1981 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1981 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//
 | 
						|
//Copyright (C) 2002-2005  3Dlabs Inc. Ltd.
 | 
						|
//Copyright (C) 2012-2015 LunarG, Inc.
 | 
						|
//Copyright (C) 2015-2016 Google, Inc.
 | 
						|
//
 | 
						|
//All rights reserved.
 | 
						|
//
 | 
						|
//Redistribution and use in source and binary forms, with or without
 | 
						|
//modification, are permitted provided that the following conditions
 | 
						|
//are met:
 | 
						|
//
 | 
						|
//    Redistributions of source code must retain the above copyright
 | 
						|
//    notice, this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//    Redistributions in binary form must reproduce the above
 | 
						|
//    copyright notice, this list of conditions and the following
 | 
						|
//    disclaimer in the documentation and/or other materials provided
 | 
						|
//    with the distribution.
 | 
						|
//
 | 
						|
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
 | 
						|
//    contributors may be used to endorse or promote products derived
 | 
						|
//    from this software without specific prior written permission.
 | 
						|
//
 | 
						|
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
						|
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
						|
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
						|
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
						|
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
						|
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
						|
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
						|
//POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
// Build the intermediate representation.
 | 
						|
//
 | 
						|
 | 
						|
#include "localintermediate.h"
 | 
						|
#include "RemoveTree.h"
 | 
						|
#include "SymbolTable.h"
 | 
						|
#include "propagateNoContraction.h"
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
 | 
						|
namespace glslang {
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
// First set of functions are to help build the intermediate representation.
 | 
						|
// These functions are not member functions of the nodes.
 | 
						|
// They are called from parser productions.
 | 
						|
//
 | 
						|
/////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
//
 | 
						|
// Add a terminal node for an identifier in an expression.
 | 
						|
//
 | 
						|
// Returns the added node.
 | 
						|
//
 | 
						|
 | 
						|
TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, const TConstUnionArray& constArray,
 | 
						|
                                        TIntermTyped* constSubtree, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermSymbol* node = new TIntermSymbol(id, name, type);
 | 
						|
    node->setLoc(loc);
 | 
						|
    node->setConstArray(constArray);
 | 
						|
    node->setConstSubtree(constSubtree);
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
TIntermSymbol* TIntermediate::addSymbol(const TVariable& variable)
 | 
						|
{
 | 
						|
    glslang::TSourceLoc loc; // just a null location
 | 
						|
    loc.init();
 | 
						|
 | 
						|
    return addSymbol(variable, loc);
 | 
						|
}
 | 
						|
 | 
						|
TIntermSymbol* TIntermediate::addSymbol(const TVariable& variable, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    return addSymbol(variable.getUniqueId(), variable.getName(), variable.getType(), variable.getConstArray(), variable.getConstSubtree(), loc);
 | 
						|
}
 | 
						|
 | 
						|
TIntermSymbol* TIntermediate::addSymbol(const TType& type, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TConstUnionArray unionArray;  // just a null constant
 | 
						|
 | 
						|
    return addSymbol(0, "", type, unionArray, nullptr, loc);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Connect two nodes with a new parent that does a binary operation on the nodes.
 | 
						|
//
 | 
						|
// Returns the added node.
 | 
						|
//
 | 
						|
TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc loc)
 | 
						|
{
 | 
						|
    // No operations work on blocks
 | 
						|
    if (left->getType().getBasicType() == EbtBlock || right->getType().getBasicType() == EbtBlock)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    // Try converting the children's base types to compatible types.
 | 
						|
    TIntermTyped* child = addConversion(op, left->getType(), right);
 | 
						|
    if (child)
 | 
						|
        right = child;
 | 
						|
    else {
 | 
						|
        child = addConversion(op, right->getType(), left);
 | 
						|
        if (child)
 | 
						|
            left = child;
 | 
						|
        else
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Need a new node holding things together.  Make
 | 
						|
    // one and promote it to the right type.
 | 
						|
    //
 | 
						|
    TIntermBinary* node = new TIntermBinary(op);
 | 
						|
    if (loc.line == 0)
 | 
						|
        loc = right->getLoc();
 | 
						|
    node->setLoc(loc);
 | 
						|
 | 
						|
    node->setLeft(left);
 | 
						|
    node->setRight(right);
 | 
						|
    if (! node->promote())
 | 
						|
        return 0;
 | 
						|
 | 
						|
    node->updatePrecision();
 | 
						|
 | 
						|
    //
 | 
						|
    // If they are both (non-specialization) constants, they must be folded.
 | 
						|
    // (Unless it's the sequence (comma) operator, but that's handled in addComma().)
 | 
						|
    //
 | 
						|
    TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
 | 
						|
    TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
 | 
						|
    if (leftTempConstant && rightTempConstant) {
 | 
						|
        TIntermTyped* folded = leftTempConstant->fold(node->getOp(), rightTempConstant);
 | 
						|
        if (folded)
 | 
						|
            return folded;
 | 
						|
    }
 | 
						|
 | 
						|
    // If either is a specialization constant, while the other is 
 | 
						|
    // a constant (or specialization constant), the result is still
 | 
						|
    // a specialization constant, if the operation is an allowed
 | 
						|
    // specialization-constant operation.
 | 
						|
    if (( left->getType().getQualifier().isSpecConstant() && right->getType().getQualifier().isConstant()) ||
 | 
						|
        (right->getType().getQualifier().isSpecConstant() &&  left->getType().getQualifier().isConstant()))
 | 
						|
        if (isSpecializationOperation(*node))
 | 
						|
            node->getWritableType().getQualifier().makeSpecConstant();
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Connect two nodes through an assignment.
 | 
						|
//
 | 
						|
// Returns the added node.
 | 
						|
//
 | 
						|
TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc loc)
 | 
						|
{
 | 
						|
    // No block assignment
 | 
						|
    if (left->getType().getBasicType() == EbtBlock || right->getType().getBasicType() == EbtBlock)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    //
 | 
						|
    // Like adding binary math, except the conversion can only go
 | 
						|
    // from right to left.
 | 
						|
    //
 | 
						|
    TIntermBinary* node = new TIntermBinary(op);
 | 
						|
    if (loc.line == 0)
 | 
						|
        loc = left->getLoc();
 | 
						|
    node->setLoc(loc);
 | 
						|
 | 
						|
    TIntermTyped* child = addConversion(op, left->getType(), right);
 | 
						|
    if (child == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    node->setLeft(left);
 | 
						|
    node->setRight(child);
 | 
						|
    if (! node->promote())
 | 
						|
        return 0;
 | 
						|
 | 
						|
    node->updatePrecision();
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Connect two nodes through an index operator, where the left node is the base
 | 
						|
// of an array or struct, and the right node is a direct or indirect offset.
 | 
						|
//
 | 
						|
// Returns the added node.
 | 
						|
// The caller should set the type of the returned node.
 | 
						|
//
 | 
						|
TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc loc)
 | 
						|
{
 | 
						|
    TIntermBinary* node = new TIntermBinary(op);
 | 
						|
    if (loc.line == 0)
 | 
						|
        loc = index->getLoc();
 | 
						|
    node->setLoc(loc);
 | 
						|
    node->setLeft(base);
 | 
						|
    node->setRight(index);
 | 
						|
 | 
						|
    // caller should set the type
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Add one node as the parent of another that it operates on.
 | 
						|
//
 | 
						|
// Returns the added node.
 | 
						|
//
 | 
						|
TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermTyped* child, TSourceLoc loc)
 | 
						|
{
 | 
						|
    if (child == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    if (child->getType().getBasicType() == EbtBlock)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    switch (op) {
 | 
						|
    case EOpLogicalNot:
 | 
						|
        if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpPostIncrement:
 | 
						|
    case EOpPreIncrement:
 | 
						|
    case EOpPostDecrement:
 | 
						|
    case EOpPreDecrement:
 | 
						|
    case EOpNegative:
 | 
						|
        if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
 | 
						|
            return 0;
 | 
						|
    default: break; // some compilers want this
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Do we need to promote the operand?
 | 
						|
    //
 | 
						|
    TBasicType newType = EbtVoid;
 | 
						|
    switch (op) {
 | 
						|
    case EOpConstructInt:    newType = EbtInt;    break;
 | 
						|
    case EOpConstructUint:   newType = EbtUint;   break;
 | 
						|
    case EOpConstructInt64:  newType = EbtInt64;  break;
 | 
						|
    case EOpConstructUint64: newType = EbtUint64; break;
 | 
						|
    case EOpConstructBool:   newType = EbtBool;   break;
 | 
						|
    case EOpConstructFloat:  newType = EbtFloat;  break;
 | 
						|
    case EOpConstructDouble: newType = EbtDouble; break;
 | 
						|
    default: break; // some compilers want this
 | 
						|
    }
 | 
						|
 | 
						|
    if (newType != EbtVoid) {
 | 
						|
        child = addConversion(op, TType(newType, EvqTemporary, child->getVectorSize(),
 | 
						|
                                                               child->getMatrixCols(),
 | 
						|
                                                               child->getMatrixRows()),
 | 
						|
                              child);
 | 
						|
        if (child == 0)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // For constructors, we are now done, it was all in the conversion.
 | 
						|
    // TODO: but, did this bypass constant folding?
 | 
						|
    //
 | 
						|
    switch (op) {
 | 
						|
    case EOpConstructInt:
 | 
						|
    case EOpConstructUint:
 | 
						|
    case EOpConstructInt64:
 | 
						|
    case EOpConstructUint64:
 | 
						|
    case EOpConstructBool:
 | 
						|
    case EOpConstructFloat:
 | 
						|
    case EOpConstructDouble:
 | 
						|
        return child;
 | 
						|
    default: break; // some compilers want this
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Make a new node for the operator.
