Update core data structures to match the engine
This commit is contained in:
@@ -30,12 +30,12 @@
|
||||
|
||||
#include <godot_cpp/variant/aabb.hpp>
|
||||
|
||||
#include <godot_cpp/core/defs.hpp>
|
||||
#include <godot_cpp/variant/string.hpp>
|
||||
#include <godot_cpp/variant/variant.hpp>
|
||||
|
||||
namespace godot {
|
||||
|
||||
real_t AABB::get_area() const {
|
||||
real_t AABB::get_volume() const {
|
||||
return size.x * size.y * size.z;
|
||||
}
|
||||
|
||||
@@ -48,14 +48,19 @@ bool AABB::operator!=(const AABB &p_rval) const {
|
||||
}
|
||||
|
||||
void AABB::merge_with(const AABB &p_aabb) {
|
||||
#ifdef MATH_CHECKS
|
||||
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
|
||||
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
||||
}
|
||||
#endif
|
||||
Vector3 beg_1, beg_2;
|
||||
Vector3 end_1, end_2;
|
||||
Vector3 min, max;
|
||||
|
||||
beg_1 = position;
|
||||
beg_2 = p_aabb.position;
|
||||
end_1 = Vector3(size.x, size.y, size.z) + beg_1;
|
||||
end_2 = Vector3(p_aabb.size.x, p_aabb.size.y, p_aabb.size.z) + beg_2;
|
||||
end_1 = size + beg_1;
|
||||
end_2 = p_aabb.size + beg_2;
|
||||
|
||||
min.x = (beg_1.x < beg_2.x) ? beg_1.x : beg_2.x;
|
||||
min.y = (beg_1.y < beg_2.y) ? beg_1.y : beg_2.y;
|
||||
@@ -74,6 +79,11 @@ bool AABB::is_equal_approx(const AABB &p_aabb) const {
|
||||
}
|
||||
|
||||
AABB AABB::intersection(const AABB &p_aabb) const {
|
||||
#ifdef MATH_CHECKS
|
||||
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
|
||||
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
||||
}
|
||||
#endif
|
||||
Vector3 src_min = position;
|
||||
Vector3 src_max = position + size;
|
||||
Vector3 dst_min = p_aabb.position;
|
||||
@@ -106,6 +116,11 @@ AABB AABB::intersection(const AABB &p_aabb) const {
|
||||
}
|
||||
|
||||
bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip, Vector3 *r_normal) const {
|
||||
#ifdef MATH_CHECKS
|
||||
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
|
||||
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
||||
}
|
||||
#endif
|
||||
Vector3 c1, c2;
|
||||
Vector3 end = position + size;
|
||||
real_t near = -1e20;
|
||||
@@ -149,6 +164,11 @@ bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *
|
||||
}
|
||||
|
||||
bool AABB::intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip, Vector3 *r_normal) const {
|
||||
#ifdef MATH_CHECKS
|
||||
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
|
||||
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
|
||||
}
|
||||
#endif
|
||||
real_t min = 0, max = 1;
|
||||
int axis = 0;
|
||||
real_t sign = 0;
|
||||
@@ -268,14 +288,14 @@ int AABB::get_longest_axis_index() const {
|
||||
|
||||
Vector3 AABB::get_shortest_axis() const {
|
||||
Vector3 axis(1, 0, 0);
|
||||
real_t max_size = size.x;
|
||||
real_t min_size = size.x;
|
||||
|
||||
if (size.y < max_size) {
|
||||
if (size.y < min_size) {
|
||||
axis = Vector3(0, 1, 0);
|
||||
max_size = size.y;
|
||||
min_size = size.y;
|
||||
}
|
||||
|
||||
if (size.z < max_size) {
|
||||
if (size.z < min_size) {
|
||||
axis = Vector3(0, 0, 1);
|
||||
}
|
||||
|
||||
@@ -284,14 +304,14 @@ Vector3 AABB::get_shortest_axis() const {
|
||||
|
||||
int AABB::get_shortest_axis_index() const {
|
||||
int axis = 0;
|
||||
real_t max_size = size.x;
|
||||
real_t min_size = size.x;
|
||||
|
||||
if (size.y < max_size) {
|
||||
if (size.y < min_size) {
|
||||
axis = 1;
|
||||
max_size = size.y;
|
||||
min_size = size.y;
|
||||
}
|
||||
|
||||
if (size.z < max_size) {
|
||||
if (size.z < min_size) {
|
||||
axis = 2;
|
||||
}
|
||||
|
||||
@@ -378,8 +398,24 @@ void AABB::get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const {
|
||||
}
|
||||
}
|
||||
|
||||
Variant AABB::intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const {
|
||||
Vector3 inters;
|
||||
if (intersects_segment(p_from, p_to, &inters)) {
|
||||
return inters;
|
||||
}
|
||||
return Variant();
|
||||
}
|
||||
|
||||
Variant AABB::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const {
|
||||
Vector3 inters;
|
||||
if (intersects_ray(p_from, p_dir, &inters)) {
|
||||
return inters;
|
||||
}
|
||||
return Variant();
|
||||
}
|
||||
|
||||
AABB::operator String() const {
|
||||
return position.operator String() + " - " + size.operator String();
|
||||
return "[P: " + position.operator String() + ", S: " + size + "]";
|
||||
}
|
||||
|
||||
} // namespace godot
|
||||
|
||||
@@ -122,7 +122,7 @@ bool Basis::is_diagonal() const {
|
||||
}
|
||||
|
||||
bool Basis::is_rotation() const {
|
||||
return Math::is_equal_approx(determinant(), (real_t)1, (real_t)UNIT_EPSILON) && is_orthogonal();
|
||||
return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
|
||||
}
|
||||
|
||||
#ifdef MATH_CHECKS
|
||||
@@ -315,7 +315,7 @@ Vector3 Basis::get_scale() const {
|
||||
//
|
||||
// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
|
||||
// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
|
||||
// matrix rows.
|
||||
// matrix elements.
|
||||
//
|
||||
// The rotation part of this decomposition is returned by get_rotation* functions.
|
||||
real_t det_sign = SIGN(determinant());
|
||||
|
||||
@@ -36,77 +36,110 @@
|
||||
namespace godot {
|
||||
|
||||
uint32_t Color::to_argb32() const {
|
||||
uint32_t c = (uint8_t)Math::round(a * 255);
|
||||
uint32_t c = (uint8_t)Math::round(a * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(r * 255);
|
||||
c |= (uint8_t)Math::round(r * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(g * 255);
|
||||
c |= (uint8_t)Math::round(g * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(b * 255);
|
||||
c |= (uint8_t)Math::round(b * 255.0f);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
uint32_t Color::to_abgr32() const {
|
||||
uint32_t c = (uint8_t)Math::round(a * 255);
|
||||
uint32_t c = (uint8_t)Math::round(a * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(b * 255);
|
||||
c |= (uint8_t)Math::round(b * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(g * 255);
|
||||
c |= (uint8_t)Math::round(g * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(r * 255);
|
||||
c |= (uint8_t)Math::round(r * 255.0f);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
uint32_t Color::to_rgba32() const {
|
||||
uint32_t c = (uint8_t)Math::round(r * 255);
|
||||
uint32_t c = (uint8_t)Math::round(r * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(g * 255);
|
||||
c |= (uint8_t)Math::round(g * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(b * 255);
|
||||
c |= (uint8_t)Math::round(b * 255.0f);
|
||||
c <<= 8;
|
||||
c |= (uint8_t)Math::round(a * 255);
|
||||
c |= (uint8_t)Math::round(a * 255.0f);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
uint64_t Color::to_abgr64() const {
|
||||
uint64_t c = (uint16_t)Math::round(a * 65535);
|
||||
uint64_t c = (uint16_t)Math::round(a * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(b * 65535);
|
||||
c |= (uint16_t)Math::round(b * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(g * 65535);
|
||||
c |= (uint16_t)Math::round(g * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(r * 65535);
|
||||
c |= (uint16_t)Math::round(r * 65535.0f);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
uint64_t Color::to_argb64() const {
|
||||
