3582 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			3582 lines
		
	
	
		
			145 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| //
 | |
| //Copyright (C) 2016 Google, Inc.
 | |
| //
 | |
| //All rights reserved.
 | |
| //
 | |
| //Redistribution and use in source and binary forms, with or without
 | |
| //modification, are permitted provided that the following conditions
 | |
| //are met:
 | |
| //
 | |
| //    Redistributions of source code must retain the above copyright
 | |
| //    notice, this list of conditions and the following disclaimer.
 | |
| //
 | |
| //    Redistributions in binary form must reproduce the above
 | |
| //    copyright notice, this list of conditions and the following
 | |
| //    disclaimer in the documentation and/or other materials provided
 | |
| //    with the distribution.
 | |
| //
 | |
| //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
 | |
| //    contributors may be used to endorse or promote products derived
 | |
| //    from this software without specific prior written permission.
 | |
| //
 | |
| //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | |
| //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | |
| //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
| //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
| //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
| //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
| //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | |
| //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| //POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| 
 | |
| #include "hlslParseHelper.h"
 | |
| #include "hlslScanContext.h"
 | |
| #include "hlslGrammar.h"
 | |
| 
 | |
| #include "../glslang/MachineIndependent/Scan.h"
 | |
| #include "../glslang/MachineIndependent/preprocessor/PpContext.h"
 | |
| 
 | |
| #include "../glslang/OSDependent/osinclude.h"
 | |
| 
 | |
| #include <stdarg.h>
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace glslang {
 | |
| 
 | |
| HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool /*parsingBuiltins*/,
 | |
|                                    int version, EProfile profile, int spv, int vulkan, EShLanguage language, TInfoSink& infoSink,
 | |
|                                    bool forwardCompatible, EShMessages messages) :
 | |
|     TParseContextBase(symbolTable, interm, version, profile, spv, vulkan, language, infoSink, forwardCompatible, messages),
 | |
|     contextPragma(true, false), loopNestingLevel(0), structNestingLevel(0), controlFlowNestingLevel(0), statementNestingLevel(0),
 | |
|     postMainReturn(false),
 | |
|     limits(resources.limits),
 | |
|     afterEOF(false)
 | |
| {
 | |
|     // ensure we always have a linkage node, even if empty, to simplify tree topology algorithms
 | |
|     linkage = new TIntermAggregate;
 | |
| 
 | |
|     globalUniformDefaults.clear();
 | |
|     globalUniformDefaults.layoutMatrix = ElmColumnMajor;
 | |
|     globalUniformDefaults.layoutPacking = vulkan > 0 ? ElpStd140 : ElpShared;
 | |
| 
 | |
|     globalBufferDefaults.clear();
 | |
|     globalBufferDefaults.layoutMatrix = ElmColumnMajor;
 | |
|     globalBufferDefaults.layoutPacking = vulkan > 0 ? ElpStd430 : ElpShared;
 | |
| 
 | |
|     globalInputDefaults.clear();
 | |
|     globalOutputDefaults.clear();
 | |
| 
 | |
|     // "Shaders in the transform 
 | |
|     // feedback capturing mode have an initial global default of
 | |
|     //     layout(xfb_buffer = 0) out;"
 | |
|     if (language == EShLangVertex ||
 | |
|         language == EShLangTessControl ||
 | |
|         language == EShLangTessEvaluation ||
 | |
|         language == EShLangGeometry)
 | |
|         globalOutputDefaults.layoutXfbBuffer = 0;
 | |
| 
 | |
|     if (language == EShLangGeometry)
 | |
|         globalOutputDefaults.layoutStream = 0;
 | |
| }
 | |
| 
 | |
| HlslParseContext::~HlslParseContext()
 | |
| {
 | |
| }
 | |
| 
 | |
| void HlslParseContext::setLimits(const TBuiltInResource& r)
 | |
| {
 | |
|     resources = r;
 | |
|     intermediate.setLimits(resources);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Parse an array of strings using the parser in HlslRules.
 | |
| //
 | |
| // Returns true for successful acceptance of the shader, false if any errors.
 | |
| //
 | |
| bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
 | |
| {
 | |
|     currentScanner = &input;
 | |
|     ppContext.setInput(input, versionWillBeError);
 | |
| 
 | |
|     HlslScanContext::fillInKeywordMap();      // TODO: right place, and include the delete too
 | |
| 
 | |
|     HlslScanContext scanContext(*this, ppContext);
 | |
|     HlslGrammar grammar(scanContext, *this);
 | |
|     if (! grammar.parse())
 | |
|         printf("HLSL translation failed.\n");
 | |
| 
 | |
|     return numErrors == 0;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
 | |
| {
 | |
|     if (pragmaCallback)
 | |
|         pragmaCallback(loc.line, tokens);
 | |
| 
 | |
|     if (tokens.size() == 0)
 | |
|         return;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Look at a '.' field selector string and change it into offsets
 | |
| // for a vector or scalar
 | |
| //
 | |
| // Returns true if there is no error.
 | |
| //
 | |
| bool HlslParseContext::parseVectorFields(const TSourceLoc& loc, const TString& compString, int vecSize, TVectorFields& fields)
 | |
| {
 | |
|     fields.num = (int)compString.size();
 | |
|     if (fields.num > 4) {
 | |
|         error(loc, "illegal vector field selection", compString.c_str(), "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     enum {
 | |
|         exyzw,
 | |
|         ergba,
 | |
|         estpq,
 | |
|     } fieldSet[4];
 | |
| 
 | |
|         for (int i = 0; i < fields.num; ++i) {
 | |
|             switch (compString[i])  {
 | |
|             case 'x':
 | |
|                 fields.offsets[i] = 0;
 | |
|                 fieldSet[i] = exyzw;
 | |
|                 break;
 | |
|             case 'r':
 | |
|                 fields.offsets[i] = 0;
 | |
|                 fieldSet[i] = ergba;
 | |
|                 break;
 | |
|             case 's':
 | |
|                 fields.offsets[i] = 0;
 | |
|                 fieldSet[i] = estpq;
 | |
|                 break;
 | |
|             case 'y':
 | |
|                 fields.offsets[i] = 1;
 | |
|                 fieldSet[i] = exyzw;
 | |
|                 break;
 | |
|             case 'g':
 | |
|                 fields.offsets[i] = 1;
 | |
|                 fieldSet[i] = ergba;
 | |
|                 break;
 | |
|             case 't':
 | |
|                 fields.offsets[i] = 1;
 | |
|                 fieldSet[i] = estpq;
 | |
|                 break;
 | |
|             case 'z':
 | |
|                 fields.offsets[i] = 2;
 | |
|                 fieldSet[i] = exyzw;
 | |
|                 break;
 | |
|             case 'b':
 | |
|                 fields.offsets[i] = 2;
 | |
|                 fieldSet[i] = ergba;
 | |
|                 break;
 | |
|             case 'p':
 | |
|                 fields.offsets[i] = 2;
 | |
|                 fieldSet[i] = estpq;
 | |
|                 break;
 | |
| 
 | |
|             case 'w':
 | |
|                 fields.offsets[i] = 3;
 | |
|                 fieldSet[i] = exyzw;
 | |
|                 break;
 | |
|             case 'a':
 | |
|                 fields.offsets[i] = 3;
 | |
|                 fieldSet[i] = ergba;
 | |
|                 break;
 | |
|             case 'q':
 | |
|                 fields.offsets[i] = 3;
 | |
|                 fieldSet[i] = estpq;
 | |
|                 break;
 | |
|             default:
 | |
|                 error(loc, "illegal vector field selection", compString.c_str(), "");
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < fields.num; ++i) {
 | |
|             if (fields.offsets[i] >= vecSize) {
 | |
|                 error(loc, "vector field selection out of range", compString.c_str(), "");
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             if (i > 0) {
 | |
|                 if (fieldSet[i] != fieldSet[i - 1]) {
 | |
|                     error(loc, "illegal - vector component fields not from the same set", compString.c_str(), "");
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Used to output syntax, parsing, and semantic errors.
 | |
| //
 | |
| 
 | |
| void HlslParseContext::outputMessage(const TSourceLoc& loc, const char* szReason,
 | |
|     const char* szToken,
 | |
|     const char* szExtraInfoFormat,
 | |
|     TPrefixType prefix, va_list args)
 | |
| {
 | |
|     const int maxSize = MaxTokenLength + 200;
 | |
|     char szExtraInfo[maxSize];
 | |
| 
 | |
|     safe_vsprintf(szExtraInfo, maxSize, szExtraInfoFormat, args);
 | |
| 
 | |
|     infoSink.info.prefix(prefix);
 | |
|     infoSink.info.location(loc);
 | |
|     infoSink.info << "'" << szToken << "' : " << szReason << " " << szExtraInfo << "\n";
 | |
| 
 | |
|     if (prefix == EPrefixError) {
 | |
|         ++numErrors;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void C_DECL HlslParseContext::error(const TSourceLoc& loc, const char* szReason, const char* szToken,
 | |
|     const char* szExtraInfoFormat, ...)
 | |
| {
 | |
|     if (messages & EShMsgOnlyPreprocessor)
 | |
|         return;
 | |
|     va_list args;
 | |
|     va_start(args, szExtraInfoFormat);
 | |
|     outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args);
 | |
|     va_end(args);
 | |
| }
 | |
| 
 | |
| void C_DECL HlslParseContext::warn(const TSourceLoc& loc, const char* szReason, const char* szToken,
 | |
|     const char* szExtraInfoFormat, ...)
 | |
| {
 | |
|     if (suppressWarnings())
 | |
|         return;
 | |
|     va_list args;
 | |
|     va_start(args, szExtraInfoFormat);
 | |
|     outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args);
 | |
|     va_end(args);
 | |
| }
 | |
| 
 | |
| void C_DECL HlslParseContext::ppError(const TSourceLoc& loc, const char* szReason, const char* szToken,
 | |
|     const char* szExtraInfoFormat, ...)
 | |
| {
 | |
|     va_list args;
 | |
|     va_start(args, szExtraInfoFormat);
 | |
|     outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixError, args);
 | |
|     va_end(args);
 | |
| }
 | |
| 
 | |
| void C_DECL HlslParseContext::ppWarn(const TSourceLoc& loc, const char* szReason, const char* szToken,
 | |
|     const char* szExtraInfoFormat, ...)
 | |
| {
 | |
|     va_list args;
 | |
|     va_start(args, szExtraInfoFormat);
 | |
|     outputMessage(loc, szReason, szToken, szExtraInfoFormat, EPrefixWarning, args);
 | |
|     va_end(args);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a variable identifier in the grammar.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string)
 | |
| {
 | |
|     TIntermTyped* node = nullptr;
 | |
| 
 | |
|     // Error check for requiring specific extensions present.
 | |
|     if (symbol && symbol->getNumExtensions())
 | |
|         requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str());
 | |
| 
 | |
|     if (symbol && symbol->isReadOnly()) {
 | |
|         // All shared things containing an implicitly sized array must be copied up 
 | |
|         // on first use, so that all future references will share its array structure,
 | |
|         // so that editing the implicit size will effect all nodes consuming it,
 | |
|         // and so that editing the implicit size won't change the shared one.
 | |
|         //
 | |
|         // If this is a variable or a block, check it and all it contains, but if this 
 | |
|         // is a member of an anonymous block, check the whole block, as the whole block
 | |
|         // will need to be copied up if it contains an implicitly-sized array.
 | |
|         if (symbol->getType().containsImplicitlySizedArray() || (symbol->getAsAnonMember() && symbol->getAsAnonMember()->getAnonContainer().getType().containsImplicitlySizedArray()))
 | |
|             makeEditable(symbol);
 | |
|     }
 | |
| 
 | |
|     const TVariable* variable;
 | |
|     const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
 | |
|     if (anon) {
 | |
|         // It was a member of an anonymous container.
 | |
| 
 | |
|         // Create a subtree for its dereference.
 | |
|         variable = anon->getAnonContainer().getAsVariable();
 | |
|         TIntermTyped* container = intermediate.addSymbol(*variable, loc);
 | |
|         TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
 | |
|         node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
 | |
| 
 | |
|         node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
 | |
|         if (node->getType().hiddenMember())
 | |
|             error(loc, "member of nameless block was not redeclared", string->c_str(), "");
 | |
|     } else {
 | |
|         // Not a member of an anonymous container.
 | |
| 
 | |
|         // The symbol table search was done in the lexical phase.
 | |
|         // See if it was a variable.
 | |
|         variable = symbol ? symbol->getAsVariable() : nullptr;
 | |
|         if (variable) {
 | |
|             if ((variable->getType().getBasicType() == EbtBlock ||
 | |
|                 variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
 | |
|                 error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
 | |
|                 variable = nullptr;
 | |
|             }
 | |
|         } else {
 | |
|             if (symbol)
 | |
|                 error(loc, "variable name expected", string->c_str(), "");
 | |
|         }
 | |
| 
 | |
|         // Recovery, if it wasn't found or was not a variable.
 | |
|         if (! variable)
 | |
|             variable = new TVariable(string, TType(EbtVoid));
 | |
| 
 | |
|         if (variable->getType().getQualifier().isFrontEndConstant())
 | |
|             node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
 | |
|         else
 | |
|             node = intermediate.addSymbol(*variable, loc);
 | |
|     }
 | |
| 
 | |
|     if (variable->getType().getQualifier().isIo())
 | |
|         intermediate.addIoAccessed(*string);
 | |
| 
 | |
|     return node;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a base[index] dereference in the grammar.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
 | |
| {
 | |
|     TIntermTyped* result = nullptr;
 | |
| 
 | |
|     int indexValue = 0;
 | |
|     if (index->getQualifier().storage == EvqConst) {
 | |
|         indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
 | |
|         checkIndex(loc, base->getType(), indexValue);
 | |
|     }
 | |
| 
 | |
|     variableCheck(base);
 | |
|     if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
 | |
|         if (base->getAsSymbolNode())
 | |
|             error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), "");
 | |
|         else
 | |
|             error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
 | |
|     } else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
 | |
|         return intermediate.foldDereference(base, indexValue, loc);
 | |
|     else {
 | |
|         // at least one of base and index is variable...
 | |
| 
 | |
|         if (base->getAsSymbolNode() && isIoResizeArray(base->getType()))
 | |
|             handleIoResizeArrayAccess(loc, base);
 | |
| 
 | |
|         if (index->getQualifier().storage == EvqConst) {
 | |
|             if (base->getType().isImplicitlySizedArray())
 | |
|                 updateImplicitArraySize(loc, base, indexValue);
 | |
|             result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
 | |
|         } else {
 | |
|             result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (result == nullptr) {
 | |
|         // Insert dummy error-recovery result
 | |
|         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
 | |
|     } else {
 | |
|         // Insert valid dereferenced result
 | |
|         TType newType(base->getType(), 0);  // dereferenced type
 | |
|         if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
 | |
|             newType.getQualifier().storage = EvqConst;
 | |
|         else
 | |
|             newType.getQualifier().storage = EvqTemporary;
 | |
|         result->setType(newType);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::checkIndex(const TSourceLoc& loc, const TType& type, int& index)
 | |
| {
 | |
|     // HLSL todo: any rules for index fixups?
 | |
| }
 | |
| 
 | |
| // Make a shared symbol have a non-shared version that can be edited by the current 
 | |
| // compile, such that editing its type will not change the shared version and will
 | |
| // effect all nodes sharing it.
 | |
| void HlslParseContext::makeEditable(TSymbol*& symbol)
 | |
| {
 | |
|     // copyUp() does a deep copy of the type.
 | |
|     symbol = symbolTable.copyUp(symbol);
 | |
| 
 | |
|     // Also, see if it's tied to IO resizing
 | |
|     if (isIoResizeArray(symbol->getType()))
 | |
|         ioArraySymbolResizeList.push_back(symbol);
 | |
| 
 | |
|     // Also, save it in the AST for linker use.
 | |
|     intermediate.addSymbolLinkageNode(linkage, *symbol);
 | |
| }
 | |
| 
 | |
| TVariable* HlslParseContext::getEditableVariable(const char* name)
 | |
| {
 | |
|     bool builtIn;
 | |
|     TSymbol* symbol = symbolTable.find(name, &builtIn);
 | |
|     if (builtIn)
 | |
|         makeEditable(symbol);
 | |
| 
 | |
|     return symbol->getAsVariable();
 | |
| }
 | |
| 
 | |
| // Return true if this is a geometry shader input array or tessellation control output array.
 | |
| bool HlslParseContext::isIoResizeArray(const TType& type) const
 | |
| {
 | |
|     return type.isArray() &&
 | |
|         ((language == EShLangGeometry    && type.getQualifier().storage == EvqVaryingIn) ||
 | |
|         (language == EShLangTessControl && type.getQualifier().storage == EvqVaryingOut && ! type.getQualifier().patch));
 | |
| }
 | |
| 
 | |
| // If an array is not isIoResizeArray() but is an io array, make sure it has the right size
 | |
| void HlslParseContext::fixIoArraySize(const TSourceLoc& loc, TType& type)
 | |
| {
 | |
|     if (! type.isArray() || type.getQualifier().patch || symbolTable.atBuiltInLevel())
 | |
|         return;
 | |
| 
 | |
|     assert(! isIoResizeArray(type));
 | |
| 
 | |
|     if (type.getQualifier().storage != EvqVaryingIn || type.getQualifier().patch)
 | |
|         return;
 | |
| 
 | |
|     if (language == EShLangTessControl || language == EShLangTessEvaluation) {
 | |
|         if (type.getOuterArraySize() != resources.maxPatchVertices) {
 | |
|             if (type.isExplicitlySizedArray())
 | |
|                 error(loc, "tessellation input array size must be gl_MaxPatchVertices or implicitly sized", "[]", "");
 | |
|             type.changeOuterArraySize(resources.maxPatchVertices);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Handle a dereference of a geometry shader input array or tessellation control output array.
