
git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@20317 e7fa87d3-cd2b-0410-9028-fcbf551c1848
1529 lines
48 KiB
C++
1529 lines
48 KiB
C++
//
|
|
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
|
|
//Copyright (C) 2012-2013 LunarG, Inc.
|
|
//
|
|
//All rights reserved.
|
|
//
|
|
//Redistribution and use in source and binary forms, with or without
|
|
//modification, are permitted provided that the following conditions
|
|
//are met:
|
|
//
|
|
// Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
//
|
|
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
//POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
|
|
//
|
|
// Build the intermediate representation.
|
|
//
|
|
|
|
#include "localintermediate.h"
|
|
#include "QualifierAlive.h"
|
|
#include "RemoveTree.h"
|
|
#include <float.h>
|
|
|
|
bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray);
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// First set of functions are to help build the intermediate representation.
|
|
// These functions are not member functions of the nodes.
|
|
// They are called from parser productions.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
// Add a terminal node for an identifier in an expression.
|
|
//
|
|
// Returns the added node.
|
|
//
|
|
TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, TSourceLoc line)
|
|
{
|
|
TIntermSymbol* node = new TIntermSymbol(id, name, type);
|
|
node->setLine(line);
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// Connect two nodes with a new parent that does a binary operation on the nodes.
|
|
//
|
|
// Returns the added node.
|
|
//
|
|
TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line, TSymbolTable& symbolTable)
|
|
{
|
|
switch (op) {
|
|
case EOpLessThan:
|
|
case EOpGreaterThan:
|
|
case EOpLessThanEqual:
|
|
case EOpGreaterThanEqual:
|
|
if (left->getType().isMatrix() || left->getType().isArray() || left->getType().isVector() || left->getType().getBasicType() == EbtStruct) {
|
|
return 0;
|
|
}
|
|
break;
|
|
case EOpLogicalOr:
|
|
case EOpLogicalXor:
|
|
case EOpLogicalAnd:
|
|
if (left->getType().getBasicType() != EbtBool || left->getType().isMatrix() || left->getType().isArray() || left->getType().isVector()) {
|
|
return 0;
|
|
}
|
|
break;
|
|
case EOpAdd:
|
|
case EOpSub:
|
|
case EOpDiv:
|
|
case EOpMul:
|
|
if (left->getType().getBasicType() == EbtStruct || left->getType().getBasicType() == EbtBool)
|
|
return 0;
|
|
default: break;
|
|
}
|
|
|
|
//
|
|
// First try converting the children to compatible types.
|
|
//
|
|
|
|
if (!(left->getType().getStruct() && right->getType().getStruct())) {
|
|
TIntermTyped* child = addConversion(op, left->getType(), right);
|
|
if (child)
|
|
right = child;
|
|
else {
|
|
child = addConversion(op, right->getType(), left);
|
|
if (child)
|
|
left = child;
|
|
else
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (left->getType() != right->getType())
|
|
return 0;
|
|
}
|
|
|
|
|
|
//
|
|
// Need a new node holding things together then. Make
|
|
// one and promote it to the right type.
|
|
//
|
|
TIntermBinary* node = new TIntermBinary(op);
|
|
if (line == 0)
|
|
line = right->getLine();
|
|
node->setLine(line);
|
|
|
|
node->setLeft(left);
|
|
node->setRight(right);
|
|
if (! node->promote(infoSink))
|
|
return 0;
|
|
|
|
TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
|
|
TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
|
|
|
|
if (leftTempConstant)
|
|
leftTempConstant = left->getAsConstantUnion();
|
|
|
|
if (rightTempConstant)
|
|
rightTempConstant = right->getAsConstantUnion();
|
|
|
|
//
|
|
// See if we can fold constants.
|
|
//
|
|
|
|
TIntermTyped* typedReturnNode = 0;
|
|
if ( leftTempConstant && rightTempConstant) {
|
|
typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
|
|
|
|
if (typedReturnNode)
|
|
return typedReturnNode;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// Connect two nodes through an assignment.
|
|
//
|
|
// Returns the added node.
|
|
//
|
|
TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
|
|
{
|
|
//
|
|
// Like adding binary math, except the conversion can only go
|
|
// from right to left.
|
|
//
|
|
TIntermBinary* node = new TIntermBinary(op);
|
|
if (line == 0)
|
|
line = left->getLine();
|
|
node->setLine(line);
|
|
|
|
TIntermTyped* child = addConversion(op, left->getType(), right);
|
|
if (child == 0)
|
|
return 0;
|
|
|
|
node->setLeft(left);
|
|
node->setRight(child);
|
|
if (! node->promote(infoSink))
|
|
return 0;
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// Connect two nodes through an index operator, where the left node is the base
|
|
// of an array or struct, and the right node is a direct or indirect offset.
|
|
//
|
|
// Returns the added node.
|
|
// The caller should set the type of the returned node.
|
|
//
|
|
TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc line)
|
|
{
|
|
TIntermBinary* node = new TIntermBinary(op);
|
|
if (line == 0)
|
|
line = index->getLine();
|
|
node->setLine(line);
|
|
node->setLeft(base);
|
|
node->setRight(index);
|
|
|
|
// caller should set the type
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// Add one node as the parent of another that it operates on.
|
|
//
|
|
// Returns the added node.
