3056 lines
117 KiB
C++

//
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
//Copyright (C) 2012-2013 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
#include "ParseHelper.h"
#include "osinclude.h"
#include <stdarg.h>
#include <algorithm>
#include "preprocessor/PpContext.h"
extern int yyparse(void*);
namespace glslang {
TParseContext::TParseContext(TSymbolTable& symt, TIntermediate& interm, bool pb, int v, EProfile p, EShLanguage L, TInfoSink& is,
bool fc, EShMessages m) :
intermediate(interm), symbolTable(symt), infoSink(is), language(L),
version(v), profile(p), forwardCompatible(fc), messages(m),
contextPragma(true, false), loopNestingLevel(0), structNestingLevel(0),
tokensBeforeEOF(false),
numErrors(0), parsingBuiltins(pb), afterEOF(false)
{
currentLoc.line = 1;
currentLoc.string = 0;
// ensure we always have a linkage node, even if empty, to simplify tree topology algorithms
linkage = new TIntermAggregate;
// set all precision defaults to EpqNone, which is correct for all desktop types
// and for ES types that don't have defaults (thus getting an error on use)
for (int type = 0; type < EbtNumTypes; ++type)
defaultPrecision[type] = EpqNone;
for (int type = 0; type < maxSamplerIndex; ++type)
defaultSamplerPrecision[type] = EpqNone;
// replace with real defaults for those that have them
if (profile == EEsProfile) {
TSampler sampler;
sampler.set(EbtFloat, Esd2D);
defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow;
sampler.set(EbtFloat, EsdCube);
defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow;
switch (language) {
case EShLangVertex:
defaultPrecision[EbtInt] = EpqHigh;
defaultPrecision[EbtUint] = EpqHigh;
defaultPrecision[EbtFloat] = EpqHigh;
defaultPrecision[EbtSampler] = EpqLow;
break;
case EShLangFragment:
defaultPrecision[EbtInt] = EpqMedium;
defaultPrecision[EbtUint] = EpqMedium;
defaultPrecision[EbtSampler] = EpqLow;
break;
default:
infoSink.info.message(EPrefixError, "unexpected es-profile stage");
}
}
globalUniformDefaults.clear();
globalUniformDefaults.layoutMatrix = ElmColumnMajor;
globalUniformDefaults.layoutPacking = ElpShared;
globalBufferDefaults.clear();
globalBufferDefaults.layoutMatrix = ElmColumnMajor;
globalBufferDefaults.layoutPacking = ElpShared;
globalInputDefaults.clear();
globalOutputDefaults.clear();
}
// Get code that is not part of a shared symbol table, is specific to this shader,
// or needed by CPP (which does not use a shared symbol table).
const char* TParseContext::getPreamble()
{
if (profile == EEsProfile)
return "#define GL_ES 1\n";
else
return 0;
}
//
// Parse an array of strings using yyparse, going through the
// preprocessor to tokenize the shader strings, then through
// the GLSL scanner.
//
// Returns true for successful acceptance of the shader, false if any errors.
//
bool TParseContext::parseShaderStrings(TPpContext& ppContext, char* strings[], size_t lengths[], int numStrings)
{
// empty shaders are okay
if (! strings || numStrings == 0 || lengths[0] == 0)
return true;
for (int i = 0; i < numStrings; ++i) {
if (! strings[i]) {
TSourceLoc loc;
loc.string = i;
loc.line = 1;
error(loc, "Null shader source string", "", "");
return false;
}
}
if (getPreamble())
ppContext.setPreamble(getPreamble(), strlen(getPreamble()));
ppContext.setShaderStrings(strings, lengths, numStrings);
// TODO: desktop PP: a shader containing nothing but white space and comments is valid, even though it has no parse tokens
size_t len = 0;
while (strings[0][len] == ' ' ||
strings[0][len] == '\t' ||
strings[0][len] == '\n' ||
strings[0][len] == '\r') {
if (++len >= lengths[0])
return true;
}
anyIndexLimits = ! limits.generalAttributeMatrixVectorIndexing ||
! limits.generalConstantMatrixVectorIndexing ||
! limits.generalSamplerIndexing ||
! limits.generalUniformIndexing ||
! limits.generalVariableIndexing ||
! limits.generalVaryingIndexing;
yyparse((void*)this);
finalize();
return numErrors == 0;
}
// This is called from bison when it has a parse (syntax) error
void TParseContext::parserError(const char *s)
{
if (afterEOF) {
if (tokensBeforeEOF == 1)
error(currentLoc, "", "pre-mature EOF", s, "");
} else
error(currentLoc, "", "", s, "");
}
void TParseContext::handlePragma(const char **tokens, int numTokens)
{
if (!strcmp(tokens[0], "optimize")) {
if (numTokens != 4) {
error(currentLoc, "optimize pragma syntax is incorrect", "#pragma", "");
return;
}
if (strcmp(tokens[1], "(")) {
error(currentLoc, "\"(\" expected after 'optimize' keyword", "#pragma", "");
return;
}
if (!strcmp(tokens[2], "on"))
contextPragma.optimize = true;
else if (!strcmp(tokens[2], "off"))
contextPragma.optimize = false;
else {
error(currentLoc, "\"on\" or \"off\" expected after '(' for 'optimize' pragma", "#pragma", "");
return;
}
if (strcmp(tokens[3], ")")) {
error(currentLoc, "\")\" expected to end 'optimize' pragma", "#pragma", "");
return;
}
} else if (!strcmp(tokens[0], "debug")) {
if (numTokens != 4) {
error(currentLoc, "debug pragma syntax is incorrect", "#pragma", "");
return;
}
if (strcmp(tokens[1], "(")) {
error(currentLoc, "\"(\" expected after 'debug' keyword", "#pragma", "");
return;
}
if (!strcmp(tokens[2], "on"))
contextPragma.debug = true;
else if (!strcmp(tokens[2], "off"))
contextPragma.debug = false;
else {
error(currentLoc, "\"on\" or \"off\" expected after '(' for 'debug' pragma", "#pragma", "");
return;
}
if (strcmp(tokens[3], ")")) {
error(currentLoc, "\")\" expected to end 'debug' pragma", "#pragma", "");
return;
}
} else {
#ifdef PRAGMA_TABLE
//
// implementation specific pragma
// use parseContext.contextPragma.pragmaTable to store the information about pragma
// For now, just ignore the pragma that the implementation cannot recognize
// An Example of one such implementation for a pragma that has a syntax like
// #pragma pragmaname(pragmavalue)
// This implementation stores the current pragmavalue against the pragma name in pragmaTable.
//
if (numTokens == 4 && !strcmp(tokens[1], "(") && !strcmp(tokens[3], ")")) {
TPragmaTable& pragmaTable = parseContext.contextPragma.pragmaTable;
TPragmaTable::iterator iter;
iter = pragmaTable.find(TString(tokens[0]));
if (iter != pragmaTable.end()) {
iter->second = tokens[2];
} else {
pragmaTable[tokens[0]] = tokens[2];
}
} else if (numTokens >= 2) {
TPragmaTable& pragmaTable = parseContext.contextPragma.pragmaTable;
TPragmaTable::iterator iter;
iter = pragmaTable.find(TString(tokens[0]));
if (iter != pragmaTable.end()) {
iter->second = tokens[1];
} else {
pragmaTable[tokens[0]] = tokens[1];
}
}
#endif // PRAGMA_TABLE
}
}
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
//
// Look at a '.' field selector string and change it into offsets
// for a vector.
//
// Returns true if there is no error.
//
bool TParseContext::parseVectorFields(TSourceLoc loc, const TString& compString, int vecSize, TVectorFields& fields)
{
fields.num = (int) compString.size();
if (fields.num > 4) {
error(loc, "illegal vector field selection", compString.c_str(), "");
return false;
}
enum {
exyzw,
ergba,
estpq,
} fieldSet[4];
for (int i = 0; i < fields.num; ++i) {
switch (compString[i]) {
case 'x':
fields.offsets[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
fields.offsets[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
fields.offsets[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
fields.offsets[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
fields.offsets[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
fields.offsets[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
fields.offsets[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
fields.offsets[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
fields.offsets[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
fields.offsets[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
fields.offsets[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
fields.offsets[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(loc, "illegal vector field selection", compString.c_str(), "");
return false;
}
}
for (int i = 0; i < fields.num; ++i) {
if (fields.offsets[i] >= vecSize) {
error(loc, "vector field selection out of range", compString.c_str(), "");
return false;
}
if (i > 0) {
if (fieldSet[i] != fieldSet[i-1]) {
error(loc, "illegal - vector component fields not from the same set", compString.c_str(), "");
return false;
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Used to output syntax, parsing, and semantic errors.
//
void C_DECL TParseContext::error(TSourceLoc loc, const char *szReason, const char *szToken,
const char *szExtraInfoFormat, ...)
{
const int maxSize = GlslangMaxTokenLength + 200;
char szExtraInfo[maxSize];
va_list marker;
va_start(marker, szExtraInfoFormat);
safe_vsprintf(szExtraInfo, maxSize, szExtraInfoFormat, marker);
infoSink.info.prefix(EPrefixError);
infoSink.info.location(loc);
infoSink.info << "'" << szToken << "' : " << szReason << " " << szExtraInfo << "\n";
va_end(marker);
++numErrors;
}
void C_DECL TParseContext::warn(TSourceLoc loc, const char *szReason, const char *szToken,
const char *szExtraInfoFormat, ...)
{
if (messages & EShMsgSuppressWarnings)
return;
const int maxSize = GlslangMaxTokenLength + 200;
char szExtraInfo[maxSize];
va_list marker;
va_start(marker, szExtraInfoFormat);
safe_vsprintf(szExtraInfo, maxSize, szExtraInfoFormat, marker);
infoSink.info.prefix(EPrefixWarning);
infoSink.info.location(loc);
infoSink.info << "'" << szToken << "' : " << szReason << " " << szExtraInfo << "\n";
va_end(marker);
}
//
// Handle seeing a variable identifier in the grammar.
//
TIntermTyped* TParseContext::handleVariable(TSourceLoc loc, TSymbol* symbol, TString* string)
{
TIntermTyped* node = 0;
const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : 0;
if (anon) {
// it was a member of an anonymous container, have to insert its dereference
const TVariable* variable = anon->getAnonContainer().getAsVariable();
TIntermTyped* container = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), loc);
TConstUnionArray unionArray(1);
unionArray[0].setUConst(anon->getMemberNumber());
TIntermTyped* constNode = intermediate.addConstantUnion(unionArray, TType(EbtUint, EvqConst), loc);
node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
} else {
// The symbol table search was done in the lexical phase, but
// if this is a new symbol, it wouldn't have found it.
const TVariable* variable = symbol ? symbol->getAsVariable() : 0;
if (symbol && ! variable)
error(loc, "variable name expected", string->c_str(), "");
if (! variable)
variable = new TVariable(string, TType(EbtVoid));
// don't delete $1.string, it's used by error recovery, and the pool
// pop will reclaim the memory
if (variable->getType().getQualifier().storage == EvqConst)
node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
else
node = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), loc);
}
return node;
}
//
// Handle seeing a base[index] dereference in the grammar.