 | |
| // See ioArraySymbolResizeList comment in ParseHelper.h.
 | |
| //
 | |
| void HlslParseContext::handleIoResizeArrayAccess(const TSourceLoc& /*loc*/, TIntermTyped* base)
 | |
| {
 | |
|     TIntermSymbol* symbolNode = base->getAsSymbolNode();
 | |
|     assert(symbolNode);
 | |
|     if (! symbolNode)
 | |
|         return;
 | |
| 
 | |
|     // fix array size, if it can be fixed and needs to be fixed (will allow variable indexing)
 | |
|     if (symbolNode->getType().isImplicitlySizedArray()) {
 | |
|         int newSize = getIoArrayImplicitSize();
 | |
|         if (newSize > 0)
 | |
|             symbolNode->getWritableType().changeOuterArraySize(newSize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // If there has been an input primitive declaration (geometry shader) or an output
 | |
| // number of vertices declaration(tessellation shader), make sure all input array types
 | |
| // match it in size.  Types come either from nodes in the AST or symbols in the 
 | |
| // symbol table.
 | |
| //
 | |
| // Types without an array size will be given one.
 | |
| // Types already having a size that is wrong will get an error.
 | |
| //
 | |
| void HlslParseContext::checkIoArraysConsistency(const TSourceLoc& loc, bool tailOnly)
 | |
| {
 | |
|     int requiredSize = getIoArrayImplicitSize();
 | |
|     if (requiredSize == 0)
 | |
|         return;
 | |
| 
 | |
|     const char* feature;
 | |
|     if (language == EShLangGeometry)
 | |
|         feature = TQualifier::getGeometryString(intermediate.getInputPrimitive());
 | |
|     else if (language == EShLangTessControl)
 | |
|         feature = "vertices";
 | |
|     else
 | |
|         feature = "unknown";
 | |
| 
 | |
|     if (tailOnly) {
 | |
|         checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList.back()->getWritableType(), ioArraySymbolResizeList.back()->getName());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < ioArraySymbolResizeList.size(); ++i)
 | |
|         checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList[i]->getWritableType(), ioArraySymbolResizeList[i]->getName());
 | |
| }
 | |
| 
 | |
| int HlslParseContext::getIoArrayImplicitSize() const
 | |
| {
 | |
|     if (language == EShLangGeometry)
 | |
|         return TQualifier::mapGeometryToSize(intermediate.getInputPrimitive());
 | |
|     else if (language == EShLangTessControl)
 | |
|         return intermediate.getVertices() != TQualifier::layoutNotSet ? intermediate.getVertices() : 0;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::checkIoArrayConsistency(const TSourceLoc& loc, int requiredSize, const char* feature, TType& type, const TString& name)
 | |
| {
 | |
|     if (type.isImplicitlySizedArray())
 | |
|         type.changeOuterArraySize(requiredSize);
 | |
| }
 | |
| 
 | |
| // Handle seeing a binary node with a math operation.
 | |
| TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right)
 | |
| {
 | |
|     TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
 | |
|     if (! result)
 | |
|         binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Handle seeing a unary node with a math operation.
 | |
| TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode)
 | |
| {
 | |
|     TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
 | |
| 
 | |
|     if (result)
 | |
|         return result;
 | |
|     else
 | |
|         unaryOpError(loc, str, childNode->getCompleteString());
 | |
| 
 | |
|     return childNode;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a base.field dereference in the grammar.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
 | |
| {
 | |
|     variableCheck(base);
 | |
| 
 | |
|     //
 | |
|     // .length() can't be resolved until we later see the function-calling syntax.
 | |
|     // Save away the name in the AST for now.  Processing is completed in 
 | |
|     // handleLengthMethod().
 | |
|     //
 | |
|     if (field == "length") {
 | |
|         return intermediate.addMethod(base, TType(EbtInt), &field, loc);
 | |
|     }
 | |
| 
 | |
|     // It's not .length() if we get to here.
 | |
| 
 | |
|     if (base->isArray()) {
 | |
|         error(loc, "cannot apply to an array:", ".", field.c_str());
 | |
| 
 | |
|         return base;
 | |
|     }
 | |
| 
 | |
|     // It's neither an array nor .length() if we get here,
 | |
|     // leaving swizzles and struct/block dereferences.
 | |
| 
 | |
|     TIntermTyped* result = base;
 | |
|     if (base->isVector() || base->isScalar()) {
 | |
|         TVectorFields fields;
 | |
|         if (! parseVectorFields(loc, field, base->getVectorSize(), fields)) {
 | |
|             fields.num = 1;
 | |
|             fields.offsets[0] = 0;
 | |
|         }
 | |
| 
 | |
|         if (base->isScalar()) {
 | |
|             if (fields.num == 1)
 | |
|                 return result;
 | |
|             else {
 | |
|                 TType type(base->getBasicType(), EvqTemporary, fields.num);
 | |
|                 return addConstructor(loc, base, type, mapTypeToConstructorOp(type));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (base->getType().getQualifier().isFrontEndConstant())
 | |
|             result = intermediate.foldSwizzle(base, fields, loc);
 | |
|         else {
 | |
|             if (fields.num == 1) {
 | |
|                 TIntermTyped* index = intermediate.addConstantUnion(fields.offsets[0], loc);
 | |
|                 result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
 | |
|                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision));
 | |
|             } else {
 | |
|                 TString vectorString = field;
 | |
|                 TIntermTyped* index = intermediate.addSwizzle(fields, loc);
 | |
|                 result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
 | |
|                 result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, (int)vectorString.size()));
 | |
|             }
 | |
|         }
 | |
|     } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
 | |
|         const TTypeList* fields = base->getType().getStruct();
 | |
|         bool fieldFound = false;
 | |
|         int member;
 | |
|         for (member = 0; member < (int)fields->size(); ++member) {
 | |
|             if ((*fields)[member].type->getFieldName() == field) {
 | |
|                 fieldFound = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (fieldFound) {
 | |
|             if (base->getType().getQualifier().storage == EvqConst)
 | |
|                 result = intermediate.foldDereference(base, member, loc);
 | |
|             else {
 | |
|                 TIntermTyped* index = intermediate.addConstantUnion(member, loc);
 | |
|                 result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
 | |
|                 result->setType(*(*fields)[member].type);
 | |
|             }
 | |
|         } else
 | |
|             error(loc, "no such field in structure", field.c_str(), "");
 | |
|     } else
 | |
|         error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a function declarator in the grammar.  This is the precursor
 | |
| // to recognizing a function prototype or function definition.
 | |
| //
 | |
| TFunction* HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
 | |
| {
 | |
|     //
 | |
|     // Multiple declarations of the same function name are allowed.
 | |
|     //
 | |
|     // If this is a definition, the definition production code will check for redefinitions
 | |
|     // (we don't know at this point if it's a definition or not).
 | |
|     //
 | |
|     // Redeclarations (full signature match) are allowed.  But, return types and parameter qualifiers must also match.
 | |
|     //  - except ES 100, which only allows a single prototype
 | |
|     //
 | |
|     // ES 100 does not allow redefining, but does allow overloading of built-in functions.
 | |
|     // ES 300 does not allow redefining or overloading of built-in functions.
 | |
|     //
 | |
|     bool builtIn;
 | |
|     TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
 | |
|     const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
 | |
| 
 | |
|     if (prototype) {
 | |
|         // All built-in functions are defined, even though they don't have a body.
 | |
|         // Count their prototype as a definition instead.
 | |
|         if (symbolTable.atBuiltInLevel())
 | |
|             function.setDefined();
 | |
|         else {
 | |
|             if (prevDec && ! builtIn)
 | |
|                 symbol->getAsFunction()->setPrototyped();  // need a writable one, but like having prevDec as a const
 | |
|             function.setPrototyped();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // This insert won't actually insert it if it's a duplicate signature, but it will still check for
 | |
|     // other forms of name collisions.
 | |
|     if (! symbolTable.insert(function))
 | |
|         error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
 | |
| 
 | |
|     //
 | |
|     // If this is a redeclaration, it could also be a definition,
 | |
|     // in which case, we need to use the parameter names from this one, and not the one that's
 | |
|     // being redeclared.  So, pass back this declaration, not the one in the symbol table.
 | |
|     //
 | |
|     return &function;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing the function prototype in front of a function definition in the grammar.  
 | |
| // The body is handled after this function returns.
 | |
| //
 | |
| TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function)
 | |
| {
 | |
|     currentCaller = function.getMangledName();
 | |
|     TSymbol* symbol = symbolTable.find(function.getMangledName());
 | |
|     TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
 | |
| 
 | |
|     if (! prevDec)
 | |
|         error(loc, "can't find function", function.getName().c_str(), "");
 | |
|     // Note:  'prevDec' could be 'function' if this is the first time we've seen function
 | |
|     // as it would have just been put in the symbol table.  Otherwise, we're looking up
 | |
|     // an earlier occurrence.
 | |
| 
 | |
|     if (prevDec && prevDec->isDefined()) {
 | |
|         // Then this function already has a body.
 | |
|         error(loc, "function already has a body", function.getName().c_str(), "");
 | |
|     }
 | |
|     if (prevDec && ! prevDec->isDefined()) {
 | |
|         prevDec->setDefined();
 | |
| 
 | |
|         // Remember the return type for later checking for RETURN statements.
 | |
|         currentFunctionType = &(prevDec->getType());
 | |
|     } else
 | |
|         currentFunctionType = new TType(EbtVoid);
 | |
|     functionReturnsValue = false;
 | |
| 
 | |
|     inEntrypoint = (function.getName() == intermediate.getEntryPoint().c_str());
 | |
| 
 | |
|     //
 | |
|     // New symbol table scope for body of function plus its arguments
 | |
|     //
 | |
|     symbolTable.push();
 | |
| 
 | |
|     //
 | |
|     // Insert parameters into the symbol table.
 | |
|     // If the parameter has no name, it's not an error, just don't insert it
 | |
|     // (could be used for unused args).
 | |
|     //
 | |
|     // Also, accumulate the list of parameters into the HIL, so lower level code
 | |
|     // knows where to find parameters.
 | |
|     //
 | |
|     TIntermAggregate* paramNodes = new TIntermAggregate;
 | |
|     for (int i = 0; i < function.getParamCount(); i++) {
 | |
|         TParameter& param = function[i];
 | |
|         if (param.name != nullptr) {
 | |
|             TVariable *variable = new TVariable(param.name, *param.type);
 | |
| 
 | |
|             // Insert the parameters with name in the symbol table.
 | |
|             if (! symbolTable.insert(*variable))
 | |
|                 error(loc, "redefinition", variable->getName().c_str(), "");
 | |
|             else {
 | |
|                 // Transfer ownership of name pointer to symbol table.
 | |
|                 param.name = nullptr;
 | |
| 
 | |
|                 // Add the parameter to the HIL
 | |
|                 paramNodes = intermediate.growAggregate(paramNodes,
 | |
|                     intermediate.addSymbol(*variable, loc),
 | |
|                     loc);
 | |
|             }
 | |
|         } else
 | |
|             paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
 | |
|     }
 | |
|     intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
 | |
|     loopNestingLevel = 0;
 | |
|     statementNestingLevel = 0;
 | |
|     controlFlowNestingLevel = 0;
 | |
|     postMainReturn = false;
 | |
| 
 | |
|     return paramNodes;
 | |
| }
 | |
| 
 | |
| void HlslParseContext::handleFunctionArgument(TFunction* function, TIntermAggregate*& arguments, TIntermTyped* arg)
 | |
| {
 | |
|     TParameter param = { 0, new TType };
 | |
|     param.type->shallowCopy(arg->getType());
 | |
|     function->addParameter(param);
 | |
|     arguments = intermediate.growAggregate(arguments, arg);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing function call syntax in the grammar, which could be any of
 | |
| //  - .length() method
 | |
| //  - constructor
 | |
| //  - a call to a built-in function mapped to an operator
 | |
| //  - a call to a built-in function that will remain a function call (e.g., texturing)
 | |
| //  - user function
 | |
| //  - subroutine call (not implemented yet)
 | |
| //
 | |
| TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermNode* arguments)
 | |
| {
 | |
|     TIntermTyped* result = nullptr;
 | |
| 
 | |
|     TOperator op = function->getBuiltInOp();
 | |
|     if (op == EOpArrayLength)
 | |
|         result = handleLengthMethod(loc, function, arguments);
 | |
|     else if (op != EOpNull) {
 | |
|         //
 | |
|         // Then this should be a constructor.
 | |
|         // Don't go through the symbol table for constructors.
 | |
|         // Their parameters will be verified algorithmically.
 | |
|         //
 | |
|         TType type(EbtVoid);  // use this to get the type back
 | |
|         if (! constructorError(loc, arguments, *function, op, type)) {
 | |
|             //
 | |
|             // It's a constructor, of type 'type'.
 | |
|             //
 | |
|             result = addConstructor(loc, arguments, type, op);
 | |
|             if (result == nullptr)
 | |
|                 error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
 | |
|         }
 | |
|     } else {
 | |
|         //
 | |
|         // Find it in the symbol table.
 | |
|         //
 | |
|         const TFunction* fnCandidate;
 | |
|         bool builtIn;
 | |
|         fnCandidate = findFunction(loc, *function, builtIn);
 | |
|         if (fnCandidate) {
 | |
|             // This is a declared function that might map to
 | |
|             //  - a built-in operator,
 | |
|             //  - a built-in function not mapped to an operator, or
 | |
|             //  - a user function.
 | |
| 
 | |
|             // Error check for a function requiring specific extensions present.
 | |
|             if (builtIn && fnCandidate->getNumExtensions())
 | |
|                 requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str());
 | |
| 
 | |
|             if (arguments) {
 | |
|                 // Make sure qualifications work for these arguments.
 | |
|                 TIntermAggregate* aggregate = arguments->getAsAggregate();
 | |
|                 for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
 | |
|                     // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
 | |
|                     // is the single argument itself or its children are the arguments.  Only one argument
 | |
|                     // means take 'arguments' itself as the one argument.
 | |
|                     TIntermNode* arg = fnCandidate->getParamCount() == 1 ? arguments : (aggregate ? aggregate->getSequence()[i] : arguments);
 | |
|                     TQualifier& formalQualifier = (*fnCandidate)[i].type->getQualifier();
 | |
|                     TQualifier& argQualifier = arg->getAsTyped()->getQualifier();
 | |
|                 }
 | |
| 
 | |
|                 // Convert 'in' arguments
 | |
|                 addInputArgumentConversions(*fnCandidate, arguments);  // arguments may be modified if it's just a single argument node
 | |
|             }
 | |
| 
 | |
|             op = fnCandidate->getBuiltInOp();
 | |
|             if (builtIn && op != EOpNull) {
 | |
|                 // A function call mapped to a built-in operation.
 | |
|                 result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, fnCandidate->getType());
 | |
|                 if (result == nullptr)  {
 | |
|                     error(arguments->getLoc(), " wrong operand type", "Internal Error",
 | |
|                         "built in unary operator function.  Type: %s",
 | |
|                         static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
 | |
|                 } else if (result->getAsOperator()) {
 | |
|                     builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
 | |
|                 }
 | |
|             } else {
 | |
|                 // This is a function call not mapped to built-in operator.
 | |
|                 // It could still be a built-in function, but only if PureOperatorBuiltins == false.
 | |
|                 result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
 | |
|                 TIntermAggregate* call = result->getAsAggregate();
 | |
|                 call->setName(fnCandidate->getMangledName());
 | |
| 
 | |
|                 // this is how we know whether the given function is a built-in function or a user-defined function
 | |
|                 // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
 | |
|                 // if builtIn == true, it's definitely a built-in function with EOpNull
 | |
|                 if (! builtIn) {
 | |
|                     call->setUserDefined();
 | |
|                     intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName());
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Convert 'out' arguments.  If it was a constant folded built-in, it won't be an aggregate anymore.
 | |
|             // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
 | |
|             // Also, build the qualifier list for user function calls, which are always called with an aggregate.
 | |
|             if (result->getAsAggregate()) {
 | |
|                 TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
 | |
|                 for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
 | |
|                     TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
 | |
|                     qualifierList.push_back(qual);
 | |
|                 }
 | |
|                 result = addOutputArgumentConversions(*fnCandidate, *result->getAsAggregate());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // generic error recovery
 | |
|     // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades
 | |
|     if (result == nullptr)
 | |
|         result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Finish processing object.length(). This started earlier in handleDotDereference(), where
 | |
| // the ".length" part was recognized and semantically checked, and finished here where the 
 | |
| // function syntax "()" is recognized.
 | |
| //
 | |
| // Return resulting tree node.