uint64_t c = (uint16_t)Math::round(a * 65535);
|
||||
uint64_t c = (uint16_t)Math::round(a * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(r * 65535);
|
||||
c |= (uint16_t)Math::round(r * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(g * 65535);
|
||||
c |= (uint16_t)Math::round(g * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(b * 65535);
|
||||
c |= (uint16_t)Math::round(b * 65535.0f);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
uint64_t Color::to_rgba64() const {
|
||||
uint64_t c = (uint16_t)Math::round(r * 65535);
|
||||
uint64_t c = (uint16_t)Math::round(r * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(g * 65535);
|
||||
c |= (uint16_t)Math::round(g * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(b * 65535);
|
||||
c |= (uint16_t)Math::round(b * 65535.0f);
|
||||
c <<= 16;
|
||||
c |= (uint16_t)Math::round(a * 65535);
|
||||
c |= (uint16_t)Math::round(a * 65535.0f);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
String _to_hex(float p_val) {
|
||||
int v = Math::round(p_val * 255.0f);
|
||||
v = CLAMP(v, 0, 255);
|
||||
String ret;
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
char32_t c[2] = { 0, 0 };
|
||||
int lv = v & 0xF;
|
||||
if (lv < 10) {
|
||||
c[0] = '0' + lv;
|
||||
} else {
|
||||
c[0] = 'a' + lv - 10;
|
||||
}
|
||||
|
||||
v >>= 4;
|
||||
String cs = (const char32_t *)c;
|
||||
ret = cs + ret;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
String Color::to_html(bool p_alpha) const {
|
||||
String txt;
|
||||
txt = txt + _to_hex(r);
|
||||
txt = txt + _to_hex(g);
|
||||
txt = txt + _to_hex(b);
|
||||
if (p_alpha) {
|
||||
txt = txt + _to_hex(a);
|
||||
}
|
||||
return txt;
|
||||
}
|
||||
|
||||
float Color::get_h() const {
|
||||
float min = Math::min(r, g);
|
||||
min = Math::min(min, b);
|
||||
@@ -115,8 +148,8 @@ float Color::get_h() const {
|
||||
|
||||
float delta = max - min;
|
||||
|
||||
if (delta == 0) {
|
||||
return 0;
|
||||
if (delta == 0.0f) {
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
float h;
|
||||
@@ -128,9 +161,9 @@ float Color::get_h() const {
|
||||
h = 4 + (r - g) / delta; // between magenta & cyan
|
||||
}
|
||||
|
||||
h /= 6.0;
|
||||
if (h < 0) {
|
||||
h += 1.0;
|
||||
h /= 6.0f;
|
||||
if (h < 0.0f) {
|
||||
h += 1.0f;
|
||||
}
|
||||
|
||||
return h;
|
||||
@@ -144,7 +177,7 @@ float Color::get_s() const {
|
||||
|
||||
float delta = max - min;
|
||||
|
||||
return (max != 0) ? (delta / max) : 0;
|
||||
return (max != 0.0f) ? (delta / max) : 0.0f;
|
||||
}
|
||||
|
||||
float Color::get_v() const {
|
||||
@@ -158,20 +191,20 @@ void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha) {
|
||||
float f, p, q, t;
|
||||
a = p_alpha;
|
||||
|
||||
if (p_s == 0) {
|
||||
if (p_s == 0.0f) {
|
||||
// Achromatic (grey)
|
||||
r = g = b = p_v;
|
||||
return;
|
||||
}
|
||||
|
||||
p_h *= 6.0;
|
||||
p_h *= 6.0f;
|
||||
p_h = Math::fmod(p_h, 6);
|
||||
i = Math::floor(p_h);
|
||||
|
||||
f = p_h - i;
|
||||
p = p_v * (1 - p_s);
|
||||
q = p_v * (1 - p_s * f);
|
||||
t = p_v * (1 - p_s * (1 - f));
|
||||
p = p_v * (1.0f - p_s);
|
||||
q = p_v * (1.0f - p_s * f);
|
||||
t = p_v * (1.0f - p_s * (1.0f - f));
|
||||
|
||||
switch (i) {
|
||||
case 0: // Red is the dominant color
|
||||
@@ -211,50 +244,44 @@ bool Color::is_equal_approx(const Color &p_color) const {
|
||||
return Math::is_equal_approx(r, p_color.r) && Math::is_equal_approx(g, p_color.g) && Math::is_equal_approx(b, p_color.b) && Math::is_equal_approx(a, p_color.a);
|
||||
}
|
||||
|
||||
Color Color::clamp(const Color &p_min, const Color &p_max) const {
|
||||
return Color(
|
||||
CLAMP(r, p_min.r, p_max.r),
|
||||
CLAMP(g, p_min.g, p_max.g),
|
||||
CLAMP(b, p_min.b, p_max.b),
|
||||
CLAMP(a, p_min.a, p_max.a));
|
||||
}
|
||||
|
||||
void Color::invert() {
|
||||
r = 1.0 - r;
|
||||
g = 1.0 - g;
|
||||
b = 1.0 - b;
|
||||
r = 1.0f - r;
|
||||
g = 1.0f - g;
|
||||
b = 1.0f - b;
|
||||
}
|
||||
|
||||
Color Color::hex(uint32_t p_hex) {
|
||||
float a = (p_hex & 0xFF) / 255.0;
|
||||
float a = (p_hex & 0xFF) / 255.0f;
|
||||
p_hex >>= 8;
|
||||
float b = (p_hex & 0xFF) / 255.0;
|
||||
float b = (p_hex & 0xFF) / 255.0f;
|
||||
p_hex >>= 8;
|
||||
float g = (p_hex & 0xFF) / 255.0;
|
||||
float g = (p_hex & 0xFF) / 255.0f;
|
||||
p_hex >>= 8;
|
||||
float r = (p_hex & 0xFF) / 255.0;
|
||||
float r = (p_hex & 0xFF) / 255.0f;
|
||||
|
||||
return Color(r, g, b, a);
|
||||
}
|
||||
|
||||
Color Color::hex64(uint64_t p_hex) {
|
||||
float a = (p_hex & 0xFFFF) / 65535.0;
|
||||
float a = (p_hex & 0xFFFF) / 65535.0f;
|
||||
p_hex >>= 16;
|
||||
float b = (p_hex & 0xFFFF) / 65535.0;
|
||||
float b = (p_hex & 0xFFFF) / 65535.0f;
|
||||
p_hex >>= 16;
|
||||
float g = (p_hex & 0xFFFF) / 65535.0;
|
||||
float g = (p_hex & 0xFFFF) / 65535.0f;
|
||||
p_hex >>= 16;
|
||||
float r = (p_hex & 0xFFFF) / 65535.0;
|
||||
float r = (p_hex & 0xFFFF) / 65535.0f;
|
||||
|
||||
return Color(r, g, b, a);
|
||||
}
|
||||
|
||||
Color Color::from_rgbe9995(uint32_t p_rgbe) {
|
||||
float r = p_rgbe & 0x1ff;
|
||||
float g = (p_rgbe >> 9) & 0x1ff;
|
||||
float b = (p_rgbe >> 18) & 0x1ff;
|
||||
float e = (p_rgbe >> 27);
|
||||
float m = Math::pow(2, e - 15.0 - 9.0);
|
||||
|
||||
float rd = r * m;
|
||||
float gd = g * m;
|
||||
float bd = b * m;
|
||||
|
||||
return Color(rd, gd, bd, 1.0f);
|
||||
}
|
||||
|
||||
static int _parse_col4(const String &p_str, int p_ofs) {
|
||||
char character = p_str[p_ofs];
|
||||
|
||||
@@ -301,29 +328,29 @@ Color Color::html(const String &p_rgba) {
|
||||
} else if (color.length() == 3) {
|
||||
alpha = false;
|
||||
} else {
|
||||
ERR_FAIL_V(Color());
|
||||
ERR_FAIL_V_MSG(Color(), "Invalid color code: " + p_rgba + ".");
|
||||
}
|
||||
|
||||
float r, g, b, a = 1.0;
|
||||
float r, g, b, a = 1.0f;
|
||||
if (is_shorthand) {
|
||||
r = _parse_col4(color, 0) / 15.0;
|
||||
g = _parse_col4(color, 1) / 15.0;
|
||||
b = _parse_col4(color, 2) / 15.0;
|
||||
r = _parse_col4(color, 0) / 15.0f;
|
||||
g = _parse_col4(color, 1) / 15.0f;
|
||||
b = _parse_col4(color, 2) / 15.0f;
|
||||
if (alpha) {
|
||||
a = _parse_col4(color, 3) / 15.0;
|
||||
a = _parse_col4(color, 3) / 15.0f;
|
||||
}
|
||||
} else {
|
||||
r = _parse_col8(color, 0) / 255.0;
|
||||
g = _parse_col8(color, 2) / 255.0;
|
||||
b = _parse_col8(color, 4) / 255.0;
|
||||
r = _parse_col8(color, 0) / 255.0f;
|
||||
g = _parse_col8(color, 2) / 255.0f;
|
||||
b = _parse_col8(color, 4) / 255.0f;
|
||||
if (alpha) {
|
||||
a = _parse_col8(color, 6) / 255.0;
|
||||
a = _parse_col8(color, 6) / 255.0f;
|
||||
}
|
||||
}
|
||||
ERR_FAIL_COND_V(r < 0, Color());
|
||||
ERR_FAIL_COND_V(g < 0, Color());
|
||||
ERR_FAIL_COND_V(b < 0, Color());
|
||||
ERR_FAIL_COND_V(a < 0, Color());
|
||||
ERR_FAIL_COND_V_MSG(r < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
|
||||
ERR_FAIL_COND_V_MSG(g < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
|
||||
ERR_FAIL_COND_V_MSG(b < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
|
||||
ERR_FAIL_COND_V_MSG(a < 0.0f, Color(), "Invalid color code: " + p_rgba + ".");
|
||||
|
||||
return Color(r, g, b, a);
|
||||
}
|
||||
@@ -357,10 +384,10 @@ bool Color::html_is_valid(const String &p_color) {
|
||||
Color Color::named(const String &p_name) {
|
||||
int idx = find_named_color(p_name);