//
TIntermTyped* TParseContext::handleBracketDereference(TSourceLoc loc, TIntermTyped* base, TIntermTyped* index)
{
TIntermTyped* result = 0;
variableCheck(base);
if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
if (base->getAsSymbolNode())
error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), "");
else
error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
} else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) {
if (base->isArray()) {
// constant folding for arrays
result = addConstArrayNode(index->getAsConstantUnion()->getConstArray()[0].getIConst(), base, loc);
} else if (base->isVector()) {
// constant folding for vectors
TVectorFields fields;
fields.num = 1;
fields.offsets[0] = index->getAsConstantUnion()->getConstArray()[0].getIConst(); // need to do it this way because v.xy sends fields integer array
result = addConstVectorNode(fields, base, loc);
} else if (base->isMatrix()) {
// constant folding for matrices
result = addConstMatrixNode(index->getAsConstantUnion()->getConstArray()[0].getIConst(), base, loc);
}
} else {
if (index->getQualifier().storage == EvqConst) {
int indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
if (! base->isArray() && ((base->isVector() && base->getType().getVectorSize() <= indexValue) ||
(base->isMatrix() && base->getType().getMatrixCols() <= indexValue)))
error(loc, "", "[", "index out of range '%d'", index->getAsConstantUnion()->getConstArray()[0].getIConst());
if (base->isArray()) {
if (base->getType().getArraySize() == 0)
updateMaxArraySize(loc, base, index->getAsConstantUnion()->getConstArray()[0].getIConst());
else if (index->getAsConstantUnion()->getConstArray()[0].getIConst() >= base->getType().getArraySize() ||
index->getAsConstantUnion()->getConstArray()[0].getIConst() < 0)
error(loc, "", "[", "array index out of range '%d'", index->getAsConstantUnion()->getConstArray()[0].getIConst());
}
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
} else {
if (base->isArray() && base->getType().getArraySize() == 0)
error(loc, "", "[", "array must be redeclared with a size before being indexed with a variable");
if (base->getBasicType() == EbtBlock)
requireProfile(base->getLoc(), ~EEsProfile, "variable indexing block array");
if (base->getBasicType() == EbtSampler && version >= 130) {
const char* explanation = "variable indexing sampler array";
requireProfile(base->getLoc(), ECoreProfile | ECompatibilityProfile, explanation);
profileRequires(base->getLoc(), ECoreProfile | ECompatibilityProfile, 400, 0, explanation);
}
result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
}
}
if (result == 0) {
TConstUnionArray unionArray(1);
unionArray[0].setDConst(0.0);
result = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EvqConst), loc);
} else {
TType newType;
newType.shallowCopy(base->getType());
if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
newType.getQualifier().storage = EvqConst;
newType.dereference();
result->setType(newType);
if (anyIndexLimits) {
// for ES 2.0 (version 100) limitations for almost all index operations except vertex-shader uniforms
if ((! limits.generalSamplerIndexing && base->getBasicType() == EbtSampler) ||
(! limits.generalUniformIndexing && base->getQualifier().isUniform() && language != EShLangVertex) ||
(! limits.generalAttributeMatrixVectorIndexing && base->getQualifier().isPipeInput() && language == EShLangVertex && (base->getType().isMatrix() || base->getType().isVector())) ||
(! limits.generalConstantMatrixVectorIndexing && base->getAsConstantUnion()) ||
(! limits.generalVariableIndexing && ! base->getType().getQualifier().isUniform() &&
! base->getType().getQualifier().isPipeInput() &&
! base->getType().getQualifier().isPipeOutput() &&
base->getType().getQualifier().storage != EvqConst) ||
(! limits.generalVaryingIndexing && (base->getType().getQualifier().isPipeInput() ||
base->getType().getQualifier().isPipeOutput()))) {
// it's too early to know what the inductive variables are, save it for post processing
needsIndexLimitationChecking.push_back(index);
}
}
}
return result;
}
//
// Handle seeing a base.field dereference in the grammar.
//
TIntermTyped* TParseContext::handleDotDereference(TSourceLoc loc, TIntermTyped* base, TString& field)
{
TIntermTyped* result = base;
variableCheck(base);
if (base->isArray()) {
//
// It can only be a method (e.g., length), which can't be resolved until
// we later see the function calling syntax. Save away the name for now.
//
if (field == "length") {
profileRequires(loc, ENoProfile, 120, GL_3DL_array_objects, ".length");
profileRequires(loc, EEsProfile, 300, 0, ".length");
result = intermediate.addMethod(base, TType(EbtInt), &field, loc);
} else
error(loc, "only the length method is supported for array", field.c_str(), "");
} else if (base->isVector()) {
TVectorFields fields;
if (! parseVectorFields(loc, field, base->getVectorSize(), fields)) {
fields.num = 1;
fields.offsets[0] = 0;
}
if (base->getType().getQualifier().storage == EvqConst) { // constant folding for vector fields
result = addConstVectorNode(fields, base, loc);
if (result == 0)
result = base;
else
result->setType(TType(base->getBasicType(), EvqConst, (int) (field).size()));
} else {
if (fields.num == 1) {
TConstUnionArray unionArray(1);
unionArray[0].setIConst(fields.offsets[0]);
TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EvqConst), loc);
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision));
} else {
TString vectorString = field;
TIntermTyped* index = intermediate.addSwizzle(fields, loc);
result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, (int) vectorString.size()));
}
}
} else if (base->isMatrix())
error(loc, "field selection not allowed on matrix", ".", "");
else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
bool fieldFound = false;
TTypeList* fields = base->getType().getStruct();
if (fields == 0)
error(loc, "structure has no fields", "Internal Error", "");
else {
unsigned int i;
for (i = 0; i < fields->size(); ++i) {
if ((*fields)[i].type->getFieldName() == field) {
fieldFound = true;
break;
}
}
if (fieldFound) {
if (base->getType().getQualifier().storage == EvqConst) {
result = addConstStruct(field, base, loc);
if (result == 0)
result = base;
else {
result->setType(*(*fields)[i].type);
// change the qualifier of the return type, not of the structure field
// as the structure definition is shared between various structures.
result->getWritableType().getQualifier().storage = EvqConst;
}
} else {
TConstUnionArray unionArray(1);
unionArray[0].setIConst(i);
TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EvqConst), loc);
result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
result->setType(*(*fields)[i].type);
}
} else
error(loc, " no such field in structure", field.c_str(), "");
}
} else
error(loc, " dot operator requires structure, array, vector, or matrix on left hand side", field.c_str(), "");
return result;
}
//
// Handle seeing a function declarator in the grammar. This is the precursor
// to recognizing a function prototype or function definition.
//
TFunction* TParseContext::handleFunctionDeclarator(TSourceLoc loc, TFunction& function)
{
// ES can't declare prototypes inside functions
if (! symbolTable.atGlobalLevel())
requireProfile(loc, ~EEsProfile, "local function declaration");
//
// Multiple declarations of the same function are allowed.
//
// If this is a definition, the definition production code will check for redefinitions
// (we don't know at this point if it's a definition or not).
//
// Redeclarations (full prototype match) are allowed. But, return types and parameter qualifiers must match.
//
// ES does not allow redeclaring or hiding of built-in functions.
//
bool builtIn;
TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
if (symbol && symbol->getAsFunction() && builtIn)
requireNotRemoved(loc, EEsProfile, 300, "redeclaration of built-in function");
const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
if (prevDec) {
if (prevDec->getType() != function.getType()) {
error(loc, "overloaded functions must have the same return type", function.getType().getCompleteTypeString().c_str(), "");
}
for (int i = 0; i < prevDec->getParamCount(); ++i) {
if ((*prevDec)[i].type->getQualifier().storage != function[i].type->getQualifier().storage)
error(loc, "overloaded functions must have the same parameter qualifiers", function[i].type->getStorageQualifierString(), "");
}
}
if (! symbolTable.insert(function))
error(loc, "illegal redeclaration", function.getName().c_str(), "");
//
// If this is a redeclaration, it could also be a definition,
// in which case, we want to use the variable names from this one, and not the one that's
// being redeclared. So, pass back this declaration, not the one in the symbol table.
//
return &function;
}
//
// Handle seeing a function prototype in the grammar. This includes what may
// become a full definition, as a full definition looks like a prototype
// followed by a body. The body is handled after this function
// returns, when present.
//
TIntermAggregate* TParseContext::handleFunctionPrototype(TSourceLoc loc, TFunction& function)
{
currentCaller = function.getMangledName();
TSymbol* symbol = symbolTable.find(function.getMangledName());
TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
if (! prevDec)
error(loc, "can't find function name", function.getName().c_str(), "");
//
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
// as it would have just been put in the symbol table. Otherwise, we're looking up
// an earlier occurance.
//
if (prevDec && prevDec->isDefined()) {
//
// Then this function already has a body.
//
error(loc, "function already has a body", function.getName().c_str(), "");
}
if (prevDec) {
prevDec->setDefined();
//
// Remember the return type for later checking for RETURN statements.
//
currentFunctionType = &(prevDec->getType());
} else
currentFunctionType = new TType(EbtVoid);
functionReturnsValue = false;
//
// Raise error message if main function takes any parameters or returns anything other than void
//
if (function.getName() == "main") {
if (function.getParamCount() > 0)
error(loc, "function cannot take any parameter(s)", function.getName().c_str(), "");
if (function.getType().getBasicType() != EbtVoid)
error(loc, "", function.getType().getCompleteTypeString().c_str(), "main function cannot return a value");
intermediate.addMainCount();
}
//
// New symbol table scope for body of function plus its arguments
//
symbolTable.push();
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the HIL, so lower level code
// knows where to find parameters.
//
TIntermAggregate* paramNodes = new TIntermAggregate;
for (int i = 0; i < function.getParamCount(); i++) {
TParameter& param = function[i];
if (param.name != 0) {
TVariable *variable = new TVariable(param.name, *param.type);
//
// Insert the parameters with name in the symbol table.
//
if (! symbolTable.insert(*variable)) {
error(loc, "redefinition", variable->getName().c_str(), "");
delete variable;
}
//
// Transfer ownership of name pointer to symbol table.
//
param.name = 0;
//
// Add the parameter to the HIL
//
paramNodes = intermediate.growAggregate(paramNodes,
intermediate.addSymbol(variable->getUniqueId(),
variable->getName(),
variable->getType(), loc),
loc);
} else
paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(0, "", *param.type, loc), loc);
}
intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
loopNestingLevel = 0;
return paramNodes;
}
//
// Handle seeing a function call in the grammar.