 | |
| TIntermTyped* HlslParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode)
 | |
| {
 | |
|     int length = 0;
 | |
| 
 | |
|     if (function->getParamCount() > 0)
 | |
|         error(loc, "method does not accept any arguments", function->getName().c_str(), "");
 | |
|     else {
 | |
|         const TType& type = intermNode->getAsTyped()->getType();
 | |
|         if (type.isArray()) {
 | |
|             if (type.isRuntimeSizedArray()) {
 | |
|                 // Create a unary op and let the back end handle it
 | |
|                 return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt));
 | |
|             } else if (type.isImplicitlySizedArray()) {
 | |
|                 if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) {
 | |
|                     // We could be between a layout declaration that gives a built-in io array implicit size and 
 | |
|                     // a user redeclaration of that array, meaning we have to substitute its implicit size here 
 | |
|                     // without actually redeclaring the array.  (It is an error to use a member before the
 | |
|                     // redeclaration, but not an error to use the array name itself.)
 | |
|                     const TString& name = intermNode->getAsSymbolNode()->getName();
 | |
|                     if (name == "gl_in" || name == "gl_out")
 | |
|                         length = getIoArrayImplicitSize();
 | |
|                 }
 | |
|                 if (length == 0) {
 | |
|                     if (intermNode->getAsSymbolNode() && isIoResizeArray(type))
 | |
|                         error(loc, "", function->getName().c_str(), "array must first be sized by a redeclaration or layout qualifier");
 | |
|                     else
 | |
|                         error(loc, "", function->getName().c_str(), "array must be declared with a size before using this method");
 | |
|                 }
 | |
|             } else
 | |
|                 length = type.getOuterArraySize();
 | |
|         } else if (type.isMatrix())
 | |
|             length = type.getMatrixCols();
 | |
|         else if (type.isVector())
 | |
|             length = type.getVectorSize();
 | |
|         else {
 | |
|             // we should not get here, because earlier semantic checking should have prevented this path
 | |
|             error(loc, ".length()", "unexpected use of .length()", "");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (length == 0)
 | |
|         length = 1;
 | |
| 
 | |
|     return intermediate.addConstantUnion(length, loc);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Add any needed implicit conversions for function-call arguments to input parameters.
 | |
| //
 | |
| void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermNode*& arguments) const
 | |
| {
 | |
|     TIntermAggregate* aggregate = arguments->getAsAggregate();
 | |
| 
 | |
|     // Process each argument's conversion
 | |
|     for (int i = 0; i < function.getParamCount(); ++i) {
 | |
|         // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
 | |
|         // is the single argument itself or its children are the arguments.  Only one argument
 | |
|         // means take 'arguments' itself as the one argument.
 | |
|         TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped());
 | |
|         if (*function[i].type != arg->getType()) {
 | |
|             if (function[i].type->getQualifier().isParamInput()) {
 | |
|                 // In-qualified arguments just need an extra node added above the argument to
 | |
|                 // convert to the correct type.
 | |
|                 arg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg);
 | |
|                 if (arg) {
 | |
|                     if (function.getParamCount() == 1)
 | |
|                         arguments = arg;
 | |
|                     else {
 | |
|                         if (aggregate)
 | |
|                             aggregate->getSequence()[i] = arg;
 | |
|                         else
 | |
|                             arguments = arg;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Add any needed implicit output conversions for function-call arguments.  This
 | |
| // can require a new tree topology, complicated further by whether the function
 | |
| // has a return value.
 | |
| //
 | |
| // Returns a node of a subtree that evaluates to the return value of the function.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermAggregate& intermNode) const
 | |
| {
 | |
|     TIntermSequence& arguments = intermNode.getSequence();
 | |
| 
 | |
|     // Will there be any output conversions?
 | |
|     bool outputConversions = false;
 | |
|     for (int i = 0; i < function.getParamCount(); ++i) {
 | |
|         if (*function[i].type != arguments[i]->getAsTyped()->getType() && function[i].type->getQualifier().storage == EvqOut) {
 | |
|             outputConversions = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (! outputConversions)
 | |
|         return &intermNode;
 | |
| 
 | |
|     // Setup for the new tree, if needed:
 | |
|     //
 | |
|     // Output conversions need a different tree topology.
 | |
|     // Out-qualified arguments need a temporary of the correct type, with the call
 | |
|     // followed by an assignment of the temporary to the original argument:
 | |
|     //     void: function(arg, ...)  ->        (          function(tempArg, ...), arg = tempArg, ...)
 | |
|     //     ret = function(arg, ...)  ->  ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
 | |
|     // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
 | |
|     TIntermTyped* conversionTree = nullptr;
 | |
|     TVariable* tempRet = nullptr;
 | |
|     if (intermNode.getBasicType() != EbtVoid) {
 | |
|         // do the "tempRet = function(...), " bit from above
 | |
|         tempRet = makeInternalVariable("tempReturn", intermNode.getType());
 | |
|         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
 | |
|         conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, intermNode.getLoc());
 | |
|     } else
 | |
|         conversionTree = &intermNode;
 | |
| 
 | |
|     conversionTree = intermediate.makeAggregate(conversionTree);
 | |
| 
 | |
|     // Process each argument's conversion
 | |
|     for (int i = 0; i < function.getParamCount(); ++i) {
 | |
|         if (*function[i].type != arguments[i]->getAsTyped()->getType()) {
 | |
|             if (function[i].type->getQualifier().isParamOutput()) {
 | |
|                 // Out-qualified arguments need to use the topology set up above.
 | |
|                 // do the " ...(tempArg, ...), arg = tempArg" bit from above
 | |
|                 TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
 | |
|                 tempArg->getWritableType().getQualifier().makeTemporary();
 | |
|                 TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, intermNode.getLoc());
 | |
|                 TIntermTyped* tempAssign = intermediate.addAssign(EOpAssign, arguments[i]->getAsTyped(), tempArgNode, arguments[i]->getLoc());
 | |
|                 conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
 | |
|                 // replace the argument with another node for the same tempArg variable
 | |
|                 arguments[i] = intermediate.addSymbol(*tempArg, intermNode.getLoc());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Finalize the tree topology (see bigger comment above).
 | |
|     if (tempRet) {
 | |
|         // do the "..., tempRet" bit from above
 | |
|         TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
 | |
|         conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, intermNode.getLoc());
 | |
|     }
 | |
|     conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), intermNode.getLoc());
 | |
| 
 | |
|     return conversionTree;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do additional checking of built-in function calls that is not caught
 | |
| // by normal semantic checks on argument type, extension tagging, etc.
 | |
| //
 | |
| // Assumes there has been a semantically correct match to a built-in function prototype.
 | |
| //
 | |
| void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
 | |
| {
 | |
|     // Set up convenience accessors to the argument(s).  There is almost always
 | |
|     // multiple arguments for the cases below, but when there might be one,
 | |
|     // check the unaryArg first.
 | |
|     const TIntermSequence* argp = nullptr;   // confusing to use [] syntax on a pointer, so this is to help get a reference
 | |
|     const TIntermTyped* unaryArg = nullptr;
 | |
|     const TIntermTyped* arg0 = nullptr;
 | |
|     if (callNode.getAsAggregate()) {
 | |
|         argp = &callNode.getAsAggregate()->getSequence();
 | |
|         if (argp->size() > 0)
 | |
|             arg0 = (*argp)[0]->getAsTyped();
 | |
|     } else {
 | |
|         assert(callNode.getAsUnaryNode());
 | |
|         unaryArg = callNode.getAsUnaryNode()->getOperand();
 | |
|         arg0 = unaryArg;
 | |
|     }
 | |
|     const TIntermSequence& aggArgs = *argp;  // only valid when unaryArg is nullptr
 | |
| 
 | |
|     // built-in texturing functions get their return value precision from the precision of the sampler
 | |
|     if (fnCandidate.getType().getQualifier().precision == EpqNone &&
 | |
|         fnCandidate.getParamCount() > 0 && fnCandidate[0].type->getBasicType() == EbtSampler)
 | |
|         callNode.getQualifier().precision = arg0->getQualifier().precision;
 | |
| 
 | |
|     switch (callNode.getOp()) {
 | |
|     case EOpTextureGather:
 | |
|     case EOpTextureGatherOffset:
 | |
|     case EOpTextureGatherOffsets:
 | |
|     {
 | |
|         // Figure out which variants are allowed by what extensions,
 | |
|         // and what arguments must be constant for which situations.
 | |
| 
 | |
|         TString featureString = fnCandidate.getName() + "(...)";
 | |
|         const char* feature = featureString.c_str();
 | |
|         int compArg = -1;  // track which argument, if any, is the constant component argument
 | |
|         switch (callNode.getOp()) {
 | |
|         case EOpTextureGather:
 | |
|             // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
 | |
|             // otherwise, need GL_ARB_texture_gather.
 | |
|             if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) {
 | |
|                 if (! fnCandidate[0].type->getSampler().shadow)
 | |
|                     compArg = 2;
 | |
|             }
 | |
|             break;
 | |
|         case EOpTextureGatherOffset:
 | |
|             // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
 | |
|             if (! fnCandidate[0].type->getSampler().shadow)
 | |
|                 compArg = 3;
 | |
|             break;
 | |
|         case EOpTextureGatherOffsets:
 | |
|             if (! fnCandidate[0].type->getSampler().shadow)
 | |
|                 compArg = 3;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
 | |
|             if (aggArgs[compArg]->getAsConstantUnion()) {
 | |
|                 int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
 | |
|                 if (value < 0 || value > 3)
 | |
|                     error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
 | |
|             } else
 | |
|                 error(loc, "must be a compile-time constant:", feature, "component argument");
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     case EOpTextureOffset:
 | |
|     case EOpTextureFetchOffset:
 | |
|     case EOpTextureProjOffset:
 | |
|     case EOpTextureLodOffset:
 | |
|     case EOpTextureProjLodOffset:
 | |
|     case EOpTextureGradOffset:
 | |
|     case EOpTextureProjGradOffset:
 | |
|     {
 | |
|         // Handle texture-offset limits checking
 | |
|         // Pick which argument has to hold constant offsets
 | |
|         int arg = -1;
 | |
|         switch (callNode.getOp()) {
 | |
|         case EOpTextureOffset:          arg = 2;  break;
 | |
|         case EOpTextureFetchOffset:     arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
 | |
|         case EOpTextureProjOffset:      arg = 2;  break;
 | |
|         case EOpTextureLodOffset:       arg = 3;  break;
 | |
|         case EOpTextureProjLodOffset:   arg = 3;  break;
 | |
|         case EOpTextureGradOffset:      arg = 4;  break;
 | |
|         case EOpTextureProjGradOffset:  arg = 4;  break;
 | |
|         default:
 | |
|             assert(0);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (arg > 0) {
 | |
|             if (! aggArgs[arg]->getAsConstantUnion())
 | |
|                 error(loc, "argument must be compile-time constant", "texel offset", "");
 | |
|             else {
 | |
|                 const TType& type = aggArgs[arg]->getAsTyped()->getType();
 | |
|                 for (int c = 0; c < type.getVectorSize(); ++c) {
 | |
|                     int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
 | |
|                     if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
 | |
|                         error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     case EOpTextureQuerySamples:
 | |
|     case EOpImageQuerySamples:
 | |
|         break;
 | |
| 
 | |
|     case EOpImageAtomicAdd:
 | |
|     case EOpImageAtomicMin:
 | |
|     case EOpImageAtomicMax:
 | |
|     case EOpImageAtomicAnd:
 | |
|     case EOpImageAtomicOr:
 | |
|     case EOpImageAtomicXor:
 | |
|     case EOpImageAtomicExchange:
 | |
|     case EOpImageAtomicCompSwap:
 | |
|         break;
 | |
| 
 | |
|     case EOpInterpolateAtCentroid:
 | |
|     case EOpInterpolateAtSample:
 | |
|     case EOpInterpolateAtOffset:
 | |
|         // "For the interpolateAt* functions, the call will return a precision
 | |
|         // qualification matching the precision of the 'interpolant' argument to
 | |
|         // the function call."
 | |
|         callNode.getQualifier().precision = arg0->getQualifier().precision;
 | |
| 
 | |
|         // Make sure the first argument is an interpolant, or an array element of an interpolant
 | |
|         if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
 | |
|             // It might still be an array element.
 | |
|             //
 | |
|             // We could check more, but the semantics of the first argument are already met; the
 | |
|             // only way to turn an array into a float/vec* is array dereference and swizzle.
 | |
|             //
 | |
|             // ES and desktop 4.3 and earlier:  swizzles may not be used
 | |
|             // desktop 4.4 and later: swizzles may be used
 | |
|             const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
 | |
|             if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
 | |
|                 error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), "");
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle seeing a built-in constructor in a grammar production.
 | |
| //
 | |
| TFunction* HlslParseContext::handleConstructorCall(const TSourceLoc& loc, const TType& type)
 | |
| {
 | |
|     TOperator op = mapTypeToConstructorOp(type);
 | |
| 
 | |
|     if (op == EOpNull) {
 | |
|         error(loc, "cannot construct this type", type.getBasicString(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     TString empty("");
 | |
| 
 | |
|     return new TFunction(&empty, type, op);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Given a type, find what operation would fully construct it.
 | |
| //
 | |
| TOperator HlslParseContext::mapTypeToConstructorOp(const TType& type) const
 | |
| {
 | |
|     TOperator op = EOpNull;
 | |
| 
 | |
|     switch (type.getBasicType()) {
 | |
|     case EbtStruct:
 | |
|         op = EOpConstructStruct;
 | |
|         break;
 | |
|     case EbtSampler:
 | |
|         if (type.getSampler().combined)
 | |
|             op = EOpConstructTextureSampler;
 | |
|         break;
 | |
|     case EbtFloat:
 | |
|         if (type.isMatrix()) {
 | |
|             switch (type.getMatrixCols()) {
 | |
|             case 2:
 | |
|                 switch (type.getMatrixRows()) {
 | |
|                 case 2: op = EOpConstructMat2x2; break;
 | |
|                 case 3: op = EOpConstructMat2x3; break;
 | |
|                 case 4: op = EOpConstructMat2x4; break;
 | |
|                 default: break; // some compilers want this
 | |
|                 }
 | |
|                 break;
 | |
|             case 3:
 | |
|                 switch (type.getMatrixRows()) {
 | |
|                 case 2: op = EOpConstructMat3x2; break;
 | |
|                 case 3: op = EOpConstructMat3x3; break;
 | |
|                 case 4: op = EOpConstructMat3x4; break;
 | |
|                 default: break; // some compilers want this
 | |
|                 }
 | |
|                 break;
 | |
|             case 4:
 | |
|                 switch (type.getMatrixRows()) {
 | |
|                 case 2: op = EOpConstructMat4x2; break;
 | |
|                 case 3: op = EOpConstructMat4x3; break;
 | |
|                 case 4: op = EOpConstructMat4x4; break;
 | |
|                 default: break; // some compilers want this
 | |
|                 }
 | |
|                 break;
 | |
|             default: break; // some compilers want this
 | |
|             }
 | |
|         } else {
 | |
|             switch (type.getVectorSize()) {
 | |
|             case 1: op = EOpConstructFloat; break;
 | |
|             case 2: op = EOpConstructVec2;  break;
 | |
|             case 3: op = EOpConstructVec3;  break;
 | |
|             case 4: op = EOpConstructVec4;  break;
 | |
|             default: break; // some compilers want this
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case EbtDouble:
 | |
|         if (type.getMatrixCols()) {
 | |
|             switch (type.getMatrixCols()) {
 | |
|             case 2:
 | |
|                 switch (type.getMatrixRows()) {
 | |
|                 case 2: op = EOpConstructDMat2x2; break;
 | |
|                 case 3: op = EOpConstructDMat2x3; break;
 | |
|                 case 4: op = EOpConstructDMat2x4; break;
 | |
|                 default: break; // some compilers want this
 | |
|                 }
 | |
|                 break;
 | |
|             case 3:
 | |
|                 switch (type.getMatrixRows()) {
 | |
|                 case 2: op = EOpConstructDMat3x2; break;
 | |
|                 case 3: op = EOpConstructDMat3x3; break;
 | |
|                 case 4: op = EOpConstructDMat3x4; break;
 | |
|                 default: break; // some compilers want this
 | |
|                 }
 | |
|                 break;
 | |
|             case 4:
 | |
|                 switch (type.getMatrixRows()) {
 | |
|                 case 2: op = EOpConstructDMat4x2; break;
 | |
|                 case 3: op = EOpConstructDMat4x3; break;
 | |
|                 case 4: op = EOpConstructDMat4x4; break;
 | |
|                 default: break; // some compilers want this
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             switch (type.getVectorSize()) {
 | |
|             case 1: op = EOpConstructDouble; break;
 | |
|             case 2: op = EOpConstructDVec2;  break;
 | |
|             case 3: op = EOpConstructDVec3;  break;
 | |
|             case 4: op = EOpConstructDVec4;  break;
 | |
|             default: break; // some compilers want this
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case EbtInt:
 | |
|         switch (type.getVectorSize()) {
 | |
|         case 1: op = EOpConstructInt;   break;
 | |
|         case 2: op = EOpConstructIVec2; break;
 | |
|         case 3: op = EOpConstructIVec3; break;
 | |
|         case 4: op = EOpConstructIVec4; break;
 | |
|         default: break; // some compilers want this
 | |
|         }
 | |
|         break;
 | |
|     case EbtUint:
 | |
|         switch (type.getVectorSize()) {
 | |
|         case 1: op = EOpConstructUint;  break;
 | |
|         case 2: op = EOpConstructUVec2; break;
 | |
|         case 3: op = EOpConstructUVec3; break;
 | |
|         case 4: op = EOpConstructUVec4; break;
 | |
|         default: break; // some compilers want this
 | |
|         }
 | |
|         break;
 | |
|     case EbtBool:
 | |
|         switch (type.getVectorSize()) {
 | |
|         case 1:  op = EOpConstructBool;  break;
 | |
|         case 2:  op = EOpConstructBVec2; break;
 | |
|         case 3:  op = EOpConstructBVec3; break;
 | |
|         case 4:  op = EOpConstructBVec4; break;
 | |
|         default: break; // some compilers want this
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return op;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Same error message for all places assignments don't work.
