Add bindings for Vector4, Vector4i, Projection built-in types.

This commit is contained in:
bruvzg
2022-07-20 23:49:08 +03:00
parent 8772a7faca
commit 91c56a0ad1
28 changed files with 8732 additions and 4959 deletions

View File

@@ -0,0 +1,175 @@
/*************************************************************************/
/* projection.hpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef GODOT_PROJECTION_HPP
#define GODOT_PROJECTION_HPP
#include <godot_cpp/core/math.hpp>
#include <godot_cpp/variant/array.hpp>
#include <godot_cpp/variant/vector3.hpp>
#include <godot_cpp/variant/vector4.hpp>
namespace godot {
class AABB;
class Plane;
class Rect2;
class Transform3D;
class Vector2;
class Projection {
_FORCE_INLINE_ GDNativeTypePtr _native_ptr() const { return (void *)this; }
friend class Variant;
public:
enum Planes {
PLANE_NEAR,
PLANE_FAR,
PLANE_LEFT,
PLANE_TOP,
PLANE_RIGHT,
PLANE_BOTTOM
};
Vector4 matrix[4];
_FORCE_INLINE_ const Vector4 &operator[](const int p_axis) const {
return matrix[p_axis];
}
_FORCE_INLINE_ Vector4 &operator[](const int p_axis) {
return matrix[p_axis];
}
float determinant() const;
void set_identity();
void set_zero();
void set_light_bias();
void set_depth_correction(bool p_flip_y = true);
void set_light_atlas_rect(const Rect2 &p_rect);
void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov = false);
void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist);
void set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far);
void set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar);
void set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov = false);
void set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far);
void set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov = false);
void adjust_perspective_znear(real_t p_new_znear);
static Projection create_depth_correction(bool p_flip_y);
static Projection create_light_atlas_rect(const Rect2 &p_rect);
static Projection create_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov = false);
static Projection create_perspective_hmd(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist);
static Projection create_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far);
static Projection create_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar);
static Projection create_orthogonal_aspect(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov = false);
static Projection create_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far);
static Projection create_frustum_aspect(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov = false);
static Projection create_fit_aabb(const AABB &p_aabb);
Projection perspective_znear_adjusted(real_t p_new_znear) const;
Plane get_projection_plane(Planes p_plane) const;
Projection flipped_y() const;
Projection jitter_offseted(const Vector2 &p_offset) const;
static real_t get_fovy(real_t p_fovx, real_t p_aspect) {
return Math::rad2deg(Math::atan(p_aspect * Math::tan(Math::deg2rad(p_fovx) * 0.5)) * 2.0);
}
real_t get_z_far() const;
real_t get_z_near() const;
real_t get_aspect() const;
real_t get_fov() const;
bool is_orthogonal() const;
Array get_projection_planes(const Transform3D &p_transform) const;
bool get_endpoints(const Transform3D &p_transform, Vector3 *p_8points) const;
Vector2 get_viewport_half_extents() const;
Vector2 get_far_plane_half_extents() const;
void invert();
Projection inverse() const;
Projection operator*(const Projection &p_matrix) const;
Plane xform4(const Plane &p_vec4) const;
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vec3) const;
Vector4 xform(const Vector4 &p_vec4) const;
Vector4 xform_inv(const Vector4 &p_vec4) const;
operator String() const;
void scale_translate_to_fit(const AABB &p_aabb);
void add_jitter_offset(const Vector2 &p_offset);
void make_scale(const Vector3 &p_scale);
int get_pixels_per_meter(int p_for_pixel_width) const;
operator Transform3D() const;
void flip_y();
bool operator==(const Projection &p_cam) const {
for (uint32_t i = 0; i < 4; i++) {
for (uint32_t j = 0; j < 4; j++) {
if (matrix[i][j] != p_cam.matrix[i][j]) {
return false;
}
}
}
return true;
}
bool operator!=(const Projection &p_cam) const {
return !(*this == p_cam);
}
float get_lod_multiplier() const;
Projection();
Projection(const Vector4 &p_x, const Vector4 &p_y, const Vector4 &p_z, const Vector4 &p_w);
Projection(const Transform3D &p_transform);
~Projection();
};
Vector3 Projection::xform(const Vector3 &p_vec3) const {
Vector3 ret;
ret.x = matrix[0][0] * p_vec3.x + matrix[1][0] * p_vec3.y + matrix[2][0] * p_vec3.z + matrix[3][0];
ret.y = matrix[0][1] * p_vec3.x + matrix[1][1] * p_vec3.y + matrix[2][1] * p_vec3.z + matrix[3][1];
ret.z = matrix[0][2] * p_vec3.x + matrix[1][2] * p_vec3.y + matrix[2][2] * p_vec3.z + matrix[3][2];
real_t w = matrix[0][3] * p_vec3.x + matrix[1][3] * p_vec3.y + matrix[2][3] * p_vec3.z + matrix[3][3];
return ret / w;
}
} // namespace godot
#endif // GODOT_PROJECTION_HPP