//
TIntermTyped* TParseContext::handleFunctionCall(TSourceLoc loc, TFunction* fnCall, TIntermNode* intermNode, TIntermAggregate* intermAggregate)
{
TIntermTyped* result = 0;
TOperator op = fnCall->getBuiltInOp();
if (op == EOpArrayLength) {
if (fnCall->getParamCount() > 0)
error(loc, "method does not accept any arguments", fnCall->getName().c_str(), "");
int length;
if (intermNode->getAsTyped() == 0 || ! intermNode->getAsTyped()->getType().isArray() || intermNode->getAsTyped()->getType().getArraySize() == 0) {
error(loc, "", fnCall->getName().c_str(), "array must be declared with a size before using this method");
length = 1;
} else
length = intermNode->getAsTyped()->getType().getArraySize();
TConstUnionArray unionArray(1);
unionArray[0].setIConst(length);
result = intermediate.addConstantUnion(unionArray, TType(EbtInt, EvqConst), loc);
} else if (op != EOpNull) {
//
// Then this should be a constructor.
// Don't go through the symbol table for constructors.
// Their parameters will be verified algorithmically.
//
TType type(EbtVoid); // use this to get the type back
if (! constructorError(loc, intermNode, *fnCall, op, type)) {
//
// It's a constructor, of type 'type'.
//
result = addConstructor(loc, intermNode, type, op);
if (result == 0)
error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
}
} else {
//
// Not a constructor. Find it in the symbol table.
//
const TFunction* fnCandidate;
bool builtIn;
fnCandidate = findFunction(loc, fnCall, &builtIn);
if (fnCandidate) {
//
// A declared function. But, it might still map to a built-in
// operation.
//
op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull) {
// A function call mapped to a built-in operation.
result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, intermNode, fnCandidate->getType());
if (result == 0) {
error(intermNode->getLoc(), " wrong operand type", "Internal Error",
"built in unary operator function. Type: %s",
static_cast<TIntermTyped*>(intermNode)->getCompleteString().c_str());
}
} else {
// This is a function call not mapped to built-in operation
result = intermediate.setAggregateOperator(intermAggregate, EOpFunctionCall, fnCandidate->getType(), loc);
result->getAsAggregate()->setName(fnCandidate->getMangledName());
// this is how we know whether the given function is a built-in function or a user-defined function
// if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
// if builtIn == true, it's definitely a built-in function with EOpNull
if (! builtIn) {
result->getAsAggregate()->setUserDefined();
intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName());
}
TStorageQualifier qual;
TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
qual = (*fnCandidate)[i].type->getQualifier().storage;
if (qual == EvqOut || qual == EvqInOut) {
if (lValueErrorCheck(result->getLoc(), "assign", result->getAsAggregate()->getSequence()[i]->getAsTyped()))
error(intermNode->getLoc(), "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error", "");
}
qualifierList.push_back(qual);
}
// built-in texturing functions get their return value precision from the precision of the sampler
if (builtIn && fnCandidate->getType().getQualifier().precision == EpqNone &&
fnCandidate->getParamCount() > 0 && (*fnCandidate)[0].type->getBasicType() == EbtSampler)
result->getQualifier().precision = result->getAsAggregate()->getSequence()[0]->getAsTyped()->getQualifier().precision;
}
} else {
// error message was put out by PaFindFunction()
// Put on a dummy node for error recovery
TConstUnionArray unionArray(1);
unionArray[0].setDConst(0.0);
result = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EvqConst), loc);
}
}
// generic error recovery
// TODO: coding: localize all the error recoveries that look like this
if (result == 0) {
TConstUnionArray unionArray(1);
unionArray[0].setDConst(0.0);
result = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EvqConst), loc);
}
return result;
}
//
// Handle seeing a built-in-type constructor call in the grammar.
//
TFunction* TParseContext::handleConstructorCall(TSourceLoc loc, TPublicType& publicType)
{
publicType.qualifier.precision = EpqNone;
TType type(publicType);
if (type.isArray()) {
profileRequires(loc, ENoProfile, 120, GL_3DL_array_objects, "arrayed constructor");
profileRequires(loc, EEsProfile, 300, 0, "arrayed constructor");
}
TOperator op = mapTypeToConstructorOp(type);
if (op == EOpNull) {
error(loc, "cannot construct this type", TType::getBasicString(publicType.basicType), "");
op = EOpConstructFloat;
publicType.basicType = EbtFloat;
TType errorType(publicType);
type.shallowCopy(errorType);
}
TString empty("");
return new TFunction(&empty, type, op);
}
//
// Given a type, find what operation would construct it.
//
TOperator TParseContext::mapTypeToConstructorOp(const TType& type)
{
if (type.getStruct())
return EOpConstructStruct;
TOperator op;
switch (type.getBasicType()) {
case EbtFloat:
if (type.isMatrix()) {
switch (type.getMatrixCols()) {
case 2:
switch (type.getMatrixRows()) {
case 2: op = EOpConstructMat2x2; break;
case 3: op = EOpConstructMat2x3; break;
case 4: op = EOpConstructMat2x4; break;
default: break; // some compilers want this
}
break;
case 3:
switch (type.getMatrixRows()) {
case 2: op = EOpConstructMat3x2; break;
case 3: op = EOpConstructMat3x3; break;
case 4: op = EOpConstructMat3x4; break;
default: break; // some compilers want this
}
break;
case 4:
switch (type.getMatrixRows()) {
case 2: op = EOpConstructMat4x2; break;
case 3: op = EOpConstructMat4x3; break;
case 4: op = EOpConstructMat4x4; break;
default: break; // some compilers want this
}
break;
default: break; // some compilers want this
}
} else {
switch(type.getVectorSize()) {
case 1: op = EOpConstructFloat; break;
case 2: op = EOpConstructVec2; break;
case 3: op = EOpConstructVec3; break;
case 4: op = EOpConstructVec4; break;
default: break; // some compilers want this
}
}
break;
case EbtDouble:
if (type.getMatrixCols()) {
switch (type.getMatrixCols()) {
case 2:
switch (type.getMatrixRows()) {
case 2: op = EOpConstructDMat2x2; break;
case 3: op = EOpConstructDMat2x3; break;
case 4: op = EOpConstructDMat2x4; break;
default: break; // some compilers want this
}
break;
case 3:
switch (type.getMatrixRows()) {
case 2: op = EOpConstructDMat3x2; break;
case 3: op = EOpConstructDMat3x3; break;
case 4: op = EOpConstructDMat3x4; break;
default: break; // some compilers want this
}
break;
case 4:
switch (type.getMatrixRows()) {
case 2: op = EOpConstructDMat4x2; break;
case 3: op = EOpConstructDMat4x3; break;
case 4: op = EOpConstructDMat4x4; break;
default: break; // some compilers want this
}
break;
}
} else {
switch(type.getVectorSize()) {
case 1: op = EOpConstructDouble; break;
case 2: op = EOpConstructDVec2; break;
case 3: op = EOpConstructDVec3; break;
case 4: op = EOpConstructDVec4; break;
default: break; // some compilers want this
}
}
break;
case EbtInt:
switch(type.getVectorSize()) {
case 1: op = EOpConstructInt; break;
case 2: op = EOpConstructIVec2; break;
case 3: op = EOpConstructIVec3; break;
case 4: op = EOpConstructIVec4; break;
default: break; // some compilers want this
}
break;
case EbtUint:
switch(type.getVectorSize()) {
case 1: op = EOpConstructUint; break;
case 2: op = EOpConstructUVec2; break;
case 3: op = EOpConstructUVec3; break;
case 4: op = EOpConstructUVec4; break;
default: break; // some compilers want this
}
break;
case EbtBool:
switch(type.getVectorSize()) {
case 1: op = EOpConstructBool; break;
case 2: op = EOpConstructBVec2; break;
case 3: op = EOpConstructBVec3; break;
case 4: op = EOpConstructBVec4; break;
default: break; // some compilers want this
}
break;
default:
op = EOpNull;
break;
}
return op;
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(TSourceLoc loc, const char* op, TString left, TString right)
{
error(loc, "", op, "cannot convert from '%s' to '%s'",
right.c_str(), left.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(TSourceLoc loc, const char* op, TString operand)
{
error(loc, " wrong operand type", op,
"no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
op, operand.c_str());
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(TSourceLoc loc, const char* op, TString left, TString right)
{
error(loc, " wrong operand types:", op,
"no operation '%s' exists that takes a left-hand operand of type '%s' and "
"a right operand of type '%s' (or there is no acceptable conversion)",
op, left.c_str(), right.c_str());
}
//
// A basic type of EbtVoid is a key that the name string was seen in the source, but
// it was not found as a variable in the symbol table. If so, give the error
// message and insert a dummy variable in the symbol table to prevent future errors.
//
void TParseContext::variableCheck(TIntermTyped*& nodePtr)
{
TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
if (! symbol)
return;
if (symbol->getType().getBasicType() == EbtVoid) {
error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
// Add to symbol table to prevent future error messages on the same name
TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
symbolTable.insert(*fakeVariable);
// substitute a symbol node for this new variable
nodePtr = intermediate.addSymbol(fakeVariable->getUniqueId(),
fakeVariable->getName(),
fakeVariable->getType(), symbol->getLoc());
} else {
switch (symbol->getQualifier().storage) {
case EvqPointCoord:
profileRequires(symbol->getLoc(), ENoProfile, 120, 0, "gl_PointCoord");
break;
default: break; // some compilers want this
}
}
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if the was an error.
//
bool TParseContext::lValueErrorCheck(TSourceLoc loc, const char* op, TIntermTyped* node)
{
TIntermSymbol* symNode = node->getAsSymbolNode();
TIntermBinary* binaryNode = node->getAsBinaryNode();
if (binaryNode) {
bool errorReturn;
switch(binaryNode->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
return lValueErrorCheck(loc, op, binaryNode->getLeft());
case EOpVectorSwizzle:
errorReturn = lValueErrorCheck(loc, op, binaryNode->getLeft());
if (!errorReturn) {
int offset[4] = {0,0,0,0};
TIntermTyped* rightNode = binaryNode->getRight();
TIntermAggregate *aggrNode = rightNode->getAsAggregate();
for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
p != aggrNode->getSequence().end(); p++) {
int value = (*p)->getAsTyped()->getAsConstantUnion()->getConstArray()[0].getIConst();
offset[value]++;
if (offset[value] > 1) {
error(loc, " l-value of swizzle cannot have duplicate components", op, "", "");
return true;
}
}
}
return errorReturn;
default:
break;
}
error(loc, " l-value required", op, "", "");
return true;
}
const char* symbol = 0;
if (symNode != 0)
symbol = symNode->getName().c_str();
const char* message = 0;
switch (node->getQualifier().storage) {
case EvqConst: message = "can't modify a const"; break;
case EvqConstReadOnly: message = "can't modify a const"; break;
case EvqVaryingIn: message = "can't modify shader input"; break;
case EvqUniform: message = "can't modify a uniform"; break;
case EvqInstanceId: message = "can't modify gl_InstanceID"; break;
case EvqVertexId: message = "can't modify gl_VertexID"; break;
case EvqFace: message = "can't modify gl_FrontFace"; break;
case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
default:
//
// Type that can't be written to?
//
switch (node->getBasicType()) {
case EbtSampler:
message = "can't modify a sampler";
break;
case EbtVoid:
message = "can't modify void";
break;
default:
break;
}
}
if (message == 0 && binaryNode == 0 && symNode == 0) {
error(loc, " l-value required", op, "", "");
return true;
}
//
// Everything else is okay, no error.