|
|
//
|
|
TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, TSourceLoc line, TSymbolTable& symbolTable)
|
|
{
|
|
TIntermUnary* node;
|
|
TIntermTyped* child = childNode->getAsTyped();
|
|
|
|
if (child == 0) {
|
|
infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
|
|
return 0;
|
|
}
|
|
|
|
switch (op) {
|
|
case EOpLogicalNot:
|
|
if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case EOpPostIncrement:
|
|
case EOpPreIncrement:
|
|
case EOpPostDecrement:
|
|
case EOpPreDecrement:
|
|
case EOpNegative:
|
|
if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
|
|
return 0;
|
|
default: break;
|
|
}
|
|
|
|
//
|
|
// Do we need to promote the operand?
|
|
//
|
|
// Note: Implicit promotions were removed from the language.
|
|
//
|
|
TBasicType newType = EbtVoid;
|
|
switch (op) {
|
|
case EOpConstructInt: newType = EbtInt; break;
|
|
case EOpConstructBool: newType = EbtBool; break;
|
|
case EOpConstructFloat: newType = EbtFloat; break;
|
|
case EOpConstructDouble: newType = EbtDouble; break;
|
|
default: break;
|
|
}
|
|
|
|
if (newType != EbtVoid) {
|
|
child = addConversion(op, TType(newType, EvqTemporary, child->getNominalSize(),
|
|
child->isMatrix(),
|
|
child->isArray()),
|
|
child);
|
|
if (child == 0)
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// For constructors, we are now done, it's all in the conversion.
|
|
//
|
|
switch (op) {
|
|
case EOpConstructInt:
|
|
case EOpConstructBool:
|
|
case EOpConstructFloat:
|
|
return child;
|
|
default: break;
|
|
}
|
|
|
|
TIntermConstantUnion *childTempConstant = 0;
|
|
if (child->getAsConstantUnion())
|
|
childTempConstant = child->getAsConstantUnion();
|
|
|
|
//
|
|
// Make a new node for the operator.
|
|
//
|
|
node = new TIntermUnary(op);
|
|
if (line == 0)
|
|
line = child->getLine();
|
|
node->setLine(line);
|
|
node->setOperand(child);
|
|
|
|
if (! node->promote(infoSink))
|
|
return 0;
|
|
|
|
if (childTempConstant) {
|
|
TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
|
|
|
|
if (newChild)
|
|
return newChild;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// This is the safe way to change the operator on an aggregate, as it
|
|
// does lots of error checking and fixing. Especially for establishing
|
|
// a function call's operation on it's set of parameters. Sequences
|
|
// of instructions are also aggregates, but they just direnctly set
|
|
// their operator to EOpSequence.
|
|
//
|
|
// Returns an aggregate node, which could be the one passed in if
|
|
// it was already an aggregate.
|
|
//
|
|
TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, TSourceLoc line)
|
|
{
|
|
TIntermAggregate* aggNode;
|
|
|
|
//
|
|
// Make sure we have an aggregate. If not turn it into one.
|
|
//
|
|
if (node) {
|
|
aggNode = node->getAsAggregate();
|
|
if (aggNode == 0 || aggNode->getOp() != EOpNull) {
|
|
//
|
|
// Make an aggregate containing this node.
|
|
//
|
|
aggNode = new TIntermAggregate();
|
|
aggNode->getSequence().push_back(node);
|
|
if (line == 0)
|
|
line = node->getLine();
|
|
}
|
|
} else
|
|
aggNode = new TIntermAggregate();
|
|
|
|
//
|
|
// Set the operator.
|
|
//
|
|
aggNode->setOperator(op);
|
|
if (line != 0)
|
|
aggNode->setLine(line);
|
|
|
|
return aggNode;
|
|
}
|
|
|
|
//
|
|
// Convert one type to another.
|
|
//
|
|
// Returns the node representing the conversion, which could be the same
|
|
// node passed in if no conversion was needed.
|
|
//
|
|
// Return 0 if a conversion can't be done.
|
|
//
|
|
TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
|
|
{
|
|
//
|
|
// Does the base type allow operation?
|
|
//
|
|
switch (node->getBasicType()) {
|
|
case EbtVoid:
|
|
case EbtSampler1D:
|
|
case EbtSampler2D:
|
|
case EbtSampler3D:
|
|
case EbtSamplerCube:
|
|
case EbtSampler1DShadow:
|
|
case EbtSampler2DShadow:
|
|
case EbtSamplerRect: // ARB_texture_rectangle
|
|
case EbtSamplerRectShadow: // ARB_texture_rectangle
|
|
return 0;
|
|
default: break;
|
|
}
|
|
|
|
//
|
|
// Otherwise, if types are identical, no problem
|
|
//
|
|
if (type == node->getType())
|
|
return node;
|
|
|
|
//
|
|
// If one's a structure, then no conversions.
|
|
//
|
|
if (type.getStruct() || node->getType().getStruct())
|
|
return 0;
|
|
|
|
//
|
|
// If one's an array, then no conversions.
|
|
//
|
|
if (type.isArray() || node->getType().isArray())
|
|
return 0;
|
|
|
|
TBasicType promoteTo;
|
|
|
|
switch (op) {
|
|
//
|
|
// Explicit conversions
|
|
//
|
|
case EOpConstructBool:
|
|
promoteTo = EbtBool;
|
|
break;
|
|
case EOpConstructFloat:
|
|
promoteTo = EbtFloat;
|
|
break;
|
|
case EOpConstructInt:
|
|
promoteTo = EbtInt;
|
|
break;
|
|
default:
|
|
//
|
|
// implicit conversions were removed from the language.