 | |
| //
 | |
| void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
 | |
| {
 | |
|     error(loc, "", op, "cannot convert from '%s' to '%s'",
 | |
|         right.c_str(), left.c_str());
 | |
| }
 | |
| 
 | |
| //
 | |
| // Same error message for all places unary operations don't work.
 | |
| //
 | |
| void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
 | |
| {
 | |
|     error(loc, " wrong operand type", op,
 | |
|         "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
 | |
|         op, operand.c_str());
 | |
| }
 | |
| 
 | |
| //
 | |
| // Same error message for all binary operations don't work.
 | |
| //
 | |
| void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
 | |
| {
 | |
|     error(loc, " wrong operand types:", op,
 | |
|         "no operation '%s' exists that takes a left-hand operand of type '%s' and "
 | |
|         "a right operand of type '%s' (or there is no acceptable conversion)",
 | |
|         op, left.c_str(), right.c_str());
 | |
| }
 | |
| 
 | |
| //
 | |
| // A basic type of EbtVoid is a key that the name string was seen in the source, but
 | |
| // it was not found as a variable in the symbol table.  If so, give the error
 | |
| // message and insert a dummy variable in the symbol table to prevent future errors.
 | |
| //
 | |
| void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
 | |
| {
 | |
|     TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
 | |
|     if (! symbol)
 | |
|         return;
 | |
| 
 | |
|     if (symbol->getType().getBasicType() == EbtVoid) {
 | |
|         error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
 | |
| 
 | |
|         // Add to symbol table to prevent future error messages on the same name
 | |
|         if (symbol->getName().size() > 0) {
 | |
|             TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
 | |
|             symbolTable.insert(*fakeVariable);
 | |
| 
 | |
|             // substitute a symbol node for this new variable
 | |
|             nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Both test, and if necessary spit out an error, to see if the node is really
 | |
| // a constant.
 | |
| //
 | |
| void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
 | |
| {
 | |
|     if (node->getQualifier().storage != EvqConst)
 | |
|         error(node->getLoc(), "constant expression required", token, "");
 | |
| }
 | |
| 
 | |
| //
 | |
| // Both test, and if necessary spit out an error, to see if the node is really
 | |
| // an integer.
 | |
| //
 | |
| void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
 | |
| {
 | |
|     if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
 | |
|         return;
 | |
| 
 | |
|     error(node->getLoc(), "scalar integer expression required", token, "");
 | |
| }
 | |
| 
 | |
| //
 | |
| // Both test, and if necessary spit out an error, to see if we are currently
 | |
| // globally scoped.
 | |
| //
 | |
| void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
 | |
| {
 | |
|     if (! symbolTable.atGlobalLevel())
 | |
|         error(loc, "not allowed in nested scope", token, "");
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HlslParseContext::builtInName(const TString& identifier)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Make sure there is enough data and not too many arguments provided to the
 | |
| // constructor to build something of the type of the constructor.  Also returns
 | |
| // the type of the constructor.
 | |
| //
 | |
| // Returns true if there was an error in construction.
 | |
| //
 | |
| bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, TOperator op, TType& type)
 | |
| {
 | |
|     type.shallowCopy(function.getType());
 | |
| 
 | |
|     bool constructingMatrix = false;
 | |
|     switch (op) {
 | |
|     case EOpConstructTextureSampler:
 | |
|         return constructorTextureSamplerError(loc, function);
 | |
|     case EOpConstructMat2x2:
 | |
|     case EOpConstructMat2x3:
 | |
|     case EOpConstructMat2x4:
 | |
|     case EOpConstructMat3x2:
 | |
|     case EOpConstructMat3x3:
 | |
|     case EOpConstructMat3x4:
 | |
|     case EOpConstructMat4x2:
 | |
|     case EOpConstructMat4x3:
 | |
|     case EOpConstructMat4x4:
 | |
|     case EOpConstructDMat2x2:
 | |
|     case EOpConstructDMat2x3:
 | |
|     case EOpConstructDMat2x4:
 | |
|     case EOpConstructDMat3x2:
 | |
|     case EOpConstructDMat3x3:
 | |
|     case EOpConstructDMat3x4:
 | |
|     case EOpConstructDMat4x2:
 | |
|     case EOpConstructDMat4x3:
 | |
|     case EOpConstructDMat4x4:
 | |
|         constructingMatrix = true;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Walk the arguments for first-pass checks and collection of information.
 | |
|     //
 | |
| 
 | |
|     int size = 0;
 | |
|     bool constType = true;
 | |
|     bool full = false;
 | |
|     bool overFull = false;
 | |
|     bool matrixInMatrix = false;
 | |
|     bool arrayArg = false;
 | |
|     for (int arg = 0; arg < function.getParamCount(); ++arg) {
 | |
|         if (function[arg].type->isArray()) {
 | |
|             if (! function[arg].type->isExplicitlySizedArray()) {
 | |
|                 // Can't construct from an unsized array.
 | |
|                 error(loc, "array argument must be sized", "constructor", "");
 | |
|                 return true;
 | |
|             }
 | |
|             arrayArg = true;
 | |
|         }
 | |
|         if (constructingMatrix && function[arg].type->isMatrix())
 | |
|             matrixInMatrix = true;
 | |
| 
 | |
|         // 'full' will go to true when enough args have been seen.  If we loop
 | |
|         // again, there is an extra argument.
 | |
|         if (full) {
 | |
|             // For vectors and matrices, it's okay to have too many components
 | |
|             // available, but not okay to have unused arguments.
 | |
|             overFull = true;
 | |
|         }
 | |
| 
 | |
|         size += function[arg].type->computeNumComponents();
 | |
|         if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
 | |
|             full = true;
 | |
| 
 | |
|         if (function[arg].type->getQualifier().storage != EvqConst)
 | |
|             constType = false;
 | |
|     }
 | |
| 
 | |
|     if (constType)
 | |
|         type.getQualifier().storage = EvqConst;
 | |
| 
 | |
|     if (type.isArray()) {
 | |
|         if (function.getParamCount() == 0) {
 | |
|             error(loc, "array constructor must have at least one argument", "constructor", "");
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if (type.isImplicitlySizedArray()) {
 | |
|             // auto adapt the constructor type to the number of arguments
 | |
|             type.changeOuterArraySize(function.getParamCount());
 | |
|         } else if (type.getOuterArraySize() != function.getParamCount()) {
 | |
|             error(loc, "array constructor needs one argument per array element", "constructor", "");
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if (type.isArrayOfArrays()) {
 | |
|             // Types have to match, but we're still making the type.
 | |
|             // Finish making the type, and the comparison is done later
 | |
|             // when checking for conversion.
 | |
|             TArraySizes& arraySizes = type.getArraySizes();
 | |
| 
 | |
|             // At least the dimensionalities have to match.
 | |
|             if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) {
 | |
|                 error(loc, "array constructor argument not correct type to construct array element", "constructior", "");
 | |
|                 return true;
 | |
|             }
 | |
| 
 | |
|             if (arraySizes.isInnerImplicit()) {
 | |
|                 // "Arrays of arrays ..., and the size for any dimension is optional"
 | |
|                 // That means we need to adopt (from the first argument) the other array sizes into the type.
 | |
|                 for (int d = 1; d < arraySizes.getNumDims(); ++d) {
 | |
|                     if (arraySizes.getDimSize(d) == UnsizedArraySize) {
 | |
|                         arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
 | |
|         error(loc, "constructing non-array constituent from array argument", "constructor", "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (matrixInMatrix && ! type.isArray()) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (overFull) {
 | |
|         error(loc, "too many arguments", "constructor", "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) {
 | |
|         error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
 | |
|         (op == EOpConstructStruct && size < type.computeNumComponents())) {
 | |
|         error(loc, "not enough data provided for construction", "constructor", "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* typed = node->getAsTyped();
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Verify all the correct semantics for constructing a combined texture/sampler.
 | |
| // Return true if the semantics are incorrect.
 | |
| bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function)
 | |
| {
 | |
|     TString constructorName = function.getType().getBasicTypeString();  // TODO: performance: should not be making copy; interface needs to change
 | |
|     const char* token = constructorName.c_str();
 | |
| 
 | |
|     // exactly two arguments needed
 | |
|     if (function.getParamCount() != 2) {
 | |
|         error(loc, "sampler-constructor requires two arguments", token, "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // For now, not allowing arrayed constructors, the rest of this function
 | |
|     // is set up to allow them, if this test is removed:
 | |
|     if (function.getType().isArray()) {
 | |
|         error(loc, "sampler-constructor cannot make an array of samplers", token, "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // first argument
 | |
|     //  * the constructor's first argument must be a texture type
 | |
|     //  * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array)
 | |
|     //    of the texture type must match that of the constructed sampler type
 | |
|     //    (that is, the suffixes of the type of the first argument and the
 | |
|     //    type of the constructor will be spelled the same way)
 | |
|     if (function[0].type->getBasicType() != EbtSampler ||
 | |
|         ! function[0].type->getSampler().isTexture() ||
 | |
|         function[0].type->isArray()) {
 | |
|         error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, "");
 | |
|         return true;
 | |
|     }
 | |
|     // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=()
 | |
|     TSampler texture = function.getType().getSampler();
 | |
|     texture.combined = false;
 | |
|     texture.shadow = false;
 | |
|     if (texture != function[0].type->getSampler()) {
 | |
|         error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // second argument
 | |
|     //   * the constructor's second argument must be a scalar of type
 | |
|     //     *sampler* or *samplerShadow*
 | |
|     //   * the presence or absence of depth comparison (Shadow) must match
 | |
|     //     between the constructed sampler type and the type of the second argument
 | |
|     if (function[1].type->getBasicType() != EbtSampler ||
 | |
|         ! function[1].type->getSampler().isPureSampler() ||
 | |
|         function[1].type->isArray()) {
 | |
|         error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, "");
 | |
|         return true;
 | |
|     }
 | |
|     if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) {
 | |
|         error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow", token, "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Checks to see if a void variable has been declared and raise an error message for such a case
 | |
| //
 | |
| // returns true in case of an error
 | |
| //
 | |
| bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
 | |
| {
 | |
|     if (basicType == EbtVoid) {
 | |
|         error(loc, "illegal use of type 'void'", identifier.c_str(), "");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // Checks to see if the node (for the expression) contains a scalar boolean expression or not
 | |
| void HlslParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type)
 | |
| {
 | |
|     if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
 | |
|         error(loc, "boolean expression expected", "", "");
 | |
| }
 | |
| 
 | |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
 | |
| void HlslParseContext::boolCheck(const TSourceLoc& loc, const TPublicType& pType)
 | |
| {
 | |
|     if (pType.basicType != EbtBool || pType.arraySizes || pType.matrixCols > 1 || (pType.vectorSize > 1))
 | |
|         error(loc, "boolean expression expected", "", "");
 | |
| }
 | |
| 
 | |
| //
 | |
| // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
 | |
| //
 | |
| void HlslParseContext::globalQualifierFix(const TSourceLoc& loc, TQualifier& qualifier)
 | |
| {
 | |
|     // move from parameter/unknown qualifiers to pipeline in/out qualifiers
 | |
|     switch (qualifier.storage) {
 | |
|     case EvqIn:
 | |
|         qualifier.storage = EvqVaryingIn;
 | |
|         break;
 | |
|     case EvqOut:
 | |
|         qualifier.storage = EvqVaryingOut;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Merge characteristics of the 'src' qualifier into the 'dst'.
 | |
| // If there is duplication, issue error messages, unless 'force'
 | |
| // is specified, which means to just override default settings.
 | |
| //
 | |
| // Also, when force is false, it will be assumed that 'src' follows
 | |
| // 'dst', for the purpose of error checking order for versions
 | |
| // that require specific orderings of qualifiers.
 | |
| //
 | |
| void HlslParseContext::mergeQualifiers(const TSourceLoc& loc, TQualifier& dst, const TQualifier& src, bool force)
 | |
| {
 | |
|     // Storage qualification
 | |
|     if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
 | |
|         dst.storage = src.storage;
 | |
|     else if ((dst.storage == EvqIn  && src.storage == EvqOut) ||
 | |
|         (dst.storage == EvqOut && src.storage == EvqIn))
 | |
|         dst.storage = EvqInOut;
 | |
|     else if ((dst.storage == EvqIn    && src.storage == EvqConst) ||
 | |
|         (dst.storage == EvqConst && src.storage == EvqIn))
 | |
|         dst.storage = EvqConstReadOnly;
 | |
|     else if (src.storage != EvqTemporary && src.storage != EvqGlobal)
 | |
|         error(loc, "too many storage qualifiers", GetStorageQualifierString(src.storage), "");
 | |
| 
 | |
|     // Precision qualifiers
 | |
|     if (dst.precision == EpqNone || (force && src.precision != EpqNone))
 | |
|         dst.precision = src.precision;
 | |
| 
 | |
|     // Layout qualifiers
 | |
|     mergeObjectLayoutQualifiers(dst, src, false);
 | |
| 
 | |
|     // individual qualifiers
 | |
|     bool repeated = false;
 | |
| #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
 | |
|     MERGE_SINGLETON(invariant);
 | |
|     MERGE_SINGLETON(centroid);
 | |
|     MERGE_SINGLETON(smooth);
 | |
|     MERGE_SINGLETON(flat);
 | |
|     MERGE_SINGLETON(nopersp);
 | |
|     MERGE_SINGLETON(patch);
 | |
|     MERGE_SINGLETON(sample);
 | |
|     MERGE_SINGLETON(coherent);
 | |
|     MERGE_SINGLETON(volatil);
 | |
|     MERGE_SINGLETON(restrict);
 | |
|     MERGE_SINGLETON(readonly);
 | |
|     MERGE_SINGLETON(writeonly);
 | |
|     MERGE_SINGLETON(specConstant);
 | |
| }
 | |
| 
 | |
| // used to flatten the sampler type space into a single dimension
 | |
| // correlates with the declaration of defaultSamplerPrecision[]
 | |
| int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
 | |
| {
 | |
|     int arrayIndex = sampler.arrayed ? 1 : 0;
 | |
|     int shadowIndex = sampler.shadow ? 1 : 0;
 | |
|     int externalIndex = sampler.external ? 1 : 0;
 | |
| 
 | |
|     return EsdNumDims * (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do size checking for an array type's size.
 | |
| //
 | |
| void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
 | |
| {
 | |
|     bool isConst = false;
 | |
|     sizePair.size = 1;
 | |
|     sizePair.node = nullptr;
 | |
| 
 | |
|     TIntermConstantUnion* constant = expr->getAsConstantUnion();
 | |
|     if (constant) {
 | |
|         // handle true (non-specialization) constant
 | |
|         sizePair.size = constant->getConstArray()[0].getIConst();
 | |
|         isConst = true;
 | |
|     } else {
 | |
|         // see if it's a specialization constant instead
 | |
|         if (expr->getQualifier().isSpecConstant()) {
 | |
|             isConst = true;
 | |
|             sizePair.node = expr;
 | |
|             TIntermSymbol* symbol = expr->getAsSymbolNode();
 | |
|             if (symbol && symbol->getConstArray().size() > 0)
 | |
|                 sizePair.size = symbol->getConstArray()[0].getIConst();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
 | |
|         error(loc, "array size must be a constant integer expression", "", "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (sizePair.size <= 0) {
 | |
|         error(loc, "array size must be a positive integer", "", "");
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Require array to be completely sized
 | |
| //
 | |
| void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
 | |
| {
 | |
|     if (arraySizes.isImplicit())
 | |
|         error(loc, "array size required", "", "");
 | |
| }
 | |
| 
 | |
| void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
 | |
| {
 | |
|     const TTypeList& structure = *type.getStruct();
 | |
|     for (int m = 0; m < (int)structure.size(); ++m) {
 | |
|         const TType& member = *structure[m].type;
 | |
|         if (member.isArray())
 | |
|             arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Merge array dimensions listed in 'sizes' onto the type's array dimensions.
 | |
| //
 | |
| // From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4"
 | |
| //
 | |
| // That means, the 'sizes' go in front of the 'type' as outermost sizes.
 | |
| // 'type' is the type part of the declaration (to the left)
 | |
| // 'sizes' is the arrayness tagged on the identifier (to the right)
 | |
| //
 | |
| void HlslParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes)
 | |
| {
 | |
|     if (sizes)
 | |
|         type.addArrayOuterSizes(*sizes);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do all the semantic checking for declaring or redeclaring an array, with and
 | |
| // without a size, and make the right changes to the symbol table.