View File

@@ -70,11 +70,14 @@ public:
VECTOR3,
VECTOR3I,
TRANSFORM2D,
VECTOR4,
VECTOR4I,
PLANE,
QUATERNION,
AABB,
BASIS,
TRANSFORM3D,
PROJECTION,
// misc types
COLOR,
@@ -172,11 +175,14 @@ public:
Variant(const Vector3 &v);
Variant(const Vector3i &v);
Variant(const Transform2D &v);
Variant(const Vector4 &v);
Variant(const Vector4i &v);
Variant(const Plane &v);
Variant(const Quaternion &v);
Variant(const godot::AABB &v);
Variant(const Basis &v);
Variant(const Transform3D &v);
Variant(const Projection &v);
Variant(const Color &v);
Variant(const StringName &v);
Variant(const NodePath &v);
@@ -212,11 +218,14 @@ public:
operator Vector3() const;
operator Vector3i() const;
operator Transform2D() const;
operator Vector4() const;
operator Vector4i() const;
operator Plane() const;
operator Quaternion() const;
operator godot::AABB() const;
operator Basis() const;
operator Transform3D() const;
operator Projection() const;
operator Color() const;
operator StringName() const;
operator NodePath() const;

View File

@@ -31,6 +31,7 @@
#ifndef GODOT_VECTOR2_HPP
#define GODOT_VECTOR2_HPP
#include <godot_cpp/core/error_macros.hpp>
#include <godot_cpp/core/math.hpp>
namespace godot {
@@ -50,19 +51,39 @@ public:
};
union {
real_t x = 0;
real_t width;
};
union {
real_t y = 0;
real_t height;
struct {
union {
real_t x;
real_t width;
};
union {
real_t y;
real_t height;
};
};
real_t coord[2] = { 0 };
};
inline real_t &operator[](int p_idx) {
return p_idx ? y : x;
_FORCE_INLINE_ real_t &operator[](int p_idx) {
DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
inline const real_t &operator[](int p_idx) const {
return p_idx ? y : x;
_FORCE_INLINE_ const real_t &operator[](int p_idx) const {
DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
_FORCE_INLINE_ void set_all(const real_t p_value) {
x = y = p_value;
}
_FORCE_INLINE_ Vector2::Axis min_axis_index() const {
return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y;
}
_FORCE_INLINE_ Vector2::Axis max_axis_index() const {
return x < y ? Vector2::AXIS_Y : Vector2::AXIS_X;
}
void normalize();
@@ -71,20 +92,21 @@ public:
real_t length() const;
real_t length_squared() const;
Vector2 limit_length(const real_t p_len = 1.0) const;
Vector2 min(const Vector2 &p_vector2) const {
return Vector2(Math::min(x, p_vector2.x), Math::min(y, p_vector2.y));
return Vector2(MIN(x, p_vector2.x), MIN(y, p_vector2.y));
}
Vector2 max(const Vector2 &p_vector2) const {
return Vector2(Math::max(x, p_vector2.x), Math::max(y, p_vector2.y));
return Vector2(MAX(x, p_vector2.x), MAX(y, p_vector2.y));
}
real_t distance_to(const Vector2 &p_vector2) const;
real_t distance_squared_to(const Vector2 &p_vector2) const;
real_t angle_to(const Vector2 &p_vector2) const;
real_t angle_to_point(const Vector2 &p_vector2) const;
inline Vector2 direction_to(const Vector2 &p_to) const;
_FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_to) const;
real_t dot(const Vector2 &p_other) const;
real_t cross(const Vector2 &p_other) const;
@@ -92,13 +114,13 @@ public:
Vector2 posmodv(const Vector2 &p_modv) const;
Vector2 project(const Vector2 &p_to) const;
Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
Vector2 plane_project(const real_t p_d, const Vector2 &p_vec) const;
Vector2 clamped(real_t p_len) const;
_FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const;
_FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
inline Vector2 lerp(const Vector2 &p_to, real_t p_weight) const;
inline Vector2 slerp(const Vector2 &p_to, real_t p_weight) const;
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const;
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
Vector2 slide(const Vector2 &p_normal) const;
@@ -135,12 +157,13 @@ public:
bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); }
real_t angle() const;
static Vector2 from_angle(const real_t p_angle);
inline Vector2 abs() const {
_FORCE_INLINE_ Vector2 abs() const {
return Vector2(Math::abs(x), Math::abs(y));
}
Vector2 rotated(real_t p_by) const;
Vector2 rotated(const real_t p_by) const;
Vector2 orthogonal() const {
return Vector2(y, -x);
}
@@ -150,95 +173,80 @@ public:
Vector2 ceil() const;
Vector2 round() const;
Vector2 snapped(const Vector2 &p_by) const;
Vector2 clamp(const Vector2 &p_min, const Vector2 &p_max) const;
real_t aspect() const { return width / height; }
operator String() const;
operator Vector2i() const;
inline Vector2() {}
inline Vector2(real_t p_x, real_t p_y) {
_FORCE_INLINE_ Vector2() {}
_FORCE_INLINE_ Vector2(const real_t p_x, const real_t p_y) {
x = p_x;
y = p_y;
}
};
inline Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const {
_FORCE_INLINE_ Vector2 Vector2::plane_project(const real_t p_d, const Vector2 &p_vec) const {