|
|
//
|
|
if (type.getBasicType() != node->getType().getBasicType())
|
|
return 0;
|
|
//
|
|
// Size and structure could still differ, but that's
|
|
// handled by operator promotion.
|
|
//
|
|
return node;
|
|
}
|
|
|
|
if (node->getAsConstantUnion()) {
|
|
|
|
return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
|
|
} else {
|
|
|
|
//
|
|
// Add a new newNode for the conversion.
|
|
//
|
|
TIntermUnary* newNode = 0;
|
|
|
|
TOperator newOp = EOpNull;
|
|
switch (promoteTo) {
|
|
case EbtFloat:
|
|
switch (node->getBasicType()) {
|
|
case EbtInt: newOp = EOpConvIntToFloat; break;
|
|
case EbtBool: newOp = EOpConvBoolToFloat; break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
|
|
return 0;
|
|
}
|
|
break;
|
|
case EbtBool:
|
|
switch (node->getBasicType()) {
|
|
case EbtInt: newOp = EOpConvIntToBool; break;
|
|
case EbtFloat: newOp = EOpConvFloatToBool; break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
|
|
return 0;
|
|
}
|
|
break;
|
|
case EbtInt:
|
|
switch (node->getBasicType()) {
|
|
case EbtBool: newOp = EOpConvBoolToInt; break;
|
|
case EbtFloat: newOp = EOpConvFloatToInt; break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Bad promotion type", node->getLine());
|
|
return 0;
|
|
}
|
|
|
|
TType type(promoteTo, EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
|
|
newNode = new TIntermUnary(newOp, type);
|
|
newNode->setLine(node->getLine());
|
|
newNode->setOperand(node);
|
|
|
|
return newNode;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Safe way to combine two nodes into an aggregate. Works with null pointers,
|
|
// a node that's not a aggregate yet, etc.
|
|
//
|
|
// Returns the resulting aggregate, unless 0 was passed in for
|
|
// both existing nodes.
|
|
//
|
|
TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, TSourceLoc line)
|
|
{
|
|
if (left == 0 && right == 0)
|
|
return 0;
|
|
|
|
TIntermAggregate* aggNode = 0;
|
|
if (left)
|
|
aggNode = left->getAsAggregate();
|
|
if (!aggNode || aggNode->getOp() != EOpNull) {
|
|
aggNode = new TIntermAggregate;
|
|
if (left)
|
|
aggNode->getSequence().push_back(left);
|
|
}
|
|
|
|
if (right)
|
|
aggNode->getSequence().push_back(right);
|
|
|
|
if (line != 0)
|
|
aggNode->setLine(line);
|
|
|
|
return aggNode;
|
|
}
|
|
|
|
//
|
|
// Turn an existing node into an aggregate.
|
|
//
|
|
// Returns an aggregate, unless 0 was passed in for the existing node.
|
|
//
|
|
TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, TSourceLoc line)
|
|
{
|
|
if (node == 0)
|
|
return 0;
|
|
|
|
TIntermAggregate* aggNode = new TIntermAggregate;
|
|
aggNode->getSequence().push_back(node);
|
|
|
|
if (line != 0)
|
|
aggNode->setLine(line);
|
|
else
|
|
aggNode->setLine(node->getLine());
|
|
|
|
return aggNode;
|
|
}
|
|
|
|
//
|
|
// For "if" test nodes. There are three children; a condition,
|
|
// a true path, and a false path. The two paths are in the
|
|
// nodePair.
|
|
//
|
|
// Returns the selection node created.
|
|
//
|
|
TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, TSourceLoc line)
|
|
{
|
|
//
|
|
// For compile time constant selections, prune the code and
|
|
// test now.
|
|
//
|
|
|
|
if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
|
|
if (cond->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
|
|
return nodePair.node1;
|
|
else
|
|
return nodePair.node2;
|
|
}
|
|
|
|
TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
|
|
node->setLine(line);
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
|
|
{
|
|
if (left->getType().getQualifier().storage == EvqConst &&
|
|
right->getType().getQualifier().storage == EvqConst) {
|
|
return right;
|
|
} else {
|
|
TIntermTyped *commaAggregate = growAggregate(left, right, line);
|
|
commaAggregate->getAsAggregate()->setOperator(EOpComma);
|
|
commaAggregate->setType(right->getType());
|
|
commaAggregate->getTypePointer()->getQualifier().storage = EvqTemporary;
|
|
return commaAggregate;
|
|
}
|
|
}
|
|
|
|
TIntermTyped* TIntermediate::addMethod(TIntermTyped* object, TType& type, const TString* name, TSourceLoc line)
|
|
{
|
|
TIntermMethod* method = new TIntermMethod(object, type, *name);
|
|
method->setLine(line);
|
|
|
|
return method;
|
|
}
|
|
|
|
//
|
|
// For "?:" test nodes. There are three children; a condition,
|
|
// a true path, and a false path. The two paths are specified
|
|
// as separate parameters.
|
|
//
|
|
// Returns the selection node created, or 0 if one could not be.
|
|
//
|
|
TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, TSourceLoc line)
|
|
{
|
|
//
|
|
// Get compatible types.