|
||||
if (idx == -1) {
|
||||
ERR_FAIL_V(Color());
|
||||
ERR_FAIL_V_MSG(Color(), "Invalid color name: " + p_name + ".");
|
||||
return Color();
|
||||
}
|
||||
return get_named_color(idx);
|
||||
return named_colors[idx].color;
|
||||
}
|
||||
|
||||
Color Color::named(const String &p_name, const Color &p_default) {
|
||||
@@ -368,7 +395,7 @@ Color Color::named(const String &p_name, const Color &p_default) {
|
||||
if (idx == -1) {
|
||||
return p_default;
|
||||
}
|
||||
return get_named_color(idx);
|
||||
return named_colors[idx].color;
|
||||
}
|
||||
|
||||
int Color::find_named_color(const String &p_name) {
|
||||
@@ -379,11 +406,11 @@ int Color::find_named_color(const String &p_name) {
|
||||
name = name.replace("_", "");
|
||||
name = name.replace("'", "");
|
||||
name = name.replace(".", "");
|
||||
name = name.to_lower();
|
||||
name = name.to_upper();
|
||||
|
||||
int idx = 0;
|
||||
while (named_colors[idx].name != nullptr) {
|
||||
if (name == String(named_colors[idx].name)) {
|
||||
if (name == String(named_colors[idx].name).replace("_", "")) {
|
||||
return idx;
|
||||
}
|
||||
idx++;
|
||||
@@ -401,10 +428,12 @@ int Color::get_named_color_count() {
|
||||
}
|
||||
|
||||
String Color::get_named_color_name(int p_idx) {
|
||||
ERR_FAIL_INDEX_V(p_idx, get_named_color_count(), "");
|
||||
return named_colors[p_idx].name;
|
||||
}
|
||||
|
||||
Color Color::get_named_color(int p_idx) {
|
||||
ERR_FAIL_INDEX_V(p_idx, get_named_color_count(), Color());
|
||||
return named_colors[p_idx].color;
|
||||
}
|
||||
|
||||
@@ -418,47 +447,28 @@ Color Color::from_string(const String &p_string, const Color &p_default) {
|
||||
}
|
||||
}
|
||||
|
||||
String _to_hex(float p_val) {
|
||||
int v = Math::round(p_val * 255);
|
||||
v = Math::clamp(v, 0, 255);
|
||||
String ret;
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
char32_t c[2] = { 0, 0 };
|
||||
int lv = v & 0xF;
|
||||
if (lv < 10) {
|
||||
c[0] = '0' + lv;
|
||||
} else {
|
||||
c[0] = 'a' + lv - 10;
|
||||
}
|
||||
|
||||
v >>= 4;
|
||||
String cs = (const char32_t *)c;
|
||||
ret = cs + ret;
|
||||
}
|
||||
|
||||
return ret;
|
||||
Color Color::from_hsv(float p_h, float p_s, float p_v, float p_alpha) {
|
||||
Color c;
|
||||
c.set_hsv(p_h, p_s, p_v, p_alpha);
|
||||
return c;
|
||||
}
|
||||
|
||||
String Color::to_html(bool p_alpha) const {
|
||||
String txt;
|
||||
txt = txt + _to_hex(g);
|
||||
txt = txt + _to_hex(b);
|
||||
txt = txt + _to_hex(r);
|
||||
if (p_alpha) {
|
||||
txt = txt + _to_hex(a);
|
||||
}
|
||||
return txt;
|
||||
}
|
||||
Color Color::from_rgbe9995(uint32_t p_rgbe) {
|
||||
float r = p_rgbe & 0x1ff;
|
||||
float g = (p_rgbe >> 9) & 0x1ff;
|
||||
float b = (p_rgbe >> 18) & 0x1ff;
|
||||
float e = (p_rgbe >> 27);
|
||||
float m = Math::pow(2.0f, e - 15.0f - 9.0f);
|
||||
|
||||
Color Color::from_hsv(float p_h, float p_s, float p_v, float p_a) {
|
||||
Color result;
|
||||
result.set_hsv(p_h, p_s, p_v, p_a);
|
||||
return result;
|
||||
float rd = r * m;
|
||||
float gd = g * m;
|
||||
float bd = b * m;
|
||||
|
||||
return Color(rd, gd, bd, 1.0f);
|
||||
}
|
||||
|
||||
Color::operator String() const {
|
||||
return String::num(r, 3) + ", " + String::num(g, 3) + ", " + String::num(b, 3) + ", " + String::num(a, 3);
|
||||
return "(" + String::num(r, 4) + ", " + String::num(g, 4) + ", " + String::num(b, 4) + ", " + String::num(a, 4) + ")";
|
||||
}
|
||||
|
||||
Color Color::operator+(const Color &p_color) const {
|
||||
@@ -553,10 +563,10 @@ void Color::operator/=(float p_scalar) {
|
||||
|
||||
Color Color::operator-() const {
|
||||
return Color(
|
||||
1.0 - r,
|
||||
1.0 - g,
|
||||
1.0 - b,
|
||||
1.0 - a);
|
||||
1.0f - r,
|
||||
1.0f - g,
|
||||
1.0f - b,
|
||||
1.0f - a);
|
||||
}
|
||||
|
||||
} // namespace godot
|
||||
|
||||
@@ -31,6 +31,7 @@
|
||||
#include <godot_cpp/variant/plane.hpp>
|
||||
|
||||
#include <godot_cpp/variant/string.hpp>
|
||||
#include <godot_cpp/variant/variant.hpp>
|
||||
|
||||
namespace godot {
|
||||
|
||||
@@ -59,7 +60,7 @@ Vector3 Plane::get_any_perpendicular_normal() const {
|
||||
static const Vector3 p2 = Vector3(0, 1, 0);
|
||||
Vector3 p;
|
||||
|
||||
if (Math::abs(normal.dot(p1)) > 0.99) { // if too similar to p1
|
||||
if (Math::abs(normal.dot(p1)) > 0.99f) { // if too similar to p1
|
||||
p = p2; // use p2
|
||||
} else {
|
||||
p = p1; // use p1
|
||||
@@ -89,7 +90,7 @@ bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r
|
||||
*r_result = ((vec3_cross(normal1, normal2) * p_plane0.d) +
|
||||
(vec3_cross(normal2, normal0) * p_plane1.d) +
|
||||
(vec3_cross(normal0, normal1) * p_plane2.d)) /
|
||||
denom;
|
||||
denom;
|
||||
}
|
||||
|
||||
return true;
|
||||
@@ -107,7 +108,7 @@ bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3
|
||||
real_t dist = (normal.dot(p_from) - d) / den;
|
||||
//printf("dist is %i\n",dist);
|
||||
|
||||
if (dist > CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist
|
||||
if (dist > (real_t)CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist
|
||||
|
||||
return false;
|
||||
}
|
||||
@@ -130,7 +131,7 @@ bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vec
|
||||
real_t dist = (normal.dot(p_begin) - d) / den;
|
||||
//printf("dist is %i\n",dist);
|
||||
|
||||
if (dist < -CMP_EPSILON || dist > (1.0 + CMP_EPSILON)) {
|
||||
if (dist < (real_t)-CMP_EPSILON || dist > (1.0f + (real_t)CMP_EPSILON)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -140,6 +141,33 @@ bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vec
|
||||
return true;
|
||||
}
|
||||
|
||||
Variant Plane::intersect_3_bind(const Plane &p_plane1, const Plane &p_plane2) const {
|
||||
Vector3 inters;
|
||||
if (intersect_3(p_plane1, p_plane2, &inters)) {
|
||||
return inters;
|
||||
} else {
|
||||
return Variant();
|
||||
}
|
||||
}
|
||||
|
||||
Variant Plane::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const {
|
||||
Vector3 inters;
|
||||
if (intersects_ray(p_from, p_dir, &inters)) {
|
||||
return inters;
|
||||
} else {
|
||||
return Variant();
|
||||
}
|
||||
}
|
||||
|
||||
Variant Plane::intersects_segment_bind(const Vector3 &p_begin, const Vector3 &p_end) const {
|
||||
Vector3 inters;
|
||||
if (intersects_segment(p_begin, p_end, &inters)) {
|
||||
return inters;
|
||||
} else {
|
||||
return Variant();
|
||||
}
|
||||
}
|
||||
|
||||
/* misc */
|
||||
|
||||
bool Plane::is_equal_approx_any_side(const Plane &p_plane) const {
|
||||
@@ -151,7 +179,7 @@ bool Plane::is_equal_approx(const Plane &p_plane) const {
|
||||
}
|
||||
|
||||
Plane::operator String() const {
|
||||
return normal.operator String() + ", " + String::num(d, 3);
|
||||
return "[N: " + normal.operator String() + ", D: " + String::num_real(d, false) + "]";
|
||||
}
|
||||
|
||||
} // namespace godot
|
||||
|
||||
@@ -40,24 +40,24 @@
|
||||
namespace godot {
|
||||
|
||||
float Projection::determinant() const {
|
||||
return matrix[0][3] * matrix[1][2] * matrix[2][1] * matrix[3][0] - matrix[0][2] * matrix[1][3] * matrix[2][1] * matrix[3][0] -
|
||||
matrix[0][3] * matrix[1][1] * matrix[2][2] * matrix[3][0] + matrix[0][1] * matrix[1][3] * matrix[2][2] * matrix[3][0] +
|
||||
matrix[0][2] * matrix[1][1] * matrix[2][3] * matrix[3][0] - matrix[0][1] * matrix[1][2] * matrix[2][3] * matrix[3][0] -