//
if (message == 0)
return false;
//
// If we get here, we have an error and a message.
//
if (symNode)
error(loc, " l-value required", op, "\"%s\" (%s)", symbol, message);
else
error(loc, " l-value required", op, "(%s)", message);
return true;
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
void TParseContext::constantValueCheck(TIntermTyped* node, const char* token)
{
if (node->getQualifier().storage != EvqConst)
error(node->getLoc(), "constant expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
void TParseContext::integerCheck(TIntermTyped* node, const char* token)
{
if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar() && ! node->isArray())
return;
error(node->getLoc(), "scalar integer expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
void TParseContext::globalCheck(TSourceLoc loc, const char* token)
{
if (! symbolTable.atGlobalLevel())
error(loc, "not allowed in nested scope", token, "");
}
//
// If it starts "gl_" or has double underscore, it's a reserved name.
// Except, if the symbol table is at a built-in level,
// which is when we are parsing built-ins.
//
bool TParseContext::reservedErrorCheck(TSourceLoc loc, const TString& identifier)
{
if (! symbolTable.atBuiltInLevel()) {
if (identifier.compare(0, 3, "gl_") == 0) {
error(loc, "reserved built-in name", "gl_", "");
return true;
}
if (identifier.find("__") != TString::npos) {
error(loc, "Two consecutive underscores are reserved for future use.", identifier.c_str(), "", "");
return true;
}
}
return false;
}
//
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor. Also returns the type of
// the constructor.
//
// Returns true if there was an error in construction.
//
bool TParseContext::constructorError(TSourceLoc loc, TIntermNode* node, TFunction& function, TOperator op, TType& type)
{
type.shallowCopy(function.getType());
bool constructingMatrix = false;
switch(op) {
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
constructingMatrix = true;
break;
default:
break;
}
//
// Note: It's okay to have too many components available, but not okay to have unused
// arguments. 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument, so 'overfull' will become true.
//
int size = 0;
bool constType = true;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (int i = 0; i < function.getParamCount(); ++i) {
size += function[i].type->getObjectSize();
if (constructingMatrix && function[i].type->isMatrix())
matrixInMatrix = true;
if (full)
overFull = true;
if (op != EOpConstructStruct && ! type.isArray() && size >= type.getObjectSize())
full = true;
if (function[i].type->getQualifier().storage != EvqConst)
constType = false;
if (function[i].type->isArray())
arrayArg = true;
}
if (constType)
type.getQualifier().storage = EvqConst;
if (type.isArray()) {
if (type.getArraySize() == 0) {
// auto adapt the constructor type to the number of arguments
type.changeArraySize(function.getParamCount());
} else if (type.getArraySize() != function.getParamCount()) {
error(loc, "array constructor needs one argument per array element", "constructor", "");
return true;
}
}
if (arrayArg && op != EOpConstructStruct) {
error(loc, "constructing from a non-dereferenced array", "constructor", "");
return true;
}
if (matrixInMatrix && ! type.isArray()) {
profileRequires(loc, ENoProfile, 120, 0, "constructing matrix from matrix");
return false;
}
if (overFull) {
error(loc, "too many arguments", "constructor", "");
return true;
}
if (op == EOpConstructStruct && ! type.isArray() && type.getStruct()->size() != function.getParamCount()) {
error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
return true;
}
if ((op != EOpConstructStruct && size != 1 && size < type.getObjectSize()) ||
(op == EOpConstructStruct && size < type.getObjectSize())) {
error(loc, "not enough data provided for construction", "constructor", "");
return true;
}
TIntermTyped* typed = node->getAsTyped();
if (typed == 0) {
error(loc, "constructor argument does not have a type", "constructor", "");
return true;
}
if (op != EOpConstructStruct && typed->getBasicType() == EbtSampler) {
error(loc, "cannot convert a sampler", "constructor", "");
return true;
}
if (typed->getBasicType() == EbtVoid) {
error(loc, "cannot convert a void", "constructor", "");
return true;
}
return false;
}
// Checks to see if a void variable has been declared and raise an error message for such a case
//
// returns true in case of an error
//
bool TParseContext::voidErrorCheck(TSourceLoc loc, const TString& identifier, const TBasicType basicType)
{
if (basicType == EbtVoid) {
error(loc, "illegal use of type 'void'", identifier.c_str(), "");
return true;
}
return false;
}
// Checks to see if the node (for the expression) contains a scalar boolean expression or not
void TParseContext::boolCheck(TSourceLoc loc, const TIntermTyped* type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
error(loc, "boolean expression expected", "", "");
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
void TParseContext::boolCheck(TSourceLoc loc, const TPublicType& pType)
{
if (pType.basicType != EbtBool || pType.arraySizes || pType.matrixCols > 1 || (pType.vectorSize > 1))
error(loc, "boolean expression expected", "", "");
}
bool TParseContext::samplerErrorCheck(TSourceLoc loc, const TPublicType& pType, const char* reason)
{
if (pType.basicType == EbtStruct) {
if (containsSampler(*pType.userDef)) {
error(loc, reason, TType::getBasicString(pType.basicType), "(structure cannot contain a sampler or image)");
return true;
}
return false;
} else if (pType.basicType == EbtSampler) {
error(loc, reason, TType::getBasicString(pType.basicType), "");
return true;
}
return false;
}
//
// move from parameter/unknown qualifiers to pipeline in/out qualifiers
//
void TParseContext::pipeInOutFix(TSourceLoc loc, TQualifier& qualifier)
{
switch (qualifier.storage) {
case EvqIn:
profileRequires(loc, ENoProfile, 130, 0, "in for stage inputs");
profileRequires(loc, EEsProfile, 300, 0, "in for stage inputs");
qualifier.storage = EvqVaryingIn;
break;
case EvqOut:
profileRequires(loc, ENoProfile, 130, 0, "out for stage outputs");
profileRequires(loc, EEsProfile, 300, 0, "out for stage outputs");
qualifier.storage = EvqVaryingOut;
break;
case EvqInOut:
qualifier.storage = EvqVaryingIn;
error(loc, "cannot use 'inout' at global scope", "", "");
break;
default:
break;
}
}
void TParseContext::globalQualifierCheck(TSourceLoc loc, const TQualifier& qualifier, const TPublicType& publicType)
{
if (! symbolTable.atGlobalLevel())
return;
// Do non-in/out error checks
if (qualifier.storage != EvqUniform && samplerErrorCheck(loc, publicType, "samplers and images must be uniform"))
return;
if (qualifier.storage != EvqVaryingIn && qualifier.storage != EvqVaryingOut)
return;
// now, knowing it is a shader in/out, do all the in/out semantic checks
if (publicType.basicType == EbtBool) {
error(loc, "cannot be bool", GetStorageQualifierString(qualifier.storage), "");
return;
}
if (language == EShLangVertex && qualifier.storage == EvqVaryingIn) {
if (publicType.basicType == EbtStruct) {
error(loc, "cannot be a structure or array", GetStorageQualifierString(qualifier.storage), "");
return;
}
if (publicType.arraySizes) {
requireProfile(loc, ~EEsProfile, "vertex input arrays");
profileRequires(loc, ENoProfile, 150, 0, "vertex input arrays");
}
}
if (language == EShLangFragment && qualifier.storage == EvqVaryingOut) {
profileRequires(loc, EEsProfile, 300, 0, "fragment shader output");
if (publicType.basicType == EbtStruct) {
error(loc, "cannot be a structure", GetStorageQualifierString(qualifier.storage), "");
return;
}
}
if (publicType.basicType == EbtInt || publicType.basicType == EbtUint || publicType.basicType == EbtDouble) {
profileRequires(loc, EEsProfile, 300, 0, "shader input/output");
if (! qualifier.flat) {
if (qualifier.storage == EvqVaryingIn && language == EShLangFragment)
error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage));
else if (qualifier.storage == EvqVaryingOut && language == EShLangVertex && version == 300)
error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage));
}
}
if (language == EShLangVertex && qualifier.storage == EvqVaryingIn &&
(qualifier.isAuxiliary() || qualifier.isInterpolation() || qualifier.isMemory() || qualifier.invariant))
error(loc, "vertex input cannot be further qualified", "", "");
}
//
// Merge characteristics of the 'src' qualifier into the 'dst'.
// If there is duplication, issue error messages, unless 'force'
// is specified, which means to just override default settings.
//
// Also, when force is false, it will be assumed that 'src' follows
// 'dst', for the purpose of error checking order for versions
// that require specific orderings of qualifiers.
//
void TParseContext::mergeQualifiers(TSourceLoc loc, TQualifier& dst, const TQualifier& src, bool force)
{
// Multiple auxiliary qualifiers (mostly done later by 'individual qualifiers')
if (src.isAuxiliary() && dst.isAuxiliary())
error(loc, "can only have one auxiliary qualifier (centroid, patch, and sample)", "", "");
// Multiple interpolation qualifiers (mostly done later by 'individual qualifiers')
if (src.isInterpolation() && dst.isInterpolation())
error(loc, "can only have one interpolation qualifier (flat, smooth, noperspective)", "", "");
// Ordering
if (! force && version < 420) {
// non-function parameters
if (src.invariant && (dst.isInterpolation() || dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone))
error(loc, "invariant qualifier must appear first", "", "");
else if (src.isInterpolation() && (dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone))
error(loc, "interpolation qualifiers must appear before storage and precision qualifiers", "", "");
else if (src.isAuxiliary() && (dst.storage != EvqTemporary || dst.precision != EpqNone))
error(loc, "Auxiliary qualifiers (centroid, patch, and sample) must appear before storage and precision qualifiers", "", "");
else if (src.storage != EvqTemporary && (dst.precision != EpqNone))
error(loc, "precision qualifier must appear as last qualifier", "", "");
// function parameters
if (src.storage == EvqConst && (dst.storage == EvqIn || dst.storage == EvqOut))
error(loc, "in/out must appear before const", "", "");
}
// Storage qualification
if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
dst.storage = src.storage;
else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
(dst.storage == EvqOut && src.storage == EvqIn))
dst.storage = EvqInOut;
else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
(dst.storage == EvqConst && src.storage == EvqIn))
dst.storage = EvqConstReadOnly;
else if (src.storage != EvqTemporary)
error(loc, "too many storage qualifiers", GetStorageQualifierString(src.storage), "");
// Precision qualifiers
if (! force && src.precision != EpqNone && dst.precision != EpqNone)
error(loc, "only one precision qualifier allowed", GetPrecisionQualifierString(src.precision), "");
if (dst.precision == EpqNone || (force && src.precision != EpqNone))
dst.precision = src.precision;
// Layout qualifiers
mergeLayoutQualifiers(loc, dst, src);
// individual qualifiers
bool repeated = false;
#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
MERGE_SINGLETON(invariant);
MERGE_SINGLETON(centroid);
MERGE_SINGLETON(smooth);
MERGE_SINGLETON(flat);
MERGE_SINGLETON(nopersp);
MERGE_SINGLETON(patch);
MERGE_SINGLETON(sample);
MERGE_SINGLETON(shared);
MERGE_SINGLETON(coherent);
MERGE_SINGLETON(volatil);
MERGE_SINGLETON(restrict);
MERGE_SINGLETON(readonly);
MERGE_SINGLETON(writeonly);
if (repeated)
error(loc, "replicated qualifiers", "", "");
}
void TParseContext::setDefaultPrecision(TSourceLoc loc, TPublicType& publicType, TPrecisionQualifier qualifier)
{
TBasicType basicType = publicType.basicType;
if (basicType == EbtSampler) {
defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)] = qualifier;
return; // all is well
}
if (basicType == EbtInt || basicType == EbtFloat) {
if (publicType.isScalar()) {
defaultPrecision[basicType] = qualifier;
if (basicType == EbtInt)
defaultPrecision[EbtUint] = qualifier;
return; // all is well
}
}
error(loc, "cannot apply precision statement to this type; use 'float', 'int' or a sampler type", TType::getBasicString(basicType), "");
}
// used to flatten the sampler type space into a single dimension
// correlates with the declaration of defaultSamplerPrecision[]
int TParseContext::computeSamplerTypeIndex(TSampler& sampler)
{
int arrayIndex = sampler.arrayed ? 1 : 0;
int shadowIndex = sampler.shadow ? 1 : 0;
return EsdNumDims * (EbtNumTypes * (2 * arrayIndex + shadowIndex) + sampler.type) + sampler.dim;
}
TPrecisionQualifier TParseContext::getDefaultPrecision(TPublicType& publicType)
{
if (publicType.basicType == EbtSampler)
return defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)];
else
return defaultPrecision[publicType.basicType];
}
void TParseContext::precisionQualifierCheck(TSourceLoc loc, TPublicType& publicType)
{
// Built-in symbols are allowed some ambiguous precisions, to be pinned down
// later by context.