|
|
//
|
|
TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
|
|
if (child)
|
|
falseBlock = child;
|
|
else {
|
|
child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
|
|
if (child)
|
|
trueBlock = child;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// See if all the operands are constant, then fold it otherwise not.
|
|
//
|
|
|
|
if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
|
|
if (cond->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
|
|
return trueBlock;
|
|
else
|
|
return falseBlock;
|
|
}
|
|
|
|
//
|
|
// Make a selection node.
|
|
//
|
|
TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
|
|
node->setLine(line);
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// Constant terminal nodes. Has a union that contains bool, float or int constants
|
|
//
|
|
// Returns the constant union node created.
|
|
//
|
|
|
|
TIntermConstantUnion* TIntermediate::addConstantUnion(constUnion* unionArrayPointer, const TType& t, TSourceLoc line)
|
|
{
|
|
TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
|
|
node->setLine(line);
|
|
|
|
return node;
|
|
}
|
|
|
|
TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, TSourceLoc line)
|
|
{
|
|
|
|
TIntermAggregate* node = new TIntermAggregate(EOpSequence);
|
|
|
|
node->setLine(line);
|
|
TIntermConstantUnion* constIntNode;
|
|
TIntermSequence &sequenceVector = node->getSequence();
|
|
constUnion* unionArray;
|
|
|
|
for (int i = 0; i < fields.num; i++) {
|
|
unionArray = new constUnion[1];
|
|
unionArray->setIConst(fields.offsets[i]);
|
|
constIntNode = addConstantUnion(unionArray, TType(EbtInt, EvqConst), line);
|
|
sequenceVector.push_back(constIntNode);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// Create loop nodes.
|
|
//
|
|
TIntermNode* TIntermediate::addLoop(TIntermNode* body, TIntermTyped* test, TIntermTyped* terminal, bool testFirst, TSourceLoc line)
|
|
{
|
|
TIntermNode* node = new TIntermLoop(body, test, terminal, testFirst);
|
|
node->setLine(line);
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// Add branches.
|
|
//
|
|
TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TSourceLoc line)
|
|
{
|
|
return addBranch(branchOp, 0, line);
|
|
}
|
|
|
|
TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, TSourceLoc line)
|
|
{
|
|
TIntermBranch* node = new TIntermBranch(branchOp, expression);
|
|
node->setLine(line);
|
|
|
|
return node;
|
|
}
|
|
|
|
//
|
|
// This is to be executed once the final root is put on top by the parsing
|
|
// process.
|
|
//
|
|
bool TIntermediate::postProcess(TIntermNode* root, EShLanguage language)
|
|
{
|
|
if (root == 0)
|
|
return true;
|
|
|
|
//
|
|
// First, finish off the top level sequence, if any
|
|
//
|
|
TIntermAggregate* aggRoot = root->getAsAggregate();
|
|
if (aggRoot && aggRoot->getOp() == EOpNull)
|
|
aggRoot->setOperator(EOpSequence);
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// This deletes the tree.
|
|
//
|
|
void TIntermediate::remove(TIntermNode* root)
|
|
{
|
|
if (root)
|
|
RemoveAllTreeNodes(root);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
//
|
|
// Member functions of the nodes used for building the tree.
|
|
//
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
// Say whether or not an operation node changes the value of a variable.
|
|
//
|
|
// Returns true if state is modified.
|
|
//
|
|
bool TIntermOperator::modifiesState() const
|
|
{
|
|
switch (op) {
|
|
case EOpPostIncrement:
|
|
case EOpPostDecrement:
|
|
case EOpPreIncrement:
|
|
case EOpPreDecrement:
|
|
case EOpAssign:
|
|
case EOpAddAssign:
|
|
case EOpSubAssign:
|
|
case EOpMulAssign:
|
|
case EOpVectorTimesMatrixAssign:
|
|
case EOpVectorTimesScalarAssign:
|
|
case EOpMatrixTimesScalarAssign:
|
|
case EOpMatrixTimesMatrixAssign:
|
|
case EOpDivAssign:
|
|
case EOpModAssign:
|
|
case EOpAndAssign:
|
|
case EOpInclusiveOrAssign:
|
|
case EOpExclusiveOrAssign:
|
|
case EOpLeftShiftAssign:
|
|
case EOpRightShiftAssign:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// returns true if the operator is for one of the constructors
|
|
//
|
|
bool TIntermOperator::isConstructor() const
|
|
{
|
|
switch (op) {
|
|
case EOpConstructVec2:
|
|
case EOpConstructVec3:
|
|
case EOpConstructVec4:
|
|
case EOpConstructMat2:
|
|
case EOpConstructMat3:
|
|
case EOpConstructMat4:
|
|
case EOpConstructFloat:
|
|
case EOpConstructIVec2:
|
|
case EOpConstructIVec3:
|
|
case EOpConstructIVec4:
|
|
case EOpConstructInt:
|
|
case EOpConstructBVec2:
|
|
case EOpConstructBVec3:
|
|
case EOpConstructBVec4:
|
|
case EOpConstructBool:
|
|
case EOpConstructStruct:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
//
|
|
// Make sure the type of a unary operator is appropriate for its
|
|
// combination of operation and operand type.
|
|
//
|
|
// Returns false in nothing makes sense.