 | 
						|
    //
 | 
						|
    TIntermUnary* node = new TIntermUnary(op);
 | 
						|
    if (loc.line == 0)
 | 
						|
        loc = child->getLoc();
 | 
						|
    node->setLoc(loc);
 | 
						|
    node->setOperand(child);
 | 
						|
 | 
						|
    if (! node->promote())
 | 
						|
        return 0;
 | 
						|
 | 
						|
    node->updatePrecision();
 | 
						|
 | 
						|
    // If it's a (non-specialization) constant, it must be folded.
 | 
						|
    if (child->getAsConstantUnion())
 | 
						|
        return child->getAsConstantUnion()->fold(op, node->getType());
 | 
						|
 | 
						|
    // If it's a specialization constant, the result is too,
 | 
						|
    // if the operation is allowed for specialization constants.
 | 
						|
    if (child->getType().getQualifier().isSpecConstant() && isSpecializationOperation(*node))
 | 
						|
        node->getWritableType().getQualifier().makeSpecConstant();
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
TIntermTyped* TIntermediate::addBuiltInFunctionCall(const TSourceLoc& loc, TOperator op, bool unary, TIntermNode* childNode, const TType& returnType)
 | 
						|
{
 | 
						|
    if (unary) {
 | 
						|
        //
 | 
						|
        // Treat it like a unary operator.
 | 
						|
        // addUnaryMath() should get the type correct on its own;
 | 
						|
        // including constness (which would differ from the prototype).
 | 
						|
        //
 | 
						|
        TIntermTyped* child = childNode->getAsTyped();
 | 
						|
        if (child == 0)
 | 
						|
            return 0;
 | 
						|
 | 
						|
        if (child->getAsConstantUnion()) {
 | 
						|
            TIntermTyped* folded = child->getAsConstantUnion()->fold(op, returnType);
 | 
						|
            if (folded)
 | 
						|
                return folded;
 | 
						|
        }
 | 
						|
 | 
						|
        TIntermUnary* node = new TIntermUnary(op);
 | 
						|
        node->setLoc(child->getLoc());
 | 
						|
        node->setOperand(child);
 | 
						|
        node->setType(returnType);
 | 
						|
 | 
						|
        // propagate precision up from child
 | 
						|
        if (profile == EEsProfile && returnType.getQualifier().precision == EpqNone && returnType.getBasicType() != EbtBool)
 | 
						|
            node->getQualifier().precision = child->getQualifier().precision;
 | 
						|
 | 
						|
        // propagate precision down to child
 | 
						|
        if (node->getQualifier().precision != EpqNone)
 | 
						|
            child->propagatePrecision(node->getQualifier().precision);
 | 
						|
 | 
						|
        return node;
 | 
						|
    } else {
 | 
						|
        // setAggregateOperater() calls fold() for constant folding
 | 
						|
        TIntermTyped* node = setAggregateOperator(childNode, op, returnType, loc);
 | 
						|
 | 
						|
        // if not folded, we'll still have an aggregate node to propagate precision with
 | 
						|
        if (node->getAsAggregate()) {
 | 
						|
            TPrecisionQualifier correctPrecision = returnType.getQualifier().precision;
 | 
						|
            if (correctPrecision == EpqNone && profile == EEsProfile) {
 | 
						|
                // find the maximum precision from the arguments, for the built-in's return precision
 | 
						|
                TIntermSequence& sequence = node->getAsAggregate()->getSequence();
 | 
						|
                for (unsigned int arg = 0; arg < sequence.size(); ++arg)
 | 
						|
                    correctPrecision = std::max(correctPrecision, sequence[arg]->getAsTyped()->getQualifier().precision);
 | 
						|
            }
 | 
						|
 | 
						|
            // Propagate precision through this node and its children. That algorithm stops
 | 
						|
            // when a precision is found, so start by clearing this subroot precision
 | 
						|
            node->getQualifier().precision = EpqNone;
 | 
						|
            node->propagatePrecision(correctPrecision);
 | 
						|
        }
 | 
						|
 | 
						|
        return node;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// This is the safe way to change the operator on an aggregate, as it
 | 
						|
// does lots of error checking and fixing.  Especially for establishing
 | 
						|
// a function call's operation on it's set of parameters.  Sequences
 | 
						|
// of instructions are also aggregates, but they just directly set
 | 
						|
// their operator to EOpSequence.
 | 
						|
//
 | 
						|
// Returns an aggregate node, which could be the one passed in if
 | 
						|
// it was already an aggregate.
 | 
						|
//
 | 
						|
TIntermTyped* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, const TType& type, TSourceLoc loc)
 | 
						|
{
 | 
						|
    TIntermAggregate* aggNode;
 | 
						|
 | 
						|
    //
 | 
						|
    // Make sure we have an aggregate.  If not turn it into one.
 | 
						|
    //
 | 
						|
    if (node) {
 | 
						|
        aggNode = node->getAsAggregate();
 | 
						|
        if (aggNode == 0 || aggNode->getOp() != EOpNull) {
 | 
						|
            //
 | 
						|
            // Make an aggregate containing this node.
 | 
						|
            //
 | 
						|
            aggNode = new TIntermAggregate();
 | 
						|
            aggNode->getSequence().push_back(node);
 | 
						|
            if (loc.line == 0)
 | 
						|
                loc = node->getLoc();
 | 
						|
        }
 | 
						|
    } else
 | 
						|
        aggNode = new TIntermAggregate();
 | 
						|
 | 
						|
    //
 | 
						|
    // Set the operator.
 | 
						|
    //
 | 
						|
    aggNode->setOperator(op);
 | 
						|
    if (loc.line != 0)
 | 
						|
        aggNode->setLoc(loc);
 | 
						|
 | 
						|
    aggNode->setType(type);
 | 
						|
 | 
						|
    return fold(aggNode);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Convert the node's type to the given type, as allowed by the operation involved: 'op'.
 | 
						|
// For implicit conversions, 'op' is not the requested conversion, it is the explicit
 | 
						|
// operation requiring the implicit conversion.
 | 
						|
//
 | 
						|
// Returns a node representing the conversion, which could be the same
 | 
						|
// node passed in if no conversion was needed.
 | 
						|
//
 | 
						|
// Return 0 if a conversion can't be done.
 | 
						|
//
 | 
						|
TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node) const
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Does the base type even allow the operation?
 | 
						|
    //
 | 
						|
    switch (node->getBasicType()) {
 | 
						|
    case EbtVoid:
 | 
						|
        return 0;
 | 
						|
    case EbtAtomicUint:
 | 
						|
    case EbtSampler:
 | 
						|
        // opaque types can be passed to functions
 | 
						|
        if (op == EOpFunction)
 | 
						|
            break;
 | 
						|
        // samplers can get assigned via a sampler constructor
 | 
						|
        // (well, not yet, but code in the rest of this function is ready for it)
 | 
						|
        if (node->getBasicType() == EbtSampler && op == EOpAssign && 
 | 
						|
            node->getAsOperator() != nullptr && node->getAsOperator()->getOp() == EOpConstructTextureSampler)
 | 
						|
            break;
 | 
						|
 | 
						|
        // otherwise, opaque types can't even be operated on, let alone converted
 | 
						|
        return 0;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, if types are identical, no problem
 | 
						|
    if (type == node->getType())
 | 
						|
        return node;
 | 
						|
 | 
						|
    // If one's a structure, then no conversions.
 | 
						|
    if (type.isStruct() || node->isStruct())
 | 
						|
        return 0;
 | 
						|
 | 
						|
    // If one's an array, then no conversions.
 | 
						|
    if (type.isArray() || node->getType().isArray())
 | 
						|
        return 0;
 | 
						|
 | 
						|
    // Note: callers are responsible for other aspects of shape,
 | 
						|
    // like vector and matrix sizes.
 | 
						|
 | 
						|
    TBasicType promoteTo;
 | 
						|
 | 
						|
    switch (op) {
 | 
						|
    //
 | 
						|
    // Explicit conversions (unary operations)
 | 
						|
    //
 | 
						|
    case EOpConstructBool:
 | 
						|
        promoteTo = EbtBool;
 | 
						|
        break;
 | 
						|
    case EOpConstructFloat:
 | 
						|
        promoteTo = EbtFloat;
 | 
						|
        break;
 | 
						|
    case EOpConstructDouble:
 | 
						|
        promoteTo = EbtDouble;
 | 
						|
        break;
 | 
						|
    case EOpConstructInt:
 | 
						|
        promoteTo = EbtInt;
 | 
						|
        break;
 | 
						|
    case EOpConstructUint:
 | 
						|
        promoteTo = EbtUint;
 | 
						|
        break;
 | 
						|
    case EOpConstructInt64:
 | 
						|
        promoteTo = EbtInt64;
 | 
						|
        break;
 | 
						|
    case EOpConstructUint64:
 | 
						|
        promoteTo = EbtUint64;
 | 
						|
        break;
 | 
						|
 | 
						|
    //
 | 
						|
    // List all the binary ops that can implicitly convert one operand to the other's type;
 | 
						|
    // This implements the 'policy' for implicit type conversion.