|
||||
matrix[0][3] * matrix[1][2] * matrix[2][0] * matrix[3][1] + matrix[0][2] * matrix[1][3] * matrix[2][0] * matrix[3][1] +
|
||||
matrix[0][3] * matrix[1][0] * matrix[2][2] * matrix[3][1] - matrix[0][0] * matrix[1][3] * matrix[2][2] * matrix[3][1] -
|
||||
matrix[0][2] * matrix[1][0] * matrix[2][3] * matrix[3][1] + matrix[0][0] * matrix[1][2] * matrix[2][3] * matrix[3][1] +
|
||||
matrix[0][3] * matrix[1][1] * matrix[2][0] * matrix[3][2] - matrix[0][1] * matrix[1][3] * matrix[2][0] * matrix[3][2] -
|
||||
matrix[0][3] * matrix[1][0] * matrix[2][1] * matrix[3][2] + matrix[0][0] * matrix[1][3] * matrix[2][1] * matrix[3][2] +
|
||||
matrix[0][1] * matrix[1][0] * matrix[2][3] * matrix[3][2] - matrix[0][0] * matrix[1][1] * matrix[2][3] * matrix[3][2] -
|
||||
matrix[0][2] * matrix[1][1] * matrix[2][0] * matrix[3][3] + matrix[0][1] * matrix[1][2] * matrix[2][0] * matrix[3][3] +
|
||||
matrix[0][2] * matrix[1][0] * matrix[2][1] * matrix[3][3] - matrix[0][0] * matrix[1][2] * matrix[2][1] * matrix[3][3] -
|
||||
matrix[0][1] * matrix[1][0] * matrix[2][2] * matrix[3][3] + matrix[0][0] * matrix[1][1] * matrix[2][2] * matrix[3][3];
|
||||
return columns[0][3] * columns[1][2] * columns[2][1] * columns[3][0] - columns[0][2] * columns[1][3] * columns[2][1] * columns[3][0] -
|
||||
columns[0][3] * columns[1][1] * columns[2][2] * columns[3][0] + columns[0][1] * columns[1][3] * columns[2][2] * columns[3][0] +
|
||||
columns[0][2] * columns[1][1] * columns[2][3] * columns[3][0] - columns[0][1] * columns[1][2] * columns[2][3] * columns[3][0] -
|
||||
columns[0][3] * columns[1][2] * columns[2][0] * columns[3][1] + columns[0][2] * columns[1][3] * columns[2][0] * columns[3][1] +
|
||||
columns[0][3] * columns[1][0] * columns[2][2] * columns[3][1] - columns[0][0] * columns[1][3] * columns[2][2] * columns[3][1] -
|
||||
columns[0][2] * columns[1][0] * columns[2][3] * columns[3][1] + columns[0][0] * columns[1][2] * columns[2][3] * columns[3][1] +
|
||||
columns[0][3] * columns[1][1] * columns[2][0] * columns[3][2] - columns[0][1] * columns[1][3] * columns[2][0] * columns[3][2] -
|
||||
columns[0][3] * columns[1][0] * columns[2][1] * columns[3][2] + columns[0][0] * columns[1][3] * columns[2][1] * columns[3][2] +
|
||||
columns[0][1] * columns[1][0] * columns[2][3] * columns[3][2] - columns[0][0] * columns[1][1] * columns[2][3] * columns[3][2] -
|
||||
columns[0][2] * columns[1][1] * columns[2][0] * columns[3][3] + columns[0][1] * columns[1][2] * columns[2][0] * columns[3][3] +
|
||||
columns[0][2] * columns[1][0] * columns[2][1] * columns[3][3] - columns[0][0] * columns[1][2] * columns[2][1] * columns[3][3] -
|
||||
columns[0][1] * columns[1][0] * columns[2][2] * columns[3][3] + columns[0][0] * columns[1][1] * columns[2][2] * columns[3][3];
|
||||
}
|
||||
|
||||
void Projection::set_identity() {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
for (int j = 0; j < 4; j++) {
|
||||
matrix[i][j] = (i == j) ? 1 : 0;
|
||||
columns[i][j] = (i == j) ? 1 : 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -65,7 +65,7 @@ void Projection::set_identity() {
|
||||
void Projection::set_zero() {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
for (int j = 0; j < 4; j++) {
|
||||
matrix[i][j] = 0;
|
||||
columns[i][j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -73,26 +73,26 @@ void Projection::set_zero() {
|
||||
Plane Projection::xform4(const Plane &p_vec4) const {
|
||||
Plane ret;
|
||||
|
||||
ret.normal.x = matrix[0][0] * p_vec4.normal.x + matrix[1][0] * p_vec4.normal.y + matrix[2][0] * p_vec4.normal.z + matrix[3][0] * p_vec4.d;
|
||||
ret.normal.y = matrix[0][1] * p_vec4.normal.x + matrix[1][1] * p_vec4.normal.y + matrix[2][1] * p_vec4.normal.z + matrix[3][1] * p_vec4.d;
|
||||
ret.normal.z = matrix[0][2] * p_vec4.normal.x + matrix[1][2] * p_vec4.normal.y + matrix[2][2] * p_vec4.normal.z + matrix[3][2] * p_vec4.d;
|
||||
ret.d = matrix[0][3] * p_vec4.normal.x + matrix[1][3] * p_vec4.normal.y + matrix[2][3] * p_vec4.normal.z + matrix[3][3] * p_vec4.d;
|
||||
ret.normal.x = columns[0][0] * p_vec4.normal.x + columns[1][0] * p_vec4.normal.y + columns[2][0] * p_vec4.normal.z + columns[3][0] * p_vec4.d;
|
||||
ret.normal.y = columns[0][1] * p_vec4.normal.x + columns[1][1] * p_vec4.normal.y + columns[2][1] * p_vec4.normal.z + columns[3][1] * p_vec4.d;
|
||||
ret.normal.z = columns[0][2] * p_vec4.normal.x + columns[1][2] * p_vec4.normal.y + columns[2][2] * p_vec4.normal.z + columns[3][2] * p_vec4.d;
|
||||
ret.d = columns[0][3] * p_vec4.normal.x + columns[1][3] * p_vec4.normal.y + columns[2][3] * p_vec4.normal.z + columns[3][3] * p_vec4.d;
|
||||
return ret;
|
||||
}
|
||||
|
||||
Vector4 Projection::xform(const Vector4 &p_vec4) const {
|
||||
return Vector4(
|
||||
matrix[0][0] * p_vec4.x + matrix[1][0] * p_vec4.y + matrix[2][0] * p_vec4.z + matrix[3][0] * p_vec4.w,
|
||||
matrix[0][1] * p_vec4.x + matrix[1][1] * p_vec4.y + matrix[2][1] * p_vec4.z + matrix[3][1] * p_vec4.w,
|
||||
matrix[0][2] * p_vec4.x + matrix[1][2] * p_vec4.y + matrix[2][2] * p_vec4.z + matrix[3][2] * p_vec4.w,
|
||||
matrix[0][3] * p_vec4.x + matrix[1][3] * p_vec4.y + matrix[2][3] * p_vec4.z + matrix[3][3] * p_vec4.w);
|
||||
columns[0][0] * p_vec4.x + columns[1][0] * p_vec4.y + columns[2][0] * p_vec4.z + columns[3][0] * p_vec4.w,
|
||||
columns[0][1] * p_vec4.x + columns[1][1] * p_vec4.y + columns[2][1] * p_vec4.z + columns[3][1] * p_vec4.w,
|
||||
columns[0][2] * p_vec4.x + columns[1][2] * p_vec4.y + columns[2][2] * p_vec4.z + columns[3][2] * p_vec4.w,
|
||||
columns[0][3] * p_vec4.x + columns[1][3] * p_vec4.y + columns[2][3] * p_vec4.z + columns[3][3] * p_vec4.w);
|
||||
}
|
||||
Vector4 Projection::xform_inv(const Vector4 &p_vec4) const {
|
||||
return Vector4(
|
||||
matrix[0][0] * p_vec4.x + matrix[0][1] * p_vec4.y + matrix[0][2] * p_vec4.z + matrix[0][3] * p_vec4.w,
|
||||
matrix[1][0] * p_vec4.x + matrix[1][1] * p_vec4.y + matrix[1][2] * p_vec4.z + matrix[1][3] * p_vec4.w,
|
||||
matrix[2][0] * p_vec4.x + matrix[2][1] * p_vec4.y + matrix[2][2] * p_vec4.z + matrix[2][3] * p_vec4.w,
|
||||
matrix[3][0] * p_vec4.x + matrix[3][1] * p_vec4.y + matrix[3][2] * p_vec4.z + matrix[3][3] * p_vec4.w);
|
||||
columns[0][0] * p_vec4.x + columns[0][1] * p_vec4.y + columns[0][2] * p_vec4.z + columns[0][3] * p_vec4.w,
|
||||
columns[1][0] * p_vec4.x + columns[1][1] * p_vec4.y + columns[1][2] * p_vec4.z + columns[1][3] * p_vec4.w,
|
||||
columns[2][0] * p_vec4.x + columns[2][1] * p_vec4.y + columns[2][2] * p_vec4.z + columns[2][3] * p_vec4.w,
|
||||
columns[3][0] * p_vec4.x + columns[3][1] * p_vec4.y + columns[3][2] * p_vec4.z + columns[3][3] * p_vec4.w);
|
||||
}
|
||||
|
||||
void Projection::adjust_perspective_znear(real_t p_new_znear) {
|
||||
@@ -100,8 +100,8 @@ void Projection::adjust_perspective_znear(real_t p_new_znear) {
|
||||
real_t znear = p_new_znear;
|
||||
|
||||
real_t deltaZ = zfar - znear;
|
||||
matrix[2][2] = -(zfar + znear) / deltaZ;
|
||||
matrix[3][2] = -2 * znear * zfar / deltaZ;
|
||||
columns[2][2] = -(zfar + znear) / deltaZ;
|
||||
columns[3][2] = -2 * znear * zfar / deltaZ;
|
||||
}
|
||||
|
||||
Projection Projection::create_depth_correction(bool p_flip_y) {
|
||||
@@ -171,7 +171,7 @@ Projection Projection::perspective_znear_adjusted(real_t p_new_znear) const {