|
|
//
|
|
bool TIntermUnary::promote(TInfoSink&)
|
|
{
|
|
switch (op) {
|
|
case EOpLogicalNot:
|
|
if (operand->getBasicType() != EbtBool)
|
|
return false;
|
|
break;
|
|
case EOpBitwiseNot:
|
|
if (operand->getBasicType() != EbtInt)
|
|
return false;
|
|
break;
|
|
case EOpNegative:
|
|
case EOpPostIncrement:
|
|
case EOpPostDecrement:
|
|
case EOpPreIncrement:
|
|
case EOpPreDecrement:
|
|
if (operand->getBasicType() == EbtBool)
|
|
return false;
|
|
break;
|
|
|
|
// operators for built-ins are already type checked against their prototype
|
|
case EOpAny:
|
|
case EOpAll:
|
|
case EOpVectorLogicalNot:
|
|
return true;
|
|
|
|
default:
|
|
if (operand->getBasicType() != EbtFloat)
|
|
return false;
|
|
}
|
|
|
|
setType(operand->getType());
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Establishes the type of the resultant operation, as well as
|
|
// makes the operator the correct one for the operands.
|
|
//
|
|
// Returns false if operator can't work on operands.
|
|
//
|
|
bool TIntermBinary::promote(TInfoSink& infoSink)
|
|
{
|
|
int size = left->getNominalSize();
|
|
if (right->getNominalSize() > size)
|
|
size = right->getNominalSize();
|
|
|
|
TBasicType basicType = left->getBasicType();
|
|
|
|
//
|
|
// Arrays have to be exact matches.
|
|
//
|
|
if ((left->isArray() || right->isArray()) && (left->getType() != right->getType()))
|
|
return false;
|
|
|
|
//
|
|
// Base assumption: just make the type the same as the left
|
|
// operand. Then only deviations from this need be coded.
|
|
//
|
|
setType(left->getType());
|
|
type.getQualifier().storage = EvqTemporary;
|
|
|
|
// Fix precision qualifiers
|
|
if (right->getQualifier().precision > getQualifier().precision)
|
|
getQualifier().precision = right->getQualifier().precision;
|
|
|
|
//
|
|
// Array operations.
|
|
//
|
|
if (left->isArray()) {
|
|
|
|
switch (op) {
|
|
|
|
//
|
|
// Promote to conditional
|
|
//
|
|
case EOpEqual:
|
|
case EOpNotEqual:
|
|
setType(TType(EbtBool));
|
|
break;
|
|
|
|
case EOpAssign:
|
|
// array information was correctly set above
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// All scalars. Code after this test assumes this case is removed!
|
|
//
|
|
if (size == 1) {
|
|
|
|
switch (op) {
|
|
|
|
//
|
|
// Promote to conditional
|
|
//
|
|
case EOpEqual:
|
|
case EOpNotEqual:
|
|
case EOpLessThan:
|
|
case EOpGreaterThan:
|
|
case EOpLessThanEqual:
|
|
case EOpGreaterThanEqual:
|
|
setType(TType(EbtBool));
|
|
break;
|
|
|
|
//
|
|
// And and Or operate on conditionals
|
|
//
|
|
case EOpLogicalAnd:
|
|
case EOpLogicalOr:
|
|
if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
|
|
return false;
|
|
setType(TType(EbtBool));
|
|
break;
|
|
|
|
//
|
|
// Check for integer only operands.
|
|
//
|
|
case EOpMod:
|
|
case EOpRightShift:
|
|
case EOpLeftShift:
|
|
case EOpAnd:
|
|
case EOpInclusiveOr:
|
|
case EOpExclusiveOr:
|
|
if (left->getBasicType() != EbtInt || right->getBasicType() != EbtInt)
|
|
return false;
|
|
break;
|
|
case EOpModAssign:
|
|
case EOpAndAssign:
|
|
case EOpInclusiveOrAssign:
|
|
case EOpExclusiveOrAssign:
|
|
case EOpLeftShiftAssign:
|
|
case EOpRightShiftAssign:
|
|
if (left->getBasicType() != EbtInt || right->getBasicType() != EbtInt)
|
|
return false;
|
|
// fall through
|
|
|
|
//
|
|
// Everything else should have matching types
|
|
//
|
|
default:
|
|
if (left->getBasicType() != right->getBasicType() ||
|
|
left->isMatrix() != right->isMatrix())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Are the sizes compatible?
|
|
//
|
|
if ( left->getNominalSize() != size && left->getNominalSize() != 1 ||
|
|
right->getNominalSize() != size && right->getNominalSize() != 1)
|
|
return false;
|
|
|
|
//
|
|
// Can these two operands be combined?