if (profile != EEsProfile || parsingBuiltins)
return;
if (publicType.basicType == EbtFloat || publicType.basicType == EbtUint || publicType.basicType == EbtInt || publicType.basicType == EbtSampler) {
if (publicType.qualifier.precision == EpqNone) {
if (messages & EShMsgRelaxedErrors)
warn(loc, "type requires declaration of default precision qualifier", TType::getBasicString(publicType.basicType), "substituting 'mediump'");
else
error(loc, "type requires declaration of default precision qualifier", TType::getBasicString(publicType.basicType), "");
publicType.qualifier.precision = EpqMedium;
defaultPrecision[publicType.basicType] = EpqMedium;
}
} else if (publicType.qualifier.precision != EpqNone)
error(loc, "type cannot have precision qualifier", TType::getBasicString(publicType.basicType), "");
}
void TParseContext::parameterSamplerCheck(TSourceLoc loc, TStorageQualifier qualifier, const TType& type)
{
if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct && type.getBasicType() == EbtSampler)
error(loc, "samplers cannot be output parameters", type.getCompleteTypeString().c_str(), "");
}
bool TParseContext::containsSampler(const TType& type)
{
if (type.getBasicType() == EbtSampler)
return true;
if (type.getBasicType() == EbtStruct) {
TTypeList& structure = *type.getStruct();
for (unsigned int i = 0; i < structure.size(); ++i) {
if (containsSampler(*structure[i].type))
return true;
}
}
return false;
}
//
// Do size checking for an array type's size.
//
void TParseContext::arraySizeCheck(TSourceLoc loc, TIntermTyped* expr, int& size)
{
TIntermConstantUnion* constant = expr->getAsConstantUnion();
if (constant == 0 || (constant->getBasicType() != EbtInt && constant->getBasicType() != EbtUint)) {
error(loc, "array size must be a constant integer expression", "", "");
size = 1;
return;
}
size = constant->getConstArray()[0].getIConst();
if (size <= 0) {
error(loc, "array size must be a positive integer", "", "");
size = 1;
return;
}
}
//
// See if this qualifier can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayQualifierError(TSourceLoc loc, const TQualifier& qualifier)
{
if (qualifier.storage == EvqConst) {
profileRequires(loc, ENoProfile, 120, GL_3DL_array_objects, "const array");
profileRequires(loc, EEsProfile, 300, 0, "const array");
}
if (qualifier.storage == EvqVaryingIn && language == EShLangVertex) {
requireProfile(loc, ~EEsProfile, "vertex input arrays");
profileRequires(loc, ENoProfile, 150, 0, "vertex input arrays");
}
return false;
}
//
// Require array to have size
//
void TParseContext::arraySizeRequiredCheck(TSourceLoc loc, int size)
{
if (size == 0) {
error(loc, "array size required", "", "");
size = 1;
}
}
void TParseContext::arrayDimError(TSourceLoc loc)
{
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "arrays of arrays");
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, 0, "arrays of arrays");
}
void TParseContext::arrayDimCheck(TSourceLoc loc, TArraySizes* sizes1, TArraySizes* sizes2)
{
if ((sizes1 && sizes2) ||
(sizes1 && sizes1->isArrayOfArrays()) ||
(sizes2 && sizes2->isArrayOfArrays()))
arrayDimError(loc);
}
void TParseContext::arrayDimCheck(TSourceLoc loc, const TType* type, TArraySizes* sizes2)
{
if ((type && type->isArray() && sizes2) ||
(sizes2 && sizes2->isArrayOfArrays()))
arrayDimError(loc);
}
//
// Do all the semantic checking for declaring an array, with and
// without a size, and make the right changes to the symbol table.
//
// size == 0 means no specified size.
//
void TParseContext::declareArray(TSourceLoc loc, TString& identifier, const TType& type, TSymbol*& symbol, bool& newDeclaration)
{
if (! symbol) {
bool currentScope;
symbol = symbolTable.find(identifier, 0, &currentScope);
if (symbol == 0 || ! currentScope) {
//
// Successfully process a new definition.
// (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
//
symbol = new TVariable(&identifier, type);
symbolTable.insert(*symbol);
newDeclaration = true;
return;
}
if (symbol->getAsAnonMember()) {
error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
return;
}
}
//
// Process a redeclaration.
//
if (! symbol) {
error(loc, "array variable name expected", identifier.c_str(), "");
return;
}
TType& newType = symbol->getWritableType();
if (! newType.isArray()) {
error(loc, "redeclaring non-array as array", identifier.c_str(), "");
return;
}
if (newType.getArraySize() > 0) {
error(loc, "redeclaration of array with size", identifier.c_str(), "");
return;
}
if (! newType.sameElementType(type)) {
error(loc, "redeclaration of array with a different newType", identifier.c_str(), "");
return;
}
newType.shareArraySizes(type);
}
void TParseContext::updateMaxArraySize(TSourceLoc loc, TIntermNode *node, int index)
{
TIntermSymbol* symbolNode = node->getAsSymbolNode();
if (! symbolNode) {
// TODO: functionality: unsized arrays: handle members of blocks
return;
}
// maybe there is nothing to do...
// TODO: functionality: unsized arrays: is the node sharing the array type with the symbol table?
if (symbolNode->getType().getMaxArraySize() > index)
return;
// something to do...
TSymbol* symbol = symbolTable.find(symbolNode->getName());
assert(symbol);
if (symbol == 0)
return;
if (symbol->getAsFunction()) {
error(loc, "array variable name expected", symbolNode->getName().c_str(), "");
return;
}
// For read-only built-ins, add a new variable for holding the maximum array size of an implicitly-sized shared array.
// TODO: functionality: unsized arrays: is this new array type shared with the node?
if (symbol->isReadOnly())
symbol = symbolTable.copyUp(symbol);
symbol->getWritableType().setMaxArraySize(index + 1);
}
//
// Enforce non-initializer type/qualifier rules.
//
void TParseContext::nonInitConstCheck(TSourceLoc loc, TString& identifier, TType& type)
{
//
// Make the qualifier make sense, given that there is an initializer.
//
if (type.getQualifier().storage == EvqConst ||
type.getQualifier().storage == EvqConstReadOnly) {
type.getQualifier().storage = EvqTemporary;
error(loc, "variables with qualifier 'const' must be initialized", identifier.c_str(), "");
}
}
//
// See if the identifier is a built-in symbol that can be redeclared, and if so,
// copy the symbol table's read-only built-in variable to the current
// global level, where it can be modified based on the passed in type.
//
// Returns 0 if no redeclaration took place; meaning a normal declaration still
// needs to occur for it, not necessarily an error.
//
// Returns a redeclared and type-modified variable if a redeclarated occurred.
//
TSymbol* TParseContext::redeclareBuiltin(TSourceLoc loc, const TString& identifier, bool& newDeclaration)
{
if (profile == EEsProfile || identifier.compare(0, 3, "gl_") != 0 || symbolTable.atBuiltInLevel())
return 0;
// Potentially redeclaring a built-in variable...
if ((identifier == "gl_FragDepth" && version >= 420) ||
(identifier == "gl_PerVertex" && version >= 410) ||
(identifier == "gl_PerFragment" && version >= 410) ||
(identifier == "gl_FragCoord" && version >= 150) ||
(identifier == "gl_ClipDistance" && version >= 130) ||
(identifier == "gl_FrontColor" && version >= 130) ||
(identifier == "gl_BackColor" && version >= 130) ||
(identifier == "gl_FrontSecondaryColor" && version >= 130) ||
(identifier == "gl_BackSecondaryColor" && version >= 130) ||
(identifier == "gl_SecondaryColor" && version >= 130) ||
(identifier == "gl_Color" && version >= 130 && language == EShLangFragment) ||
identifier == "gl_TexCoord") {
// Find the existing symbol, if any.
bool builtIn;
TSymbol* symbol = symbolTable.find(identifier, &builtIn);
// If the symbol was not found, this must be a version/profile/stage
// that doesn't have it.
if (! symbol)
return 0;
// If it wasn't at a built-in level, then it's already been redeclared;
// that is, this is a redeclaration of a redeclaration, reuse that initial
// redeclaration. Otherwise, make the new one.
if (builtIn) {
// Copy the symbol up to make a writable version
newDeclaration = true;
symbol = symbolTable.copyUp(symbol);
}
// Now, modify the type of the copy, as per the type of the current redeclaration.
// TODO: functionality: verify type change is allowed and make the change in type
return symbol;
}
return 0;
}
void TParseContext::paramCheck(TSourceLoc loc, const TStorageQualifier& qualifier, TType* type)
{
switch (qualifier) {
case EvqConst:
case EvqConstReadOnly:
type->getQualifier().storage = EvqConstReadOnly;
break;
case EvqIn:
case EvqOut:
case EvqInOut:
type->getQualifier().storage = qualifier;
break;
case EvqTemporary:
type->getQualifier().storage = EvqIn;
break;
default:
type->getQualifier().storage = EvqIn;
error(loc, "qualifier not allowed on function parameter", GetStorageQualifierString(qualifier), "");
break;
}
}
void TParseContext::nestedBlockCheck(TSourceLoc loc)
{
if (structNestingLevel > 0)
error(loc, "cannot nest a block definition inside a structure or block", "", "");
++structNestingLevel;
}
void TParseContext::nestedStructCheck(TSourceLoc loc)
{
if (structNestingLevel > 0)
error(loc, "cannot nest a structure definition inside a structure or block", "", "");
++structNestingLevel;
}
void TParseContext::arrayObjectCheck(TSourceLoc loc, const TType& type, const char* op)
{
// Some versions don't allow comparing arrays or structures containing arrays
if (type.containsArray()) {
profileRequires(loc, ENoProfile, 120, GL_3DL_array_objects, op);
profileRequires(loc, EEsProfile, 300, 0, op);
}
}
//
// See if this loop satisfies the limitations for ES 2.0 (version 100) for loops in Appendex A:
//
// "The loop index has type int or float.