 | 
						|
    //
 | 
						|
    case EOpLessThan:
 | 
						|
    case EOpGreaterThan:
 | 
						|
    case EOpLessThanEqual:
 | 
						|
    case EOpGreaterThanEqual:
 | 
						|
    case EOpEqual:
 | 
						|
    case EOpNotEqual:
 | 
						|
 | 
						|
    case EOpAdd:
 | 
						|
    case EOpSub:
 | 
						|
    case EOpMul:
 | 
						|
    case EOpDiv:
 | 
						|
    case EOpMod:
 | 
						|
 | 
						|
    case EOpVectorTimesScalar:
 | 
						|
    case EOpVectorTimesMatrix:
 | 
						|
    case EOpMatrixTimesVector:
 | 
						|
    case EOpMatrixTimesScalar:
 | 
						|
 | 
						|
    case EOpAnd:
 | 
						|
    case EOpInclusiveOr:
 | 
						|
    case EOpExclusiveOr:
 | 
						|
    case EOpAndAssign:
 | 
						|
    case EOpInclusiveOrAssign:
 | 
						|
    case EOpExclusiveOrAssign:
 | 
						|
 | 
						|
    case EOpFunctionCall:
 | 
						|
    case EOpReturn:
 | 
						|
    case EOpAssign:
 | 
						|
    case EOpAddAssign:
 | 
						|
    case EOpSubAssign:
 | 
						|
    case EOpMulAssign:
 | 
						|
    case EOpVectorTimesScalarAssign:
 | 
						|
    case EOpMatrixTimesScalarAssign:
 | 
						|
    case EOpDivAssign:
 | 
						|
    case EOpModAssign:
 | 
						|
 | 
						|
    case EOpSequence:
 | 
						|
    case EOpConstructStruct:
 | 
						|
 | 
						|
        if (type.getBasicType() == node->getType().getBasicType())
 | 
						|
            return node;
 | 
						|
 | 
						|
        if (canImplicitlyPromote(node->getType().getBasicType(), type.getBasicType()))
 | 
						|
            promoteTo = type.getBasicType();
 | 
						|
        else
 | 
						|
            return 0;
 | 
						|
 | 
						|
        break;
 | 
						|
 | 
						|
    // Shifts can have mixed types as long as they are integer, without converting.
 | 
						|
    // It's the left operand's type that determines the resulting type, so no issue
 | 
						|
    // with assign shift ops either.
 | 
						|
    case EOpLeftShift:
 | 
						|
    case EOpRightShift:
 | 
						|
    case EOpLeftShiftAssign:
 | 
						|
    case EOpRightShiftAssign:
 | 
						|
        if ((type.getBasicType() == EbtInt ||
 | 
						|
             type.getBasicType() == EbtUint ||
 | 
						|
             type.getBasicType() == EbtInt64 ||
 | 
						|
             type.getBasicType() == EbtUint64) &&
 | 
						|
            (node->getType().getBasicType() == EbtInt ||
 | 
						|
             node->getType().getBasicType() == EbtUint ||
 | 
						|
             node->getType().getBasicType() == EbtInt64 ||
 | 
						|
             node->getType().getBasicType() == EbtUint64))
 | 
						|
 | 
						|
            return node;
 | 
						|
        else
 | 
						|
            return 0;
 | 
						|
 | 
						|
    default:
 | 
						|
        // default is to require a match; all exceptions should have case statements above
 | 
						|
 | 
						|
        if (type.getBasicType() == node->getType().getBasicType())
 | 
						|
            return node;
 | 
						|
        else
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (node->getAsConstantUnion())
 | 
						|
        return promoteConstantUnion(promoteTo, node->getAsConstantUnion());
 | 
						|
 | 
						|
    //
 | 
						|
    // Add a new newNode for the conversion.
 | 
						|
    //
 | 
						|
    TIntermUnary* newNode = 0;
 | 
						|
 | 
						|
    TOperator newOp = EOpNull;
 | 
						|
 | 
						|
    // This is 'mechanism' here, it does any conversion told.  The policy comes
 | 
						|
    // from the shader or the above code.
 | 
						|
    switch (promoteTo) {
 | 
						|
    case EbtDouble:
 | 
						|
        switch (node->getBasicType()) {
 | 
						|
        case EbtInt:   newOp = EOpConvIntToDouble;   break;
 | 
						|
        case EbtUint:  newOp = EOpConvUintToDouble;  break;
 | 
						|
        case EbtBool:  newOp = EOpConvBoolToDouble;  break;
 | 
						|
        case EbtFloat: newOp = EOpConvFloatToDouble; break;
 | 
						|
        case EbtInt64: newOp = EOpConvInt64ToDouble; break;
 | 
						|
        case EbtUint64: newOp = EOpConvUint64ToDouble; break;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EbtFloat:
 | 
						|
        switch (node->getBasicType()) {
 | 
						|
        case EbtInt:    newOp = EOpConvIntToFloat;    break;
 | 
						|
        case EbtUint:   newOp = EOpConvUintToFloat;   break;
 | 
						|
        case EbtBool:   newOp = EOpConvBoolToFloat;   break;
 | 
						|
        case EbtDouble: newOp = EOpConvDoubleToFloat; break;
 | 
						|
        case EbtInt64:  newOp = EOpConvInt64ToFloat;  break;
 | 
						|
        case EbtUint64: newOp = EOpConvUint64ToFloat; break;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EbtBool:
 | 
						|
        switch (node->getBasicType()) {
 | 
						|
        case EbtInt:    newOp = EOpConvIntToBool;    break;
 | 
						|
        case EbtUint:   newOp = EOpConvUintToBool;   break;
 | 
						|
        case EbtFloat:  newOp = EOpConvFloatToBool;  break;
 | 
						|
        case EbtDouble: newOp = EOpConvDoubleToBool; break;
 | 
						|
        case EbtInt64:  newOp = EOpConvInt64ToBool;  break;
 | 
						|
        case EbtUint64: newOp = EOpConvUint64ToBool; break;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EbtInt:
 | 
						|
        switch (node->getBasicType()) {
 | 
						|
        case EbtUint:   newOp = EOpConvUintToInt;   break;
 | 
						|
        case EbtBool:   newOp = EOpConvBoolToInt;   break;
 | 
						|
        case EbtFloat:  newOp = EOpConvFloatToInt;  break;
 | 
						|
        case EbtDouble: newOp = EOpConvDoubleToInt; break;
 | 
						|
        case EbtInt64:  newOp = EOpConvInt64ToInt;  break;
 | 
						|
        case EbtUint64: newOp = EOpConvUint64ToInt; break;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EbtUint:
 | 
						|
        switch (node->getBasicType()) {
 | 
						|
        case EbtInt:    newOp = EOpConvIntToUint;    break;
 | 
						|
        case EbtBool:   newOp = EOpConvBoolToUint;   break;
 | 
						|
        case EbtFloat:  newOp = EOpConvFloatToUint;  break;
 | 
						|
        case EbtDouble: newOp = EOpConvDoubleToUint; break;
 | 
						|
        case EbtInt64:  newOp = EOpConvInt64ToUint;  break;
 | 
						|
        case EbtUint64: newOp = EOpConvUint64ToUint; break;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EbtInt64:
 | 
						|
        switch (node->getBasicType()) {
 | 
						|
        case EbtInt:    newOp = EOpConvIntToInt64;    break;
 | 
						|
        case EbtUint:   newOp = EOpConvUintToInt64;   break;
 | 
						|
        case EbtBool:   newOp = EOpConvBoolToInt64;   break;
 | 
						|
        case EbtFloat:  newOp = EOpConvFloatToInt64;  break;
 | 
						|
        case EbtDouble: newOp = EOpConvDoubleToInt64; break;
 | 
						|
        case EbtUint64: newOp = EOpConvUint64ToInt64; break;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EbtUint64:
 | 
						|
        switch (node->getBasicType()) {
 | 
						|
        case EbtInt:    newOp = EOpConvIntToUint64;    break;
 | 
						|
        case EbtUint:   newOp = EOpConvUintToUint64;   break;
 | 
						|
        case EbtBool:   newOp = EOpConvBoolToUint64;   break;
 | 
						|
        case EbtFloat:  newOp = EOpConvFloatToUint64;  break;
 | 
						|
        case EbtDouble: newOp = EOpConvDoubleToUint64; break;
 | 
						|
        case EbtInt64:  newOp = EOpConvInt64ToUint64;  break;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    TType newType(promoteTo, EvqTemporary, node->getVectorSize(), node->getMatrixCols(), node->getMatrixRows());
 | 
						|
    newNode = new TIntermUnary(newOp, newType);
 | 
						|
    newNode->setLoc(node->getLoc());
 | 
						|
    newNode->setOperand(node);
 | 
						|
 | 
						|
    // TODO: it seems that some unary folding operations should occur here, but are not
 | 
						|
 | 
						|
    // Propagate specialization-constant-ness, if allowed
 | 
						|
    if (node->getType().getQualifier().isSpecConstant() && isSpecializationOperation(*newNode))
 | 
						|
        newNode->getWritableType().getQualifier().makeSpecConstant();
 | 
						|
 | 
						|
    return newNode;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// See if the 'from' type is allowed to be implicitly converted to the
 | 
						|
// 'to' type.  This is not about vector/array/struct, only about basic type.
 | 
						|
//
 | 
						|
bool TIntermediate::canImplicitlyPromote(TBasicType from, TBasicType to) const
 | 
						|
{
 | 
						|
    if (profile == EEsProfile || version == 110)
 | 
						|
        return false;
 | 
						|
 | 
						|
    switch (to) {
 | 
						|
    case EbtDouble:
 | 
						|
        switch (from) {
 | 
						|
        case EbtInt:
 | 
						|
        case EbtUint:
 | 
						|
        case EbtInt64:
 | 
						|
        case EbtUint64:
 | 
						|
        case EbtFloat:
 | 
						|
        case EbtDouble:
 | 
						|
            return true;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    case EbtFloat:
 | 
						|
        switch (from) {
 | 
						|
        case EbtInt:
 | 
						|
        case EbtUint:
 | 
						|
        case EbtFloat:
 | 
						|
            return true;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    case EbtUint:
 | 
						|
        switch (from) {
 | 
						|
        case EbtInt:
 | 
						|
            return version >= 400;
 | 
						|
        case EbtUint:
 | 
						|
            return true;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    case EbtInt:
 | 
						|
        switch (from) {
 | 
						|
        case EbtInt:
 | 
						|
            return true;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    case EbtUint64:
 | 
						|
        switch (from) {
 | 
						|
        case EbtInt:
 | 
						|
        case EbtUint:
 | 
						|
        case EbtInt64:
 | 
						|
        case EbtUint64:
 | 
						|
            return true;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    case EbtInt64:
 | 
						|
        switch (from) {
 | 
						|
        case EbtInt:
 | 
						|
        case EbtInt64:
 | 
						|
            return true;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    default:
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Safe way to combine two nodes into an aggregate.  Works with null pointers,
 | 
						|
// a node that's not a aggregate yet, etc.