|
|
//
|
|
switch (op) {
|
|
case EOpMul:
|
|
if (!left->isMatrix() && right->isMatrix()) {
|
|
if (left->isVector())
|
|
op = EOpVectorTimesMatrix;
|
|
else {
|
|
op = EOpMatrixTimesScalar;
|
|
setType(TType(basicType, EvqTemporary, size, true));
|
|
}
|
|
} else if (left->isMatrix() && !right->isMatrix()) {
|
|
if (right->isVector()) {
|
|
op = EOpMatrixTimesVector;
|
|
setType(TType(basicType, EvqTemporary, size, false));
|
|
} else {
|
|
op = EOpMatrixTimesScalar;
|
|
}
|
|
} else if (left->isMatrix() && right->isMatrix()) {
|
|
op = EOpMatrixTimesMatrix;
|
|
} else if (!left->isMatrix() && !right->isMatrix()) {
|
|
if (left->isVector() && right->isVector()) {
|
|
// leave as component product
|
|
} else if (left->isVector() || right->isVector()) {
|
|
op = EOpVectorTimesScalar;
|
|
setType(TType(basicType, EvqTemporary, size, false));
|
|
}
|
|
} else {
|
|
infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
|
|
return false;
|
|
}
|
|
break;
|
|
case EOpMulAssign:
|
|
if (!left->isMatrix() && right->isMatrix()) {
|
|
if (left->isVector())
|
|
op = EOpVectorTimesMatrixAssign;
|
|
else {
|
|
return false;
|
|
}
|
|
} else if (left->isMatrix() && !right->isMatrix()) {
|
|
if (right->isVector()) {
|
|
return false;
|
|
} else {
|
|
op = EOpMatrixTimesScalarAssign;
|
|
}
|
|
} else if (left->isMatrix() && right->isMatrix()) {
|
|
op = EOpMatrixTimesMatrixAssign;
|
|
} else if (!left->isMatrix() && !right->isMatrix()) {
|
|
if (left->isVector() && right->isVector()) {
|
|
// leave as component product
|
|
} else if (left->isVector() || right->isVector()) {
|
|
if (! left->isVector())
|
|
return false;
|
|
op = EOpVectorTimesScalarAssign;
|
|
setType(TType(basicType, EvqTemporary, size, false));
|
|
}
|
|
} else {
|
|
infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
|
|
return false;
|
|
}
|
|
break;
|
|
case EOpAssign:
|
|
if (left->getNominalSize() != right->getNominalSize())
|
|
return false;
|
|
// fall through
|
|
case EOpAdd:
|
|
case EOpSub:
|
|
case EOpDiv:
|
|
case EOpMod:
|
|
case EOpAddAssign:
|
|
case EOpSubAssign:
|
|
case EOpDivAssign:
|
|
case EOpModAssign:
|
|
if (left->isMatrix() && right->isVector() ||
|
|
left->isVector() && right->isMatrix() ||
|
|
left->getBasicType() != right->getBasicType())
|
|
return false;
|
|
setType(TType(basicType, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
|
|
break;
|
|
|
|
case EOpEqual:
|
|
case EOpNotEqual:
|
|
case EOpLessThan:
|
|
case EOpGreaterThan:
|
|
case EOpLessThanEqual:
|
|
case EOpGreaterThanEqual:
|
|
if (left->isMatrix() && right->isVector() ||
|
|
left->isVector() && right->isMatrix() ||
|
|
left->getBasicType() != right->getBasicType())
|
|
return false;
|
|
setType(TType(EbtBool));
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// One more check for assignment. The Resulting type has to match the left operand.
|
|
//
|
|
switch (op) {
|
|
case EOpAssign:
|
|
case EOpAddAssign:
|
|
case EOpSubAssign:
|
|
case EOpMulAssign:
|
|
case EOpDivAssign:
|
|
case EOpModAssign:
|
|
case EOpAndAssign:
|
|
case EOpInclusiveOrAssign:
|
|
case EOpExclusiveOrAssign:
|
|
case EOpLeftShiftAssign:
|
|
case EOpRightShiftAssign:
|
|
if (getType() != left->getType())
|
|
return false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CompareStruct(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
|
|
{
|
|
TTypeList* fields = leftNodeType.getStruct();
|
|
|
|
size_t structSize = fields->size();
|
|
int index = 0;
|
|
|
|
for (size_t j = 0; j < structSize; j++) {
|
|
int size = (*fields)[j].type->getObjectSize();
|
|
for (int i = 0; i < size; i++) {
|
|
if ((*fields)[j].type->getBasicType() == EbtStruct) {
|
|
if (!CompareStructure(*(*fields)[j].type, &rightUnionArray[index], &leftUnionArray[index]))
|
|
return false;
|
|
} else {
|
|
if (leftUnionArray[index] != rightUnionArray[index])
|
|
return false;
|
|
index++;
|
|
}
|
|
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
|
|
{
|
|
if (leftNodeType.isArray()) {
|
|
TType typeWithoutArrayness = leftNodeType;
|
|
typeWithoutArrayness.clearArrayness();
|
|
|
|
int arraySize = leftNodeType.getArraySize();
|
|
|
|
for (int i = 0; i < arraySize; ++i) {
|
|
int offset = typeWithoutArrayness.getObjectSize() * i;
|
|
if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
|
|
return false;
|
|
}
|
|
} else
|
|
return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// The fold functions see if an operation on a constant can be done in place,
|
|
// without generating run-time code.
|
|
//
|
|
// Returns the node to keep using, which may or may not be the node passed in.