|
||||
}
|
||||
|
||||
Plane Projection::get_projection_plane(Planes p_plane) const {
|
||||
const real_t *matrix = (const real_t *)this->matrix;
|
||||
const real_t *matrix = (const real_t *)this->columns;
|
||||
|
||||
switch (p_plane) {
|
||||
case PLANE_NEAR: {
|
||||
@@ -257,7 +257,7 @@ void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t
|
||||
}
|
||||
|
||||
real_t sine, cotangent, deltaZ;
|
||||
real_t radians = Math::deg2rad(p_fovy_degrees / 2.0);
|
||||
real_t radians = Math::deg_to_rad(p_fovy_degrees / 2.0);
|
||||
|
||||
deltaZ = p_z_far - p_z_near;
|
||||
sine = Math::sin(radians);
|
||||
@@ -269,12 +269,12 @@ void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t
|
||||
|
||||
set_identity();
|
||||
|
||||
matrix[0][0] = cotangent / p_aspect;
|
||||
matrix[1][1] = cotangent;
|
||||
matrix[2][2] = -(p_z_far + p_z_near) / deltaZ;
|
||||
matrix[2][3] = -1;
|
||||
matrix[3][2] = -2 * p_z_near * p_z_far / deltaZ;
|
||||
matrix[3][3] = 0;
|
||||
columns[0][0] = cotangent / p_aspect;
|
||||
columns[1][1] = cotangent;
|
||||
columns[2][2] = -(p_z_far + p_z_near) / deltaZ;
|
||||
columns[2][3] = -1;
|
||||
columns[3][2] = -2 * p_z_near * p_z_far / deltaZ;
|
||||
columns[3][3] = 0;
|
||||
}
|
||||
|
||||
void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
|
||||
@@ -284,7 +284,7 @@ void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t
|
||||
|
||||
real_t left, right, modeltranslation, ymax, xmax, frustumshift;
|
||||
|
||||
ymax = p_z_near * tan(Math::deg2rad(p_fovy_degrees / 2.0));
|
||||
ymax = p_z_near * tan(Math::deg_to_rad(p_fovy_degrees / 2.0));
|
||||
xmax = ymax * p_aspect;
|
||||
frustumshift = (p_intraocular_dist / 2.0) * p_z_near / p_convergence_dist;
|
||||
|
||||
@@ -311,7 +311,7 @@ void Projection::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t
|
||||
// translate matrix by (modeltranslation, 0.0, 0.0)
|
||||
Projection cm;
|
||||
cm.set_identity();
|
||||
cm.matrix[3][0] = modeltranslation;
|
||||
cm.columns[3][0] = modeltranslation;
|
||||
*this = *this * cm;
|
||||
}
|
||||
|
||||
@@ -346,13 +346,13 @@ void Projection::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_di
|
||||
void Projection::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
|
||||
set_identity();
|
||||
|
||||
matrix[0][0] = 2.0 / (p_right - p_left);
|
||||
matrix[3][0] = -((p_right + p_left) / (p_right - p_left));
|
||||
matrix[1][1] = 2.0 / (p_top - p_bottom);
|
||||
matrix[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
|
||||
matrix[2][2] = -2.0 / (p_zfar - p_znear);
|
||||
matrix[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
|
||||
matrix[3][3] = 1.0;
|
||||
columns[0][0] = 2.0 / (p_right - p_left);
|
||||
columns[3][0] = -((p_right + p_left) / (p_right - p_left));
|
||||
columns[1][1] = 2.0 / (p_top - p_bottom);
|
||||
columns[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
|
||||
columns[2][2] = -2.0 / (p_zfar - p_znear);
|
||||
columns[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
|
||||
columns[3][3] = 1.0;
|
||||
}
|
||||
|
||||
void Projection::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
|
||||
@@ -368,7 +368,7 @@ void Projection::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, rea
|
||||
ERR_FAIL_COND(p_top <= p_bottom);
|
||||
ERR_FAIL_COND(p_far <= p_near);
|
||||
|
||||
real_t *te = &matrix[0][0];
|
||||
real_t *te = &columns[0][0];
|
||||
real_t x = 2 * p_near / (p_right - p_left);
|
||||
real_t y = 2 * p_near / (p_top - p_bottom);
|
||||
|
||||
@@ -404,7 +404,7 @@ void Projection::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, r
|
||||
}
|
||||
|
||||
real_t Projection::get_z_far() const {
|
||||
const real_t *matrix = (const real_t *)this->matrix;
|
||||
const real_t *matrix = (const real_t *)this->columns;
|
||||
Plane new_plane = Plane(matrix[3] - matrix[2],
|
||||
matrix[7] - matrix[6],
|
||||
matrix[11] - matrix[10],
|
||||
@@ -417,7 +417,7 @@ real_t Projection::get_z_far() const {
|
||||
}
|
||||
|
||||
real_t Projection::get_z_near() const {
|
||||
const real_t *matrix = (const real_t *)this->matrix;
|
||||
const real_t *matrix = (const real_t *)this->columns;
|
||||
Plane new_plane = Plane(matrix[3] + matrix[2],
|
||||
matrix[7] + matrix[6],
|
||||
matrix[11] + matrix[10],
|
||||
@@ -428,7 +428,7 @@ real_t Projection::get_z_near() const {
|
||||
}
|
||||
|
||||
Vector2 Projection::get_viewport_half_extents() const {
|
||||
const real_t *matrix = (const real_t *)this->matrix;
|
||||
const real_t *matrix = (const real_t *)this->columns;
|
||||
///////--- Near Plane ---///////
|
||||
Plane near_plane = Plane(matrix[3] + matrix[2],
|
||||
matrix[7] + matrix[6],
|
||||
@@ -456,7 +456,7 @@ Vector2 Projection::get_viewport_half_extents() const {
|
||||
}
|
||||
|
||||
Vector2 Projection::get_far_plane_half_extents() const {
|
||||
const real_t *matrix = (const real_t *)this->matrix;
|
||||
const real_t *matrix = (const real_t *)this->columns;
|
||||
///////--- Far Plane ---///////
|
||||
Plane far_plane = Plane(matrix[3] - matrix[2],
|
||||
matrix[7] - matrix[6],
|
||||
@@ -498,7 +498,10 @@ bool Projection::get_endpoints(const Transform3D &p_transform, Vector3 *p_8point
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
Vector3 point;
|
||||
bool res = planes[intersections[i][0]].operator Plane().intersect_3(planes[intersections[i][1]].operator Plane(), planes[intersections[i][2]].operator Plane(), &point);
|
||||
Plane a = planes[intersections[i][0]];
|
||||
Plane b = planes[intersections[i][1]];
|
||||
Plane c = planes[intersections[i][2]];
|
||||
bool res = a.intersect_3(b, c, &point);
|
||||
ERR_FAIL_COND_V(!res, false);
|
||||
p_8points[i] = p_transform.xform(point);
|
||||
}
|
||||
@@ -514,8 +517,9 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const {
|
||||
*/
|
||||
|
||||
Array planes;
|
||||
planes.resize(6);
|
||||
|
||||
const real_t *matrix = (const real_t *)this->matrix;
|
||||
const real_t *matrix = (const real_t *)this->columns;
|
||||
|
||||
Plane new_plane;
|
||||
|
||||
@@ -528,7 +532,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const {
|
||||
new_plane.normal = -new_plane.normal;
|
||||
new_plane.normalize();
|
||||
|
||||
planes.push_back(p_transform.xform(new_plane));
|
||||
planes[0] = p_transform.xform(new_plane);
|
||||
|
||||
///////--- Far Plane ---///////
|
||||
new_plane = Plane(matrix[3] - matrix[2],
|
||||
@@ -539,7 +543,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const {
|
||||
new_plane.normal = -new_plane.normal;
|
||||
new_plane.normalize();
|
||||
|
||||
planes.push_back(p_transform.xform(new_plane));
|
||||
planes[1] = p_transform.xform(new_plane);
|
||||
|
||||
///////--- Left Plane ---///////
|
||||
new_plane = Plane(matrix[3] + matrix[0],
|
||||
@@ -550,7 +554,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const {
|
||||
new_plane.normal = -new_plane.normal;
|
||||
new_plane.normalize();
|
||||
|
||||
planes.push_back(p_transform.xform(new_plane));
|
||||
planes[2] = p_transform.xform(new_plane);
|
||||
|
||||
///////--- Top Plane ---///////
|
||||
new_plane = Plane(matrix[3] - matrix[1],
|
||||
@@ -561,7 +565,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const {
|
||||
new_plane.normal = -new_plane.normal;
