size_type parenAt = candidateName.find_first_of('(');
|
|
if (parenAt != candidateName.npos && candidateName.substr(0, parenAt) == name)
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Use this to do a lazy 'push' of precision defaults the first time
|
|
// a precision statement is seen in a new scope. Leave it at 0 for
|
|
// when no push was needed. Thus, it is not the current defaults,
|
|
// it is what to restore the defaults to when popping a level.
|
|
void setPreviousDefaultPrecisions(const TPrecisionQualifier *p)
|
|
{
|
|
// can call multiple times at one scope, will only latch on first call,
|
|
// as we're tracking the previous scope's values, not the current values
|
|
if (defaultPrecision != 0)
|
|
return;
|
|
|
|
defaultPrecision = new TPrecisionQualifier[EbtNumTypes];
|
|
for (int t = 0; t < EbtNumTypes; ++t)
|
|
defaultPrecision[t] = p[t];
|
|
}
|
|
|
|
void getPreviousDefaultPrecisions(TPrecisionQualifier *p)
|
|
{
|
|
// can be called for table level pops that didn't set the
|
|
// defaults
|
|
if (defaultPrecision == 0 || p == 0)
|
|
return;
|
|
|
|
for (int t = 0; t < EbtNumTypes; ++t)
|
|
p[t] = defaultPrecision[t];
|
|
}
|
|
|
|
void relateToOperator(const char* name, TOperator op);
|
|
void dump(TInfoSink &infoSink) const;
|
|
TSymbolTableLevel* clone(TStructureMap& remapper);
|
|
|
|
protected:
|
|
explicit TSymbolTableLevel(TSymbolTableLevel&);
|
|
TSymbolTableLevel& operator=(TSymbolTableLevel&);
|
|
|
|
typedef std::map<TString, TSymbol*, std::less<TString>, pool_allocator<std::pair<const TString, TSymbol*> > > tLevel;
|
|
typedef const tLevel::value_type tLevelPair;
|
|
typedef std::pair<tLevel::iterator, bool> tInsertResult;
|
|
|
|
tLevel level; // named mappings
|
|
TPrecisionQualifier *defaultPrecision;
|
|
int anonId;
|
|
};
|
|
|
|
class TSymbolTable {
|
|
public:
|
|
TSymbolTable() : uniqueId(0), noBuiltInRedeclarations(false), adoptedLevels(1) // TODO: memory: can we make adoptedLevels be 0 for symbol tables we don't keep?
|
|
{
|
|
//
|
|
// This symbol table cannot be used until push() is called.
|
|
//
|
|
}
|
|
explicit TSymbolTable(TSymbolTable& symTable)
|
|
{
|
|
table.push_back(symTable.table[0]);
|
|
adoptedLevels = 1;
|
|
uniqueId = symTable.uniqueId;
|
|
noBuiltInRedeclarations = symTable.noBuiltInRedeclarations;
|
|
}
|
|
~TSymbolTable()
|
|
{
|
|
// don't deallocate levels passed in from elsewhere
|
|
while (table.size() > adoptedLevels)
|
|
pop(0);
|
|
}
|
|
|
|
//
|
|
// When the symbol table is initialized with the built-ins, there should
|
|
// 'push' calls, so that built-in shared across all compiles are at level 0
|
|
// built-ins specific to a compile are at level 1 and the shader
|
|
// globals are at level 2.
|
|
//
|
|
bool isEmpty() { return table.size() == 0; }
|
|
bool atBuiltInLevel() { return atSharedBuiltInLevel() || atDynamicBuiltInLevel(); }
|
|
bool atSharedBuiltInLevel() { return table.size() == 1; }
|
|
bool atGlobalLevel() { return table.size() <= 3; }
|
|
void setNoBuiltInRedeclarations() { noBuiltInRedeclarations = true; }
|
|
|
|
void push()
|
|
{
|
|
table.push_back(new TSymbolTableLevel);
|
|
}
|
|
|
|
void pop(TPrecisionQualifier *p)
|
|
{
|
|
table[currentLevel()]->getPreviousDefaultPrecisions(p);
|
|
delete table[currentLevel()];
|
|
table.pop_back();
|
|
}
|
|
|
|
bool insert(TSymbol& symbol)
|
|
{
|
|
symbol.setUniqueId(++uniqueId);
|
|
|
|
if (symbol.getAsVariable()) {
|
|
// make sure there isn't a function of this name
|
|
if (table[currentLevel()]->hasFunctionName(symbol.getName()))
|
|
return false;
|
|
if (atGlobalLevel() && currentLevel() > 0 && noBuiltInRedeclarations) {
|
|
if (table[0]->hasFunctionName(symbol.getName()))
|
|
return false;
|
|
if (currentLevel() > 1 && table[1]->hasFunctionName(symbol.getName()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return table[currentLevel()]->insert(symbol);
|
|
}
|
|
|
|
TSymbol* find(const TString& name, bool* builtIn = 0, bool *sameScope = 0)
|
|
{
|
|
int level = currentLevel();
|
|
TSymbol* symbol;
|
|
do {
|
|
symbol = table[level]->find(name);
|
|
--level;
|
|
} while (symbol == 0 && level >= 0);
|
|
level++;
|
|
if (builtIn)
|
|
*builtIn = level < 2;
|
|
if (sameScope)
|
|
*sameScope = level == currentLevel();
|
|
|
|
return symbol;
|
|
}
|
|
|
|
TSymbolTableLevel* getGlobalLevel() { assert(table.size() >= 3); return table[2]; }
|
|
void relateToOperator(const char* name, TOperator op) { table[0]->relateToOperator(name, op); }
|
|
int getMaxSymbolId() { return uniqueId; }
|
|
void dump(TInfoSink &infoSink) const;
|
|
void copyTable(const TSymbolTable& copyOf);
|
|
|
|
void setPreviousDefaultPrecisions(TPrecisionQualifier *p) { table[currentLevel()]->setPreviousDefaultPrecisions(p); }
|
|
|
|
protected:
|
|
TSymbolTable& operator=(TSymbolTableLevel&);
|
|
|
|
int currentLevel() const { return static_cast<int>(table.size()) - 1; }
|
|
bool atDynamicBuiltInLevel() { return table.size() == 2; }
|
|
|
|
std::vector<TSymbolTableLevel*> table;
|
|
int uniqueId; // for unique identification in code generation
|
|
bool noBuiltInRedeclarations;
|
|
unsigned int adoptedLevels;
|
|
};
|
|
|
|
#endif // _SYMBOL_TABLE_INCLUDED_
|