|
|
//
|
|
|
|
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
|
|
{
|
|
constUnion *unionArray = getUnionArrayPointer();
|
|
int objectSize = getType().getObjectSize();
|
|
|
|
if (constantNode) { // binary operations
|
|
TIntermConstantUnion *node = constantNode->getAsConstantUnion();
|
|
constUnion *rightUnionArray = node->getUnionArrayPointer();
|
|
TType returnType = getType();
|
|
|
|
// for a case like float f = 1.2 + vec4(2,3,4,5);
|
|
if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
|
|
rightUnionArray = new constUnion[objectSize];
|
|
for (int i = 0; i < objectSize; ++i)
|
|
rightUnionArray[i] = *node->getUnionArrayPointer();
|
|
returnType = getType();
|
|
} else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
|
|
// for a case like float f = vec4(2,3,4,5) + 1.2;
|
|
unionArray = new constUnion[constantNode->getType().getObjectSize()];
|
|
for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
|
|
unionArray[i] = *getUnionArrayPointer();
|
|
returnType = node->getType();
|
|
objectSize = constantNode->getType().getObjectSize();
|
|
}
|
|
|
|
constUnion* tempConstArray = 0;
|
|
TIntermConstantUnion *tempNode;
|
|
int index = 0;
|
|
bool boolNodeFlag = false;
|
|
switch(op) {
|
|
case EOpAdd:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] + rightUnionArray[i];
|
|
}
|
|
break;
|
|
case EOpSub:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] - rightUnionArray[i];
|
|
}
|
|
break;
|
|
|
|
case EOpMul:
|
|
case EOpVectorTimesScalar:
|
|
case EOpMatrixTimesScalar:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] * rightUnionArray[i];
|
|
}
|
|
break;
|
|
case EOpMatrixTimesMatrix:
|
|
if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
|
|
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine());
|
|
return 0;
|
|
}
|
|
{// support MSVC++6.0
|
|
int size = getNominalSize();
|
|
tempConstArray = new constUnion[size*size];
|
|
for (int row = 0; row < size; row++) {
|
|
for (int column = 0; column < size; column++) {
|
|
tempConstArray[size * column + row].setFConst(0.0f);
|
|
for (int i = 0; i < size; i++) {
|
|
tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case EOpDiv:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++) {
|
|
switch (getType().getBasicType()) {
|
|
case EbtFloat:
|
|
if (rightUnionArray[i] == 0.0f) {
|
|
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
|
|
tempConstArray[i].setFConst(FLT_MAX);
|
|
} else
|
|
tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
|
|
break;
|
|
|
|
case EbtInt:
|
|
if (rightUnionArray[i] == 0) {
|
|
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
|
|
tempConstArray[i].setIConst(INT_MAX);
|
|
} else
|
|
tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
|
|
break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EOpMatrixTimesVector:
|
|
if (node->getBasicType() != EbtFloat) {
|
|
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine());
|
|
return 0;
|
|
}
|
|
tempConstArray = new constUnion[getNominalSize()];
|
|
|
|
{// support MSVC++6.0
|
|
for (int size = getNominalSize(), i = 0; i < size; i++) {
|
|
tempConstArray[i].setFConst(0.0f);
|
|
for (int j = 0; j < size; j++) {
|
|
tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
|
|
}
|
|
}
|
|
}
|
|
|
|
tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
|
|
tempNode->setLine(getLine());
|
|
|
|
return tempNode;
|
|
|
|
case EOpVectorTimesMatrix:
|
|
if (getType().getBasicType() != EbtFloat) {
|
|
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine());
|
|
return 0;
|
|
}
|
|
|
|
tempConstArray = new constUnion[getNominalSize()];
|
|
{// support MSVC++6.0
|
|
for (int size = getNominalSize(), i = 0; i < size; i++) {
|
|
tempConstArray[i].setFConst(0.0f);
|
|
for (int j = 0; j < size; j++) {
|
|
tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EOpMod:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] % rightUnionArray[i];
|
|
}
|
|
break;
|
|
|
|
case EOpRightShift:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] >> rightUnionArray[i];
|
|
}
|
|
break;
|
|
|
|
case EOpLeftShift:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] << rightUnionArray[i];
|
|
}
|
|
break;
|
|
|
|
case EOpAnd:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] & rightUnionArray[i];
|
|
}
|
|
break;
|
|
case EOpInclusiveOr:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] | rightUnionArray[i];
|
|
}
|
|
break;
|
|
case EOpExclusiveOr:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] ^ rightUnionArray[i];
|
|
}
|
|
break;
|
|
|
|
case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] && rightUnionArray[i];
|
|
}
|
|
break;
|
|
|
|
case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
tempConstArray[i] = unionArray[i] || rightUnionArray[i];
|
|
}
|
|
break;
|
|
|
|
case EOpLogicalXor:
|
|
tempConstArray = new constUnion[objectSize];
|
|
{// support MSVC++6.0
|
|
for (int i = 0; i < objectSize; i++)
|
|
switch (getType().getBasicType()) {
|
|
case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
|
|
default: assert(false && "Default missing");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EOpLessThan:
|
|
assert(objectSize == 1);
|
|
tempConstArray = new constUnion[1];
|
|
tempConstArray->setBConst(*unionArray < *rightUnionArray);