return p_vec - *this * (dot(p_vec) - p_d);
}
inline Vector2 operator*(float p_scalar, const Vector2 &p_vec) {
return p_vec * (real_t)p_scalar;
}
inline Vector2 operator*(double p_scalar, const Vector2 &p_vec) {
return p_vec * (real_t)p_scalar;
}
inline Vector2 operator*(int32_t p_scalar, const Vector2 &p_vec) {
return p_vec * (real_t)p_scalar;
}
inline Vector2 operator*(int64_t p_scalar, const Vector2 &p_vec) {
return p_vec * (real_t)p_scalar;
}
inline Vector2 Vector2::operator+(const Vector2 &p_v) const {
_FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const {
return Vector2(x + p_v.x, y + p_v.y);
}
inline void Vector2::operator+=(const Vector2 &p_v) {
_FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) {
x += p_v.x;
y += p_v.y;
}
inline Vector2 Vector2::operator-(const Vector2 &p_v) const {
_FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const {
return Vector2(x - p_v.x, y - p_v.y);
}
inline void Vector2::operator-=(const Vector2 &p_v) {
_FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
x -= p_v.x;
y -= p_v.y;
}
inline Vector2 Vector2::operator*(const Vector2 &p_v1) const {
_FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
return Vector2(x * p_v1.x, y * p_v1.y);
}
inline Vector2 Vector2::operator*(const real_t &rvalue) const {
_FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const {
return Vector2(x * rvalue, y * rvalue);
}
inline void Vector2::operator*=(const real_t &rvalue) {
_FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) {
x *= rvalue;
y *= rvalue;
}
inline Vector2 Vector2::operator/(const Vector2 &p_v1) const {
_FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
return Vector2(x / p_v1.x, y / p_v1.y);
}
inline Vector2 Vector2::operator/(const real_t &rvalue) const {
_FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const {
return Vector2(x / rvalue, y / rvalue);
}
inline void Vector2::operator/=(const real_t &rvalue) {
_FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) {
x /= rvalue;
y /= rvalue;
}
inline Vector2 Vector2::operator-() const {
_FORCE_INLINE_ Vector2 Vector2::operator-() const {
return Vector2(-x, -y);
}
inline bool Vector2::operator==(const Vector2 &p_vec2) const {
_FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const {
return x == p_vec2.x && y == p_vec2.y;
}
inline bool Vector2::operator!=(const Vector2 &p_vec2) const {
_FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
return x != p_vec2.x || y != p_vec2.y;
}
Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const {
Vector2 Vector2::lerp(const Vector2 &p_to, const real_t p_weight) const {
Vector2 res = *this;
res.x += (p_weight * (p_to.x - x));
@@ -247,12 +255,37 @@ Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const {
return res;
}
Vector2 Vector2::slerp(const Vector2 &p_to, real_t p_weight) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!is_normalized(), Vector2());
#endif
real_t theta = angle_to(p_to);
return rotated(theta * p_weight);
Vector2 Vector2::slerp(const Vector2 &p_to, const real_t p_weight) const {
real_t start_length_sq = length_squared();
real_t end_length_sq = p_to.length_squared();
if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
return lerp(p_to, p_weight);
}
real_t start_length = Math::sqrt(start_length_sq);
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
real_t angle = angle_to(p_to);
return rotated(angle * p_weight) * (result_length / start_length);
}
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const {
Vector2 res = *this;
res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
return res;
}
Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
Vector2 res = *this;
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - p_t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
real_t t2 = p_t * p_t;
real_t t3 = t2 * p_t;
return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
}
Vector2 Vector2::direction_to(const Vector2 &p_to) const {
@@ -261,6 +294,25 @@ Vector2 Vector2::direction_to(const Vector2 &p_to) const {
return ret;
}
// Multiplication operators required to workaround issues with LLVM using implicit conversion
// to Vector2i instead for integers where it should not.
_FORCE_INLINE_ Vector2 operator*(const float p_scalar, const Vector2 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector2 operator*(const double p_scalar, const Vector2 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector2 operator*(const int32_t p_scalar, const Vector2 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector2 operator*(const int64_t p_scalar, const Vector2 &p_vec) {
return p_vec * p_scalar;
}
typedef Vector2 Size2;
typedef Vector2 Point2;