 | |
| //
 | |
| void HlslParseContext::declareArray(const TSourceLoc& loc, TString& identifier, const TType& type, TSymbol*& symbol, bool& newDeclaration)
 | |
| {
 | |
|     if (! symbol) {
 | |
|         bool currentScope;
 | |
|         symbol = symbolTable.find(identifier, nullptr, ¤tScope);
 | |
| 
 | |
|         if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
 | |
|             // bad shader (errors already reported) trying to redeclare a built-in name as an array
 | |
|             return;
 | |
|         }
 | |
|         if (symbol == nullptr || ! currentScope) {
 | |
|             //
 | |
|             // Successfully process a new definition.
 | |
|             // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
 | |
|             //
 | |
|             symbol = new TVariable(&identifier, type);
 | |
|             symbolTable.insert(*symbol);
 | |
|             newDeclaration = true;
 | |
| 
 | |
|             if (! symbolTable.atBuiltInLevel()) {
 | |
|                 if (isIoResizeArray(type)) {
 | |
|                     ioArraySymbolResizeList.push_back(symbol);
 | |
|                     checkIoArraysConsistency(loc, true);
 | |
|                 } else
 | |
|                     fixIoArraySize(loc, symbol->getWritableType());
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|         }
 | |
|         if (symbol->getAsAnonMember()) {
 | |
|             error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
 | |
|             symbol = nullptr;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Process a redeclaration.
 | |
|     //
 | |
| 
 | |
|     if (! symbol) {
 | |
|         error(loc, "array variable name expected", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // redeclareBuiltinVariable() should have already done the copyUp()
 | |
|     TType& existingType = symbol->getWritableType();
 | |
| 
 | |
| 
 | |
|     if (existingType.isExplicitlySizedArray()) {
 | |
|         // be more lenient for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size
 | |
|         if (! (isIoResizeArray(type) && existingType.getOuterArraySize() == type.getOuterArraySize()))
 | |
|             error(loc, "redeclaration of array with size", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     existingType.updateArraySizes(type);
 | |
| 
 | |
|     if (isIoResizeArray(type))
 | |
|         checkIoArraysConsistency(loc);
 | |
| }
 | |
| 
 | |
| void HlslParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index)
 | |
| {
 | |
|     // maybe there is nothing to do...
 | |
|     TIntermTyped* typedNode = node->getAsTyped();
 | |
|     if (typedNode->getType().getImplicitArraySize() > index)
 | |
|         return;
 | |
| 
 | |
|     // something to do...
 | |
| 
 | |
|     // Figure out what symbol to lookup, as we will use its type to edit for the size change,
 | |
|     // as that type will be shared through shallow copies for future references.
 | |
|     TSymbol* symbol = nullptr;
 | |
|     int blockIndex = -1;
 | |
|     const TString* lookupName = nullptr;
 | |
|     if (node->getAsSymbolNode())
 | |
|         lookupName = &node->getAsSymbolNode()->getName();
 | |
|     else if (node->getAsBinaryNode()) {
 | |
|         const TIntermBinary* deref = node->getAsBinaryNode();
 | |
|         // This has to be the result of a block dereference, unless it's bad shader code
 | |
|         // If it's a uniform block, then an error will be issued elsewhere, but
 | |
|         // return early now to avoid crashing later in this function.
 | |
|         if (! deref->getLeft()->getAsSymbolNode() || deref->getLeft()->getBasicType() != EbtBlock ||
 | |
|             deref->getLeft()->getType().getQualifier().storage == EvqUniform ||
 | |
|             deref->getRight()->getAsConstantUnion() == nullptr)
 | |
|             return;
 | |
| 
 | |
|         blockIndex = deref->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
 | |
| 
 | |
|         lookupName = &deref->getLeft()->getAsSymbolNode()->getName();
 | |
|         if (IsAnonymous(*lookupName))
 | |
|             lookupName = &(*deref->getLeft()->getType().getStruct())[blockIndex].type->getFieldName();
 | |
|     }
 | |
| 
 | |
|     // Lookup the symbol, should only fail if shader code is incorrect
 | |
|     symbol = symbolTable.find(*lookupName);
 | |
|     if (symbol == nullptr)
 | |
|         return;
 | |
| 
 | |
|     if (symbol->getAsFunction()) {
 | |
|         error(loc, "array variable name expected", symbol->getName().c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     symbol->getWritableType().setImplicitArraySize(index + 1);
 | |
| }
 | |
| 
 | |
| //
 | |
| // See if the identifier is a built-in symbol that can be redeclared, and if so,
 | |
| // copy the symbol table's read-only built-in variable to the current
 | |
| // global level, where it can be modified based on the passed in type.
 | |
| //
 | |
| // Returns nullptr if no redeclaration took place; meaning a normal declaration still
 | |
| // needs to occur for it, not necessarily an error.
 | |
| //
 | |
| // Returns a redeclared and type-modified variable if a redeclared occurred.
 | |
| //
 | |
| TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& loc, const TString& identifier, const TQualifier& qualifier, const TShaderQualifiers& publicType, bool& newDeclaration)
 | |
| {
 | |
|     if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
 | |
|         return nullptr;
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Either redeclare the requested block, or give an error message why it can't be done.
 | |
| //
 | |
| // TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size
 | |
| void HlslParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes)
 | |
| {
 | |
|     // Redeclaring a built-in block...
 | |
| 
 | |
|     // Blocks with instance names are easy to find, lookup the instance name,
 | |
|     // Anonymous blocks need to be found via a member.
 | |
|     bool builtIn;
 | |
|     TSymbol* block;
 | |
|     if (instanceName)
 | |
|         block = symbolTable.find(*instanceName, &builtIn);
 | |
|     else
 | |
|         block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn);
 | |
| 
 | |
|     // If the block was not found, this must be a version/profile/stage
 | |
|     // that doesn't have it, or the instance name is wrong.
 | |
|     const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str();
 | |
|     if (! block) {
 | |
|         error(loc, "no declaration found for redeclaration", errorName, "");
 | |
|         return;
 | |
|     }
 | |
|     // Built-in blocks cannot be redeclared more than once, which if happened,
 | |
|     // we'd be finding the already redeclared one here, rather than the built in.
 | |
|     if (! builtIn) {
 | |
|         error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Copy the block to make a writable version, to insert into the block table after editing.
 | |
|     block = symbolTable.copyUpDeferredInsert(block);
 | |
| 
 | |
|     if (block->getType().getBasicType() != EbtBlock) {
 | |
|         error(loc, "cannot redeclare a non block as a block", errorName, "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Edit and error check the container against the redeclaration
 | |
|     //  - remove unused members
 | |
|     //  - ensure remaining qualifiers/types match
 | |
|     TType& type = block->getWritableType();
 | |
|     TTypeList::iterator member = type.getWritableStruct()->begin();
 | |
|     size_t numOriginalMembersFound = 0;
 | |
|     while (member != type.getStruct()->end()) {
 | |
|         // look for match
 | |
|         bool found = false;
 | |
|         TTypeList::const_iterator newMember;
 | |
|         TSourceLoc memberLoc;
 | |
|         memberLoc.init();
 | |
|         for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) {
 | |
|             if (member->type->getFieldName() == newMember->type->getFieldName()) {
 | |
|                 found = true;
 | |
|                 memberLoc = newMember->loc;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (found) {
 | |
|             ++numOriginalMembersFound;
 | |
|             // - ensure match between redeclared members' types
 | |
|             // - check for things that can't be changed
 | |
|             // - update things that can be changed
 | |
|             TType& oldType = *member->type;
 | |
|             const TType& newType = *newMember->type;
 | |
|             if (! newType.sameElementType(oldType))
 | |
|                 error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), "");
 | |
|             if (oldType.isArray() != newType.isArray())
 | |
|                 error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), "");
 | |
|             else if (! oldType.sameArrayness(newType) && oldType.isExplicitlySizedArray())
 | |
|                 error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), "");
 | |
|             if (newType.getQualifier().isMemory())
 | |
|                 error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
 | |
|             if (newType.getQualifier().hasLayout())
 | |
|                 error(memberLoc, "cannot add layout to redeclared block member", member->type->getFieldName().c_str(), "");
 | |
|             if (newType.getQualifier().patch)
 | |
|                 error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), "");
 | |
|             oldType.getQualifier().centroid = newType.getQualifier().centroid;
 | |
|             oldType.getQualifier().sample = newType.getQualifier().sample;
 | |
|             oldType.getQualifier().invariant = newType.getQualifier().invariant;
 | |
|             oldType.getQualifier().smooth = newType.getQualifier().smooth;
 | |
|             oldType.getQualifier().flat = newType.getQualifier().flat;
 | |
|             oldType.getQualifier().nopersp = newType.getQualifier().nopersp;
 | |
| 
 | |
|             // go to next member
 | |
|             ++member;
 | |
|         } else {
 | |
|             // For missing members of anonymous blocks that have been redeclared,
 | |
|             // hide the original (shared) declaration.
 | |
|             // Instance-named blocks can just have the member removed.
 | |
|             if (instanceName)
 | |
|                 member = type.getWritableStruct()->erase(member);
 | |
|             else {
 | |
|                 member->type->hideMember();
 | |
|                 ++member;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (numOriginalMembersFound < newTypeList.size())
 | |
|         error(loc, "block redeclaration has extra members", blockName.c_str(), "");
 | |
|     if (type.isArray() != (arraySizes != nullptr))
 | |
|         error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), "");
 | |
|     else if (type.isArray()) {
 | |
|         if (type.isExplicitlySizedArray() && arraySizes->getOuterSize() == UnsizedArraySize)
 | |
|             error(loc, "block already declared with size, can't redeclare as implicitly-sized", blockName.c_str(), "");
 | |
|         else if (type.isExplicitlySizedArray() && type.getArraySizes() != *arraySizes)
 | |
|             error(loc, "cannot change array size of redeclared block", blockName.c_str(), "");
 | |
|         else if (type.isImplicitlySizedArray() && arraySizes->getOuterSize() != UnsizedArraySize)
 | |
|             type.changeOuterArraySize(arraySizes->getOuterSize());
 | |
|     }
 | |
| 
 | |
|     symbolTable.insert(*block);
 | |
| 
 | |
|     // Tracking for implicit sizing of array
 | |
|     if (isIoResizeArray(block->getType())) {
 | |
|         ioArraySymbolResizeList.push_back(block);
 | |
|         checkIoArraysConsistency(loc, true);
 | |
|     } else if (block->getType().isArray())
 | |
|         fixIoArraySize(loc, block->getWritableType());
 | |
| 
 | |
|     // Save it in the AST for linker use.
 | |
|     intermediate.addSymbolLinkageNode(linkage, *block);
 | |
| }
 | |
| 
 | |
| void HlslParseContext::paramCheckFix(const TSourceLoc& loc, const TStorageQualifier& qualifier, TType& type)
 | |
| {
 | |
|     switch (qualifier) {
 | |
|     case EvqConst:
 | |
|     case EvqConstReadOnly:
 | |
|         type.getQualifier().storage = EvqConstReadOnly;
 | |
|         break;
 | |
|     case EvqIn:
 | |
|     case EvqOut:
 | |
|     case EvqInOut:
 | |
|         type.getQualifier().storage = qualifier;
 | |
|         break;
 | |
|     case EvqGlobal:
 | |
|     case EvqTemporary:
 | |
|         type.getQualifier().storage = EvqIn;
 | |
|         break;
 | |
|     default:
 | |
|         type.getQualifier().storage = EvqIn;
 | |
|         error(loc, "storage qualifier not allowed on function parameter", GetStorageQualifierString(qualifier), "");
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HlslParseContext::paramCheckFix(const TSourceLoc& loc, const TQualifier& qualifier, TType& type)
 | |
| {
 | |
|     if (qualifier.isMemory()) {
 | |
|         type.getQualifier().volatil = qualifier.volatil;
 | |
|         type.getQualifier().coherent = qualifier.coherent;
 | |
|         type.getQualifier().readonly = qualifier.readonly;
 | |
|         type.getQualifier().writeonly = qualifier.writeonly;
 | |
|         type.getQualifier().restrict = qualifier.restrict;
 | |
|     }
 | |
| 
 | |
|     paramCheckFix(loc, qualifier.storage, type);
 | |
| }
 | |
| 
 | |
| void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
 | |
| {
 | |
|     if (type.containsSpecializationSize())
 | |
|         error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
 | |
| }
 | |
| 
 | |
| //
 | |
| // Layout qualifier stuff.
 | |
| //
 | |
| 
 | |
| // Put the id's layout qualification into the public type, for qualifiers not having a number set.
 | |
| // This is before we know any type information for error checking.
 | |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id)
 | |
| {
 | |
|     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
 | |
| 
 | |
|     if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
 | |
|         publicType.qualifier.layoutMatrix = ElmColumnMajor;
 | |
|         return;
 | |
|     }
 | |
|     if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
 | |
|         publicType.qualifier.layoutMatrix = ElmRowMajor;
 | |
|         return;
 | |
|     }
 | |
|     if (id == TQualifier::getLayoutPackingString(ElpPacked)) {
 | |
|         if (vulkan > 0)
 | |
|             vulkanRemoved(loc, "packed");
 | |
|         publicType.qualifier.layoutPacking = ElpPacked;
 | |
|         return;
 | |
|     }
 | |
|     if (id == TQualifier::getLayoutPackingString(ElpShared)) {
 | |
|         if (vulkan > 0)
 | |
|             vulkanRemoved(loc, "shared");
 | |
|         publicType.qualifier.layoutPacking = ElpShared;
 | |
|         return;
 | |
|     }
 | |
|     if (id == "push_constant") {
 | |
|         requireVulkan(loc, "push_constant");
 | |
|         publicType.qualifier.layoutPushConstant = true;
 | |
|         return;
 | |
|     }
 | |
|     if (language == EShLangGeometry || language == EShLangTessEvaluation) {
 | |
|         if (id == TQualifier::getGeometryString(ElgTriangles)) {
 | |
|             publicType.shaderQualifiers.geometry = ElgTriangles;
 | |
|             return;
 | |
|         }
 | |
|         if (language == EShLangGeometry) {
 | |
|             if (id == TQualifier::getGeometryString(ElgPoints)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgPoints;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgLineStrip)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgLineStrip;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgLines)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgLines;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgTriangleStrip;
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             assert(language == EShLangTessEvaluation);
 | |
| 
 | |
|             // input primitive
 | |
|             if (id == TQualifier::getGeometryString(ElgTriangles)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgTriangles;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgQuads)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgQuads;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getGeometryString(ElgIsolines)) {
 | |
|                 publicType.shaderQualifiers.geometry = ElgIsolines;
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // vertex spacing
 | |
|             if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
 | |
|                 publicType.shaderQualifiers.spacing = EvsEqual;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
 | |
|                 publicType.shaderQualifiers.spacing = EvsFractionalEven;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
 | |
|                 publicType.shaderQualifiers.spacing = EvsFractionalOdd;
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // triangle order
 | |
|             if (id == TQualifier::getVertexOrderString(EvoCw)) {
 | |
|                 publicType.shaderQualifiers.order = EvoCw;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == TQualifier::getVertexOrderString(EvoCcw)) {
 | |
|                 publicType.shaderQualifiers.order = EvoCcw;
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // point mode
 | |
|             if (id == "point_mode") {
 | |
|                 publicType.shaderQualifiers.pointMode = true;
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (language == EShLangFragment) {
 | |
|         if (id == "origin_upper_left") {
 | |
|             publicType.shaderQualifiers.originUpperLeft = true;
 | |
|             return;
 | |
|         }
 | |
|         if (id == "pixel_center_integer") {
 | |
|             publicType.shaderQualifiers.pixelCenterInteger = true;
 | |
|             return;
 | |
|         }
 | |
|         if (id == "early_fragment_tests") {
 | |
|             publicType.shaderQualifiers.earlyFragmentTests = true;
 | |
|             return;
 | |
|         }
 | |
|         for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
 | |
|             if (id == TQualifier::getLayoutDepthString(depth)) {
 | |
|                 publicType.shaderQualifiers.layoutDepth = depth;
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         if (id.compare(0, 13, "blend_support") == 0) {
 | |
|             bool found = false;
 | |
|             for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
 | |
|                 if (id == TQualifier::getBlendEquationString(be)) {
 | |
|                     requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
 | |
|                     intermediate.addBlendEquation(be);
 | |
|                     publicType.shaderQualifiers.blendEquation = true;
 | |
|                     found = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (! found)
 | |
|                 error(loc, "unknown blend equation", "blend_support", "");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
 | |
| }
 | |
| 
 | |
| // Put the id's layout qualifier value into the public type, for qualifiers having a number set.
 | |
| // This is before we know any type information for error checking.
 | |
| void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id, const TIntermTyped* node)
 | |
| {
 | |
|     const char* feature = "layout-id value";
 | |
|     const char* nonLiteralFeature = "non-literal layout-id value";
 | |
| 
 | |
|     integerCheck(node, feature);
 | |
|     const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
 | |
|     int value = 0;
 | |
|     if (constUnion) {
 | |
|         value = constUnion->getConstArray()[0].getIConst();
 | |
|     }
 | |
| 
 | |
|     std::transform(id.begin(), id.end(), id.begin(), ::tolower);
 | |
| 
 | |
|     if (id == "offset") {
 | |
|         publicType.qualifier.layoutOffset = value;
 | |
|         return;
 | |
|     } else if (id == "align") {
 | |
|         // "The specified alignment must be a power of 2, or a compile-time error results."