|
|
returnType = TType(EbtBool, EvqConst);
|
|
break;
|
|
case EOpGreaterThan:
|
|
assert(objectSize == 1);
|
|
tempConstArray = new constUnion[1];
|
|
tempConstArray->setBConst(*unionArray > *rightUnionArray);
|
|
returnType = TType(EbtBool, EvqConst);
|
|
break;
|
|
case EOpLessThanEqual:
|
|
{
|
|
assert(objectSize == 1);
|
|
constUnion constant;
|
|
constant.setBConst(*unionArray > *rightUnionArray);
|
|
tempConstArray = new constUnion[1];
|
|
tempConstArray->setBConst(!constant.getBConst());
|
|
returnType = TType(EbtBool, EvqConst);
|
|
break;
|
|
}
|
|
case EOpGreaterThanEqual:
|
|
{
|
|
assert(objectSize == 1);
|
|
constUnion constant;
|
|
constant.setBConst(*unionArray < *rightUnionArray);
|
|
tempConstArray = new constUnion[1];
|
|
tempConstArray->setBConst(!constant.getBConst());
|
|
returnType = TType(EbtBool, EvqConst);
|
|
break;
|
|
}
|
|
|
|
case EOpEqual:
|
|
if (getType().getBasicType() == EbtStruct) {
|
|
if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
|
|
boolNodeFlag = true;
|
|
} else {
|
|
for (int i = 0; i < objectSize; i++) {
|
|
if (unionArray[i] != rightUnionArray[i]) {
|
|
boolNodeFlag = true;
|
|
break; // break out of for loop
|
|
}
|
|
}
|
|
}
|
|
|
|
tempConstArray = new constUnion[1];
|
|
if (!boolNodeFlag) {
|
|
tempConstArray->setBConst(true);
|
|
}
|
|
else {
|
|
tempConstArray->setBConst(false);
|
|
}
|
|
|
|
tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EvqConst));
|
|
tempNode->setLine(getLine());
|
|
|
|
return tempNode;
|
|
|
|
case EOpNotEqual:
|
|
if (getType().getBasicType() == EbtStruct) {
|
|
if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
|
|
boolNodeFlag = true;
|
|
} else {
|
|
for (int i = 0; i < objectSize; i++) {
|
|
if (unionArray[i] == rightUnionArray[i]) {
|
|
boolNodeFlag = true;
|
|
break; // break out of for loop
|
|
}
|
|
}
|
|
}
|
|
|
|
tempConstArray = new constUnion[1];
|
|
if (!boolNodeFlag) {
|
|
tempConstArray->setBConst(true);
|
|
}
|
|
else {
|
|
tempConstArray->setBConst(false);
|
|
}
|
|
|
|
tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EvqConst));
|
|
tempNode->setLine(getLine());
|
|
|
|
return tempNode;
|
|
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
|
|
return 0;
|
|
}
|
|
tempNode = new TIntermConstantUnion(tempConstArray, returnType);
|
|
tempNode->setLine(getLine());
|
|
|
|
return tempNode;
|
|
} else {
|
|
//
|
|
// Do unary operations
|
|
//
|
|
TIntermConstantUnion *newNode = 0;
|
|
constUnion* tempConstArray = new constUnion[objectSize];
|
|
for (int i = 0; i < objectSize; i++) {
|
|
switch(op) {
|
|
case EOpNegative:
|
|
switch (getType().getBasicType()) {
|
|
case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
|
|
case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
|
|
return 0;
|
|
}
|
|
break;
|
|
case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
|
|
switch (getType().getBasicType()) {
|
|
case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
newNode = new TIntermConstantUnion(tempConstArray, getType());
|
|
newNode->setLine(getLine());
|
|
return newNode;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
|
|
{
|
|
constUnion *rightUnionArray = node->getUnionArrayPointer();
|
|
int size = node->getType().getObjectSize();
|
|
|
|
constUnion *leftUnionArray = new constUnion[size];
|
|
|
|
for (int i=0; i < size; i++) {
|
|
|
|
switch (promoteTo) {
|
|
case EbtFloat:
|
|
switch (node->getType().getBasicType()) {
|
|
case EbtInt:
|
|
leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getIConst()));
|
|
break;
|
|
case EbtBool:
|
|
leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getBConst()));
|
|
break;
|
|
case EbtFloat:
|
|
leftUnionArray[i] = rightUnionArray[i];
|
|
break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
|
|
return 0;
|
|
}
|
|
break;
|
|
case EbtInt:
|
|
switch (node->getType().getBasicType()) {
|
|
case EbtInt:
|
|
leftUnionArray[i] = rightUnionArray[i];
|
|
break;
|
|
case EbtBool:
|
|
leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getBConst()));
|
|
break;
|
|
case EbtFloat:
|
|
leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getFConst()));
|
|
break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
|
|
return 0;
|
|
}
|
|
break;
|
|
case EbtBool:
|
|
switch (node->getType().getBasicType()) {
|
|
case EbtInt:
|
|
leftUnionArray[i].setBConst(rightUnionArray[i].getIConst() != 0);
|
|
break;
|
|
case EbtBool:
|
|
leftUnionArray[i] = rightUnionArray[i];
|
|
break;
|
|
case EbtFloat:
|
|
leftUnionArray[i].setBConst(rightUnionArray[i].getFConst() != 0.0f);
|
|
break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
|
|
return 0;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
infoSink.info.message(EPrefixInternalError, "Incorrect data type found", node->getLine());
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
const TType& t = node->getType();
|
|
|
|
return addConstantUnion(leftUnionArray, TType(promoteTo, t.getQualifier().storage, t.getNominalSize(), t.isMatrix(),
|
|
t.isArray()), node->getLine());
|
|
}
|
|
|
|
void TIntermAggregate::addToPragmaTable(const TPragmaTable& pTable)
|
|
{
|
|
assert(!pragmaTable);
|
|
pragmaTable = new TPragmaTable();
|
|
*pragmaTable = pTable;
|
|
}
|
|
|