View File

@@ -31,6 +31,7 @@
#ifndef GODOT_VECTOR2I_HPP
#define GODOT_VECTOR2I_HPP
#include <godot_cpp/core/error_macros.hpp>
#include <godot_cpp/core/math.hpp>
namespace godot {
@@ -50,19 +51,43 @@ public:
};
union {
int32_t x = 0;
int32_t width;
};
union {
int32_t y = 0;
int32_t height;
struct {
union {
int32_t x;
int32_t width;
};
union {
int32_t y;
int32_t height;
};
};
int32_t coord[2] = { 0 };
};
inline int32_t &operator[](int p_idx) {
return p_idx ? y : x;
_FORCE_INLINE_ int32_t &operator[](int p_idx) {
DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
inline const int32_t &operator[](int p_idx) const {
return p_idx ? y : x;
_FORCE_INLINE_ const int32_t &operator[](int p_idx) const {
DEV_ASSERT((unsigned int)p_idx < 2);
return coord[p_idx];
}
_FORCE_INLINE_ Vector2i::Axis min_axis_index() const {
return x < y ? Vector2i::AXIS_X : Vector2i::AXIS_Y;
}
_FORCE_INLINE_ Vector2i::Axis max_axis_index() const {
return x < y ? Vector2i::AXIS_Y : Vector2i::AXIS_X;
}
Vector2i min(const Vector2i &p_vector2i) const {
return Vector2i(MIN(x, p_vector2i.x), MIN(y, p_vector2i.y));
}
Vector2i max(const Vector2i &p_vector2i) const {
return Vector2i(MAX(x, p_vector2i.x), MAX(y, p_vector2i.y));
}
Vector2i operator+(const Vector2i &p_v) const;
@@ -92,38 +117,40 @@ public:
bool operator==(const Vector2i &p_vec2) const;
bool operator!=(const Vector2i &p_vec2) const;
int64_t length_squared() const;
double length() const;
real_t aspect() const { return width / (real_t)height; }
Vector2i sign() const { return Vector2i(Math::sign(x), Math::sign(y)); }
Vector2i abs() const { return Vector2i(Math::abs(x), Math::abs(y)); }
Vector2i sign() const { return Vector2i(SIGN(x), SIGN(y)); }
Vector2i abs() const { return Vector2i(ABS(x), ABS(y)); }
Vector2i clamp(const Vector2i &p_min, const Vector2i &p_max) const;
operator String() const;
operator Vector2() const;
inline Vector2i() {}
inline Vector2i(int32_t p_x, int32_t p_y) {
inline Vector2i(const int32_t p_x, const int32_t p_y) {
x = p_x;
y = p_y;
}
};
inline Vector2i operator*(const int32_t &p_scalar, const Vector2i &p_vector) {
// Multiplication operators required to workaround issues with LLVM using implicit conversion.
_FORCE_INLINE_ Vector2i operator*(const int32_t p_scalar, const Vector2i &p_vector) {
return p_vector * p_scalar;
}
inline Vector2i operator*(const int64_t &p_scalar, const Vector2i &p_vector) {
return p_vector * (int32_t)p_scalar;
_FORCE_INLINE_ Vector2i operator*(const int64_t p_scalar, const Vector2i &p_vector) {
return p_vector * p_scalar;
}
inline Vector2i operator*(const float &p_scalar, const Vector2i &p_vector) {
float x = (float)p_vector.x * p_scalar;
float y = (float)p_vector.y * p_scalar;
return Vector2i((int32_t)round(x), (int32_t)round(y));
_FORCE_INLINE_ Vector2i operator*(const float p_scalar, const Vector2i &p_vector) {
return p_vector * p_scalar;
}
inline Vector2i operator*(const double &p_scalar, const Vector2i &p_vector) {
double x = (double)p_vector.x * p_scalar;
double y = (double)p_vector.y * p_scalar;
return Vector2i((int32_t)round(x), (int32_t)round(y));
_FORCE_INLINE_ Vector2i operator*(const double p_scalar, const Vector2i &p_vector) {
return p_vector * p_scalar;
}
typedef Vector2i Size2i;

