glslang/Test/precise_struct_block.vert
qining 9220dbb078 Precise and noContraction propagation
Reimplement the whole workflow to make that: precise'ness of struct
    members won't spread to other non-precise members of the same struct
    instance.

    Approach:
    1. Build the map from symbols to their defining nodes. And for each
    object node (StructIndex, DirectIndex, Symbol nodes, etc), generates an
    accesschain path. Different AST nodes that indicating a same object
    should have the same accesschain path.

    2. Along the building phase in step 1, collect the initial set of
    'precise' (AST qualifier: 'noContraction') objects' accesschain paths.

    3. Start with the initial set of 'precise' accesschain paths, use it as
    a worklist, do as the following steps until the worklist is empty:

        1) Pop an accesschain path from worklist.
        2) Get the symbol part from the accesschain path.
        3) Find the defining nodes of that symbol.
        4) For each defining node, check whether it is defining a 'precise'
        object, or its assignee has nested 'precise' object. Get the
        incremental path from assignee to its nested 'precise' object (if
        any).
        5) Traverse the right side of the defining node, obtain the
        accesschain paths of the corresponding involved 'precise' objects.
        Update the worklist with those new objects' accesschain paths.
        Label involved operations with 'noContraction'.

    In each step, whenever we find the parent object of an nested object is
    'precise' (has 'noContraction' qualifier), we let the nested object
    inherit the 'precise'ness from its parent object.
2016-05-09 10:46:40 -04:00

90 lines
2.2 KiB
GLSL

#version 450
struct T {
float f1;
float f2;
};
out B1 {precise T s; float x;} partial_precise_block;
precise out B2 {T s; float x;} all_precise_block;
float struct_member() {
float a = 1.0;
float b = 2.0;
float c = 3.0;
float d = 4.0;
precise float result;
T S, S2, S3;
S2.f1 = a + 0.2; // NoContraction
S2.f2 = b + 0.2; // NOT NoContraction
S3.f1 = a + b; // NOT NoContraction
S = S2; // "precise" propagated through parent object nodes
result = S.f1 + 0.1; // the ADD operation should be NoContraction
return result;
}
float complex_array_struct() {
precise float result;
struct T1 {
float t1_array[3];
float t1_scalar;
};
struct T2 {
T1 t1a[5];
T1 t1b[6];
T1 t1c[7];
};
struct T3 {float f; T2 t2; vec4 v; int p;};
T3 t3[10];
for(int i=0; i<10; i++) {
t3[i].f = i / 3.0; // Not NoContraction
t3[i].v = vec4(i * 1.5); // NoContraction
t3[i].p = i + 1;
for(int j=0; j<5; j++) {
for(int k = 0; k<3; k++) {
t3[i].t2.t1a[j].t1_array[k] = i * j + k; // Not NoContraction
}
t3[i].t2.t1a[j].t1_scalar = j * 2.0 / i; // Not NoContration
}
for(int j=0; j<6; j++) {
for(int k = 0; k<3; k++) {
t3[i].t2.t1b[j].t1_array[k] = i * j + k; // Not NoContraction
}
t3[i].t2.t1b[j].t1_scalar = j * 2.0 / i; // NoContraction
}
for(int j=0; j<6; j++) {
for(int k = 0; k<3; k++) {
t3[i].t2.t1c[j].t1_array[k] = i * j + k; // NoContraction
}
t3[i].t2.t1c[j].t1_scalar = j * 2.0 / i; // Not NoContraction
}
}
int i = 2;
result = t3[5].t2.t1c[6].t1_array[1]
+ t3[2].t2.t1b[1].t1_scalar
+ t3[i - 1].v.xy.x; // NoContraction
return result;
}
float out_block() {
float a = 0.1;
float b = 0.2;
partial_precise_block.s.f1 = a + b; // NoContraction
partial_precise_block.s.f2 = a - b; // NoContraction
partial_precise_block.x = a * b; // Not NoContraction
all_precise_block.s.f1 = a + b + 1.0; // NoContraction
all_precise_block.s.f2 = a - b - 1.0; // NoContraction
all_precise_block.x = a * b * 2.0; // Also NoContraction
return a + b; // Not NoContraction
}
void main(){}