469 lines
16 KiB
C++

//
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
//Copyright (C) 2013 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
#ifndef _SYMBOL_TABLE_INCLUDED_
#define _SYMBOL_TABLE_INCLUDED_
//
// Symbol table for parsing. Has these design characteristics:
//
// * Same symbol table can be used to compile many shaders, to preserve
// effort of creating and loading with the large numbers of built-in
// symbols.
//
// --> This requires a copy mechanism, so initial pools used to create
// the shared information can be popped. So, care is taken with
// copying pointers to point to new copies. Done through "clone"
// methods.
//
// * Name mangling will be used to give each function a unique name
// so that symbol table lookups are never ambiguous. This allows
// a simpler symbol table structure.
//
// * Pushing and popping of scope, so symbol table will really be a stack
// of symbol tables. Searched from the top, with new inserts going into
// the top.
//
// * Constants: Compile time constant symbols will keep their values
// in the symbol table. The parser can substitute constants at parse
// time, including doing constant folding and constant propagation.
//
// * No temporaries: Temporaries made from operations (+, --, .xy, etc.)
// are tracked in the intermediate representation, not the symbol table.
//
#include "../Include/Common.h"
#include "../Include/intermediate.h"
#include "../Include/InfoSink.h"
//
// Symbol base class. (Can build functions or variables out of these...)
//
class TVariable;
class TFunction;
class TAnonMember;
class TSymbol {
public:
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
explicit TSymbol(const TString *n) : name(n) { }
virtual TSymbol* clone(TStructureMap& remapper) = 0;
virtual ~TSymbol() { }
const TString& getName() const { return *name; }
void changeName(const char* buf) { name = new TString(buf); }
virtual const TString& getMangledName() const { return getName(); }
virtual TFunction* getAsFunction() { return 0; }
virtual TVariable* getAsVariable() { return 0; }
virtual TAnonMember* getAsAnonMember() { return 0; }
void setUniqueId(int id) { uniqueId = id; }
int getUniqueId() const { return uniqueId; }
virtual void dump(TInfoSink &infoSink) const = 0;
protected:
explicit TSymbol(const TSymbol&);
TSymbol& operator=(const TSymbol&);
const TString *name;
unsigned int uniqueId; // For cross-scope comparing during code generation
};
//
// Variable class, meaning a symbol that's not a function.
//
// There could be a separate class heirarchy for Constant variables;
// Only one of int, bool, or float, (or none) is correct for
// any particular use, but it's easy to do this way, and doesn't
// seem worth having separate classes, and "getConst" can't simply return
// different values for different types polymorphically, so this is
// just simple and pragmatic.
//
class TVariable : public TSymbol {
public:
TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0), arrayInformationType(0) { }
virtual TVariable* clone(TStructureMap& remapper);
virtual ~TVariable() { }
virtual TVariable* getAsVariable() { return this; }
TType& getType() { return type; }
const TType& getType() const { return type; }
bool isUserType() const { return userType; }
void setStorageQualifier(TStorageQualifier qualifier) { type.getQualifier().storage = qualifier; }
void updateArrayInformationType(TType *t) { arrayInformationType = t; }
TType* getArrayInformationType() { return arrayInformationType; }
virtual void dump(TInfoSink &infoSink) const;
constUnion* getConstUnionPointer() {
if (!unionArray)
unionArray = new constUnion[type.getObjectSize()];
return unionArray;
}
constUnion* getConstUnionPointer() const { return unionArray; }
void shareConstPointer( constUnion *constArray)
{
delete unionArray;
unionArray = constArray;
}
protected:
explicit TVariable(TVariable&);
TVariable(const TVariable&, TStructureMap& remapper);
TVariable& operator=(TVariable&);
TType type;
bool userType;
// we are assuming that Pool Allocator will free the memory allocated to unionArray
// when this object is destroyed
constUnion *unionArray;
TType *arrayInformationType; // this is used for updating maxArraySize in all the references to a given symbol
};
//
// The function sub-class of symbols and the parser will need to
// share this definition of a function parameter.
//
struct TParameter {
TString *name;
TType* type;
void copyParam(const TParameter& param, const TStructureMap& remapper)
{
if (param.name)
name = NewPoolTString(param.name->c_str());
else
name = 0;
type = param.type->clone(remapper);
}
};
//
// The function sub-class of a symbol.