View File

@@ -31,12 +31,14 @@
#ifndef GODOT_VECTOR3_HPP
#define GODOT_VECTOR3_HPP
#include <godot_cpp/core/error_macros.hpp>
#include <godot_cpp/core/math.hpp>
namespace godot {
class Basis;
class String;
class Vector2;
class Vector3i;
class Vector3 {
@@ -61,117 +63,135 @@ public:
real_t coord[3] = { 0 };
};
inline const real_t &operator[](int p_axis) const {
_FORCE_INLINE_ const real_t &operator[](const int p_axis) const {
DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
inline real_t &operator[](int p_axis) {
_FORCE_INLINE_ real_t &operator[](const int p_axis) {
DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
void set_axis(int p_axis, real_t p_value);
real_t get_axis(int p_axis) const;
void set_axis(const int p_axis, const real_t p_value);
real_t get_axis(const int p_axis) const;
int min_axis() const;
int max_axis() const;
_FORCE_INLINE_ void set_all(const real_t p_value) {
x = y = z = p_value;
}
inline real_t length() const;
inline real_t length_squared() const;
_FORCE_INLINE_ Vector3::Axis min_axis_index() const {
return x < y ? (x < z ? Vector3::AXIS_X : Vector3::AXIS_Z) : (y < z ? Vector3::AXIS_Y : Vector3::AXIS_Z);
}
inline void normalize();
inline Vector3 normalized() const;
inline bool is_normalized() const;
inline Vector3 inverse() const;
_FORCE_INLINE_ Vector3::Axis max_axis_index() const {
return x < y ? (y < z ? Vector3::AXIS_Z : Vector3::AXIS_Y) : (x < z ? Vector3::AXIS_Z : Vector3::AXIS_X);
}
inline void zero();
_FORCE_INLINE_ real_t length() const;
_FORCE_INLINE_ real_t length_squared() const;
void snap(Vector3 p_val);
Vector3 snapped(Vector3 p_val) const;
_FORCE_INLINE_ void normalize();
_FORCE_INLINE_ Vector3 normalized() const;
_FORCE_INLINE_ bool is_normalized() const;
_FORCE_INLINE_ Vector3 inverse() const;
Vector3 limit_length(const real_t p_len = 1.0) const;
void rotate(const Vector3 &p_axis, real_t p_phi);
Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
_FORCE_INLINE_ void zero();
void snap(const Vector3 p_val);
Vector3 snapped(const Vector3 p_val) const;
void rotate(const Vector3 &p_axis, const real_t p_angle);
Vector3 rotated(const Vector3 &p_axis, const real_t p_angle) const;
/* Static Methods between 2 vector3s */
inline Vector3 lerp(const Vector3 &p_to, real_t p_weight) const;
inline Vector3 slerp(const Vector3 &p_to, real_t p_weight) const;
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
_FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
inline Vector3 cross(const Vector3 &p_b) const;
inline real_t dot(const Vector3 &p_b) const;
Basis outer(const Vector3 &p_b) const;
Basis to_diagonal_matrix() const;
Vector2 octahedron_encode() const;
static Vector3 octahedron_decode(const Vector2 &p_oct);
inline Vector3 abs() const;
inline Vector3 floor() const;
inline Vector3 sign() const;
inline Vector3 ceil() const;
inline Vector3 round() const;
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
Basis outer(const Vector3 &p_with) const;
inline real_t distance_to(const Vector3 &p_to) const;
inline real_t distance_squared_to(const Vector3 &p_to) const;
_FORCE_INLINE_ Vector3 abs() const;
_FORCE_INLINE_ Vector3 floor() const;
_FORCE_INLINE_ Vector3 sign() const;
_FORCE_INLINE_ Vector3 ceil() const;
_FORCE_INLINE_ Vector3 round() const;
Vector3 clamp(const Vector3 &p_min, const Vector3 &p_max) const;
inline Vector3 posmod(const real_t p_mod) const;
inline Vector3 posmodv(const Vector3 &p_modv) const;
inline Vector3 project(const Vector3 &p_to) const;
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;
inline real_t angle_to(const Vector3 &p_to) const;
inline Vector3 direction_to(const Vector3 &p_to) const;
_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
_FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;
inline Vector3 slide(const Vector3 &p_normal) const;
inline Vector3 bounce(const Vector3 &p_normal) const;
inline Vector3 reflect(const Vector3 &p_normal) const;
_FORCE_INLINE_ real_t angle_to(const Vector3 &p_to) const;
_FORCE_INLINE_ real_t signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const;
_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_to) const;
_FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
bool is_equal_approx(const Vector3 &p_v) const;
/* Operators */
inline Vector3 &operator+=(const Vector3 &p_v);
inline Vector3 operator+(const Vector3 &p_v) const;
inline Vector3 &operator-=(const Vector3 &p_v);
inline Vector3 operator-(const Vector3 &p_v) const;
inline Vector3 &operator*=(const Vector3 &p_v);
inline Vector3 operator*(const Vector3 &p_v) const;
inline Vector3 &operator/=(const Vector3 &p_v);
inline Vector3 operator/(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
_FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
_FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
inline Vector3 &operator*=(real_t p_scalar);
inline Vector3 operator*(real_t p_scalar) const;
inline Vector3 &operator/=(real_t p_scalar);
inline Vector3 operator/(real_t p_scalar) const;
_FORCE_INLINE_ Vector3 &operator*=(const real_t p_scalar);
_FORCE_INLINE_ Vector3 operator*(const real_t p_scalar) const;
_FORCE_INLINE_ Vector3 &operator/=(const real_t p_scalar);
_FORCE_INLINE_ Vector3 operator/(const real_t p_scalar) const;
inline Vector3 operator-() const;
_FORCE_INLINE_ Vector3 operator-() const;
inline bool operator==(const Vector3 &p_v) const;
inline bool operator!=(const Vector3 &p_v) const;
inline bool operator<(const Vector3 &p_v) const;
inline bool operator<=(const Vector3 &p_v) const;
inline bool operator>(const Vector3 &p_v) const;
inline bool operator>=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
_FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
operator String() const;
operator Vector3i() const;
inline Vector3() {}
inline Vector3(real_t p_x, real_t p_y, real_t p_z) {
_FORCE_INLINE_ Vector3() {}