//
// "The for statement has the form:
// for ( init-declaration ; condition ; expression )
// init-declaration has the form: type-specifier identifier = constant-expression
// condition has the form: loop-index relational_operator constant-expression
// where relational_operator is one of: > >= < <= == or !=
// expression [sic] has one of the following forms:
// loop-index++
// loop-index--
// loop-index += constant-expression
// loop-index -= constant-expression
//
// The body is handled in an AST traversal.
//
void TParseContext::inductiveLoopCheck(TSourceLoc loc, TIntermNode* init, TIntermLoop* loop)
{
// loop index init must exist and be a declaration, which shows up in the AST as an aggregate of size 1 of the declaration
bool badInit = false;
if (! init || ! init->getAsAggregate() || ! init->getAsAggregate()->getSequence().size() == 1)
badInit = true;
TIntermBinary* binaryInit;
if (! badInit) {
// get the declaration assignment
binaryInit = init->getAsAggregate()->getSequence()[0]->getAsBinaryNode();
if (! binaryInit)
badInit = true;
}
if (badInit) {
error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", "");
return;
}
// loop index must be type int or float
if (! binaryInit->getType().isScalar() || (binaryInit->getBasicType() != EbtInt && binaryInit->getBasicType() != EbtFloat)) {
error(loc, "inductive loop requires a scalar 'int' or 'float' loop index", "limitations", "");
return;
}
// init is the form "loop-index = constant"
if (binaryInit->getOp() != EOpAssign || ! binaryInit->getLeft()->getAsSymbolNode() || ! binaryInit->getRight()->getAsConstantUnion()) {
error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", "");
return;
}
// get the unique id of the loop index
int loopIndex = binaryInit->getLeft()->getAsSymbolNode()->getId();
inductiveLoopIds.insert(loopIndex);
// condition's form must be "loop-index relational-operator constant-expression"
bool badCond = ! loop->getTest();
if (! badCond) {
TIntermBinary* binaryCond = loop->getTest()->getAsBinaryNode();
badCond = ! binaryCond;
if (! badCond) {
switch (binaryCond->getOp()) {
case EOpGreaterThan:
case EOpGreaterThanEqual:
case EOpLessThan:
case EOpLessThanEqual:
case EOpEqual:
case EOpNotEqual:
break;
default:
badCond = true;
}
}
if (binaryCond && (! binaryCond->getLeft()->getAsSymbolNode() ||
binaryCond->getLeft()->getAsSymbolNode()->getId() != loopIndex ||
! binaryCond->getRight()->getAsConstantUnion()))
badCond = true;
}
if (badCond) {
error(loc, "inductive-loop condition requires the form \"loop-index <comparison-op> constant-expression\"", "limitations", "");
return;
}
// loop-index++
// loop-index--
// loop-index += constant-expression
// loop-index -= constant-expression
bool badTerminal = ! loop->getTerminal();
if (! badTerminal) {
TIntermUnary* unaryTerminal = loop->getTerminal()->getAsUnaryNode();
TIntermBinary* binaryTerminal = loop->getTerminal()->getAsBinaryNode();
if (unaryTerminal || binaryTerminal) {
switch(loop->getTerminal()->getAsOperator()->getOp()) {
case EOpPostDecrement:
case EOpPostIncrement:
case EOpAddAssign:
case EOpSubAssign:
break;
default:
badTerminal = true;
}
} else
badTerminal = true;
if (binaryTerminal && (! binaryTerminal->getLeft()->getAsSymbolNode() ||
binaryTerminal->getLeft()->getAsSymbolNode()->getId() != loopIndex ||
! binaryTerminal->getRight()->getAsConstantUnion()))
badTerminal = true;
if (unaryTerminal && (! unaryTerminal->getOperand()->getAsSymbolNode() ||
unaryTerminal->getOperand()->getAsSymbolNode()->getId() != loopIndex))
badTerminal = true;
}
if (badTerminal) {
error(loc, "inductive-loop termination requires the form \"loop-index++, loop-index--, loop-index += constant-expression, or loop-index -= constant-expression\"", "limitations", "");
return;
}
// the body
inductiveLoopBodyCheck(loop->getBody(), loopIndex, symbolTable);
}
//
// Do any additional error checking, etc., once we know the parsing is done.
//
void TParseContext::finalize()
{
// Check on array indexes for ES 2.0 (version 100) limitations.
for (size_t i = 0; i < needsIndexLimitationChecking.size(); ++i)
constantIndexExpressionCheck(needsIndexLimitationChecking[i]);
}
//
// Layout qualifier stuff.
//
// Put the id's layout qualification into the public type.
void TParseContext::setLayoutQualifier(TSourceLoc loc, TPublicType& publicType, TString& id)
{
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor))
publicType.qualifier.layoutMatrix = ElmColumnMajor;
else if (id == TQualifier::getLayoutMatrixString(ElmRowMajor))
publicType.qualifier.layoutMatrix = ElmRowMajor;
else if (id == TQualifier::getLayoutPackingString(ElpPacked))
publicType.qualifier.layoutPacking = ElpPacked;
else if (id == TQualifier::getLayoutPackingString(ElpShared))
publicType.qualifier.layoutPacking = ElpShared;
else if (id == TQualifier::getLayoutPackingString(ElpStd140))
publicType.qualifier.layoutPacking = ElpStd140;
else if (id == TQualifier::getLayoutPackingString(ElpStd430))
publicType.qualifier.layoutPacking = ElpStd430;
else if (id == "location")
error(loc, "requires an integer assignment (e.g., location = 4)", "location", "");
else if (id == "binding")
error(loc, "requires an integer assignment (e.g., binding = 4)", "binding", "");
else
error(loc, "unrecognized layout identifier", id.c_str(), "");
}
// Put the id's layout qualifier value into the public type.
void TParseContext::setLayoutQualifier(TSourceLoc loc, TPublicType& publicType, TString& id, int value)
{
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == "location") {
if ((unsigned int)value >= TQualifier::layoutLocationEnd)
error(loc, "value is too large", id.c_str(), "");
else
publicType.qualifier.layoutSlotLocation = value;
} else if (id == "binding")
error(loc, "not supported", "binding", "");
else
error(loc, "there is no such layout identifier taking an assigned value", id.c_str(), "");
// TODO: semantics: error check: make sure locations are non-overlapping across the whole stage
// TODO: semantics: error check: output arrays can only be indexed with a constant (es 300)
}
// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
void TParseContext::mergeLayoutQualifiers(TSourceLoc loc, TQualifier& dst, const TQualifier& src)
{
if (src.layoutMatrix != ElmNone)
dst.layoutMatrix = src.layoutMatrix;
if (src.layoutPacking != ElpNone)
dst.layoutPacking = src.layoutPacking;
if (src.hasLocation())
dst.layoutSlotLocation = src.layoutSlotLocation;
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// Return the function symbol if found, otherwise 0.
//
const TFunction* TParseContext::findFunction(TSourceLoc loc, TFunction* call, bool *builtIn)
{
TSymbol* symbol = symbolTable.find(call->getMangledName(), builtIn);
if (symbol == 0) {
error(loc, "no matching overloaded function found", call->getName().c_str(), "");
return 0;
}
const TFunction* function = symbol->getAsFunction();
if (! function) {
error(loc, "function name expected", call->getName().c_str(), "");
return 0;
}
return function;
}
//
// Do everything necessary to handle a variable (non-block) declaration.
// Either redeclaring a variable, or making a new one, updating the symbol
// table, and all error checking.
//
// Returns a subtree node that computes an initializer, if needed.
// Returns 0 if there is no code to execute for initialization.
//
TIntermNode* TParseContext::declareVariable(TSourceLoc loc, TString& identifier, TPublicType& publicType, TArraySizes* arraySizes, TIntermTyped* initializer)
{
TType type(publicType);
if (voidErrorCheck(loc, identifier, type.getBasicType()))
return 0;
if (! initializer)
nonInitConstCheck(loc, identifier, type);
// Check for redeclaration of built-ins and/or attempting to declare a reserved name
bool newDeclaration = false; // true if a new entry gets added to the symbol table
TSymbol* symbol = redeclareBuiltin(loc, identifier, newDeclaration);
if (! symbol)
reservedErrorCheck(loc, identifier);
// Declare the variable
if (arraySizes) {
// for ES, since size isn't coming from an initializer, it has to be explicitly declared now
if (profile == EEsProfile && ! initializer)
arraySizeRequiredCheck(loc, arraySizes->getSize());
arrayDimCheck(loc, &type, arraySizes);
if (! arrayQualifierError(loc, type.getQualifier())) {
type.setArraySizes(arraySizes);
declareArray(loc, identifier, type, symbol, newDeclaration);
}
if (initializer) {
profileRequires(loc, ENoProfile, 120, GL_3DL_array_objects, "initializer");
profileRequires(loc, EEsProfile, 300, 0, "initializer");
}
} else {
// non-array case
if (! symbol)
symbol = declareNonArray(loc, identifier, type, newDeclaration);
}
// Deal with initializer
TIntermNode* initNode = 0;
if (symbol && initializer) {
TVariable* variable = symbol->getAsVariable();
if (! variable) {
error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
return 0;
}
initNode = executeInitializer(loc, identifier, initializer, variable);
}
// see if it's a linker-level object to track
if (symbol && newDeclaration && symbolTable.atGlobalLevel())
intermediate.addSymbolLinkageNode(linkage, *symbol);
return initNode;
}
//
// Declare a non-array variable, the main point being there is no redeclaration
// for resizing allowed.
//
// Return the successfully declared variable.
//
TVariable* TParseContext::declareNonArray(TSourceLoc loc, TString& identifier, TType& type, bool& newDeclaration)
{
// make a new variable
TVariable* variable = new TVariable(&identifier, type);
// add variable to symbol table
if (! symbolTable.insert(*variable)) {
error(loc, "redefinition", variable->getName().c_str(), "");
return 0;
} else {
newDeclaration = true;
return variable;
}
}
//
// Handle all types of initializers from the grammar.
//
// Returning 0 just means there is no code to execute to handle the
// initializer, which will, for example, be the case for constant initalizers.
//
TIntermNode* TParseContext::executeInitializer(TSourceLoc loc, TString& identifier,
TIntermTyped* initializer, TVariable* variable)
{
//
// Identifier must be of type constant, a global, or a temporary, and
// starting at version 120, desktop allows uniforms to have initializers.