 | 
						|
//
 | 
						|
// Returns the resulting aggregate, unless 0 was passed in for
 | 
						|
// both existing nodes.
 | 
						|
//
 | 
						|
TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right)
 | 
						|
{
 | 
						|
    if (left == 0 && right == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    TIntermAggregate* aggNode = 0;
 | 
						|
    if (left)
 | 
						|
        aggNode = left->getAsAggregate();
 | 
						|
    if (! aggNode || aggNode->getOp() != EOpNull) {
 | 
						|
        aggNode = new TIntermAggregate;
 | 
						|
        if (left)
 | 
						|
            aggNode->getSequence().push_back(left);
 | 
						|
    }
 | 
						|
 | 
						|
    if (right)
 | 
						|
        aggNode->getSequence().push_back(right);
 | 
						|
 | 
						|
    return aggNode;
 | 
						|
}
 | 
						|
 | 
						|
TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermAggregate* aggNode = growAggregate(left, right);
 | 
						|
    if (aggNode)
 | 
						|
        aggNode->setLoc(loc);
 | 
						|
 | 
						|
    return aggNode;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Turn an existing node into an aggregate.
 | 
						|
//
 | 
						|
// Returns an aggregate, unless 0 was passed in for the existing node.
 | 
						|
//
 | 
						|
TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node)
 | 
						|
{
 | 
						|
    if (node == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    TIntermAggregate* aggNode = new TIntermAggregate;
 | 
						|
    aggNode->getSequence().push_back(node);
 | 
						|
    aggNode->setLoc(node->getLoc());
 | 
						|
 | 
						|
    return aggNode;
 | 
						|
}
 | 
						|
 | 
						|
TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    if (node == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    TIntermAggregate* aggNode = new TIntermAggregate;
 | 
						|
    aggNode->getSequence().push_back(node);
 | 
						|
    aggNode->setLoc(loc);
 | 
						|
 | 
						|
    return aggNode;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// For "if" test nodes.  There are three children; a condition,
 | 
						|
// a true path, and a false path.  The two paths are in the
 | 
						|
// nodePair.
 | 
						|
//
 | 
						|
// Returns the selection node created.
 | 
						|
//
 | 
						|
TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Don't prune the false path for compile-time constants; it's needed
 | 
						|
    // for static access analysis.
 | 
						|
    //
 | 
						|
 | 
						|
    TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
 | 
						|
    node->setLoc(loc);
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    // However, the lowest precedence operators of the sequence operator ( , ) and the assignment operators
 | 
						|
    // ... are not included in the operators that can create a constant expression.
 | 
						|
    //
 | 
						|
    //if (left->getType().getQualifier().storage == EvqConst &&
 | 
						|
    //    right->getType().getQualifier().storage == EvqConst) {
 | 
						|
 | 
						|
    //    return right;
 | 
						|
    //}
 | 
						|
 | 
						|
    TIntermTyped *commaAggregate = growAggregate(left, right, loc);
 | 
						|
    commaAggregate->getAsAggregate()->setOperator(EOpComma);
 | 
						|
    commaAggregate->setType(right->getType());
 | 
						|
    commaAggregate->getWritableType().getQualifier().makeTemporary();
 | 
						|
 | 
						|
    return commaAggregate;
 | 
						|
}
 | 
						|
 | 
						|
TIntermTyped* TIntermediate::addMethod(TIntermTyped* object, const TType& type, const TString* name, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermMethod* method = new TIntermMethod(object, type, *name);
 | 
						|
    method->setLoc(loc);
 | 
						|
 | 
						|
    return method;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// For "?:" test nodes.  There are three children; a condition,
 | 
						|
// a true path, and a false path.  The two paths are specified
 | 
						|
// as separate parameters.
 | 
						|
//
 | 
						|
// Returns the selection node created, or 0 if one could not be.
 | 
						|
//
 | 
						|
TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Get compatible types.
 | 
						|
    //
 | 
						|
    TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
 | 
						|
    if (child)
 | 
						|
        falseBlock = child;
 | 
						|
    else {
 | 
						|
        child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
 | 
						|
        if (child)
 | 
						|
            trueBlock = child;
 | 
						|
        else
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // After conversion, types have to match.
 | 
						|
    if (falseBlock->getType() != trueBlock->getType())
 | 
						|
        return 0;
 | 
						|
 | 
						|
    //
 | 
						|
    // See if all the operands are constant, then fold it otherwise not.
 | 
						|
    //
 | 
						|
 | 
						|
    if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
 | 
						|
        if (cond->getAsConstantUnion()->getConstArray()[0].getBConst())
 | 
						|
            return trueBlock;
 | 
						|
        else
 | 
						|
            return falseBlock;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Make a selection node.
 | 
						|
    //
 | 
						|
    TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
 | 
						|
    node->getQualifier().makeTemporary();
 | 
						|
    node->setLoc(loc);
 | 
						|
    node->getQualifier().precision = std::max(trueBlock->getQualifier().precision, falseBlock->getQualifier().precision);
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Constant terminal nodes.  Has a union that contains bool, float or int constants
 | 
						|
//
 | 
						|
// Returns the constant union node created.
 | 
						|
//
 | 
						|
 | 
						|
TIntermConstantUnion* TIntermediate::addConstantUnion(const TConstUnionArray& unionArray, const TType& t, const TSourceLoc& loc, bool literal) const
 | 
						|
{
 | 
						|
    TIntermConstantUnion* node = new TIntermConstantUnion(unionArray, t);
 | 
						|
    node->getQualifier().storage = EvqConst;
 | 
						|
    node->setLoc(loc);
 | 
						|
    if (literal)
 | 
						|
        node->setLiteral();
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
TIntermConstantUnion* TIntermediate::addConstantUnion(int i, const TSourceLoc& loc, bool literal) const
 | 
						|
{
 | 
						|
    TConstUnionArray unionArray(1);
 | 
						|
    unionArray[0].setIConst(i);
 | 
						|
 | 
						|
    return addConstantUnion(unionArray, TType(EbtInt, EvqConst), loc, literal);
 | 
						|
}
 | 
						|
 | 
						|
TIntermConstantUnion* TIntermediate::addConstantUnion(unsigned int u, const TSourceLoc& loc, bool literal) const
 | 
						|
{
 | 
						|
    TConstUnionArray unionArray(1);
 | 
						|
    unionArray[0].setUConst(u);
 | 
						|
 | 
						|
    return addConstantUnion(unionArray, TType(EbtUint, EvqConst), loc, literal);
 | 
						|
}
 | 
						|
 | 
						|
TIntermConstantUnion* TIntermediate::addConstantUnion(long long i64, const TSourceLoc& loc, bool literal) const
 | 
						|
{
 | 
						|
    TConstUnionArray unionArray(1);
 | 
						|
    unionArray[0].setI64Const(i64);
 | 
						|
 | 
						|
    return addConstantUnion(unionArray, TType(EbtInt64, EvqConst), loc, literal);
 | 
						|
}
 | 
						|
 | 
						|
TIntermConstantUnion* TIntermediate::addConstantUnion(unsigned long long u64, const TSourceLoc& loc, bool literal) const
 | 
						|
{
 | 
						|
    TConstUnionArray unionArray(1);
 | 
						|
    unionArray[0].setU64Const(u64);
 | 
						|
 | 
						|
    return addConstantUnion(unionArray, TType(EbtUint64, EvqConst), loc, literal);
 | 
						|
}
 | 
						|
 | 
						|
TIntermConstantUnion* TIntermediate::addConstantUnion(bool b, const TSourceLoc& loc, bool literal) const
 | 
						|
{
 | 
						|
    TConstUnionArray unionArray(1);
 | 
						|
    unionArray[0].setBConst(b);
 | 
						|
 | 
						|
    return addConstantUnion(unionArray, TType(EbtBool, EvqConst), loc, literal);
 | 
						|
}
 | 
						|
 | 
						|
TIntermConstantUnion* TIntermediate::addConstantUnion(double d, TBasicType baseType, const TSourceLoc& loc, bool literal) const
 | 
						|
{
 | 
						|
    assert(baseType == EbtFloat || baseType == EbtDouble);
 | 
						|
 | 
						|
    TConstUnionArray unionArray(1);
 | 
						|
    unionArray[0].setDConst(d);
 | 
						|
 | 
						|
    return addConstantUnion(unionArray, TType(baseType, EvqConst), loc, literal);
 | 
						|
}
 | 
						|
 | 
						|
TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermAggregate* node = new TIntermAggregate(EOpSequence);
 | 
						|
 | 
						|
    node->setLoc(loc);
 | 
						|
    TIntermConstantUnion* constIntNode;
 | 
						|
    TIntermSequence &sequenceVector = node->getSequence();
 | 
						|
 | 
						|
    for (int i = 0; i < fields.num; i++) {
 | 
						|
        constIntNode = addConstantUnion(fields.offsets[i], loc);
 | 
						|
        sequenceVector.push_back(constIntNode);
 | 
						|
    }
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Follow the left branches down to the root of an l-value
 | 
						|
// expression (just "." and []).
 | 
						|
//
 | 
						|
// Return the base of the l-value (where following indexing quits working).
 | 
						|
// Return nullptr if a chain following dereferences cannot be followed.
 | 
						|
//
 | 
						|
// 'swizzleOkay' says whether or not it is okay to consider a swizzle
 | 
						|
// a valid part of the dereference chain.