//
class TFunction : public TSymbol {
public:
explicit TFunction(TOperator o) :
TSymbol(0),
returnType(TType(EbtVoid)),
op(o),
defined(false) { }
TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull) :
TSymbol(name),
returnType(retType),
mangledName(*name + '('),
op(tOp),
defined(false) { }
virtual TFunction* clone(TStructureMap& remapper);
virtual ~TFunction();
virtual TFunction* getAsFunction() { return this; }
void addParameter(TParameter& p)
{
parameters.push_back(p);
mangledName = mangledName + p.type->getMangledName();
}
const TString& getMangledName() const { return mangledName; }
const TType& getReturnType() const { return returnType; }
void relateToOperator(TOperator o) { op = o; }
TOperator getBuiltInOp() const { return op; }
void setDefined() { defined = true; }
bool isDefined() { return defined; }
int getParamCount() const { return static_cast<int>(parameters.size()); }
TParameter& operator [](int i) { return parameters[i]; }
const TParameter& operator [](int i) const { return parameters[i]; }
virtual void dump(TInfoSink &infoSink) const;
protected:
explicit TFunction(TFunction&);
TFunction(const TFunction&, const TStructureMap& remapper);
TFunction& operator=(TFunction&);
typedef TVector<TParameter> TParamList;
TParamList parameters;
TType returnType;
TString mangledName;
TOperator op;
bool defined;
};
class TAnonMember : public TSymbol {
public:
TAnonMember(const TString* n, unsigned int m, TSymbol& a) : TSymbol(n), anonContainer(a), memberNumber(m) { }
virtual TAnonMember* clone(TStructureMap& remapper);
virtual ~TAnonMember() { }
TAnonMember* getAsAnonMember() { return this; }
TSymbol& getAnonContainer() const { return anonContainer; }
unsigned int getMemberNumber() const { return memberNumber; }
virtual void dump(TInfoSink &infoSink) const;
protected:
explicit TAnonMember(TAnonMember&);
TAnonMember& operator=(TAnonMember&);
TSymbol& anonContainer;
unsigned int memberNumber;
};
class TSymbolTableLevel {
public:
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
TSymbolTableLevel() : defaultPrecision (0), anonId(0) { }
~TSymbolTableLevel();
bool insert(TSymbol& symbol)
{
//
// returning true means symbol was added to the table with no semantic errors
//
tInsertResult result;
const TString& name = symbol.getName();
if (name == "") {
// An empty name means an anonymous container, exposing its members to the external scope.
// Give it a name and insert its members in the symbol table, pointing to the container.
char buf[20];
snprintf(buf, 20, "__anon__%d", anonId++);
symbol.changeName(buf);
bool isOkay = true;
TTypeList& types = *symbol.getAsVariable()->getType().getStruct();
for (unsigned int m = 0; m < types.size(); ++m) {
TAnonMember* member = new TAnonMember(&types[m].type->getFieldName(), m, symbol);
result = level.insert(tLevelPair(member->getMangledName(), member));
if (! result.second)
isOkay = false;
}
return isOkay;
} else {
// Check for redefinition errors:
// - STL itself will tell us if there is a direct name collision at this level
// - additionally, check for function/variable name collisions
// - for ES, for overriding or hiding built-in function
const TString& insertName = symbol.getMangledName();
if (symbol.getAsFunction()) {
// make sure there isn't a variable of this name
if (level.find(name) != level.end())
return false;
// insert, and whatever happens is okay
level.insert(tLevelPair(insertName, &symbol));
return true;
} else {
result = level.insert(tLevelPair(insertName, &symbol));
return result.second;
}
}
}
TSymbol* find(const TString& name) const
{
tLevel::const_iterator it = level.find(name);
if (it == level.end())
return 0;
else
return (*it).second;
}
bool hasFunctionName(const TString& name) const
{
tLevel::const_iterator candidate = level.lower_bound(name);
if (candidate != level.end()) {
const TString& candidateName = (*candidate).first;
TString::size_type parenAt = candidateName.find_first_of('(');
if (parenAt != candidateName.npos && candidateName.substr(0, parenAt) == name)
return true;
}
return false;
}
// Use this to do a lazy 'push' of precision defaults the first time
// a precision statement is seen in a new scope. Leave it at 0 for
// when no push was needed. Thus, it is not the current defaults,
// it is what to restore the defaults to when popping a level.