 | |
|         if (! IsPow2(value))
 | |
|             error(loc, "must be a power of 2", "align", "");
 | |
|         else
 | |
|             publicType.qualifier.layoutAlign = value;
 | |
|         return;
 | |
|     } else if (id == "location") {
 | |
|         if ((unsigned int)value >= TQualifier::layoutLocationEnd)
 | |
|             error(loc, "location is too large", id.c_str(), "");
 | |
|         else
 | |
|             publicType.qualifier.layoutLocation = value;
 | |
|         return;
 | |
|     } else if (id == "set") {
 | |
|         if ((unsigned int)value >= TQualifier::layoutSetEnd)
 | |
|             error(loc, "set is too large", id.c_str(), "");
 | |
|         else
 | |
|             publicType.qualifier.layoutSet = value;
 | |
|         return;
 | |
|     } else if (id == "binding") {
 | |
|         if ((unsigned int)value >= TQualifier::layoutBindingEnd)
 | |
|             error(loc, "binding is too large", id.c_str(), "");
 | |
|         else
 | |
|             publicType.qualifier.layoutBinding = value;
 | |
|         return;
 | |
|     } else if (id == "component") {
 | |
|         if ((unsigned)value >= TQualifier::layoutComponentEnd)
 | |
|             error(loc, "component is too large", id.c_str(), "");
 | |
|         else
 | |
|             publicType.qualifier.layoutComponent = value;
 | |
|         return;
 | |
|     } else if (id.compare(0, 4, "xfb_") == 0) {
 | |
|         // "Any shader making any static use (after preprocessing) of any of these 
 | |
|         // *xfb_* qualifiers will cause the shader to be in a transform feedback 
 | |
|         // capturing mode and hence responsible for describing the transform feedback 
 | |
|         // setup."
 | |
|         intermediate.setXfbMode();
 | |
|         if (id == "xfb_buffer") {
 | |
|             // "It is a compile-time error to specify an *xfb_buffer* that is greater than
 | |
|             // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
 | |
|             if (value >= resources.maxTransformFeedbackBuffers)
 | |
|                 error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers);
 | |
|             if (value >= (int)TQualifier::layoutXfbBufferEnd)
 | |
|                 error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
 | |
|             else
 | |
|                 publicType.qualifier.layoutXfbBuffer = value;
 | |
|             return;
 | |
|         } else if (id == "xfb_offset") {
 | |
|             if (value >= (int)TQualifier::layoutXfbOffsetEnd)
 | |
|                 error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
 | |
|             else
 | |
|                 publicType.qualifier.layoutXfbOffset = value;
 | |
|             return;
 | |
|         } else if (id == "xfb_stride") {
 | |
|             // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the 
 | |
|             // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
 | |
|             if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
 | |
|                 error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents);
 | |
|             else if (value >= (int)TQualifier::layoutXfbStrideEnd)
 | |
|                 error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
 | |
|             if (value < (int)TQualifier::layoutXfbStrideEnd)
 | |
|                 publicType.qualifier.layoutXfbStride = value;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (id == "input_attachment_index") {
 | |
|         requireVulkan(loc, "input_attachment_index");
 | |
|         if (value >= (int)TQualifier::layoutAttachmentEnd)
 | |
|             error(loc, "attachment index is too large", id.c_str(), "");
 | |
|         else
 | |
|             publicType.qualifier.layoutAttachment = value;
 | |
|         return;
 | |
|     }
 | |
|     if (id == "constant_id") {
 | |
|         requireSpv(loc, "constant_id");
 | |
|         if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
 | |
|             error(loc, "specialization-constant id is too large", id.c_str(), "");
 | |
|         } else {
 | |
|             publicType.qualifier.layoutSpecConstantId = value;
 | |
|             publicType.qualifier.specConstant = true;
 | |
|             if (! intermediate.addUsedConstantId(value))
 | |
|                 error(loc, "specialization-constant id already used", id.c_str(), "");
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (language) {
 | |
|     case EShLangVertex:
 | |
|         break;
 | |
| 
 | |
|     case EShLangTessControl:
 | |
|         if (id == "vertices") {
 | |
|             if (value == 0)
 | |
|                 error(loc, "must be greater than 0", "vertices", "");
 | |
|             else
 | |
|                 publicType.shaderQualifiers.vertices = value;
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EShLangTessEvaluation:
 | |
|         break;
 | |
| 
 | |
|     case EShLangGeometry:
 | |
|         if (id == "invocations") {
 | |
|             if (value == 0)
 | |
|                 error(loc, "must be at least 1", "invocations", "");
 | |
|             else
 | |
|                 publicType.shaderQualifiers.invocations = value;
 | |
|             return;
 | |
|         }
 | |
|         if (id == "max_vertices") {
 | |
|             publicType.shaderQualifiers.vertices = value;
 | |
|             if (value > resources.maxGeometryOutputVertices)
 | |
|                 error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
 | |
|             return;
 | |
|         }
 | |
|         if (id == "stream") {
 | |
|             publicType.qualifier.layoutStream = value;
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EShLangFragment:
 | |
|         if (id == "index") {
 | |
|             const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location };
 | |
|             publicType.qualifier.layoutIndex = value;
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case EShLangCompute:
 | |
|         if (id.compare(0, 11, "local_size_") == 0) {
 | |
|             if (id == "local_size_x") {
 | |
|                 publicType.shaderQualifiers.localSize[0] = value;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == "local_size_y") {
 | |
|                 publicType.shaderQualifiers.localSize[1] = value;
 | |
|                 return;
 | |
|             }
 | |
|             if (id == "local_size_z") {
 | |
|                 publicType.shaderQualifiers.localSize[2] = value;
 | |
|                 return;
 | |
|             }
 | |
|             if (spv > 0) {
 | |
|                 if (id == "local_size_x_id") {
 | |
|                     publicType.shaderQualifiers.localSizeSpecId[0] = value;
 | |
|                     return;
 | |
|                 }
 | |
|                 if (id == "local_size_y_id") {
 | |
|                     publicType.shaderQualifiers.localSizeSpecId[1] = value;
 | |
|                     return;
 | |
|                 }
 | |
|                 if (id == "local_size_z_id") {
 | |
|                     publicType.shaderQualifiers.localSizeSpecId[2] = value;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
 | |
| }
 | |
| 
 | |
| // Merge any layout qualifier information from src into dst, leaving everything else in dst alone
 | |
| //
 | |
| // "More than one layout qualifier may appear in a single declaration.
 | |
| // Additionally, the same layout-qualifier-name can occur multiple times 
 | |
| // within a layout qualifier or across multiple layout qualifiers in the 
 | |
| // same declaration. When the same layout-qualifier-name occurs 
 | |
| // multiple times, in a single declaration, the last occurrence overrides 
 | |
| // the former occurrence(s).  Further, if such a layout-qualifier-name 
 | |
| // will effect subsequent declarations or other observable behavior, it 
 | |
| // is only the last occurrence that will have any effect, behaving as if 
 | |
| // the earlier occurrence(s) within the declaration are not present.  
 | |
| // This is also true for overriding layout-qualifier-names, where one 
 | |
| // overrides the other (e.g., row_major vs. column_major); only the last 
 | |
| // occurrence has any effect."    
 | |
| //
 | |
| void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
 | |
| {
 | |
|     if (src.hasMatrix())
 | |
|         dst.layoutMatrix = src.layoutMatrix;
 | |
|     if (src.hasPacking())
 | |
|         dst.layoutPacking = src.layoutPacking;
 | |
| 
 | |
|     if (src.hasStream())
 | |
|         dst.layoutStream = src.layoutStream;
 | |
| 
 | |
|     if (src.hasFormat())
 | |
|         dst.layoutFormat = src.layoutFormat;
 | |
| 
 | |
|     if (src.hasXfbBuffer())
 | |
|         dst.layoutXfbBuffer = src.layoutXfbBuffer;
 | |
| 
 | |
|     if (src.hasAlign())
 | |
|         dst.layoutAlign = src.layoutAlign;
 | |
| 
 | |
|     if (! inheritOnly) {
 | |
|         if (src.hasLocation())
 | |
|             dst.layoutLocation = src.layoutLocation;
 | |
|         if (src.hasComponent())
 | |
|             dst.layoutComponent = src.layoutComponent;
 | |
|         if (src.hasIndex())
 | |
|             dst.layoutIndex = src.layoutIndex;
 | |
| 
 | |
|         if (src.hasOffset())
 | |
|             dst.layoutOffset = src.layoutOffset;
 | |
| 
 | |
|         if (src.hasSet())
 | |
|             dst.layoutSet = src.layoutSet;
 | |
|         if (src.layoutBinding != TQualifier::layoutBindingEnd)
 | |
|             dst.layoutBinding = src.layoutBinding;
 | |
| 
 | |
|         if (src.hasXfbStride())
 | |
|             dst.layoutXfbStride = src.layoutXfbStride;
 | |
|         if (src.hasXfbOffset())
 | |
|             dst.layoutXfbOffset = src.layoutXfbOffset;
 | |
|         if (src.hasAttachment())
 | |
|             dst.layoutAttachment = src.layoutAttachment;
 | |
|         if (src.hasSpecConstantId())
 | |
|             dst.layoutSpecConstantId = src.layoutSpecConstantId;
 | |
| 
 | |
|         if (src.layoutPushConstant)
 | |
|             dst.layoutPushConstant = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Look up a function name in the symbol table, and make sure it is a function.
 | |
| //
 | |
| // Return the function symbol if found, otherwise nullptr.
 | |
| //
 | |
| const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
 | |
| {
 | |
|     const TFunction* function = nullptr;
 | |
| 
 | |
|     if (symbolTable.isFunctionNameVariable(call.getName())) {
 | |
|         error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // first, look for an exact match
 | |
|     TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
 | |
|     if (symbol)
 | |
|         return symbol->getAsFunction();
 | |
| 
 | |
|     // exact match not found, look through a list of overloaded functions of the same name
 | |
| 
 | |
|     const TFunction* candidate = nullptr;
 | |
|     TVector<TFunction*> candidateList;
 | |
|     symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
 | |
| 
 | |
|     for (TVector<TFunction*>::const_iterator it = candidateList.begin(); it != candidateList.end(); ++it) {
 | |
|         const TFunction& function = *(*it);
 | |
| 
 | |
|         // to even be a potential match, number of arguments has to match
 | |
|         if (call.getParamCount() != function.getParamCount())
 | |
|             continue;
 | |
| 
 | |
|         bool possibleMatch = true;
 | |
|         for (int i = 0; i < function.getParamCount(); ++i) {
 | |
|             // same types is easy
 | |
|             if (*function[i].type == *call[i].type)
 | |
|                 continue;
 | |
| 
 | |
|             // We have a mismatch in type, see if it is implicitly convertible
 | |
| 
 | |
|             if (function[i].type->isArray() || call[i].type->isArray() ||
 | |
|                 ! function[i].type->sameElementShape(*call[i].type))
 | |
|                 possibleMatch = false;
 | |
|             else {
 | |
|                 // do direction-specific checks for conversion of basic type
 | |
|                 if (function[i].type->getQualifier().isParamInput()) {
 | |
|                     if (! intermediate.canImplicitlyPromote(call[i].type->getBasicType(), function[i].type->getBasicType()))
 | |
|                         possibleMatch = false;
 | |
|                 }
 | |
|                 if (function[i].type->getQualifier().isParamOutput()) {
 | |
|                     if (! intermediate.canImplicitlyPromote(function[i].type->getBasicType(), call[i].type->getBasicType()))
 | |
|                         possibleMatch = false;
 | |
|                 }
 | |
|             }
 | |
|             if (! possibleMatch)
 | |
|                 break;
 | |
|         }
 | |
|         if (possibleMatch) {
 | |
|             if (candidate) {
 | |
|                 // our second match, meaning ambiguity
 | |
|                 error(loc, "ambiguous function signature match: multiple signatures match under implicit type conversion", call.getName().c_str(), "");
 | |
|             } else
 | |
|                 candidate = &function;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (candidate == nullptr)
 | |
|         error(loc, "no matching overloaded function found", call.getName().c_str(), "");
 | |
| 
 | |
|     return candidate;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do everything necessary to handle a variable (non-block) declaration.
 | |
| // Either redeclaring a variable, or making a new one, updating the symbol
 | |
| // table, and all error checking.
 | |
| //
 | |
| // Returns a subtree node that computes an initializer, if needed.
 | |
| // Returns nullptr if there is no code to execute for initialization.
 | |
| //
 | |
| // 'publicType' is the type part of the declaration (to the left)
 | |
| // 'arraySizes' is the arrayness tagged on the identifier (to the right)
 | |
| //
 | |
| TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, const TType& parseType, TArraySizes* arraySizes, TIntermTyped* initializer)
 | |
| {
 | |
|     TType type;
 | |
|     type.shallowCopy(parseType);
 | |
|     if (type.isImplicitlySizedArray()) {
 | |
|         // Because "int[] a = int[2](...), b = int[3](...)" makes two arrays a and b
 | |
|         // of different sizes, for this case sharing the shallow copy of arrayness
 | |
|         // with the publicType oversubscribes it, so get a deep copy of the arrayness.
 | |
|         type.newArraySizes(*parseType.getArraySizes());
 | |
|     }
 | |
| 
 | |
|     if (voidErrorCheck(loc, identifier, type.getBasicType()))
 | |
|         return nullptr;
 | |
| 
 | |
|     // Check for redeclaration of built-ins and/or attempting to declare a reserved name
 | |
|     bool newDeclaration = false;    // true if a new entry gets added to the symbol table
 | |
|     TSymbol* symbol = nullptr; // = redeclareBuiltinVariable(loc, identifier, type.getQualifier(), publicType.shaderQualifiers, newDeclaration);
 | |
| 
 | |
|     inheritGlobalDefaults(type.getQualifier());
 | |
| 
 | |
|     // Declare the variable
 | |
|     if (arraySizes || type.isArray()) {
 | |
|         // Arrayness is potentially coming both from the type and from the 
 | |
|         // variable: "int[] a[];" or just one or the other.
 | |
|         // Merge it all to the type, so all arrayness is part of the type.
 | |
|         arrayDimMerge(type, arraySizes);
 | |
|         declareArray(loc, identifier, type, symbol, newDeclaration);
 | |
|     } else {
 | |
|         // non-array case
 | |
|         if (! symbol)
 | |
|             symbol = declareNonArray(loc, identifier, type, newDeclaration);
 | |
|         else if (type != symbol->getType())
 | |
|             error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
 | |
|     }
 | |
| 
 | |
|     if (! symbol)
 | |
|         return nullptr;
 | |
| 
 | |
|     // Deal with initializer
 | |
|     TIntermNode* initNode = nullptr;
 | |
|     if (symbol && initializer) {
 | |
|         TVariable* variable = symbol->getAsVariable();
 | |
|         if (! variable) {
 | |
|             error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
 | |
|             return nullptr;
 | |
|         }
 | |
|         initNode = executeInitializer(loc, initializer, variable);
 | |
|     }
 | |
| 
 | |
|     // see if it's a linker-level object to track
 | |
|     if (newDeclaration && symbolTable.atGlobalLevel())
 | |
|         intermediate.addSymbolLinkageNode(linkage, *symbol);
 | |
| 
 | |
|     return initNode;
 | |
| }
 | |
| 
 | |
| // Pick up global defaults from the provide global defaults into dst.
 | |
| void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
 | |
| {
 | |
|     if (dst.storage == EvqVaryingOut) {
 | |
|         if (! dst.hasStream() && language == EShLangGeometry)
 | |
|             dst.layoutStream = globalOutputDefaults.layoutStream;
 | |
|         if (! dst.hasXfbBuffer())
 | |
|             dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Make an internal-only variable whose name is for debug purposes only
 | |
| // and won't be searched for.  Callers will only use the return value to use
 | |
| // the variable, not the name to look it up.  It is okay if the name
 | |
| // is the same as other names; there won't be any conflict.
 | |
| //
 | |
| TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
 | |
| {
 | |
|     TString* nameString = new TString(name);
 | |
|     TVariable* variable = new TVariable(nameString, type);
 | |
|     symbolTable.makeInternalVariable(*variable);
 | |
| 
 | |
|     return variable;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Declare a non-array variable, the main point being there is no redeclaration
 | |
| // for resizing allowed.
 | |
| //
 | |
| // Return the successfully declared variable.
 | |
| //
 | |
| TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, TString& identifier, TType& type, bool& newDeclaration)
 | |
| {
 | |
|     // make a new variable
 | |
|     TVariable* variable = new TVariable(&identifier, type);
 | |
| 
 | |
|     // add variable to symbol table
 | |
|     if (! symbolTable.insert(*variable)) {
 | |
|         error(loc, "redefinition", variable->getName().c_str(), "");
 | |
|         return nullptr;
 | |
|     } else {
 | |
|         newDeclaration = true;
 | |
|         return variable;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Handle all types of initializers from the grammar.
 | |
| //
 | |
| // Returning nullptr just means there is no code to execute to handle the
 | |
| // initializer, which will, for example, be the case for constant initializers.
 | |
| //
 | |
| TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
 | |
| {
 | |
|     //
 | |
|     // Identifier must be of type constant, a global, or a temporary, and
 | |
|     // starting at version 120, desktop allows uniforms to have initializers.