 | 
						|
//
 | 
						|
const TIntermTyped* TIntermediate::findLValueBase(const TIntermTyped* node, bool swizzleOkay)
 | 
						|
{
 | 
						|
    do {
 | 
						|
        const TIntermBinary* binary = node->getAsBinaryNode();
 | 
						|
        if (binary == nullptr)
 | 
						|
            return node;
 | 
						|
        TOperator op = binary->getOp();
 | 
						|
        if (op != EOpIndexDirect && op != EOpIndexIndirect && op != EOpIndexDirectStruct && op != EOpVectorSwizzle)
 | 
						|
            return nullptr;
 | 
						|
        if (! swizzleOkay) {
 | 
						|
            if (op == EOpVectorSwizzle)
 | 
						|
                return nullptr;
 | 
						|
            if ((op == EOpIndexDirect || op == EOpIndexIndirect) &&
 | 
						|
                (binary->getLeft()->getType().isVector() || binary->getLeft()->getType().isScalar()) &&
 | 
						|
                ! binary->getLeft()->getType().isArray())
 | 
						|
                return nullptr;
 | 
						|
        }
 | 
						|
        node = node->getAsBinaryNode()->getLeft();
 | 
						|
    } while (true);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Create while and do-while loop nodes.
 | 
						|
//
 | 
						|
TIntermLoop* TIntermediate::addLoop(TIntermNode* body, TIntermTyped* test, TIntermTyped* terminal, bool testFirst, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermLoop* node = new TIntermLoop(body, test, terminal, testFirst);
 | 
						|
    node->setLoc(loc);
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Create a for-loop sequence.
 | 
						|
//
 | 
						|
TIntermAggregate* TIntermediate::addForLoop(TIntermNode* body, TIntermNode* initializer, TIntermTyped* test, TIntermTyped* terminal, bool testFirst, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermLoop* node = new TIntermLoop(body, test, terminal, testFirst);
 | 
						|
    node->setLoc(loc);
 | 
						|
 | 
						|
    // make a sequence of the initializer and statement
 | 
						|
    TIntermAggregate* loopSequence = makeAggregate(initializer, loc);
 | 
						|
    loopSequence = growAggregate(loopSequence, node);
 | 
						|
    loopSequence->setOperator(EOpSequence);
 | 
						|
 | 
						|
    return loopSequence;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Add branches.
 | 
						|
//
 | 
						|
TIntermBranch* TIntermediate::addBranch(TOperator branchOp, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    return addBranch(branchOp, 0, loc);
 | 
						|
}
 | 
						|
 | 
						|
TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, const TSourceLoc& loc)
 | 
						|
{
 | 
						|
    TIntermBranch* node = new TIntermBranch(branchOp, expression);
 | 
						|
    node->setLoc(loc);
 | 
						|
 | 
						|
    return node;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// This is to be executed after the final root is put on top by the parsing
 | 
						|
// process.
 | 
						|
//
 | 
						|
bool TIntermediate::postProcess(TIntermNode* root, EShLanguage /*language*/)
 | 
						|
{
 | 
						|
    if (root == 0)
 | 
						|
        return true;
 | 
						|
 | 
						|
    // Finish off the top-level sequence
 | 
						|
    TIntermAggregate* aggRoot = root->getAsAggregate();
 | 
						|
    if (aggRoot && aggRoot->getOp() == EOpNull)
 | 
						|
        aggRoot->setOperator(EOpSequence);
 | 
						|
 | 
						|
    // Propagate 'noContraction' label in backward from 'precise' variables.
 | 
						|
    glslang::PropagateNoContraction(*this);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void TIntermediate::addSymbolLinkageNodes(TIntermAggregate*& linkage, EShLanguage language, TSymbolTable& symbolTable)
 | 
						|
{
 | 
						|
    // Add top-level nodes for declarations that must be checked cross
 | 
						|
    // compilation unit by a linker, yet might not have been referenced
 | 
						|
    // by the AST.
 | 
						|
    //
 | 
						|
    // Almost entirely, translation of symbols is driven by what's present
 | 
						|
    // in the AST traversal, not by translating the symbol table.
 | 
						|
    //
 | 
						|
    // However, there are some special cases:
 | 
						|
    //  - From the specification: "Special built-in inputs gl_VertexID and
 | 
						|
    //    gl_InstanceID are also considered active vertex attributes."
 | 
						|
    //  - Linker-based type mismatch error reporting needs to see all
 | 
						|
    //    uniforms/ins/outs variables and blocks.
 | 
						|
    //  - ftransform() can make gl_Vertex and gl_ModelViewProjectionMatrix active.
 | 
						|
    //
 | 
						|
 | 
						|
    //if (ftransformUsed) {
 | 
						|
        // TODO: 1.1 lowering functionality: track ftransform() usage
 | 
						|
    //    addSymbolLinkageNode(root, symbolTable, "gl_Vertex");
 | 
						|
    //    addSymbolLinkageNode(root, symbolTable, "gl_ModelViewProjectionMatrix");
 | 
						|
    //}
 | 
						|
 | 
						|
    if (language == EShLangVertex) {
 | 
						|
        // the names won't be found in the symbol table unless the versions are right,
 | 
						|
        // so version logic does not need to be repeated here
 | 
						|
        addSymbolLinkageNode(linkage, symbolTable, "gl_VertexID");
 | 
						|
        addSymbolLinkageNode(linkage, symbolTable, "gl_InstanceID");
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a child to the root node for the linker objects
 | 
						|
    linkage->setOperator(EOpLinkerObjects);
 | 
						|
    treeRoot = growAggregate(treeRoot, linkage);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Add the given name or symbol to the list of nodes at the end of the tree used
 | 
						|
// for link-time checking and external linkage.
 | 
						|
//
 | 
						|
 | 
						|
void TIntermediate::addSymbolLinkageNode(TIntermAggregate*& linkage, TSymbolTable& symbolTable, const TString& name)
 | 
						|
{
 | 
						|
    TSymbol* symbol = symbolTable.find(name);
 | 
						|
    if (symbol)
 | 
						|
        addSymbolLinkageNode(linkage, *symbol->getAsVariable());
 | 
						|
}
 | 
						|
 | 
						|
void TIntermediate::addSymbolLinkageNode(TIntermAggregate*& linkage, const TSymbol& symbol)
 | 
						|
{
 | 
						|
    const TVariable* variable = symbol.getAsVariable();
 | 
						|
    if (! variable) {
 | 
						|
        // This must be a member of an anonymous block, and we need to add the whole block
 | 
						|
        const TAnonMember* anon = symbol.getAsAnonMember();
 | 
						|
        variable = &anon->getAnonContainer();
 | 
						|
    }
 | 
						|
    TIntermSymbol* node = addSymbol(*variable);
 | 
						|
    linkage = growAggregate(linkage, node);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Add a caller->callee relationship to the call graph.
 | 
						|
// Assumes the strings are unique per signature.
 | 
						|
//
 | 
						|
void TIntermediate::addToCallGraph(TInfoSink& /*infoSink*/, const TString& caller, const TString& callee)
 | 
						|
{
 | 
						|
    // Duplicates are okay, but faster to not keep them, and they come grouped by caller,
 | 
						|
    // as long as new ones are push on the same end we check on for duplicates
 | 
						|
    for (TGraph::const_iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
 | 
						|
        if (call->caller != caller)
 | 
						|
            break;
 | 
						|
        if (call->callee == callee)
 | 
						|
            return;
 | 
						|
    }
 | 
						|
 | 
						|
    callGraph.push_front(TCall(caller, callee));
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// This deletes the tree.
 | 
						|
//
 | 
						|
void TIntermediate::removeTree()
 | 
						|
{
 | 
						|
    if (treeRoot)
 | 
						|
        RemoveAllTreeNodes(treeRoot);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Implement the part of KHR_vulkan_glsl that lists the set of operations
 | 
						|
// that can result in a specialization constant operation.
 | 
						|
//
 | 
						|
// "5.x Specialization Constant Operations"
 | 
						|
//
 | 
						|
//    Only some operations discussed in this section may be applied to a
 | 
						|
//    specialization constant and still yield a result that is as
 | 
						|
//    specialization constant.  The operations allowed are listed below.
 | 
						|
//    When a specialization constant is operated on with one of these
 | 
						|
//    operators and with another constant or specialization constant, the
 | 
						|
//    result is implicitly a specialization constant.
 | 
						|
//
 | 
						|
//     - int(), uint(), and bool() constructors for type conversions
 | 
						|
//       from any of the following types to any of the following types:
 | 
						|
//         * int
 | 
						|
//         * uint
 | 
						|
//         * bool
 | 
						|
//     - vector versions of the above conversion constructors
 | 
						|
//     - allowed implicit conversions of the above
 | 
						|
//     - swizzles (e.g., foo.yx)
 | 
						|
//     - The following when applied to integer or unsigned integer types:
 | 
						|
//         * unary negative ( - )
 | 
						|
//         * binary operations ( + , - , * , / , % )
 | 
						|
//         * shift ( <<, >> )
 | 
						|
//         * bitwise operations ( & , | , ^ )
 | 
						|
//     - The following when applied to integer or unsigned integer scalar types:
 | 
						|
//         * comparison ( == , != , > , >= , < , <= )
 | 
						|
//     - The following when applied to the Boolean scalar type:
 | 
						|
//         * not ( ! )
 | 
						|
//         * logical operations ( && , || , ^^ )
 | 
						|
//         * comparison ( == , != )"
 | 
						|
//
 | 
						|
// This function just handles binary and unary nodes.  Construction
 | 
						|
// rules are handled in construction paths that are not covered by the unary
 | 
						|
// and binary paths, while required conversions will still show up here
 | 
						|
// as unary converters in the from a construction operator.
 | 
						|
//
 | 
						|
bool TIntermediate::isSpecializationOperation(const TIntermOperator& node) const
 | 
						|
{
 | 
						|
    // The operations resulting in floating point are quite limited
 | 
						|
    // (However, some floating-point operations result in bool, like ">",
 | 
						|
    // so are handled later.)