//
TStorageQualifier qualifier = variable->getType().getQualifier().storage;
if (! (qualifier == EvqTemporary || qualifier == EvqGlobal || qualifier == EvqConst ||
(qualifier == EvqUniform && profile != EEsProfile && version >= 120))) {
error(loc, " cannot initialize this type of qualifier ", variable->getType().getStorageQualifierString(), "");
return 0;
}
//
// If the initializer was from braces { ... }, we convert the whole subtree to a
// constructor-style subtree, allowing the rest of the code to operate
// identically for both kinds of initializers.
//
initializer = convertInitializerList(loc, variable->getType(), initializer);
if (! initializer) {
// error recovery; don't leave const without constant values
if (qualifier == EvqConst)
variable->getWritableType().getQualifier().storage = EvqTemporary;
return 0;
}
// Fix arrayness if variable is unsized, getting size from the initializer
if (initializer->getType().isArray() && initializer->getType().getArraySize() > 0 &&
variable->getType().isArray() && variable->getType().getArraySize() == 0)
variable->getWritableType().changeArraySize(initializer->getType().getArraySize());
// Uniform and global consts require a constant initializer
if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
variable->getWritableType().getQualifier().storage = EvqTemporary;
return 0;
}
if (qualifier == EvqConst && symbolTable.atGlobalLevel() && initializer->getType().getQualifier().storage != EvqConst) {
error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
variable->getWritableType().getQualifier().storage = EvqTemporary;
return 0;
}
// Const variables require a constant initializer, depending on version
if (qualifier == EvqConst) {
if (initializer->getType().getQualifier().storage != EvqConst) {
const char* initFeature = "non-constant initializer";
requireProfile(loc, ECoreProfile | ECompatibilityProfile, initFeature);
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 420, GL_ARB_shading_language_420pack, initFeature);
variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
qualifier = EvqConstReadOnly;
}
}
if (qualifier == EvqConst || qualifier == EvqUniform) {
// Compile-time tagging of the variable with it's constant value...
initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
if (! initializer || ! initializer->getAsConstantUnion() || variable->getType() != initializer->getType()) {
error(loc, "non-matching or non-convertible constant type for const initializer",
variable->getType().getStorageQualifierString(), "");
variable->getWritableType().getQualifier().storage = EvqTemporary;
return 0;
}
variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
} else {
// normal assigning of a value to a variable...
TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), loc);
TIntermNode* initNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, loc);
if (! initNode)
assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return initNode;
}
return 0;
}
//
// Reprocess any initalizer-list { ... } parts of the initializer.
// Need to heirarchically assign correct types and implicit
// conversions. Will do this mimicking the same process used for
// creating a constructor-style initializer, ensuring we get the
// same form.
//
TIntermTyped* TParseContext::convertInitializerList(TSourceLoc loc, const TType& type, TIntermTyped* initializer)
{
// Will operate recursively. Once a subtree is found that is constructor style,
// everything below it is already good: Only the "top part" of the initializer
// can be an initializer list, where "top part" can extend for several (or all) levels.
// see if we have bottomed out in the tree within the initializer-list part
TIntermAggregate* initList = initializer->getAsAggregate();
if (! initList || initList->getOp() != EOpNull)
return initializer;
// Of the initializer-list set of nodes, need to process bottom up,
// so recurse deep, then process on the way up.
// Go down the tree here...
if (type.isArray()) {
// The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
// Later on, initializer execution code will deal with array size logic.
TType arrayType;
arrayType.shallowCopy(type);
arrayType.setArraySizes(type);
arrayType.changeArraySize(initList->getSequence().size());
TType elementType;
elementType.shallowCopy(arrayType); // TODO: arrays of arrays: combine this with deref.
elementType.dereference();
for (size_t i = 0; i < initList->getSequence().size(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == 0)
return 0;
}
return addConstructor(loc, initList, arrayType, mapTypeToConstructorOp(arrayType));
} else if (type.getStruct()) {
if (type.getStruct()->size() != initList->getSequence().size()) {
error(loc, "wrong number of structure members", "initializer list", "");
return 0;
}
for (size_t i = 0; i < type.getStruct()->size(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == 0)
return 0;
}
} else if (type.isMatrix()) {
if (type.getMatrixCols() != initList->getSequence().size()) {
error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
return 0;
}
TType vectorType;
vectorType.shallowCopy(type); // TODO: arrays of arrays: combine this with deref.
vectorType.dereference();
for (int i = 0; i < type.getMatrixCols(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == 0)
return 0;
}
} else if (type.isVector()) {
if (type.getVectorSize() != initList->getSequence().size()) {
error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str());
return 0;
}
} else {
error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
return 0;
}
// now that the subtree is processed, process this node
return addConstructor(loc, initList, type, mapTypeToConstructorOp(type));
}
//
// Test for the correctness of the parameters passed to various constructor functions
// and also convert them to the right data type, if allowed and required.
//
// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped* TParseContext::addConstructor(TSourceLoc loc, TIntermNode* node, const TType& type, TOperator op)
{
if (node == 0)
return 0;
TIntermAggregate* aggrNode = node->getAsAggregate();
TTypeList::iterator memberTypes;
if (op == EOpConstructStruct)
memberTypes = type.getStruct()->begin();
TType elementType;
elementType.shallowCopy(type);
if (type.isArray())
elementType.dereference(); // TODO: arrays of arrays: combine this with shallowCopy
bool singleArg;
if (aggrNode) {
if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
singleArg = true;
else
singleArg = false;
} else
singleArg = true;
TIntermTyped *newNode;
if (singleArg) {
// If structure constructor or array constructor is being called
// for only one parameter inside the structure, we need to call constructStruct function once.
if (type.isArray())
newNode = constructStruct(node, elementType, 1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructStruct(node, *(*memberTypes).type, 1, node->getLoc());
else
newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
if (newNode && (type.isArray() || op == EOpConstructStruct))
newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
return newNode;
}
//
// Handle list of arguments.
//
TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
// if the structure constructor contains more than one parameter, then construct
// each parameter
int paramCount = 0; // keeps a track of the constructor parameter number being checked
// for each parameter to the constructor call, check to see if the right type is passed or convert them
// to the right type if possible (and allowed).
// for structure constructors, just check if the right type is passed, no conversion is allowed.
for (TIntermSequence::iterator p = sequenceVector.begin();
p != sequenceVector.end(); p++, paramCount++) {
if (type.isArray())
newNode = constructStruct(*p, elementType, paramCount+1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructStruct(*p, *(memberTypes[paramCount]).type, paramCount+1, node->getLoc());
else
newNode = constructBuiltIn(type, op, *p, node->getLoc(), true);
if (newNode)
*p = newNode;
else
return 0;
}
TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
return constructor;
}
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
// float, then float is converted to int.
//
// Returns 0 for an error or the constructed node.
//
TIntermTyped* TParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermNode* node, TSourceLoc loc, bool subset)
{
TIntermTyped* newNode;
TOperator basicOp;
//
// First, convert types as needed.
//
switch (op) {
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructFloat:
basicOp = EOpConstructFloat;
break;
case EOpConstructDVec2:
case EOpConstructDVec3:
case EOpConstructDVec4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
case EOpConstructDouble:
basicOp = EOpConstructDouble;
break;
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructInt:
basicOp = EOpConstructInt;
break;
case EOpConstructUVec2:
case EOpConstructUVec3:
case EOpConstructUVec4:
case EOpConstructUint:
basicOp = EOpConstructUint;
break;
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructBool:
basicOp = EOpConstructBool;
break;
default:
error(loc, "unsupported construction", "", "");
return 0;
}
newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
if (newNode == 0) {
error(loc, "can't convert", "constructor", "");
return 0;
}
//
// Now, if there still isn't an operation to do the construction, and we need one, add one.
//
// Otherwise, skip out early.
if (subset || (newNode != node && newNode->getType() == type))
return newNode;
// setAggregateOperator will insert a new node for the constructor, as needed.
return intermediate.setAggregateOperator(newNode, op, type, loc);
}
// This function tests for the type of the parameters to the structures constructors. Raises
// an error message if the expected type does not match the parameter passed to the constructor.
//
// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
//
TIntermTyped* TParseContext::constructStruct(TIntermNode* node, const TType& type, int paramCount, TSourceLoc loc)
{
TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
if (! converted || converted->getType() != type) {
error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
return 0;
}
return converted;
}
//
// Do everything needed to add an interface block.
//
void TParseContext::addBlock(TSourceLoc loc, TTypeList& typeList, const TString* instanceName, TArraySizes* arraySizes)
{
// First, error checks
if (reservedErrorCheck(loc, *blockName))
return;
if (instanceName && reservedErrorCheck(loc, *instanceName))
return;
if (profile == EEsProfile && arraySizes)
arraySizeRequiredCheck(loc, arraySizes->getSize());
switch (currentBlockDefaults.storage) {
case EvqBuffer:
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "buffer block");
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, 0, "buffer block");
break;
case EvqUniform:
profileRequires(loc, EEsProfile, 300, 0, "uniform block");
profileRequires(loc, ENoProfile, 140, 0, "uniform block");
break;
case EvqVaryingIn:
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "input block");
break;
case EvqVaryingOut:
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "output block");
break;
default:
error(loc, "only uniform, in, or out interface blocks are supported", blockName->c_str(), "");
return;
}
arrayDimCheck(loc, arraySizes, 0);
// fix and check for qualifiers and types that don't belong within a block
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
TSourceLoc memberLoc = typeList[member].loc;
pipeInOutFix(memberLoc, memberQualifier);
if (memberQualifier.storage != EvqTemporary && memberQualifier.storage != EvqGlobal && memberQualifier.storage != currentBlockDefaults.storage)
error(memberLoc, "member storage qualifier cannot contradict block storage qualifier", typeList[member].type->getFieldName().c_str(), "");
if ((currentBlockDefaults.storage == EvqUniform && memberQualifier.isInterpolation()) || memberQualifier.isAuxiliary())
error(memberLoc, "member of uniform block cannot have an auxiliary or interpolation qualifier", typeList[member].type->getFieldName().c_str(), "");
TBasicType basicType = typeList[member].type->getBasicType();
if (basicType == EbtSampler)
error(memberLoc, "member of block cannot be a sampler type", typeList[member].type->getFieldName().c_str(), "");
}
// Make default block qualification, and adjust the member qualifications
TQualifier defaultQualification;
switch (currentBlockDefaults.storage) {
case EvqBuffer: defaultQualification = globalBufferDefaults; break;
case EvqUniform: defaultQualification = globalUniformDefaults; break;
case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
default: defaultQualification.clear(); break;
}
mergeLayoutQualifiers(loc, defaultQualification, currentBlockDefaults);
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier memberQualification = defaultQualification;
mergeQualifiers(loc, memberQualification, typeList[member].type->getQualifier(), false);
typeList[member].type->getQualifier() = memberQualification;
}
// Build and add the interface block as a new type named blockName
TType blockType(&typeList, *blockName, currentBlockDefaults.storage);
if (arraySizes)
blockType.setArraySizes(arraySizes);
blockType.getQualifier().layoutPacking = defaultQualification.layoutPacking;
//
// Don't make a user-defined type out of block name; that will cause an error
// if the same block name gets reused in a different interface.