 | |
|     //
 | |
|     TStorageQualifier qualifier = variable->getType().getQualifier().storage;
 | |
| 
 | |
|     //
 | |
|     // If the initializer was from braces { ... }, we convert the whole subtree to a
 | |
|     // constructor-style subtree, allowing the rest of the code to operate
 | |
|     // identically for both kinds of initializers.
 | |
|     //
 | |
|     initializer = convertInitializerList(loc, variable->getType(), initializer);
 | |
|     if (! initializer) {
 | |
|         // error recovery; don't leave const without constant values
 | |
|         if (qualifier == EvqConst)
 | |
|             variable->getWritableType().getQualifier().storage = EvqTemporary;
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Fix outer arrayness if variable is unsized, getting size from the initializer
 | |
|     if (initializer->getType().isExplicitlySizedArray() &&
 | |
|         variable->getType().isImplicitlySizedArray())
 | |
|         variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
 | |
| 
 | |
|     // Inner arrayness can also get set by an initializer
 | |
|     if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
 | |
|         initializer->getType().getArraySizes()->getNumDims() ==
 | |
|         variable->getType().getArraySizes()->getNumDims()) {
 | |
|         // adopt unsized sizes from the initializer's sizes
 | |
|         for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
 | |
|             if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize)
 | |
|                 variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Uniform and global consts require a constant initializer
 | |
|     if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
 | |
|         error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
 | |
|         variable->getWritableType().getQualifier().storage = EvqTemporary;
 | |
|         return nullptr;
 | |
|     }
 | |
|     if (qualifier == EvqConst && symbolTable.atGlobalLevel() && initializer->getType().getQualifier().storage != EvqConst) {
 | |
|         error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
 | |
|         variable->getWritableType().getQualifier().storage = EvqTemporary;
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Const variables require a constant initializer, depending on version
 | |
|     if (qualifier == EvqConst) {
 | |
|         if (initializer->getType().getQualifier().storage != EvqConst) {
 | |
|             variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
 | |
|             qualifier = EvqConstReadOnly;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (qualifier == EvqConst || qualifier == EvqUniform) {
 | |
|         // Compile-time tagging of the variable with its constant value...
 | |
| 
 | |
|         initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
 | |
|         if (! initializer || ! initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) {
 | |
|             error(loc, "non-matching or non-convertible constant type for const initializer",
 | |
|                 variable->getType().getStorageQualifierString(), "");
 | |
|             variable->getWritableType().getQualifier().storage = EvqTemporary;
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
 | |
|     } else {
 | |
|         // normal assigning of a value to a variable...
 | |
|         specializationCheck(loc, initializer->getType(), "initializer");
 | |
|         TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
 | |
|         TIntermNode* initNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, loc);
 | |
|         if (! initNode)
 | |
|             assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
 | |
| 
 | |
|         return initNode;
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Reprocess any initializer-list { ... } parts of the initializer.
 | |
| // Need to hierarchically assign correct types and implicit
 | |
| // conversions. Will do this mimicking the same process used for
 | |
| // creating a constructor-style initializer, ensuring we get the
 | |
| // same form.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer)
 | |
| {
 | |
|     // Will operate recursively.  Once a subtree is found that is constructor style,
 | |
|     // everything below it is already good: Only the "top part" of the initializer
 | |
|     // can be an initializer list, where "top part" can extend for several (or all) levels.
 | |
| 
 | |
|     // see if we have bottomed out in the tree within the initializer-list part
 | |
|     TIntermAggregate* initList = initializer->getAsAggregate();
 | |
|     if (! initList || initList->getOp() != EOpNull)
 | |
|         return initializer;
 | |
| 
 | |
|     // Of the initializer-list set of nodes, need to process bottom up,
 | |
|     // so recurse deep, then process on the way up.
 | |
| 
 | |
|     // Go down the tree here...
 | |
|     if (type.isArray()) {
 | |
|         // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
 | |
|         // Later on, initializer execution code will deal with array size logic.
 | |
|         TType arrayType;
 | |
|         arrayType.shallowCopy(type);                     // sharing struct stuff is fine
 | |
|         arrayType.newArraySizes(*type.getArraySizes());  // but get a fresh copy of the array information, to edit below
 | |
| 
 | |
|         // edit array sizes to fill in unsized dimensions
 | |
|         arrayType.changeOuterArraySize((int)initList->getSequence().size());
 | |
|         TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
 | |
|         if (arrayType.isArrayOfArrays() && firstInit->getType().isArray() &&
 | |
|             arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
 | |
|             for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) {
 | |
|                 if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize)
 | |
|                     arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         TType elementType(arrayType, 0); // dereferenced type
 | |
|         for (size_t i = 0; i < initList->getSequence().size(); ++i) {
 | |
|             initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped());
 | |
|             if (initList->getSequence()[i] == nullptr)
 | |
|                 return nullptr;
 | |
|         }
 | |
| 
 | |
|         return addConstructor(loc, initList, arrayType, mapTypeToConstructorOp(arrayType));
 | |
|     } else if (type.isStruct()) {
 | |
|         if (type.getStruct()->size() != initList->getSequence().size()) {
 | |
|             error(loc, "wrong number of structure members", "initializer list", "");
 | |
|             return nullptr;
 | |
|         }
 | |
|         for (size_t i = 0; i < type.getStruct()->size(); ++i) {
 | |
|             initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped());
 | |
|             if (initList->getSequence()[i] == nullptr)
 | |
|                 return nullptr;
 | |
|         }
 | |
|     } else if (type.isMatrix()) {
 | |
|         if (type.getMatrixCols() != (int)initList->getSequence().size()) {
 | |
|             error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
 | |
|             return nullptr;
 | |
|         }
 | |
|         TType vectorType(type, 0); // dereferenced type
 | |
|         for (int i = 0; i < type.getMatrixCols(); ++i) {
 | |
|             initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped());
 | |
|             if (initList->getSequence()[i] == nullptr)
 | |
|                 return nullptr;
 | |
|         }
 | |
|     } else if (type.isVector()) {
 | |
|         if (type.getVectorSize() != (int)initList->getSequence().size()) {
 | |
|             error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str());
 | |
|             return nullptr;
 | |
|         }
 | |
|     } else {
 | |
|         error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // now that the subtree is processed, process this node
 | |
|     return addConstructor(loc, initList, type, mapTypeToConstructorOp(type));
 | |
| }
 | |
| 
 | |
| //
 | |
| // Test for the correctness of the parameters passed to various constructor functions
 | |
| // and also convert them to the right data type, if allowed and required.
 | |
| //
 | |
| // Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type, TOperator op)
 | |
| {
 | |
|     if (node == nullptr || node->getAsTyped() == nullptr)
 | |
|         return nullptr;
 | |
| 
 | |
|     TIntermAggregate* aggrNode = node->getAsAggregate();
 | |
| 
 | |
|     // Combined texture-sampler constructors are completely semantic checked
 | |
|     // in constructorTextureSamplerError()
 | |
|     if (op == EOpConstructTextureSampler)
 | |
|         return intermediate.setAggregateOperator(aggrNode, op, type, loc);
 | |
| 
 | |
|     TTypeList::const_iterator memberTypes;
 | |
|     if (op == EOpConstructStruct)
 | |
|         memberTypes = type.getStruct()->begin();
 | |
| 
 | |
|     TType elementType;
 | |
|     if (type.isArray()) {
 | |
|         TType dereferenced(type, 0);
 | |
|         elementType.shallowCopy(dereferenced);
 | |
|     } else
 | |
|         elementType.shallowCopy(type);
 | |
| 
 | |
|     bool singleArg;
 | |
|     if (aggrNode) {
 | |
|         if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
 | |
|             singleArg = true;
 | |
|         else
 | |
|             singleArg = false;
 | |
|     } else
 | |
|         singleArg = true;
 | |
| 
 | |
|     TIntermTyped *newNode;
 | |
|     if (singleArg) {
 | |
|         // If structure constructor or array constructor is being called
 | |
|         // for only one parameter inside the structure, we need to call constructAggregate function once.
 | |
|         if (type.isArray())
 | |
|             newNode = constructAggregate(node, elementType, 1, node->getLoc());
 | |
|         else if (op == EOpConstructStruct)
 | |
|             newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
 | |
|         else
 | |
|             newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false);
 | |
| 
 | |
|         if (newNode && (type.isArray() || op == EOpConstructStruct))
 | |
|             newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
 | |
| 
 | |
|         return newNode;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Handle list of arguments.
 | |
|     //
 | |
|     TIntermSequence &sequenceVector = aggrNode->getSequence();    // Stores the information about the parameter to the constructor
 | |
|     // if the structure constructor contains more than one parameter, then construct
 | |
|     // each parameter
 | |
| 
 | |
|     int paramCount = 0;  // keeps a track of the constructor parameter number being checked
 | |
| 
 | |
|     // for each parameter to the constructor call, check to see if the right type is passed or convert them
 | |
|     // to the right type if possible (and allowed).
 | |
|     // for structure constructors, just check if the right type is passed, no conversion is allowed.
 | |
| 
 | |
|     for (TIntermSequence::iterator p = sequenceVector.begin();
 | |
|         p != sequenceVector.end(); p++, paramCount++) {
 | |
|         if (type.isArray())
 | |
|             newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
 | |
|         else if (op == EOpConstructStruct)
 | |
|             newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
 | |
|         else
 | |
|             newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
 | |
| 
 | |
|         if (newNode)
 | |
|             *p = newNode;
 | |
|         else
 | |
|             return nullptr;
 | |
|     }
 | |
| 
 | |
|     TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
 | |
| 
 | |
|     return constructor;
 | |
| }
 | |
| 
 | |
| // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
 | |
| // for the parameter to the constructor (passed to this function). Essentially, it converts
 | |
| // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
 | |
| // float, then float is converted to int.
 | |
| //
 | |
| // Returns nullptr for an error or the constructed node.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset)
 | |
| {
 | |
|     TIntermTyped* newNode;
 | |
|     TOperator basicOp;
 | |
| 
 | |
|     //
 | |
|     // First, convert types as needed.
 | |
|     //
 | |
|     switch (op) {
 | |
|     case EOpConstructVec2:
 | |
|     case EOpConstructVec3:
 | |
|     case EOpConstructVec4:
 | |
|     case EOpConstructMat2x2:
 | |
|     case EOpConstructMat2x3:
 | |
|     case EOpConstructMat2x4:
 | |
|     case EOpConstructMat3x2:
 | |
|     case EOpConstructMat3x3:
 | |
|     case EOpConstructMat3x4:
 | |
|     case EOpConstructMat4x2:
 | |
|     case EOpConstructMat4x3:
 | |
|     case EOpConstructMat4x4:
 | |
|     case EOpConstructFloat:
 | |
|         basicOp = EOpConstructFloat;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructDVec2:
 | |
|     case EOpConstructDVec3:
 | |
|     case EOpConstructDVec4:
 | |
|     case EOpConstructDMat2x2:
 | |
|     case EOpConstructDMat2x3:
 | |
|     case EOpConstructDMat2x4:
 | |
|     case EOpConstructDMat3x2:
 | |
|     case EOpConstructDMat3x3:
 | |
|     case EOpConstructDMat3x4:
 | |
|     case EOpConstructDMat4x2:
 | |
|     case EOpConstructDMat4x3:
 | |
|     case EOpConstructDMat4x4:
 | |
|     case EOpConstructDouble:
 | |
|         basicOp = EOpConstructDouble;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructIVec2:
 | |
|     case EOpConstructIVec3:
 | |
|     case EOpConstructIVec4:
 | |
|     case EOpConstructInt:
 | |
|         basicOp = EOpConstructInt;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructUVec2:
 | |
|     case EOpConstructUVec3:
 | |
|     case EOpConstructUVec4:
 | |
|     case EOpConstructUint:
 | |
|         basicOp = EOpConstructUint;
 | |
|         break;
 | |
| 
 | |
|     case EOpConstructBVec2:
 | |
|     case EOpConstructBVec3:
 | |
|     case EOpConstructBVec4:
 | |
|     case EOpConstructBool:
 | |
|         basicOp = EOpConstructBool;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         error(loc, "unsupported construction", "", "");
 | |
| 
 | |
|         return nullptr;
 | |
|     }
 | |
|     newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
 | |
|     if (newNode == nullptr) {
 | |
|         error(loc, "can't convert", "constructor", "");
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Now, if there still isn't an operation to do the construction, and we need one, add one.
 | |
|     //
 | |
| 
 | |
|     // Otherwise, skip out early.
 | |
|     if (subset || (newNode != node && newNode->getType() == type))
 | |
|         return newNode;
 | |
| 
 | |
|     // setAggregateOperator will insert a new node for the constructor, as needed.
 | |
|     return intermediate.setAggregateOperator(newNode, op, type, loc);
 | |
| }
 | |
| 
 | |
| // This function tests for the type of the parameters to the structure or array constructor. Raises
 | |
| // an error message if the expected type does not match the parameter passed to the constructor.
 | |
| //
 | |
| // Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
 | |
| //
 | |
| TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc)
 | |
| {
 | |
|     TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
 | |
|     if (! converted || converted->getType() != type) {
 | |
|         error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
 | |
|             node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
 | |
| 
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return converted;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Do everything needed to add an interface block.
 | |
| //
 | |
| void HlslParseContext::declareBlock(const TSourceLoc& loc, TTypeList& typeList, const TString* instanceName, TArraySizes* arraySizes)
 | |
| {
 | |
|     // fix and check for member storage qualifiers and types that don't belong within a block
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TType& memberType = *typeList[member].type;
 | |
|         TQualifier& memberQualifier = memberType.getQualifier();
 | |
|         const TSourceLoc& memberLoc = typeList[member].loc;
 | |
|         globalQualifierFix(memberLoc, memberQualifier);
 | |
|         memberQualifier.storage = currentBlockQualifier.storage;
 | |
|     }
 | |
| 
 | |
|     // This might be a redeclaration of a built-in block.  If so, redeclareBuiltinBlock() will
 | |
|     // do all the rest.
 | |
|     if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) {
 | |
|         redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Make default block qualification, and adjust the member qualifications
 | |
| 
 | |
|     TQualifier defaultQualification;
 | |
|     switch (currentBlockQualifier.storage) {
 | |
|     case EvqUniform:    defaultQualification = globalUniformDefaults;    break;
 | |
|     case EvqBuffer:     defaultQualification = globalBufferDefaults;     break;
 | |
|     case EvqVaryingIn:  defaultQualification = globalInputDefaults;      break;
 | |
|     case EvqVaryingOut: defaultQualification = globalOutputDefaults;     break;
 | |
|     default:            defaultQualification.clear();                    break;
 | |
|     }
 | |
| 
 | |
|     // Special case for "push_constant uniform", which has a default of std430,
 | |
|     // contrary to normal uniform defaults, and can't have a default tracked for it.
 | |
|     if (currentBlockQualifier.layoutPushConstant && ! currentBlockQualifier.hasPacking())
 | |
|         currentBlockQualifier.layoutPacking = ElpStd430;
 | |
| 
 | |
|     // fix and check for member layout qualifiers
 | |
| 
 | |
|     mergeObjectLayoutQualifiers(defaultQualification, currentBlockQualifier, true);
 | |
| 
 | |
|     bool memberWithLocation = false;
 | |
|     bool memberWithoutLocation = false;
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|         const TSourceLoc& memberLoc = typeList[member].loc;
 | |
|         if (memberQualifier.hasStream()) {
 | |
|             if (defaultQualification.layoutStream != memberQualifier.layoutStream)
 | |
|                 error(memberLoc, "member cannot contradict block", "stream", "");
 | |
|         }
 | |
| 
 | |
|         // "This includes a block's inheritance of the 
 | |
|         // current global default buffer, a block member's inheritance of the block's 
 | |
|         // buffer, and the requirement that any *xfb_buffer* declared on a block 
 | |
|         // member must match the buffer inherited from the block."
 | |
|         if (memberQualifier.hasXfbBuffer()) {
 | |
|             if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
 | |
|                 error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
 | |
|         }
 | |
| 
 | |
|         if (memberQualifier.hasPacking())
 | |
|             error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), "");
 | |
|         if (memberQualifier.hasLocation()) {
 | |
|             switch (currentBlockQualifier.storage) {
 | |
|             case EvqVaryingIn:
 | |
|             case EvqVaryingOut:
 | |
|                 memberWithLocation = true;
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|         } else
 | |
|             memberWithoutLocation = true;
 | |
|         if (memberQualifier.hasAlign()) {
 | |
|             if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430)
 | |
|                 error(memberLoc, "can only be used with std140 or std430 layout packing", "align", "");
 | |
|         }
 | |
| 
 | |
|         TQualifier newMemberQualification = defaultQualification;
 | |
|         mergeQualifiers(memberLoc, newMemberQualification, memberQualifier, false);
 | |
|         memberQualifier = newMemberQualification;
 | |
|     }
 | |
| 
 | |
|     // Process the members
 | |
|     fixBlockLocations(loc, currentBlockQualifier, typeList, memberWithLocation, memberWithoutLocation);
 | |
|     fixBlockXfbOffsets(currentBlockQualifier, typeList);
 | |
|     fixBlockUniformOffsets(currentBlockQualifier, typeList);
 | |
| 
 | |
|     // reverse merge, so that currentBlockQualifier now has all layout information
 | |
|     // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
 | |
|     mergeObjectLayoutQualifiers(currentBlockQualifier, defaultQualification, true);
 | |
| 
 | |
|     //
 | |
|     // Build and add the interface block as a new type named 'blockName'
 | |
|     //
 | |
| 
 | |
|     TType blockType(&typeList, *blockName, currentBlockQualifier);
 | |
|     if (arraySizes)
 | |
|         blockType.newArraySizes(*arraySizes);
 | |
| 
 | |
|     //
 | |
|     // Don't make a user-defined type out of block name; that will cause an error
 | |
|     // if the same block name gets reused in a different interface.