 | 
						|
    if (node.getType().isFloatingDomain()) {
 | 
						|
        switch (node.getOp()) {
 | 
						|
        case EOpIndexDirect:
 | 
						|
        case EOpIndexIndirect:
 | 
						|
        case EOpIndexDirectStruct:
 | 
						|
        case EOpVectorSwizzle:
 | 
						|
            return true;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for floating-point arguments
 | 
						|
    if (const TIntermBinary* bin = node.getAsBinaryNode())
 | 
						|
        if (bin->getLeft() ->getType().isFloatingDomain() ||
 | 
						|
            bin->getRight()->getType().isFloatingDomain())
 | 
						|
            return false;
 | 
						|
 | 
						|
    // So, for now, we can assume everything left is non-floating-point...
 | 
						|
 | 
						|
    // Now check for integer/bool-based operations
 | 
						|
    switch (node.getOp()) {
 | 
						|
 | 
						|
    // dereference/swizzle
 | 
						|
    case EOpIndexDirect:
 | 
						|
    case EOpIndexIndirect:
 | 
						|
    case EOpIndexDirectStruct:
 | 
						|
    case EOpVectorSwizzle:
 | 
						|
 | 
						|
    // conversion constructors
 | 
						|
    case EOpConvIntToBool:
 | 
						|
    case EOpConvUintToBool:
 | 
						|
    case EOpConvUintToInt:
 | 
						|
    case EOpConvBoolToInt:
 | 
						|
    case EOpConvIntToUint:
 | 
						|
    case EOpConvBoolToUint:
 | 
						|
 | 
						|
    // unary operations
 | 
						|
    case EOpNegative:
 | 
						|
    case EOpLogicalNot:
 | 
						|
    case EOpBitwiseNot:
 | 
						|
 | 
						|
    // binary operations
 | 
						|
    case EOpAdd:
 | 
						|
    case EOpSub:
 | 
						|
    case EOpMul:
 | 
						|
    case EOpVectorTimesScalar:
 | 
						|
    case EOpDiv:
 | 
						|
    case EOpMod:
 | 
						|
    case EOpRightShift:
 | 
						|
    case EOpLeftShift:
 | 
						|
    case EOpAnd:
 | 
						|
    case EOpInclusiveOr:
 | 
						|
    case EOpExclusiveOr:
 | 
						|
    case EOpLogicalOr:
 | 
						|
    case EOpLogicalXor:
 | 
						|
    case EOpLogicalAnd:
 | 
						|
    case EOpEqual:
 | 
						|
    case EOpNotEqual:
 | 
						|
    case EOpLessThan:
 | 
						|
    case EOpGreaterThan:
 | 
						|
    case EOpLessThanEqual:
 | 
						|
    case EOpGreaterThanEqual:
 | 
						|
        return true;
 | 
						|
    default:
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
// Member functions of the nodes used for building the tree.
 | 
						|
//
 | 
						|
////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
//
 | 
						|
// Say whether or not an operation node changes the value of a variable.
 | 
						|
//
 | 
						|
// Returns true if state is modified.
 | 
						|
//
 | 
						|
bool TIntermOperator::modifiesState() const
 | 
						|
{
 | 
						|
    switch (op) {
 | 
						|
    case EOpPostIncrement:
 | 
						|
    case EOpPostDecrement:
 | 
						|
    case EOpPreIncrement:
 | 
						|
    case EOpPreDecrement:
 | 
						|
    case EOpAssign:
 | 
						|
    case EOpAddAssign:
 | 
						|
    case EOpSubAssign:
 | 
						|
    case EOpMulAssign:
 | 
						|
    case EOpVectorTimesMatrixAssign:
 | 
						|
    case EOpVectorTimesScalarAssign:
 | 
						|
    case EOpMatrixTimesScalarAssign:
 | 
						|
    case EOpMatrixTimesMatrixAssign:
 | 
						|
    case EOpDivAssign:
 | 
						|
    case EOpModAssign:
 | 
						|
    case EOpAndAssign:
 | 
						|
    case EOpInclusiveOrAssign:
 | 
						|
    case EOpExclusiveOrAssign:
 | 
						|
    case EOpLeftShiftAssign:
 | 
						|
    case EOpRightShiftAssign:
 | 
						|
        return true;
 | 
						|
    default:
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// returns true if the operator is for one of the constructors
 | 
						|
//
 | 
						|
bool TIntermOperator::isConstructor() const
 | 
						|
{
 | 
						|
    return op > EOpConstructGuardStart && op < EOpConstructGuardEnd;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Make sure the type of a unary operator is appropriate for its
 | 
						|
// combination of operation and operand type.
 | 
						|
//
 | 
						|
// Returns false in nothing makes sense.
 | 
						|
//
 | 
						|
bool TIntermUnary::promote()
 | 
						|
{
 | 
						|
    switch (op) {
 | 
						|
    case EOpLogicalNot:
 | 
						|
        if (operand->getBasicType() != EbtBool)
 | 
						|
 | 
						|
            return false;
 | 
						|
        break;
 | 
						|
    case EOpBitwiseNot:
 | 
						|
        if (operand->getBasicType() != EbtInt &&
 | 
						|
            operand->getBasicType() != EbtUint &&
 | 
						|
            operand->getBasicType() != EbtInt64 &&
 | 
						|
            operand->getBasicType() != EbtUint64)
 | 
						|
 | 
						|
            return false;
 | 
						|
        break;
 | 
						|
    case EOpNegative:
 | 
						|
    case EOpPostIncrement:
 | 
						|
    case EOpPostDecrement:
 | 
						|
    case EOpPreIncrement:
 | 
						|
    case EOpPreDecrement:
 | 
						|
        if (operand->getBasicType() != EbtInt &&
 | 
						|
            operand->getBasicType() != EbtUint &&
 | 
						|
            operand->getBasicType() != EbtInt64 &&
 | 
						|
            operand->getBasicType() != EbtUint64 &&
 | 
						|
            operand->getBasicType() != EbtFloat &&
 | 
						|
            operand->getBasicType() != EbtDouble)
 | 
						|
 | 
						|
            return false;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        if (operand->getBasicType() != EbtFloat)
 | 
						|
 | 
						|
            return false;
 | 
						|
    }
 | 
						|
 | 
						|
    setType(operand->getType());
 | 
						|
    getWritableType().getQualifier().makeTemporary();
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void TIntermUnary::updatePrecision()
 | 
						|
{
 | 
						|
    if (getBasicType() == EbtInt || getBasicType() == EbtUint || getBasicType() == EbtFloat) {
 | 
						|
        if (operand->getQualifier().precision > getQualifier().precision)
 | 
						|
            getQualifier().precision = operand->getQualifier().precision;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Establishes the type of the resultant operation, as well as
 | 
						|
// makes the operator the correct one for the operands.
 | 
						|
//
 | 
						|
// Returns false if operator can't work on operands.
 | 
						|
//
 | 
						|
bool TIntermBinary::promote()
 | 
						|
{
 | 
						|
    // Arrays and structures have to be exact matches.
 | 
						|
    if ((left->isArray() || right->isArray() || left->getBasicType() == EbtStruct || right->getBasicType() == EbtStruct)
 | 
						|
        && left->getType() != right->getType())
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Base assumption:  just make the type the same as the left
 | 
						|
    // operand.  Only deviations from this will be coded.
 | 
						|
    setType(left->getType());
 | 
						|
    type.getQualifier().clear();
 | 
						|
 | 
						|
    // Composite and opaque types don't having pending operator changes, e.g.,
 | 
						|
    // array, structure, and samplers.  Just establish final type and correctness.
 | 
						|
    if (left->isArray() || left->getBasicType() == EbtStruct || left->getBasicType() == EbtSampler) {
 | 
						|
        switch (op) {
 | 
						|
        case EOpEqual:
 | 
						|
        case EOpNotEqual:
 | 
						|
            if (left->getBasicType() == EbtSampler) {
 | 
						|
                // can't compare samplers
 | 
						|
                return false;
 | 
						|
            } else {
 | 
						|
                // Promote to conditional
 | 
						|
                setType(TType(EbtBool));
 | 
						|
            }
 | 
						|
 | 
						|
            return true;
 | 
						|
 | 
						|
        case EOpAssign:
 | 
						|
            // Keep type from above
 | 
						|
 | 
						|
            return true;
 | 
						|
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // We now have only scalars, vectors, and matrices to worry about.
 | 
						|
    //
 | 
						|
 | 
						|
    // Do general type checks against individual operands (comparing left and right is coming up, checking mixed shapes after that)
 | 
						|
    switch (op) {
 | 
						|
    case EOpLessThan:
 | 
						|
    case EOpGreaterThan:
 | 
						|
    case EOpLessThanEqual:
 | 
						|
    case EOpGreaterThanEqual:
 | 
						|
        // Relational comparisons need matching numeric types and will promote to scalar Boolean.
 | 
						|
        if (left->getBasicType() == EbtBool || left->getType().isVector() || left->getType().isMatrix())
 | 
						|
            return false;
 | 
						|
 | 
						|
        // Fall through
 | 
						|
 | 
						|
    case EOpEqual:
 | 
						|
    case EOpNotEqual:
 | 
						|
        // All the above comparisons result in a bool (but not the vector compares)
 | 
						|
        setType(TType(EbtBool));
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpLogicalAnd:
 | 
						|
    case EOpLogicalOr:
 | 
						|
    case EOpLogicalXor:
 | 
						|
        // logical ops operate only on scalar Booleans and will promote to scalar Boolean.
 | 
						|
        if (left->getBasicType() != EbtBool || left->isVector() || left->isMatrix())
 | 
						|
            return false;
 | 
						|
 | 
						|
        setType(TType(EbtBool));
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpRightShift:
 | 
						|
    case EOpLeftShift:
 | 
						|
    case EOpRightShiftAssign:
 | 
						|
    case EOpLeftShiftAssign:
 | 
						|
 | 
						|
    case EOpMod:
 | 
						|
    case EOpModAssign:
 | 
						|
 | 
						|
    case EOpAnd:
 | 
						|
    case EOpInclusiveOr:
 | 
						|
    case EOpExclusiveOr:
 | 
						|
    case EOpAndAssign:
 | 
						|
    case EOpInclusiveOrAssign:
 | 
						|
    case EOpExclusiveOrAssign:
 | 
						|
        // Check for integer-only operands.