_FORCE_INLINE_ Vector3(const real_t p_x, const real_t p_y, const real_t p_z) {
x = p_x;
y = p_y;
z = p_z;
}
};
Vector3 Vector3::cross(const Vector3 &p_b) const {
Vector3 Vector3::cross(const Vector3 &p_with) const {
Vector3 ret(
(y * p_b.z) - (z * p_b.y),
(z * p_b.x) - (x * p_b.z),
(x * p_b.y) - (y * p_b.x));
(y * p_with.z) - (z * p_with.y),
(z * p_with.x) - (x * p_with.z),
(x * p_with.y) - (y * p_with.x));
return ret;
}
real_t Vector3::dot(const Vector3 &p_b) const {
return x * p_b.x + y * p_b.y + z * p_b.z;
real_t Vector3::dot(const Vector3 &p_with) const {
return x * p_with.x + y * p_with.y + z * p_with.z;
}
Vector3 Vector3::abs() const {
@@ -179,7 +199,7 @@ Vector3 Vector3::abs() const {
}
Vector3 Vector3::sign() const {
return Vector3(Math::sign(x), Math::sign(y), Math::sign(z));
return Vector3(SIGN(x), SIGN(y), SIGN(z));
}
Vector3 Vector3::floor() const {
@@ -194,16 +214,45 @@ Vector3 Vector3::round() const {
return Vector3(Math::round(x), Math::round(y), Math::round(z));
}
Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const {
Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const {
return Vector3(
x + (p_weight * (p_to.x - x)),
y + (p_weight * (p_to.y - y)),
z + (p_weight * (p_to.z - z)));
}
Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const {
real_t theta = angle_to(p_to);
return rotated(cross(p_to).normalized(), theta * p_weight);
Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
real_t start_length_sq = length_squared();
real_t end_length_sq = p_to.length_squared();
if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
return lerp(p_to, p_weight);
}
real_t start_length = Math::sqrt(start_length_sq);
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
real_t angle = angle_to(p_to);
return rotated(cross(p_to).normalized(), angle * p_weight) * (result_length / start_length);
}
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const {
Vector3 res = *this;
res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
res.z = Math::cubic_interpolate(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight);
return res;
}
Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
Vector3 res = *this;
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - p_t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
real_t t2 = p_t * p_t;
real_t t3 = t2 * p_t;
return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
}
real_t Vector3::distance_to(const Vector3 &p_to) const {
@@ -230,6 +279,13 @@ real_t Vector3::angle_to(const Vector3 &p_to) const {
return Math::atan2(cross(p_to).length(), dot(p_to));
}
real_t Vector3::signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const {
Vector3 cross_to = cross(p_to);
real_t unsigned_angle = Math::atan2(cross_to.length(), dot(p_to));
real_t sign = cross_to.dot(p_axis);
return (sign < 0) ? -unsigned_angle : unsigned_angle;
}
Vector3 Vector3::direction_to(const Vector3 &p_to) const {
Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
ret.normalize();
@@ -282,29 +338,44 @@ Vector3 Vector3::operator/(const Vector3 &p_v) const {
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
}
Vector3 &Vector3::operator*=(real_t p_scalar) {
Vector3 &Vector3::operator*=(const real_t p_scalar) {
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
return *this;
}
inline Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
// Multiplication operators required to workaround issues with LLVM using implicit conversion
// to Vector3i instead for integers where it should not.
_FORCE_INLINE_ Vector3 operator*(const float p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
Vector3 Vector3::operator*(real_t p_scalar) const {
_FORCE_INLINE_ Vector3 operator*(const double p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector3 operator*(const int32_t p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector3 operator*(const int64_t p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
Vector3 Vector3::operator*(const real_t p_scalar) const {
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
}
Vector3 &Vector3::operator/=(real_t p_scalar) {
Vector3 &Vector3::operator/=(const real_t p_scalar) {
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
return *this;
}
Vector3 Vector3::operator/(real_t p_scalar) const {
Vector3 Vector3::operator/(const real_t p_scalar) const {
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
}
@@ -360,11 +431,11 @@ bool Vector3::operator>=(const Vector3 &p_v) const {
return x > p_v.x;
}
inline Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
_FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.cross(p_b);
}
inline real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
_FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.dot(p_b);
}
@@ -386,8 +457,8 @@ real_t Vector3::length_squared() const {
void Vector3::normalize() {
real_t lengthsq = length_squared();
if (lengthsq == (real_t)0.0) {
x = y = z = (real_t)0.0;
if (lengthsq == 0) {
x = y = z = 0;
} else {
real_t length = Math::sqrt(lengthsq);
x /= length;
@@ -404,21 +475,21 @@ Vector3 Vector3::normalized() const {
bool Vector3::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), (real_t)1.0, (real_t)UNIT_EPSILON);
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
}
Vector3 Vector3::inverse() const {
return Vector3((real_t)1.0 / x, (real_t)1.0 / y, (real_t)1.0 / z);
return Vector3(1.0f / x, 1.0f / y, 1.0f / z);
}
void Vector3::zero() {
x = y = z = (real_t)0.0;
x = y = z = 0;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector3 Vector3::slide(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
return *this - p_normal * this->dot(p_normal);
}
@@ -429,9 +500,9 @@ Vector3 Vector3::bounce(const Vector3 &p_normal) const {
Vector3 Vector3::reflect(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
return 2.0f * p_normal * this->dot(p_normal) - *this;
}
} // namespace godot