 | |
|     //
 | |
|     // "Block names have no other use within a shader
 | |
|     // beyond interface matching; it is a compile-time error to use a block name at global scope for anything
 | |
|     // other than as a block name (e.g., use of a block name for a global variable name or function name is
 | |
|     // currently reserved)."
 | |
|     //
 | |
|     // Use the symbol table to prevent normal reuse of the block's name, as a variable entry,
 | |
|     // whose type is EbtBlock, but without all the structure; that will come from the type
 | |
|     // the instances point to.
 | |
|     //
 | |
|     TType blockNameType(EbtBlock, blockType.getQualifier().storage);
 | |
|     TVariable* blockNameVar = new TVariable(blockName, blockNameType);
 | |
|     if (! symbolTable.insert(*blockNameVar)) {
 | |
|         TSymbol* existingName = symbolTable.find(*blockName);
 | |
|         if (existingName->getType().getBasicType() == EbtBlock) {
 | |
|             if (existingName->getType().getQualifier().storage == blockType.getQualifier().storage) {
 | |
|                 error(loc, "Cannot reuse block name within the same interface:", blockName->c_str(), blockType.getStorageQualifierString());
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             error(loc, "block name cannot redefine a non-block name", blockName->c_str(), "");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Add the variable, as anonymous or named instanceName.
 | |
|     // Make an anonymous variable if no name was provided.
 | |
|     if (! instanceName)
 | |
|         instanceName = NewPoolTString("");
 | |
| 
 | |
|     TVariable& variable = *new TVariable(instanceName, blockType);
 | |
|     if (! symbolTable.insert(variable)) {
 | |
|         if (*instanceName == "")
 | |
|             error(loc, "nameless block contains a member that already has a name at global scope", blockName->c_str(), "");
 | |
|         else
 | |
|             error(loc, "block instance name redefinition", variable.getName().c_str(), "");
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (isIoResizeArray(blockType)) {
 | |
|         ioArraySymbolResizeList.push_back(&variable);
 | |
|         checkIoArraysConsistency(loc, true);
 | |
|     } else
 | |
|         fixIoArraySize(loc, variable.getWritableType());
 | |
| 
 | |
|     // Save it in the AST for linker use.
 | |
|     intermediate.addSymbolLinkageNode(linkage, variable);
 | |
| }
 | |
| 
 | |
| //
 | |
| // "For a block, this process applies to the entire block, or until the first member 
 | |
| // is reached that has a location layout qualifier. When a block member is declared with a location 
 | |
| // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
 | |
| // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, 
 | |
| // until the next member declared with a location qualifier. The values used for locations do not have to be 
 | |
| // declared in increasing order."
 | |
| void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
 | |
| {
 | |
|     // "If a block has no block-level location layout qualifier, it is required that either all or none of its members 
 | |
|     // have a location layout qualifier, or a compile-time error results."
 | |
|     if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
 | |
|         error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
 | |
|     else {
 | |
|         if (memberWithLocation) {
 | |
|             // remove any block-level location and make it per *every* member
 | |
|             int nextLocation = 0;  // by the rule above, initial value is not relevant
 | |
|             if (qualifier.hasAnyLocation()) {
 | |
|                 nextLocation = qualifier.layoutLocation;
 | |
|                 qualifier.layoutLocation = TQualifier::layoutLocationEnd;
 | |
|                 if (qualifier.hasComponent()) {
 | |
|                     // "It is a compile-time error to apply the *component* qualifier to a ... block"
 | |
|                     error(loc, "cannot apply to a block", "component", "");
 | |
|                 }
 | |
|                 if (qualifier.hasIndex()) {
 | |
|                     error(loc, "cannot apply to a block", "index", "");
 | |
|                 }
 | |
|             }
 | |
|             for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|                 TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|                 const TSourceLoc& memberLoc = typeList[member].loc;
 | |
|                 if (! memberQualifier.hasLocation()) {
 | |
|                     if (nextLocation >= (int)TQualifier::layoutLocationEnd)
 | |
|                         error(memberLoc, "location is too large", "location", "");
 | |
|                     memberQualifier.layoutLocation = nextLocation;
 | |
|                     memberQualifier.layoutComponent = 0;
 | |
|                 }
 | |
|                 nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(*typeList[member].type);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
 | |
| {
 | |
|     // "If a block is qualified with xfb_offset, all its 
 | |
|     // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any 
 | |
|     // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer 
 | |
|     // offsets."
 | |
| 
 | |
|     if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
 | |
|         return;
 | |
| 
 | |
|     int nextOffset = qualifier.layoutXfbOffset;
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|         bool containsDouble = false;
 | |
|         int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble);
 | |
|         // see if we need to auto-assign an offset to this member
 | |
|         if (! memberQualifier.hasXfbOffset()) {
 | |
|             // "if applied to an aggregate containing a double, the offset must also be a multiple of 8"
 | |
|             if (containsDouble)
 | |
|                 RoundToPow2(nextOffset, 8);
 | |
|             memberQualifier.layoutXfbOffset = nextOffset;
 | |
|         } else
 | |
|             nextOffset = memberQualifier.layoutXfbOffset;
 | |
|         nextOffset += memberSize;
 | |
|     }
 | |
| 
 | |
|     // The above gave all block members an offset, so we can take it off the block now,
 | |
|     // which will avoid double counting the offset usage.
 | |
|     qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
 | |
| }
 | |
| 
 | |
| // Calculate and save the offset of each block member, using the recursively 
 | |
| // defined block offset rules and the user-provided offset and align.
 | |
| //
 | |
| // Also, compute and save the total size of the block. For the block's size, arrayness 
 | |
| // is not taken into account, as each element is backed by a separate buffer.
 | |
| //
 | |
| void HlslParseContext::fixBlockUniformOffsets(TQualifier& qualifier, TTypeList& typeList)
 | |
| {
 | |
|     if (! qualifier.isUniformOrBuffer())
 | |
|         return;
 | |
|     if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430)
 | |
|         return;
 | |
| 
 | |
|     int offset = 0;
 | |
|     int memberSize;
 | |
|     for (unsigned int member = 0; member < typeList.size(); ++member) {
 | |
|         TQualifier& memberQualifier = typeList[member].type->getQualifier();
 | |
|         const TSourceLoc& memberLoc = typeList[member].loc;
 | |
| 
 | |
|         // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
 | |
| 
 | |
|         // modify just the children's view of matrix layout, if there is one for this member
 | |
|         TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
 | |
|         int dummyStride;
 | |
|         int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride, qualifier.layoutPacking == ElpStd140,
 | |
|             subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : qualifier.layoutMatrix == ElmRowMajor);
 | |
|         if (memberQualifier.hasOffset()) {
 | |
|             // "The specified offset must be a multiple 
 | |
|             // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
 | |
|             if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
 | |
|                 error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
 | |
| 
 | |
|             // "It is a compile-time error to specify an offset that is smaller than the offset of the previous 
 | |
|             // member in the block or that lies within the previous member of the block"
 | |
|             if (memberQualifier.layoutOffset < offset)
 | |
|                 error(memberLoc, "cannot lie in previous members", "offset", "");
 | |
| 
 | |
|             // "The offset qualifier forces the qualified member to start at or after the specified 
 | |
|             // integral-constant expression, which will be its byte offset from the beginning of the buffer. 
 | |
|             // "The actual offset of a member is computed as 
 | |
|             // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
 | |
|             offset = std::max(offset, memberQualifier.layoutOffset);
 | |
|         }
 | |
| 
 | |
|         // "The actual alignment of a member will be the greater of the specified align alignment and the standard 
 | |
|         // (e.g., std140) base alignment for the member's type."
 | |
|         if (memberQualifier.hasAlign())
 | |
|             memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
 | |
| 
 | |
|         // "If the resulting offset is not a multiple of the actual alignment,
 | |
|         // increase it to the first offset that is a multiple of 
 | |
|         // the actual alignment."
 | |
|         RoundToPow2(offset, memberAlignment);
 | |
|         typeList[member].type->getQualifier().layoutOffset = offset;
 | |
|         offset += memberSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // For an identifier that is already declared, add more qualification to it.
 | |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
 | |
| {
 | |
|     TSymbol* symbol = symbolTable.find(identifier);
 | |
|     if (! symbol) {
 | |
|         error(loc, "identifier not previously declared", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
|     if (symbol->getAsFunction()) {
 | |
|         error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (qualifier.isAuxiliary() ||
 | |
|         qualifier.isMemory() ||
 | |
|         qualifier.isInterpolation() ||
 | |
|         qualifier.hasLayout() ||
 | |
|         qualifier.storage != EvqTemporary ||
 | |
|         qualifier.precision != EpqNone) {
 | |
|         error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // For read-only built-ins, add a new symbol for holding the modified qualifier.
 | |
|     // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
 | |
|     if (symbol->isReadOnly())
 | |
|         symbol = symbolTable.copyUp(symbol);
 | |
| 
 | |
|     if (qualifier.invariant) {
 | |
|         if (intermediate.inIoAccessed(identifier))
 | |
|             error(loc, "cannot change qualification after use", "invariant", "");
 | |
|         symbol->getWritableType().getQualifier().invariant = true;
 | |
|     } else
 | |
|         warn(loc, "unknown requalification", "", "");
 | |
| }
 | |
| 
 | |
| void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
 | |
| {
 | |
|     for (unsigned int i = 0; i < identifiers.size(); ++i)
 | |
|         addQualifierToExisting(loc, qualifier, *identifiers[i]);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Updating default qualifier for the case of a declaration with just a qualifier,
 | |
| // no type, block, or identifier.
 | |
| //
 | |
| void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
 | |
| {
 | |
|     if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
 | |
|         assert(language == EShLangTessControl || language == EShLangGeometry);
 | |
|         const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
 | |
| 
 | |
|         if (language == EShLangTessControl)
 | |
|             checkIoArraysConsistency(loc);
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
 | |
|         if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
 | |
|             error(loc, "cannot change previously set layout value", "invocations", "");
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.geometry != ElgNone) {
 | |
|         if (publicType.qualifier.storage == EvqVaryingIn) {
 | |
|             switch (publicType.shaderQualifiers.geometry) {
 | |
|             case ElgPoints:
 | |
|             case ElgLines:
 | |
|             case ElgLinesAdjacency:
 | |
|             case ElgTriangles:
 | |
|             case ElgTrianglesAdjacency:
 | |
|             case ElgQuads:
 | |
|             case ElgIsolines:
 | |
|                 if (intermediate.setInputPrimitive(publicType.shaderQualifiers.geometry)) {
 | |
|                     if (language == EShLangGeometry)
 | |
|                         checkIoArraysConsistency(loc);
 | |
|                 } else
 | |
|                     error(loc, "cannot change previously set input primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
 | |
|                 break;
 | |
|             default:
 | |
|                 error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
 | |
|             }
 | |
|         } else if (publicType.qualifier.storage == EvqVaryingOut) {
 | |
|             switch (publicType.shaderQualifiers.geometry) {
 | |
|             case ElgPoints:
 | |
|             case ElgLineStrip:
 | |
|             case ElgTriangleStrip:
 | |
|                 if (! intermediate.setOutputPrimitive(publicType.shaderQualifiers.geometry))
 | |
|                     error(loc, "cannot change previously set output primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
 | |
|                 break;
 | |
|             default:
 | |
|                 error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
 | |
|             }
 | |
|         } else
 | |
|             error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage));
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.spacing != EvsNone)
 | |
|         intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
 | |
|     if (publicType.shaderQualifiers.order != EvoNone)
 | |
|         intermediate.setVertexOrder(publicType.shaderQualifiers.order);
 | |
|     if (publicType.shaderQualifiers.pointMode)
 | |
|         intermediate.setPointMode();
 | |
|     for (int i = 0; i < 3; ++i) {
 | |
|         if (publicType.shaderQualifiers.localSize[i] > 1) {
 | |
|             int max = 0;
 | |
|             switch (i) {
 | |
|             case 0: max = resources.maxComputeWorkGroupSizeX; break;
 | |
|             case 1: max = resources.maxComputeWorkGroupSizeY; break;
 | |
|             case 2: max = resources.maxComputeWorkGroupSizeZ; break;
 | |
|             default: break;
 | |
|             }
 | |
|             if (intermediate.getLocalSize(i) > (unsigned int)max)
 | |
|                 error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
 | |
| 
 | |
|             // Fix the existing constant gl_WorkGroupSize with this new information.
 | |
|             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
 | |
|             workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
 | |
|         }
 | |
|         if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
 | |
|             intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
 | |
|             // Set the workgroup built-in variable as a specialization constant
 | |
|             TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
 | |
|             workGroupSize->getWritableType().getQualifier().specConstant = true;
 | |
|         }
 | |
|     }
 | |
|     if (publicType.shaderQualifiers.earlyFragmentTests)
 | |
|         intermediate.setEarlyFragmentTests();
 | |
| 
 | |
|     const TQualifier& qualifier = publicType.qualifier;
 | |
| 
 | |
|     switch (qualifier.storage) {
 | |
|     case EvqUniform:
 | |
|         if (qualifier.hasMatrix())
 | |
|             globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
 | |
|         if (qualifier.hasPacking())
 | |
|             globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
 | |
|         break;
 | |
|     case EvqBuffer:
 | |
|         if (qualifier.hasMatrix())
 | |
|             globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
 | |
|         if (qualifier.hasPacking())
 | |
|             globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
 | |
|         break;
 | |
|     case EvqVaryingIn:
 | |
|         break;
 | |
|     case EvqVaryingOut:
 | |
|         if (qualifier.hasStream())
 | |
|             globalOutputDefaults.layoutStream = qualifier.layoutStream;
 | |
|         if (qualifier.hasXfbBuffer())
 | |
|             globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
 | |
|         if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
 | |
|             if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
 | |
|                 error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Take the sequence of statements that has been built up since the last case/default,
 | |
| // put it on the list of top-level nodes for the current (inner-most) switch statement,
 | |
| // and follow that by the case/default we are on now.  (See switch topology comment on
 | |
| // TIntermSwitch.)
 | |
| //
 | |
| void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
 | |
| {
 | |
|     TIntermSequence* switchSequence = switchSequenceStack.back();
 | |
| 
 | |
|     if (statements) {
 | |
|         if (switchSequence->size() == 0)
 | |
|             error(statements->getLoc(), "cannot have statements before first case/default label", "switch", "");
 | |
|         statements->setOperator(EOpSequence);
 | |
|         switchSequence->push_back(statements);
 | |
|     }
 | |
|     if (branchNode) {
 | |
|         // check all previous cases for the same label (or both are 'default')
 | |
|         for (unsigned int s = 0; s < switchSequence->size(); ++s) {
 | |
|             TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
 | |
|             if (prevBranch) {
 | |
|                 TIntermTyped* prevExpression = prevBranch->getExpression();
 | |
|                 TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
 | |
|                 if (prevExpression == nullptr && newExpression == nullptr)
 | |
|                     error(branchNode->getLoc(), "duplicate label", "default", "");
 | |
|                 else if (prevExpression != nullptr &&
 | |
|                     newExpression != nullptr &&
 | |
|                     prevExpression->getAsConstantUnion() &&
 | |
|                     newExpression->getAsConstantUnion() &&
 | |
|                     prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
 | |
|                     newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
 | |
|                     error(branchNode->getLoc(), "duplicated value", "case", "");
 | |
|             }
 | |
|         }
 | |
|         switchSequence->push_back(branchNode);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Turn the top-level node sequence built up of wrapupSwitchSubsequence
 | |
| // into a switch node.
 | |
| //
 | |
| TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements)
 | |
| {
 | |
|     wrapupSwitchSubsequence(lastStatements, nullptr);
 | |
| 
 | |
|     if (expression == nullptr ||
 | |
|         (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
 | |
|         expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
 | |
|         error(loc, "condition must be a scalar integer expression", "switch", "");
 | |
| 
 | |
|     // If there is nothing to do, drop the switch but still execute the expression
 | |
|     TIntermSequence* switchSequence = switchSequenceStack.back();
 | |
|     if (switchSequence->size() == 0)
 | |
|         return expression;
 | |
| 
 | |
|     if (lastStatements == nullptr) {
 | |
|         // emulate a break for error recovery
 | |
|         lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
 | |
|         lastStatements->setOperator(EOpSequence);
 | |
|         switchSequence->push_back(lastStatements);
 | |
|     }
 | |
| 
 | |
|     TIntermAggregate* body = new TIntermAggregate(EOpSequence);
 | |
|     body->getSequence() = *switchSequenceStack.back();
 | |
|     body->setLoc(loc);
 | |
| 
 | |
|     TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
 | |
|     switchNode->setLoc(loc);
 | |
| 
 | |
|     return switchNode;
 | |
| }
 | |
| 
 | |
| } // end namespace glslang
 | 