 | 
						|
        if ((left->getBasicType() != EbtInt &&  left->getBasicType() != EbtUint &&
 | 
						|
             left->getBasicType() != EbtInt64 &&  left->getBasicType() != EbtUint64) ||
 | 
						|
            (right->getBasicType() != EbtInt && right->getBasicType() != EbtUint &&
 | 
						|
             right->getBasicType() != EbtInt64 && right->getBasicType() != EbtUint64))
 | 
						|
            return false;
 | 
						|
        if (left->isMatrix() || right->isMatrix())
 | 
						|
            return false;
 | 
						|
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpAdd:
 | 
						|
    case EOpSub:
 | 
						|
    case EOpDiv:
 | 
						|
    case EOpMul:
 | 
						|
    case EOpAddAssign:
 | 
						|
    case EOpSubAssign:
 | 
						|
    case EOpMulAssign:
 | 
						|
    case EOpDivAssign:
 | 
						|
        // check for non-Boolean operands
 | 
						|
        if (left->getBasicType() == EbtBool || right->getBasicType() == EbtBool)
 | 
						|
            return false;
 | 
						|
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Compare left and right, and finish with the cases where the operand types must match
 | 
						|
    switch (op) {
 | 
						|
    case EOpLessThan:
 | 
						|
    case EOpGreaterThan:
 | 
						|
    case EOpLessThanEqual:
 | 
						|
    case EOpGreaterThanEqual:
 | 
						|
 | 
						|
    case EOpEqual:
 | 
						|
    case EOpNotEqual:
 | 
						|
 | 
						|
    case EOpLogicalAnd:
 | 
						|
    case EOpLogicalOr:
 | 
						|
    case EOpLogicalXor:
 | 
						|
        return left->getType() == right->getType();
 | 
						|
 | 
						|
    // no shifts: they can mix types (scalar int can shift a vector uint, etc.)
 | 
						|
 | 
						|
    case EOpMod:
 | 
						|
    case EOpModAssign:
 | 
						|
 | 
						|
    case EOpAnd:
 | 
						|
    case EOpInclusiveOr:
 | 
						|
    case EOpExclusiveOr:
 | 
						|
    case EOpAndAssign:
 | 
						|
    case EOpInclusiveOrAssign:
 | 
						|
    case EOpExclusiveOrAssign:
 | 
						|
 | 
						|
    case EOpAdd:
 | 
						|
    case EOpSub:
 | 
						|
    case EOpDiv:
 | 
						|
    case EOpAddAssign:
 | 
						|
    case EOpSubAssign:
 | 
						|
    case EOpDivAssign:
 | 
						|
        // Quick out in case the types do match
 | 
						|
        if (left->getType() == right->getType())
 | 
						|
            return true;
 | 
						|
 | 
						|
        // Fall through
 | 
						|
 | 
						|
    case EOpMul:
 | 
						|
    case EOpMulAssign:
 | 
						|
        // At least the basic type has to match
 | 
						|
        if (left->getBasicType() != right->getBasicType())
 | 
						|
            return false;
 | 
						|
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Finish handling the case, for all ops, where both operands are scalars.
 | 
						|
    if (left->isScalar() && right->isScalar())
 | 
						|
        return true;
 | 
						|
 | 
						|
    // Finish handling the case, for all ops, where there are two vectors of different sizes
 | 
						|
    if (left->isVector() && right->isVector() && left->getVectorSize() != right->getVectorSize())
 | 
						|
        return false;
 | 
						|
 | 
						|
    //
 | 
						|
    // We now have a mix of scalars, vectors, or matrices, for non-relational operations.
 | 
						|
    //
 | 
						|
 | 
						|
    // Can these two operands be combined, what is the resulting type?
 | 
						|
    TBasicType basicType = left->getBasicType();
 | 
						|
    switch (op) {
 | 
						|
    case EOpMul:
 | 
						|
        if (!left->isMatrix() && right->isMatrix()) {
 | 
						|
            if (left->isVector()) {
 | 
						|
                if (left->getVectorSize() != right->getMatrixRows())
 | 
						|
                    return false;
 | 
						|
                op = EOpVectorTimesMatrix;
 | 
						|
                setType(TType(basicType, EvqTemporary, right->getMatrixCols()));
 | 
						|
            } else {
 | 
						|
                op = EOpMatrixTimesScalar;
 | 
						|
                setType(TType(basicType, EvqTemporary, 0, right->getMatrixCols(), right->getMatrixRows()));
 | 
						|
            }
 | 
						|
        } else if (left->isMatrix() && !right->isMatrix()) {
 | 
						|
            if (right->isVector()) {
 | 
						|
                if (left->getMatrixCols() != right->getVectorSize())
 | 
						|
                    return false;
 | 
						|
                op = EOpMatrixTimesVector;
 | 
						|
                setType(TType(basicType, EvqTemporary, left->getMatrixRows()));
 | 
						|
            } else {
 | 
						|
                op = EOpMatrixTimesScalar;
 | 
						|
            }
 | 
						|
        } else if (left->isMatrix() && right->isMatrix()) {
 | 
						|
            if (left->getMatrixCols() != right->getMatrixRows())
 | 
						|
                return false;
 | 
						|
            op = EOpMatrixTimesMatrix;
 | 
						|
            setType(TType(basicType, EvqTemporary, 0, right->getMatrixCols(), left->getMatrixRows()));
 | 
						|
        } else if (! left->isMatrix() && ! right->isMatrix()) {
 | 
						|
            if (left->isVector() && right->isVector()) {
 | 
						|
                ; // leave as component product
 | 
						|
            } else if (left->isVector() || right->isVector()) {
 | 
						|
                op = EOpVectorTimesScalar;
 | 
						|
                if (right->isVector())
 | 
						|
                    setType(TType(basicType, EvqTemporary, right->getVectorSize()));
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EOpMulAssign:
 | 
						|
        if (! left->isMatrix() && right->isMatrix()) {
 | 
						|
            if (left->isVector()) {
 | 
						|
                if (left->getVectorSize() != right->getMatrixRows() || left->getVectorSize() != right->getMatrixCols())
 | 
						|
                    return false;
 | 
						|
                op = EOpVectorTimesMatrixAssign;
 | 
						|
            } else {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        } else if (left->isMatrix() && !right->isMatrix()) {
 | 
						|
            if (right->isVector()) {
 | 
						|
                return false;
 | 
						|
            } else {
 | 
						|
                op = EOpMatrixTimesScalarAssign;
 | 
						|
            }
 | 
						|
        } else if (left->isMatrix() && right->isMatrix()) {
 | 
						|
            if (left->getMatrixCols() != left->getMatrixRows() || left->getMatrixCols() != right->getMatrixCols() || left->getMatrixCols() != right->getMatrixRows())
 | 
						|
                return false;
 | 
						|
            op = EOpMatrixTimesMatrixAssign;
 | 
						|
        } else if (!left->isMatrix() && !right->isMatrix()) {
 | 
						|
            if (left->isVector() && right->isVector()) {
 | 
						|
                // leave as component product
 | 
						|
            } else if (left->isVector() || right->isVector()) {
 | 
						|
                if (! left->isVector())
 | 
						|
                    return false;
 | 
						|
                op = EOpVectorTimesScalarAssign;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpRightShift:
 | 
						|
    case EOpLeftShift:
 | 
						|
    case EOpRightShiftAssign:
 | 
						|
    case EOpLeftShiftAssign:
 | 
						|
        if (right->isVector() && (! left->isVector() || right->getVectorSize() != left->getVectorSize()))
 | 
						|
            return false;
 | 
						|
        break;
 | 
						|
 | 
						|
    case EOpAssign:
 | 
						|
        if (left->getVectorSize() != right->getVectorSize() || left->getMatrixCols() != right->getMatrixCols() || left->getMatrixRows() != right->getMatrixRows())
 | 
						|
            return false;
 | 
						|
        // fall through
 | 
						|
 | 
						|
    case EOpAdd:
 | 
						|
    case EOpSub:
 | 
						|
    case EOpDiv:
 | 
						|
    case EOpMod:
 | 
						|
    case EOpAnd:
 | 
						|
    case EOpInclusiveOr:
 | 
						|
    case EOpExclusiveOr:
 | 
						|
    case EOpAddAssign:
 | 
						|
    case EOpSubAssign:
 | 
						|
    case EOpDivAssign:
 | 
						|
    case EOpModAssign:
 | 
						|
    case EOpAndAssign:
 | 
						|
    case EOpInclusiveOrAssign:
 | 
						|
    case EOpExclusiveOrAssign:
 | 
						|
        if ((left->isMatrix() && right->isVector()) ||
 | 
						|
            (left->isVector() && right->isMatrix()) ||
 | 
						|
            left->getBasicType() != right->getBasicType())
 | 
						|
            return false;
 | 
						|
        if (left->isMatrix() && right->isMatrix() && (left->getMatrixCols() != right->getMatrixCols() || left->getMatrixRows() != right->getMatrixRows()))
 | 
						|
            return false;
 | 
						|
        if (left->isVector() && right->isVector() && left->getVectorSize() != right->getVectorSize())
 | 
						|
            return false;
 | 
						|
        if (right->isVector() || right->isMatrix()) {
 | 
						|
            type.shallowCopy(right->getType());
 | 
						|
            type.getQualifier().makeTemporary();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // One more check for assignment.
 | 
						|
    //
 | 
						|
    switch (op) {
 | 
						|
    // The resulting type has to match the left operand.