void setPreviousDefaultPrecisions(const TPrecisionQualifier *p)
{
// can call multiple times at one scope, will only latch on first call,
// as we're tracking the previous scope's values, not the current values
if (defaultPrecision != 0)
return;
defaultPrecision = new TPrecisionQualifier[EbtNumTypes];
for (int t = 0; t < EbtNumTypes; ++t)
defaultPrecision[t] = p[t];
}
void getPreviousDefaultPrecisions(TPrecisionQualifier *p)
{
// can be called for table level pops that didn't set the
// defaults
if (defaultPrecision == 0 || p == 0)
return;
for (int t = 0; t < EbtNumTypes; ++t)
p[t] = defaultPrecision[t];
}
void relateToOperator(const char* name, TOperator op);
void dump(TInfoSink &infoSink) const;
TSymbolTableLevel* clone(TStructureMap& remapper);
protected:
explicit TSymbolTableLevel(TSymbolTableLevel&);
TSymbolTableLevel& operator=(TSymbolTableLevel&);
typedef std::map<TString, TSymbol*, std::less<TString>, pool_allocator<std::pair<const TString, TSymbol*> > > tLevel;
typedef const tLevel::value_type tLevelPair;
typedef std::pair<tLevel::iterator, bool> tInsertResult;
tLevel level; // named mappings
TPrecisionQualifier *defaultPrecision;
int anonId;
};
class TSymbolTable {
public:
TSymbolTable() : uniqueId(0), noBuiltInRedeclarations(false), adoptedLevels(1) // TODO: memory: can we make adoptedLevels be 0 for symbol tables we don't keep?
{
//
// This symbol table cannot be used until push() is called.
//
}
explicit TSymbolTable(TSymbolTable& symTable)
{
table.push_back(symTable.table[0]);
adoptedLevels = 1;
uniqueId = symTable.uniqueId;
noBuiltInRedeclarations = symTable.noBuiltInRedeclarations;
}
~TSymbolTable()
{
// don't deallocate levels passed in from elsewhere
while (table.size() > adoptedLevels)
pop(0);
}
//
// When the symbol table is initialized with the built-ins, there should
// 'push' calls, so that built-in shared across all compiles are at level 0
// built-ins specific to a compile are at level 1 and the shader
// globals are at level 2.
//
bool isEmpty() { return table.size() == 0; }
bool atBuiltInLevel() { return atSharedBuiltInLevel() || atDynamicBuiltInLevel(); }
bool atSharedBuiltInLevel() { return table.size() == 1; }
bool atGlobalLevel() { return table.size() <= 3; }
void setNoBuiltInRedeclarations() { noBuiltInRedeclarations = true; }
void push()
{
table.push_back(new TSymbolTableLevel);
}
void pop(TPrecisionQualifier *p)
{
table[currentLevel()]->getPreviousDefaultPrecisions(p);
delete table[currentLevel()];
table.pop_back();
}
bool insert(TSymbol& symbol)
{
symbol.setUniqueId(++uniqueId);
if (symbol.getAsVariable()) {
// make sure there isn't a function of this name
if (table[currentLevel()]->hasFunctionName(symbol.getName()))
return false;
if (atGlobalLevel() && currentLevel() > 0 && noBuiltInRedeclarations) {
if (table[0]->hasFunctionName(symbol.getName()))
return false;
if (currentLevel() > 1 && table[1]->hasFunctionName(symbol.getName()))
return false;
}
}
return table[currentLevel()]->insert(symbol);
}
TSymbol* find(const TString& name, bool* builtIn = 0, bool *sameScope = 0)
{
int level = currentLevel();
TSymbol* symbol;
do {
symbol = table[level]->find(name);
--level;
} while (symbol == 0 && level >= 0);
level++;
if (builtIn)
*builtIn = level < 2;
if (sameScope)
*sameScope = level == currentLevel();
return symbol;
}
TSymbolTableLevel* getGlobalLevel() { assert(table.size() >= 3); return table[2]; }
void relateToOperator(const char* name, TOperator op) { table[0]->relateToOperator(name, op); }
int getMaxSymbolId() { return uniqueId; }
void dump(TInfoSink &infoSink) const;
void copyTable(const TSymbolTable& copyOf);
void setPreviousDefaultPrecisions(TPrecisionQualifier *p) { table[currentLevel()]->setPreviousDefaultPrecisions(p); }
protected:
TSymbolTable& operator=(TSymbolTableLevel&);
int currentLevel() const { return static_cast<int>(table.size()) - 1; }
bool atDynamicBuiltInLevel() { return table.size() == 2; }
std::vector<TSymbolTableLevel*> table;
int uniqueId; // for unique identification in code generation
bool noBuiltInRedeclarations;
unsigned int adoptedLevels;
};
#endif // _SYMBOL_TABLE_INCLUDED_