|
||||
new_plane.normalize();
|
||||
|
||||
planes.push_back(p_transform.xform(new_plane));
|
||||
planes[3] = p_transform.xform(new_plane);
|
||||
|
||||
///////--- Right Plane ---///////
|
||||
new_plane = Plane(matrix[3] - matrix[0],
|
||||
@@ -572,7 +576,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const {
|
||||
new_plane.normal = -new_plane.normal;
|
||||
new_plane.normalize();
|
||||
|
||||
planes.push_back(p_transform.xform(new_plane));
|
||||
planes[4] = p_transform.xform(new_plane);
|
||||
|
||||
///////--- Bottom Plane ---///////
|
||||
new_plane = Plane(matrix[3] + matrix[1],
|
||||
@@ -583,7 +587,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const {
|
||||
new_plane.normal = -new_plane.normal;
|
||||
new_plane.normalize();
|
||||
|
||||
planes.push_back(p_transform.xform(new_plane));
|
||||
planes[5] = p_transform.xform(new_plane);
|
||||
|
||||
return planes;
|
||||
}
|
||||
@@ -602,15 +606,15 @@ void Projection::invert() {
|
||||
real_t determinant = 1.0f;
|
||||
for (k = 0; k < 4; k++) {
|
||||
/** Locate k'th pivot element **/
|
||||
pvt_val = matrix[k][k]; /** Initialize for search **/
|
||||
pvt_val = columns[k][k]; /** Initialize for search **/
|
||||
pvt_i[k] = k;
|
||||
pvt_j[k] = k;
|
||||
for (i = k; i < 4; i++) {
|
||||
for (j = k; j < 4; j++) {
|
||||
if (Math::abs(matrix[i][j]) > Math::abs(pvt_val)) {
|
||||
if (Math::abs(columns[i][j]) > Math::abs(pvt_val)) {
|
||||
pvt_i[k] = i;
|
||||
pvt_j[k] = j;
|
||||
pvt_val = matrix[i][j];
|
||||
pvt_val = columns[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -621,13 +625,13 @@ void Projection::invert() {
|
||||
return; /** Matrix is singular (zero determinant). **/
|
||||
}
|
||||
|
||||
/** "Interchange" elements (with sign change stuff) **/
|
||||
/** "Interchange" rows (with sign change stuff) **/
|
||||
i = pvt_i[k];
|
||||
if (i != k) { /** If elements are different **/
|
||||
if (i != k) { /** If rows are different **/
|
||||
for (j = 0; j < 4; j++) {
|
||||
hold = -matrix[k][j];
|
||||
matrix[k][j] = matrix[i][j];
|
||||
matrix[i][j] = hold;
|
||||
hold = -columns[k][j];
|
||||
columns[k][j] = columns[i][j];
|
||||
columns[i][j] = hold;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -635,25 +639,25 @@ void Projection::invert() {
|
||||
j = pvt_j[k];
|
||||
if (j != k) { /** If columns are different **/
|
||||
for (i = 0; i < 4; i++) {
|
||||
hold = -matrix[i][k];
|
||||
matrix[i][k] = matrix[i][j];
|
||||
matrix[i][j] = hold;
|
||||
hold = -columns[i][k];
|
||||
columns[i][k] = columns[i][j];
|
||||
columns[i][j] = hold;
|
||||
}
|
||||
}
|
||||
|
||||
/** Divide column by minus pivot value **/
|
||||
for (i = 0; i < 4; i++) {
|
||||
if (i != k) {
|
||||
matrix[i][k] /= (-pvt_val);
|
||||
columns[i][k] /= (-pvt_val);
|
||||
}
|
||||
}
|
||||
|
||||
/** Reduce the matrix **/
|
||||
for (i = 0; i < 4; i++) {
|
||||
hold = matrix[i][k];
|
||||
hold = columns[i][k];
|
||||
for (j = 0; j < 4; j++) {
|
||||
if (i != k && j != k) {
|
||||
matrix[i][j] += hold * matrix[k][j];
|
||||
columns[i][j] += hold * columns[k][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -661,32 +665,32 @@ void Projection::invert() {
|
||||
/** Divide row by pivot **/
|
||||
for (j = 0; j < 4; j++) {
|
||||
if (j != k) {
|
||||
matrix[k][j] /= pvt_val;
|
||||
columns[k][j] /= pvt_val;
|
||||
}
|
||||
}
|
||||
|
||||
/** Replace pivot by reciprocal (at last we can touch it). **/
|
||||
matrix[k][k] = 1.0 / pvt_val;
|
||||
columns[k][k] = 1.0 / pvt_val;
|
||||
}
|
||||
|
||||
/* That was most of the work, one final pass of row/column interchange */
|
||||
/* to finish */
|
||||
for (k = 4 - 2; k >= 0; k--) { /* Don't need to work with 1 by 1 corner*/
|
||||
i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
|
||||
if (i != k) { /* If elements are different */
|
||||
if (i != k) { /* If rows are different */
|
||||
for (j = 0; j < 4; j++) {
|
||||
hold = matrix[k][j];
|
||||
matrix[k][j] = -matrix[i][j];
|
||||
matrix[i][j] = hold;
|
||||
hold = columns[k][j];
|
||||
columns[k][j] = -columns[i][j];
|
||||
columns[i][j] = hold;
|
||||
}
|
||||
}
|
||||
|
||||
j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */
|
||||
if (j != k) { /* If columns are different */
|
||||
for (i = 0; i < 4; i++) {
|
||||
hold = matrix[i][k];
|
||||
matrix[i][k] = -matrix[i][j];
|
||||
matrix[i][j] = hold;
|
||||
hold = columns[i][k];
|
||||
columns[i][k] = -columns[i][j];
|
||||
columns[i][j] = hold;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -694,7 +698,7 @@ void Projection::invert() {
|
||||
|
||||
void Projection::flip_y() {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
matrix[1][i] = -matrix[1][i];
|
||||
columns[1][i] = -columns[1][i];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -709,9 +713,9 @@ Projection Projection::operator*(const Projection &p_matrix) const {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
real_t ab = 0;
|
||||
for (int k = 0; k < 4; k++) {
|
||||
ab += matrix[k][i] * p_matrix.matrix[j][k];
|
||||
ab += columns[k][i] * p_matrix.columns[j][k];
|
||||
}
|
||||
new_matrix.matrix[j][i] = ab;
|
||||
new_matrix.columns[j][i] = ab;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -719,7 +723,7 @@ Projection Projection::operator*(const Projection &p_matrix) const {
|
||||
}
|
||||
|
||||
void Projection::set_depth_correction(bool p_flip_y) {
|
||||
real_t *m = &matrix[0][0];
|
||||
real_t *m = &columns[0][0];
|
||||
|
||||
m[0] = 1;
|
||||
m[1] = 0.0;
|
||||
@@ -740,7 +744,7 @@ void Projection::set_depth_correction(bool p_flip_y) {
|
||||
}
|
||||
|
||||
void Projection::set_light_bias() {
|
||||
real_t *m = &matrix[0][0];
|
||||
real_t *m = &columns[0][0];
|
||||
|
||||
m[0] = 0.5;
|
||||
m[1] = 0.0;
|
||||
@@ -761,7 +765,7 @@ void Projection::set_light_bias() {
|
||||
}
|
||||
|
||||
void Projection::set_light_atlas_rect(const Rect2 &p_rect) {
|
||||
real_t *m = &matrix[0][0];
|
||||
real_t *m = &columns[0][0];
|
||||
|
||||
m[0] = p_rect.size.width;
|
||||
m[1] = 0.0;
|
||||
@@ -785,7 +789,7 @@ Projection::operator String() const {
|
||||
String str;
|
||||
for (int i = 0; i < 4; i++) {
|
||||
for (int j = 0; j < 4; j++) {
|
||||
str = str + String((j > 0) ? ", " : "\n") + rtos(matrix[i][j]);
|
||||
str = str + String((j > 0) ? ", " : "\n") + rtos(columns[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -804,11 +808,11 @@ int Projection::get_pixels_per_meter(int p_for_pixel_width) const {
|
||||
}
|
||||
|
||||
bool Projection::is_orthogonal() const {
|
||||
return matrix[3][3] == 1.0;
|
||||
return columns[3][3] == 1.0;
|
||||
}
|
||||
|
||||
real_t Projection::get_fov() const {
|
||||
const real_t *matrix = (const real_t *)this->matrix;
|
||||
const real_t *matrix = (const real_t *)this->columns;
|
||||
|
||||
Plane right_plane = Plane(matrix[3] - matrix[0],
|
||||
matrix[7] - matrix[4],
|
||||
@@ -817,7 +821,7 @@ real_t Projection::get_fov() const {
|
||||
right_plane.normalize();
|
||||
|
||||
if ((matrix[8] == 0) && (matrix[9] == 0)) {
|
||||
return Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0;
|
||||
return Math::rad_to_deg(Math::acos(Math::abs(right_plane.normal.x))) * 2.0;
|
||||
} else {
|
||||
// our frustum is asymmetrical need to calculate the left planes angle separately..