//
// "Block names have no other use within a shader
// beyond interface matching; it is a compile-time error to use a block name at global scope for anything
// other than as a block name (e.g., use of a block name for a global variable name or function name is
// currently reserved)."
//
// Use the symbol table to prevent normal reuse of the block's name, as a variable entry,
// whose type is EbtBlock, but without all the structure; that will come from the type
// the instances point to.
//
TType blockNameType(EbtBlock);
TVariable* blockNameVar = new TVariable(blockName, blockNameType);
if (! symbolTable.insert(*blockNameVar)) {
TSymbol* existingName = symbolTable.find(*blockName);
if (existingName->getType().getBasicType() != EbtBlock) {
error(loc, "block name cannot redefine a non-block name", blockName->c_str(), "");
return;
}
}
// Add the variable, as anonymous or named instanceName.
// Make an anonymous variable if no name was provided.
if (! instanceName)
instanceName = NewPoolTString("");
TVariable* variable = new TVariable(instanceName, blockType);
if (! symbolTable.insert(*variable)) {
if (*instanceName == "")
error(loc, "nameless block contains a member that already has a name at global scope", blockName->c_str(), "");
else
error(loc, "block instance name redefinition", variable->getName().c_str(), "");
return;
}
// Save it in the AST for linker use.
intermediate.addSymbolLinkageNode(linkage, *variable);
}
// For an identifier that is already declared, add more qualification to it.
void TParseContext::addQualifierToExisting(TSourceLoc loc, TQualifier qualifier, const TString& identifier)
{
TSymbol* symbol = symbolTable.find(identifier);
if (! symbol) {
error(loc, "identifier not previously declared", identifier.c_str(), "");
return;
}
if (symbol->getAsFunction()) {
error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
return;
}
if (qualifier.isAuxiliary() ||
qualifier.isMemory() ||
qualifier.isInterpolation() ||
qualifier.storage != EvqTemporary ||
qualifier.precision != EpqNone) {
error(loc, "cannot add storage, auxiliary, memory, interpolation, or precision qualifier to an existing variable", identifier.c_str(), "");
return;
}
// For read-only built-ins, add a new symbol for holding the modified qualifier.
// This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
if (symbol->isReadOnly())
symbol = symbolTable.copyUp(symbol);
if (qualifier.invariant)
symbol->getWritableType().getQualifier().invariant = true;
}
void TParseContext::addQualifierToExisting(TSourceLoc loc, TQualifier qualifier, TIdentifierList& identifiers)
{
for (unsigned int i = 0; i < identifiers.size(); ++i)
addQualifierToExisting(loc, qualifier, *identifiers[i]);
}
void TParseContext::updateQualifierDefaults(TQualifier qualifier)
{
switch (qualifier.storage) {
case EvqBuffer:
if (qualifier.layoutMatrix != ElmNone)
globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.layoutPacking != ElpNone)
globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqUniform:
if (qualifier.layoutMatrix != ElmNone)
globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.layoutPacking != ElpNone)
globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqVaryingIn:
if (qualifier.hasLocation())
globalInputDefaults.layoutSlotLocation = qualifier.layoutSlotLocation;
break;
case EvqVaryingOut:
if (qualifier.hasLocation())
globalOutputDefaults.layoutSlotLocation = qualifier.layoutSlotLocation;
break;
default:
// error handling should be done by callers of this function
break;
}
}
void TParseContext::updateQualifierDefaults(TSourceLoc loc, TQualifier qualifier)
{
if (qualifier.isAuxiliary() ||
qualifier.isMemory() ||
qualifier.isInterpolation() ||
qualifier.precision != EpqNone)
error(loc, "cannot use auxiliary, memory, interpolation, or precision qualifier in a standalone qualifier", "", "");
switch (qualifier.storage) {
case EvqUniform:
case EvqVaryingIn:
case EvqVaryingOut:
break;
default:
error(loc, "standalone qualifier requires 'uniform', 'in', or 'out' storage qualification", "", "");
return;
}
updateQualifierDefaults(qualifier);
}
void TParseContext::updateTypedDefaults(TSourceLoc loc, TQualifier qualifier, const TString* id)
{
bool cantHaveId = false;
if (! id) {
if (qualifier.hasLayout())
warn(loc, "cannot set qualifier defaults when using a type and no identifier", "", "");
return;
}
if (qualifier.storage == EvqUniform) {
if (qualifier.layoutMatrix != ElmNone)
error(loc, "cannot specify matrix layout on a variable declaration", id->c_str(), "");
if (qualifier.layoutPacking != ElpNone)
error(loc, "cannot specify packing on a variable declaration", id->c_str(), "");
} else if (qualifier.storage == EvqVaryingIn) {
if (qualifier.hasLayout() && language != EShLangVertex)
error(loc, "can only use location layout qualifier on a vertex input or fragment output", id->c_str(), "");
} else if (qualifier.storage == EvqVaryingOut) {
if (qualifier.hasLayout() && language != EShLangFragment)
error(loc, "can only use location layout qualifier on a vertex input or fragment output", id->c_str(), "");
} else {
if (qualifier.layoutMatrix != ElmNone ||
qualifier.layoutPacking != ElpNone)
error(loc, "layout qualifiers for matrix layout and packing only apply to uniform blocks", id->c_str(), "");
else if (qualifier.hasLocation())
error(loc, "location qualifiers only appy to uniform, in, or out storage qualifiers", id->c_str(), "");
}
if (cantHaveId)
error(loc, "cannot set global layout qualifiers on uniform variable, use just 'uniform' or a block", id->c_str(), "");
updateQualifierDefaults(qualifier);
}
//
// Take the sequence of statements that has been built up since the last case/default,
// put it on the list of top-level nodes for the current (inner-most) switch statement,
// and follow that by the case/default we are on now. (See switch topology comment on
// TIntermSwitch.)
//
void TParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
{
TIntermSequence* switchSequence = switchSequenceStack.back();
if (statements) {
if (switchSequence->size() == 0)
error(statements->getLoc(), "cannot have statements before first case/default label", "switch", "");
statements->setOperator(EOpSequence);
switchSequence->push_back(statements);
}
if (branchNode) {
// check all previous cases for the same label (or both are 'default')
for (unsigned int s = 0; s < switchSequence->size(); ++s) {
TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
if (prevBranch) {
TIntermTyped* prevExpression = prevBranch->getExpression();
TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
if (prevExpression == 0 && newExpression == 0)
error(branchNode->getLoc(), "duplicate label", "default", "");
else if (prevExpression != 0 &&
newExpression != 0 &&
prevExpression->getAsConstantUnion() &&
newExpression->getAsConstantUnion() &&
prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
error(branchNode->getLoc(), "duplicated value", "case", "");
}
}
switchSequence->push_back(branchNode);
}
}
//
// Turn the top-level node sequence built up of wrapupSwitchSubsequence9)
// into a switch node.
//
TIntermNode* TParseContext::addSwitch(TSourceLoc loc, TIntermTyped* expression, TIntermAggregate* lastStatements)
{
profileRequires(loc, EEsProfile, 300, 0, "switch statements");
profileRequires(loc, ENoProfile, 130, 0, "switch statements");
wrapupSwitchSubsequence(lastStatements, 0);
if (expression == 0 ||
(expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
error(loc, "condition must be a scalar integer expression", "switch", "");
// If there is nothing to do, drop the switch but still execute the expression
TIntermSequence* switchSequence = switchSequenceStack.back();
if (switchSequence->size() == 0)
return expression;
if (lastStatements == 0) {
error(loc, "last case/default label must be followed by statements", "switch", "");
return expression;
}
TIntermAggregate* body = new TIntermAggregate(EOpSequence);
body->getSequence() = *switchSequenceStack.back();
body->setLoc(loc);
TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
switchNode->setLoc(loc);
return switchNode;
}
//
// This function returns the tree representation for the vector field(s) being accessed from contant vector.
// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
// a constant matrix.
//
TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc loc)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
TConstUnionArray unionArray;
if (tempConstantNode)
unionArray = tempConstantNode->getConstArray();
else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
error(loc, "Cannot offset into the vector", "Error", "");
return 0;
}
TConstUnionArray constArray(fields.num);
for (int i = 0; i < fields.num; i++) {
if (fields.offsets[i] >= node->getType().getObjectSize()) {
error(loc, "", "[", "vector index out of range '%d'", fields.offsets[i]);
fields.offsets[i] = 0;
}
constArray[i] = unionArray[fields.offsets[i]];
}
typedNode = intermediate.addConstantUnion(constArray, node->getType(), loc);
return typedNode;
}
//
// This function returns the column being accessed from a constant matrix. The values are retrieved from
// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc loc)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
if (index >= node->getType().getMatrixCols()) {
error(loc, "", "[", "matrix field selection out of range '%d'", index);
index = 0;
}
if (tempConstantNode) {
const TConstUnionArray& unionArray = tempConstantNode->getConstArray();
int size = tempConstantNode->getType().getMatrixRows();
// Note: the type is corrected (dereferenced) by the caller
typedNode = intermediate.addConstantUnion(TConstUnionArray(unionArray, size * index, size), tempConstantNode->getType(), loc);
} else {
error(loc, "Cannot offset into the matrix", "Error", "");
return 0;
}
return typedNode;
}
//
// This function returns an element of an array accessed from a constant array. The values are retrieved from
// the symbol table and parse-tree is built for the type of the element. The input
// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc loc)
{
TIntermTyped* typedNode;
TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
TType arrayElementType;
arrayElementType.shallowCopy(node->getType()); // TODO: arrays of arrays: combine this with deref.
arrayElementType.dereference();
if (index >= node->getType().getArraySize() || index < 0) {
error(loc, "", "[", "array index '%d' out of range", index);
index = 0;
}
int arrayElementSize = arrayElementType.getObjectSize();
if (tempConstantNode) {
typedNode = intermediate.addConstantUnion(TConstUnionArray(tempConstantNode->getConstArray(), arrayElementSize * index, arrayElementSize),
tempConstantNode->getType(), loc);
} else {
error(loc, "Cannot offset into the array", "Error", "");
return 0;
}
return typedNode;
}
//
// This function returns the value of a particular field inside a constant structure from the symbol table.
// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
// function and returns the parse-tree with the values of the embedded/nested struct.
//
TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc loc)
{
TTypeList* fields = node->getType().getStruct();
TIntermTyped *typedNode;
int instanceOffset = 0;
int instanceSize;
unsigned int index = 0;
TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
for ( index = 0; index < fields->size(); ++index) {
instanceSize = (*fields)[index].type->getObjectSize();
if ((*fields)[index].type->getFieldName() == identifier)
break;
instanceOffset += instanceSize;
}
if (tempConstantNode) {
typedNode = intermediate.addConstantUnion(TConstUnionArray(tempConstantNode->getConstArray(), instanceOffset, instanceSize),
tempConstantNode->getType(), loc);
// type will be changed in the calling function
} else {
error(loc, "Cannot offset into the structure", "Error", "");
return 0;
}
return typedNode;
}
} // end namespace glslang