 | 
						|
    case EOpAssign:
 | 
						|
    case EOpAddAssign:
 | 
						|
    case EOpSubAssign:
 | 
						|
    case EOpMulAssign:
 | 
						|
    case EOpDivAssign:
 | 
						|
    case EOpModAssign:
 | 
						|
    case EOpAndAssign:
 | 
						|
    case EOpInclusiveOrAssign:
 | 
						|
    case EOpExclusiveOrAssign:
 | 
						|
    case EOpLeftShiftAssign:
 | 
						|
    case EOpRightShiftAssign:
 | 
						|
        if (getType() != left->getType())
 | 
						|
            return false;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void TIntermBinary::updatePrecision()
 | 
						|
{
 | 
						|
    if (getBasicType() == EbtInt || getBasicType() == EbtUint || getBasicType() == EbtFloat) {
 | 
						|
        getQualifier().precision = std::max(right->getQualifier().precision, left->getQualifier().precision);
 | 
						|
        if (getQualifier().precision != EpqNone) {
 | 
						|
            left->propagatePrecision(getQualifier().precision);
 | 
						|
            right->propagatePrecision(getQualifier().precision);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void TIntermTyped::propagatePrecision(TPrecisionQualifier newPrecision)
 | 
						|
{
 | 
						|
    if (getQualifier().precision != EpqNone || (getBasicType() != EbtInt && getBasicType() != EbtUint && getBasicType() != EbtFloat))
 | 
						|
        return;
 | 
						|
 | 
						|
    getQualifier().precision = newPrecision;
 | 
						|
 | 
						|
    TIntermBinary* binaryNode = getAsBinaryNode();
 | 
						|
    if (binaryNode) {
 | 
						|
        binaryNode->getLeft()->propagatePrecision(newPrecision);
 | 
						|
        binaryNode->getRight()->propagatePrecision(newPrecision);
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    TIntermUnary* unaryNode = getAsUnaryNode();
 | 
						|
    if (unaryNode) {
 | 
						|
        unaryNode->getOperand()->propagatePrecision(newPrecision);
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    TIntermAggregate* aggregateNode = getAsAggregate();
 | 
						|
    if (aggregateNode) {
 | 
						|
        TIntermSequence operands = aggregateNode->getSequence();
 | 
						|
        for (unsigned int i = 0; i < operands.size(); ++i) {
 | 
						|
            TIntermTyped* typedNode = operands[i]->getAsTyped();
 | 
						|
            if (! typedNode)
 | 
						|
                break;
 | 
						|
            typedNode->propagatePrecision(newPrecision);
 | 
						|
        }
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    TIntermSelection* selectionNode = getAsSelectionNode();
 | 
						|
    if (selectionNode) {
 | 
						|
        TIntermTyped* typedNode = selectionNode->getTrueBlock()->getAsTyped();
 | 
						|
        if (typedNode) {
 | 
						|
            typedNode->propagatePrecision(newPrecision);
 | 
						|
            typedNode = selectionNode->getFalseBlock()->getAsTyped();
 | 
						|
            if (typedNode)
 | 
						|
                typedNode->propagatePrecision(newPrecision);
 | 
						|
        }
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node) const
 | 
						|
{
 | 
						|
    const TConstUnionArray& rightUnionArray = node->getConstArray();
 | 
						|
    int size = node->getType().computeNumComponents();
 | 
						|
 | 
						|
    TConstUnionArray leftUnionArray(size);
 | 
						|
 | 
						|
    for (int i=0; i < size; i++) {
 | 
						|
        switch (promoteTo) {
 | 
						|
        case EbtFloat:
 | 
						|
            switch (node->getType().getBasicType()) {
 | 
						|
            case EbtInt:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getIConst()));
 | 
						|
                break;
 | 
						|
            case EbtUint:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getUConst()));
 | 
						|
                break;
 | 
						|
            case EbtInt64:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getI64Const()));
 | 
						|
                break;
 | 
						|
            case EbtUint64:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getU64Const()));
 | 
						|
                break;
 | 
						|
            case EbtBool:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getBConst()));
 | 
						|
                break;
 | 
						|
            case EbtFloat:
 | 
						|
                leftUnionArray[i] = rightUnionArray[i];
 | 
						|
                break;
 | 
						|
            case EbtDouble:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getDConst()));
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return node;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case EbtDouble:
 | 
						|
            switch (node->getType().getBasicType()) {
 | 
						|
            case EbtInt:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getIConst()));
 | 
						|
                break;
 | 
						|
            case EbtUint:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getUConst()));
 | 
						|
                break;
 | 
						|
            case EbtInt64:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getI64Const()));
 | 
						|
                break;
 | 
						|
            case EbtUint64:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getU64Const()));
 | 
						|
                break;
 | 
						|
            case EbtBool:
 | 
						|
                leftUnionArray[i].setDConst(static_cast<double>(rightUnionArray[i].getBConst()));
 | 
						|
                break;
 | 
						|
            case EbtFloat:
 | 
						|
            case EbtDouble:
 | 
						|
                leftUnionArray[i] = rightUnionArray[i];
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return node;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case EbtInt:
 | 
						|
            switch (node->getType().getBasicType()) {
 | 
						|
            case EbtInt:
 | 
						|
                leftUnionArray[i] = rightUnionArray[i];
 | 
						|
                break;
 | 
						|
            case EbtUint:
 | 
						|
                leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getUConst()));
 | 
						|
                break;
 | 
						|
            case EbtInt64:
 | 
						|
                leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getI64Const()));
 | 
						|
                break;
 | 
						|
            case EbtUint64:
 | 
						|
                leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getU64Const()));
 | 
						|
                break;
 | 
						|
            case EbtBool:
 | 
						|
                leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getBConst()));
 | 
						|
                break;
 | 
						|
            case EbtFloat:
 | 
						|
            case EbtDouble:
 | 
						|
                leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getDConst()));
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return node;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case EbtUint:
 | 
						|
            switch (node->getType().getBasicType()) {
 | 
						|
            case EbtInt:
 | 
						|
                leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getIConst()));
 | 
						|
                break;
 | 
						|
            case EbtUint:
 | 
						|
                leftUnionArray[i] = rightUnionArray[i];
 | 
						|
                break;
 | 
						|
            case EbtInt64:
 | 
						|
                leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getI64Const()));
 | 
						|
                break;
 | 
						|
            case EbtUint64:
 | 
						|
                leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getU64Const()));
 | 
						|
                break;
 | 
						|
            case EbtBool:
 | 
						|
                leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getBConst()));
 | 
						|
                break;
 | 
						|
            case EbtFloat:
 | 
						|
            case EbtDouble:
 | 
						|
                leftUnionArray[i].setUConst(static_cast<unsigned int>(rightUnionArray[i].getDConst()));
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return node;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case EbtBool:
 | 
						|
            switch (node->getType().getBasicType()) {
 | 
						|
            case EbtInt:
 | 
						|
                leftUnionArray[i].setBConst(rightUnionArray[i].getIConst() != 0);
 | 
						|
                break;
 | 
						|
            case EbtUint:
 | 
						|
                leftUnionArray[i].setBConst(rightUnionArray[i].getUConst() != 0);
 | 
						|
                break;
 | 
						|
            case EbtInt64:
 | 
						|
                leftUnionArray[i].setBConst(rightUnionArray[i].getI64Const() != 0);
 | 
						|
                break;
 | 
						|
            case EbtUint64:
 | 
						|
                leftUnionArray[i].setBConst(rightUnionArray[i].getU64Const() != 0);
 | 
						|
                break;
 | 
						|
            case EbtBool:
 | 
						|
                leftUnionArray[i] = rightUnionArray[i];
 | 
						|
                break;
 | 
						|
            case EbtFloat:
 | 
						|
            case EbtDouble:
 | 
						|
                leftUnionArray[i].setBConst(rightUnionArray[i].getDConst() != 0.0);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return node;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case EbtInt64:
 | 
						|
            switch (node->getType().getBasicType()) {
 | 
						|
            case EbtInt:
 | 
						|
                leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getIConst()));
 | 
						|
                break;
 | 
						|
            case EbtUint:
 | 
						|
                leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getUConst()));
 | 
						|
                break;
 | 
						|
            case EbtInt64:
 | 
						|
                leftUnionArray[i] = rightUnionArray[i];
 | 
						|
                break;
 | 
						|
            case EbtUint64:
 | 
						|
                leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getU64Const()));
 | 
						|
                break;
 | 
						|
            case EbtBool:
 | 
						|
                leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getBConst()));
 | 
						|
                break;
 | 
						|
            case EbtFloat:
 | 
						|
            case EbtDouble:
 | 
						|
                leftUnionArray[i].setI64Const(static_cast<long long>(rightUnionArray[i].getDConst()));
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return node;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case EbtUint64:
 | 
						|
            switch (node->getType().getBasicType()) {
 | 
						|
            case EbtInt:
 | 
						|
                leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getIConst()));
 | 
						|
                break;
 | 
						|
            case EbtUint:
 | 
						|
                leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getUConst()));
 | 
						|
                break;
 | 
						|
            case EbtInt64:
 | 
						|
                leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getI64Const()));
 | 
						|
                break;
 | 
						|
            case EbtUint64:
 | 
						|
                leftUnionArray[i] = rightUnionArray[i];
 | 
						|
                break;
 | 
						|
            case EbtBool:
 | 
						|
                leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getBConst()));
 | 
						|
                break;
 | 
						|
            case EbtFloat:
 | 
						|
            case EbtDouble:
 | 
						|
                leftUnionArray[i].setU64Const(static_cast<unsigned long long>(rightUnionArray[i].getDConst()));
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return node;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            return node;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    const TType& t = node->getType();
 | 
						|
 | 
						|
    return addConstantUnion(leftUnionArray, TType(promoteTo, t.getQualifier().storage, t.getVectorSize(), t.getMatrixCols(), t.getMatrixRows()),
 | 
						|
                            node->getLoc());
 | 
						|
}
 | 
						|
 | 
						|
void TIntermAggregate::addToPragmaTable(const TPragmaTable& pTable)
 | 
						|
{
 | 
						|
    assert(!pragmaTable);
 | 
						|
    pragmaTable = new TPragmaTable();
 | 
						|
    *pragmaTable = pTable;
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace glslang
 |