|
||||
Plane left_plane = Plane(matrix[3] + matrix[0],
|
||||
@@ -826,7 +830,7 @@ real_t Projection::get_fov() const {
|
||||
matrix[15] + matrix[12]);
|
||||
left_plane.normalize();
|
||||
|
||||
return Math::rad2deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x)));
|
||||
return Math::rad_to_deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad_to_deg(Math::acos(Math::abs(right_plane.normal.x)));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -839,48 +843,49 @@ float Projection::get_lod_multiplier() const {
|
||||
return 1.0 / (zn / width);
|
||||
}
|
||||
|
||||
// usage is lod_size / (lod_distance * multiplier) < threshold
|
||||
// Usage is lod_size / (lod_distance * multiplier) < threshold
|
||||
}
|
||||
|
||||
void Projection::make_scale(const Vector3 &p_scale) {
|
||||
set_identity();
|
||||
matrix[0][0] = p_scale.x;
|
||||
matrix[1][1] = p_scale.y;
|
||||
matrix[2][2] = p_scale.z;
|
||||
columns[0][0] = p_scale.x;
|
||||
columns[1][1] = p_scale.y;
|
||||
columns[2][2] = p_scale.z;
|
||||
}
|
||||
|
||||
void Projection::scale_translate_to_fit(const AABB &p_aabb) {
|
||||
Vector3 min = p_aabb.position;
|
||||
Vector3 max = p_aabb.position + p_aabb.size;
|
||||
|
||||
matrix[0][0] = 2 / (max.x - min.x);
|
||||
matrix[1][0] = 0;
|
||||
matrix[2][0] = 0;
|
||||
matrix[3][0] = -(max.x + min.x) / (max.x - min.x);
|
||||
columns[0][0] = 2 / (max.x - min.x);
|
||||
columns[1][0] = 0;
|
||||
columns[2][0] = 0;
|
||||
columns[3][0] = -(max.x + min.x) / (max.x - min.x);
|
||||
|
||||
matrix[0][1] = 0;
|
||||
matrix[1][1] = 2 / (max.y - min.y);
|
||||
matrix[2][1] = 0;
|
||||
matrix[3][1] = -(max.y + min.y) / (max.y - min.y);
|
||||
columns[0][1] = 0;
|
||||
columns[1][1] = 2 / (max.y - min.y);
|
||||
columns[2][1] = 0;
|
||||
columns[3][1] = -(max.y + min.y) / (max.y - min.y);
|
||||
|
||||
matrix[0][2] = 0;
|
||||
matrix[1][2] = 0;
|
||||
matrix[2][2] = 2 / (max.z - min.z);
|
||||
matrix[3][2] = -(max.z + min.z) / (max.z - min.z);
|
||||
columns[0][2] = 0;
|
||||
columns[1][2] = 0;
|
||||
columns[2][2] = 2 / (max.z - min.z);
|
||||
columns[3][2] = -(max.z + min.z) / (max.z - min.z);
|
||||
|
||||
matrix[0][3] = 0;
|
||||
matrix[1][3] = 0;
|
||||
matrix[2][3] = 0;
|
||||
matrix[3][3] = 1;
|
||||
columns[0][3] = 0;
|
||||
columns[1][3] = 0;
|
||||
columns[2][3] = 0;
|
||||
columns[3][3] = 1;
|
||||
}
|
||||
|
||||
void Projection::add_jitter_offset(const Vector2 &p_offset) {
|
||||
matrix[3][0] += p_offset.x;
|
||||
matrix[3][1] += p_offset.y;
|
||||
columns[3][0] += p_offset.x;
|
||||
columns[3][1] += p_offset.y;
|
||||
}
|
||||
|
||||
Projection::operator Transform3D() const {
|
||||
Transform3D tr;
|
||||
const real_t *m = &matrix[0][0];
|
||||
const real_t *m = &columns[0][0];
|
||||
|
||||
tr.basis.rows[0][0] = m[0];
|
||||
tr.basis.rows[1][0] = m[1];
|
||||
@@ -900,15 +905,17 @@ Projection::operator Transform3D() const {
|
||||
|
||||
return tr;
|
||||
}
|
||||
|
||||
Projection::Projection(const Vector4 &p_x, const Vector4 &p_y, const Vector4 &p_z, const Vector4 &p_w) {
|
||||
matrix[0] = p_x;
|
||||
matrix[1] = p_y;
|
||||
matrix[2] = p_z;
|
||||
matrix[3] = p_w;
|
||||
columns[0] = p_x;
|
||||
columns[1] = p_y;
|
||||
columns[2] = p_z;
|
||||
columns[3] = p_w;
|
||||
}
|
||||
|
||||
Projection::Projection(const Transform3D &p_transform) {
|
||||
const Transform3D &tr = p_transform;
|
||||
real_t *m = &matrix[0][0];
|
||||
real_t *m = &columns[0][0];
|
||||
|
||||
m[0] = tr.basis.rows[0][0];
|
||||
m[1] = tr.basis.rows[1][0];
|
||||
|
||||
@@ -94,7 +94,7 @@ Quaternion Quaternion::normalized() const {
|
||||
}
|
||||
|
||||
bool Quaternion::is_normalized() const {
|
||||
return Math::is_equal_approx(length_squared(), (real_t)1.0, (real_t)UNIT_EPSILON); //use less epsilon
|
||||
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
|
||||
}
|
||||
|
||||
Quaternion Quaternion::inverse() const {
|
||||
|
||||
@@ -41,6 +41,11 @@ bool Rect2::is_equal_approx(const Rect2 &p_rect) const {
|
||||
}
|
||||
|
||||
bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
|
||||
#ifdef MATH_CHECKS
|
||||
if (unlikely(size.x < 0 || size.y < 0)) {
|
||||
ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size.");
|
||||
}
|
||||
#endif
|
||||
real_t min = 0, max = 1;
|
||||
int axis = 0;
|
||||
real_t sign = 0;
|
||||
@@ -101,6 +106,11 @@ bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2
|
||||
}
|
||||
|
||||
bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const {
|
||||
#ifdef MATH_CHECKS
|
||||
if (unlikely(size.x < 0 || size.y < 0 || p_rect.size.x < 0 || p_rect.size.y < 0)) {
|
||||
ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size.");
|
||||
}
|
||||
#endif
|
||||
//SAT intersection between local and transformed rect2
|
||||
|
||||
Vector2 xf_points[4] = {
|
||||
@@ -271,7 +281,7 @@ next4:
|
||||
}
|
||||
|
||||
Rect2::operator String() const {
|
||||
return String(position) + ", " + String(size);
|
||||
return "[P: " + position.operator String() + ", S: " + size + "]";
|
||||
}
|
||||
|
||||
Rect2::operator Rect2i() const {
|
||||
|
||||
@@ -36,7 +36,7 @@
|
||||
namespace godot {
|
||||
|
||||
Rect2i::operator String() const {
|
||||
return String(position) + ", " + String(size);
|
||||
return "[P: " + position.operator String() + ", S: " + size + "]";
|
||||
}
|
||||
|
||||
Rect2i::operator Rect2() const {
|
||||
|
||||
@@ -50,7 +50,7 @@ void Transform2D::affine_invert() {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND(det == 0);
|
||||
#endif
|
||||
real_t idet = 1.0 / det;
|
||||
real_t idet = 1.0f / det;
|
||||
|
||||
SWAP(columns[0][0], columns[1][1]);
|
||||
columns[0] *= Vector2(idet, -idet);
|
||||
@@ -65,25 +65,25 @@ Transform2D Transform2D::affine_inverse() const {
|
||||
return inv;
|
||||
}
|
||||
|
||||
void Transform2D::rotate(real_t p_phi) {
|
||||
*this = Transform2D(p_phi, Vector2()) * (*this);
|
||||
void Transform2D::rotate(const real_t p_angle) {
|
||||
*this = Transform2D(p_angle, Vector2()) * (*this);
|
||||
}
|
||||
|
||||
real_t Transform2D::get_skew() const {
|
||||
real_t det = basis_determinant();
|
||||
return Math::acos(columns[0].normalized().dot(Math::sign(det) * columns[1].normalized())) - Math_PI * 0.5;
|
||||
return Math::acos(columns[0].normalized().dot(SIGN(det) * columns[1].normalized())) - (real_t)Math_PI * 0.5f;
|
||||
}
|
||||
|
||||
void Transform2D::set_skew(float p_angle) {
|
||||
void Transform2D::set_skew(const real_t p_angle) {
|
||||
real_t det = basis_determinant();
|
||||
columns[1] = Math::sign(det) * columns[0].rotated((Math_PI * 0.5 + p_angle)).normalized() * columns[1].length();
|
||||
columns[1] = SIGN(det) * columns[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * columns[1].length();
|
||||
}
|
||||
|
||||
real_t Transform2D::get_rotation() const {
|
||||
return Math::atan2(columns[0].y, columns[0].x);
|
||||
}
|
||||
|
||||