View File

@@ -31,6 +31,7 @@
#ifndef GODOT_VECTOR3I_HPP
#define GODOT_VECTOR3I_HPP
#include <godot_cpp/core/error_macros.hpp>
#include <godot_cpp/core/math.hpp>
namespace godot {
@@ -60,71 +61,85 @@ public:
int32_t coord[3] = { 0 };
};
inline const int32_t &operator[](int p_axis) const {
_FORCE_INLINE_ const int32_t &operator[](const int p_axis) const {
DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
inline int32_t &operator[](int p_axis) {
_FORCE_INLINE_ int32_t &operator[](const int p_axis) {
DEV_ASSERT((unsigned int)p_axis < 3);
return coord[p_axis];
}
void set_axis(int p_axis, int32_t p_value);
int32_t get_axis(int p_axis) const;
void set_axis(const int p_axis, const int32_t p_value);
int32_t get_axis(const int p_axis) const;
int min_axis() const;
int max_axis() const;
Vector3i::Axis min_axis_index() const;
Vector3i::Axis max_axis_index() const;
inline void zero();
_FORCE_INLINE_ int64_t length_squared() const;
_FORCE_INLINE_ double length() const;
inline Vector3i abs() const;
inline Vector3i sign() const;
_FORCE_INLINE_ void zero();
_FORCE_INLINE_ Vector3i abs() const;
_FORCE_INLINE_ Vector3i sign() const;
Vector3i clamp(const Vector3i &p_min, const Vector3i &p_max) const;
/* Operators */
inline Vector3i &operator+=(const Vector3i &p_v);
inline Vector3i operator+(const Vector3i &p_v) const;
inline Vector3i &operator-=(const Vector3i &p_v);
inline Vector3i operator-(const Vector3i &p_v) const;
inline Vector3i &operator*=(const Vector3i &p_v);
inline Vector3i operator*(const Vector3i &p_v) const;
inline Vector3i &operator/=(const Vector3i &p_v);
inline Vector3i operator/(const Vector3i &p_v) const;
inline Vector3i &operator%=(const Vector3i &p_v);
inline Vector3i operator%(const Vector3i &p_v) const;
_FORCE_INLINE_ Vector3i &operator+=(const Vector3i &p_v);
_FORCE_INLINE_ Vector3i operator+(const Vector3i &p_v) const;
_FORCE_INLINE_ Vector3i &operator-=(const Vector3i &p_v);
_FORCE_INLINE_ Vector3i operator-(const Vector3i &p_v) const;
_FORCE_INLINE_ Vector3i &operator*=(const Vector3i &p_v);
_FORCE_INLINE_ Vector3i operator*(const Vector3i &p_v) const;
_FORCE_INLINE_ Vector3i &operator/=(const Vector3i &p_v);
_FORCE_INLINE_ Vector3i operator/(const Vector3i &p_v) const;
_FORCE_INLINE_ Vector3i &operator%=(const Vector3i &p_v);
_FORCE_INLINE_ Vector3i operator%(const Vector3i &p_v) const;
inline Vector3i &operator*=(int32_t p_scalar);
inline Vector3i operator*(int32_t p_scalar) const;
inline Vector3i &operator/=(int32_t p_scalar);
inline Vector3i operator/(int32_t p_scalar) const;
inline Vector3i &operator%=(int32_t p_scalar);
inline Vector3i operator%(int32_t p_scalar) const;
_FORCE_INLINE_ Vector3i &operator*=(const int32_t p_scalar);
_FORCE_INLINE_ Vector3i operator*(const int32_t p_scalar) const;
_FORCE_INLINE_ Vector3i &operator/=(const int32_t p_scalar);
_FORCE_INLINE_ Vector3i operator/(const int32_t p_scalar) const;
_FORCE_INLINE_ Vector3i &operator%=(const int32_t p_scalar);
_FORCE_INLINE_ Vector3i operator%(const int32_t p_scalar) const;
inline Vector3i operator-() const;
_FORCE_INLINE_ Vector3i operator-() const;
inline bool operator==(const Vector3i &p_v) const;
inline bool operator!=(const Vector3i &p_v) const;
inline bool operator<(const Vector3i &p_v) const;
inline bool operator<=(const Vector3i &p_v) const;
inline bool operator>(const Vector3i &p_v) const;
inline bool operator>=(const Vector3i &p_v) const;
_FORCE_INLINE_ bool operator==(const Vector3i &p_v) const;
_FORCE_INLINE_ bool operator!=(const Vector3i &p_v) const;
_FORCE_INLINE_ bool operator<(const Vector3i &p_v) const;
_FORCE_INLINE_ bool operator<=(const Vector3i &p_v) const;
_FORCE_INLINE_ bool operator>(const Vector3i &p_v) const;
_FORCE_INLINE_ bool operator>=(const Vector3i &p_v) const;
operator String() const;
operator Vector3() const;
inline Vector3i() {}
inline Vector3i(int32_t p_x, int32_t p_y, int32_t p_z) {
_FORCE_INLINE_ Vector3i() {}
_FORCE_INLINE_ Vector3i(const int32_t p_x, const int32_t p_y, const int32_t p_z) {
x = p_x;
y = p_y;
z = p_z;
}
};
int64_t Vector3i::length_squared() const {
return x * (int64_t)x + y * (int64_t)y + z * (int64_t)z;
}
double Vector3i::length() const {
return Math::sqrt((double)length_squared());
}
Vector3i Vector3i::abs() const {
return Vector3i(Math::abs(x), Math::abs(y), Math::abs(z));
return Vector3i(ABS(x), ABS(y), ABS(z));
}
Vector3i Vector3i::sign() const {
return Vector3i(Math::sign(x), Math::sign(y), Math::sign(z));
return Vector3i(SIGN(x), SIGN(y), SIGN(z));
}
/* Operators */
@@ -184,40 +199,54 @@ Vector3i Vector3i::operator%(const Vector3i &p_v) const {
return Vector3i(x % p_v.x, y % p_v.y, z % p_v.z);
}
Vector3i &Vector3i::operator*=(int32_t p_scalar) {
Vector3i &Vector3i::operator*=(const int32_t p_scalar) {
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
return *this;
}
inline Vector3i operator*(int32_t p_scalar, const Vector3i &p_vec) {
return p_vec * p_scalar;
}
Vector3i Vector3i::operator*(int32_t p_scalar) const {
Vector3i Vector3i::operator*(const int32_t p_scalar) const {
return Vector3i(x * p_scalar, y * p_scalar, z * p_scalar);
}
Vector3i &Vector3i::operator/=(int32_t p_scalar) {
// Multiplication operators required to workaround issues with LLVM using implicit conversion.
_FORCE_INLINE_ Vector3i operator*(const int32_t p_scalar, const Vector3i &p_vector) {
return p_vector * p_scalar;
}
_FORCE_INLINE_ Vector3i operator*(const int64_t p_scalar, const Vector3i &p_vector) {
return p_vector * p_scalar;
}
_FORCE_INLINE_ Vector3i operator*(const float p_scalar, const Vector3i &p_vector) {
return p_vector * p_scalar;
}
_FORCE_INLINE_ Vector3i operator*(const double p_scalar, const Vector3i &p_vector) {
return p_vector * p_scalar;
}
Vector3i &Vector3i::operator/=(const int32_t p_scalar) {
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
return *this;
}
Vector3i Vector3i::operator/(int32_t p_scalar) const {
Vector3i Vector3i::operator/(const int32_t p_scalar) const {
return Vector3i(x / p_scalar, y / p_scalar, z / p_scalar);
}
Vector3i &Vector3i::operator%=(int32_t p_scalar) {
Vector3i &Vector3i::operator%=(const int32_t p_scalar) {
x %= p_scalar;
y %= p_scalar;
z %= p_scalar;
return *this;
}
Vector3i Vector3i::operator%(int32_t p_scalar) const {
Vector3i Vector3i::operator%(const int32_t p_scalar) const {
return Vector3i(x % p_scalar, y % p_scalar, z % p_scalar);
}