void Transform2D::set_rotation(real_t p_rot) {
|
||||
void Transform2D::set_rotation(const real_t p_rot) {
|
||||
Size2 scale = get_scale();
|
||||
real_t cr = Math::cos(p_rot);
|
||||
real_t sr = Math::sin(p_rot);
|
||||
@@ -94,7 +94,7 @@ void Transform2D::set_rotation(real_t p_rot) {
|
||||
set_scale(scale);
|
||||
}
|
||||
|
||||
Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
|
||||
Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) {
|
||||
real_t cr = Math::cos(p_rot);
|
||||
real_t sr = Math::sin(p_rot);
|
||||
columns[0][0] = cr;
|
||||
@@ -104,6 +104,14 @@ Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
|
||||
columns[2] = p_pos;
|
||||
}
|
||||
|
||||
Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos) {
|
||||
columns[0][0] = Math::cos(p_rot) * p_scale.x;
|
||||
columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y;
|
||||
columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y;
|
||||
columns[0][1] = Math::sin(p_rot) * p_scale.x;
|
||||
columns[2] = p_pos;
|
||||
}
|
||||
|
||||
Size2 Transform2D::get_scale() const {
|
||||
real_t det_sign = Math::sign(basis_determinant());
|
||||
return Size2(columns[0].length(), det_sign * columns[1].length());
|
||||
@@ -128,11 +136,11 @@ void Transform2D::scale_basis(const Size2 &p_scale) {
|
||||
columns[1][1] *= p_scale.y;
|
||||
}
|
||||
|
||||
void Transform2D::translate(real_t p_tx, real_t p_ty) {
|
||||
translate(Vector2(p_tx, p_ty));
|
||||
void Transform2D::translate_local(const real_t p_tx, const real_t p_ty) {
|
||||
translate_local(Vector2(p_tx, p_ty));
|
||||
}
|
||||
|
||||
void Transform2D::translate(const Vector2 &p_translation) {
|
||||
void Transform2D::translate_local(const Vector2 &p_translation) {
|
||||
columns[2] += basis_xform(p_translation);
|
||||
}
|
||||
|
||||
@@ -160,6 +168,13 @@ bool Transform2D::is_equal_approx(const Transform2D &p_transform) const {
|
||||
return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]);
|
||||
}
|
||||
|
||||
Transform2D Transform2D::looking_at(const Vector2 &p_target) const {
|
||||
Transform2D return_trans = Transform2D(get_rotation(), get_origin());
|
||||
Vector2 target_position = affine_inverse().xform(p_target);
|
||||
return_trans.set_rotation(return_trans.get_rotation() + (target_position * get_scale()).angle());
|
||||
return return_trans;
|
||||
}
|
||||
|
||||
bool Transform2D::operator==(const Transform2D &p_transform) const {
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (columns[i] != p_transform.columns[i]) {
|
||||
@@ -202,16 +217,22 @@ Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
|
||||
return t;
|
||||
}
|
||||
|
||||
Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
|
||||
Transform2D copy = *this;
|
||||
copy.scale_basis(p_scale);
|
||||
return copy;
|
||||
}
|
||||
|
||||
Transform2D Transform2D::scaled(const Size2 &p_scale) const {
|
||||
// Equivalent to left multiplication
|
||||
Transform2D copy = *this;
|
||||
copy.scale(p_scale);
|
||||
return copy;
|
||||
}
|
||||
|
||||
Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
|
||||
Transform2D copy = *this;
|
||||
copy.scale_basis(p_scale);
|
||||
return copy;
|
||||
Transform2D Transform2D::scaled_local(const Size2 &p_scale) const {
|
||||
// Equivalent to right multiplication
|
||||
return Transform2D(columns[0] * p_scale.x, columns[1] * p_scale.y, columns[2]);
|
||||
}
|
||||
|
||||
Transform2D Transform2D::untranslated() const {
|
||||
@@ -221,22 +242,30 @@ Transform2D Transform2D::untranslated() const {
|
||||
}
|
||||
|
||||
Transform2D Transform2D::translated(const Vector2 &p_offset) const {
|
||||
Transform2D copy = *this;
|
||||
copy.translate(p_offset);
|
||||
return copy;
|
||||
// Equivalent to left multiplication
|
||||
return Transform2D(columns[0], columns[1], columns[2] + p_offset);
|
||||
}
|
||||
|
||||
Transform2D Transform2D::rotated(real_t p_phi) const {
|
||||
Transform2D copy = *this;
|
||||
copy.rotate(p_phi);
|
||||
return copy;
|
||||
Transform2D Transform2D::translated_local(const Vector2 &p_offset) const {
|
||||
// Equivalent to right multiplication
|
||||
return Transform2D(columns[0], columns[1], columns[2] + basis_xform(p_offset));
|
||||
}
|
||||
|
||||
Transform2D Transform2D::rotated(const real_t p_angle) const {
|
||||
// Equivalent to left multiplication
|
||||
return Transform2D(p_angle, Vector2()) * (*this);
|
||||
}
|
||||
|
||||
Transform2D Transform2D::rotated_local(const real_t p_angle) const {
|
||||
// Equivalent to right multiplication
|
||||
return (*this) * Transform2D(p_angle, Vector2()); // Could be optimized, because origin transform can be skipped.
|
||||
}
|
||||
|
||||
real_t Transform2D::basis_determinant() const {
|
||||
return columns[0].x * columns[1].y - columns[0].y * columns[1].x;
|
||||
}
|
||||
|
||||
Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const {
|
||||
Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const real_t p_c) const {
|
||||
//extract parameters
|
||||
Vector2 p1 = get_origin();
|
||||
Vector2 p2 = p_transform.get_origin();
|
||||
@@ -257,7 +286,7 @@ Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t
|
||||
|
||||
Vector2 v;
|
||||
|
||||
if (dot > 0.9995) {
|
||||
if (dot > 0.9995f) {
|
||||
v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
|
||||
} else {
|
||||
real_t angle = p_c * Math::acos(dot);
|
||||
@@ -266,13 +295,27 @@ Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t
|
||||
}
|
||||
|
||||
//construct matrix
|
||||
Transform2D res(Math::atan2(v.y, v.x), p1.lerp(p2, p_c));
|
||||
Transform2D res(v.angle(), p1.lerp(p2, p_c));
|
||||
res.scale_basis(s1.lerp(s2, p_c));
|
||||
return res;
|
||||
}
|
||||
|
||||
void Transform2D::operator*=(const real_t p_val) {
|
||||
columns[0] *= p_val;
|
||||
columns[1] *= p_val;
|
||||
columns[2] *= p_val;
|
||||
}
|
||||
|
||||
Transform2D Transform2D::operator*(const real_t p_val) const {
|
||||
Transform2D ret(*this);
|
||||
ret *= p_val;
|
||||
return ret;
|
||||
}
|
||||
|
||||
Transform2D::operator String() const {
|
||||
return columns[0].operator String() + ", " + columns[1].operator String() + ", " + columns[2].operator String();
|
||||
return "[X: " + columns[0].operator String() +
|
||||
", Y: " + columns[1].operator String() +
|
||||
", O: " + columns[2].operator String() + "]";
|
||||
}
|
||||
|
||||
} // namespace godot
|
||||
|
||||
@@ -35,16 +35,6 @@
|
||||
|
||||
namespace godot {
|
||||
|
||||
void Vector4i::set_axis(const int p_axis, const int32_t p_value) {
|
||||
ERR_FAIL_INDEX(p_axis, 4);
|
||||
coord[p_axis] = p_value;
|
||||
}
|
||||
|
||||
int32_t Vector4i::get_axis(const int p_axis) const {
|
||||
ERR_FAIL_INDEX_V(p_axis, 4, 0);
|
||||
return operator[](p_axis);
|
||||
}
|
||||
|
||||
Vector4i::Axis Vector4i::min_axis_index() const {
|
||||
uint32_t min_index = 0;
|
||||
int32_t min_value = x;
|
||||
|
||||
Reference in New Issue
Block a user