View File

@@ -0,0 +1,297 @@
/*************************************************************************/
/* vector4.hpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef GODOT_VECTOR4_HPP
#define GODOT_VECTOR4_HPP
#include <godot_cpp/core/error_macros.hpp>
#include <godot_cpp/core/math.hpp>
namespace godot {
class String;
class Vector4 {
_FORCE_INLINE_ GDNativeTypePtr _native_ptr() const { return (void *)this; }
friend class Variant;
public:
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_W,
};
union {
struct {
real_t x;
real_t y;
real_t z;
real_t w;
};
real_t components[4] = { 0, 0, 0, 0 };
};
_FORCE_INLINE_ real_t &operator[](int idx) {
return components[idx];
}
_FORCE_INLINE_ const real_t &operator[](int idx) const {
return components[idx];
}
_FORCE_INLINE_ real_t length_squared() const;
bool is_equal_approx(const Vector4 &p_vec4) const;
real_t length() const;
void normalize();
Vector4 normalized() const;
bool is_normalized() const;
Vector4 abs() const;
Vector4 sign() const;
Vector4::Axis min_axis_index() const;
Vector4::Axis max_axis_index() const;
Vector4 clamp(const Vector4 &p_min, const Vector4 &p_max) const;
Vector4 inverse() const;
_FORCE_INLINE_ real_t dot(const Vector4 &p_vec4) const;
_FORCE_INLINE_ void operator+=(const Vector4 &p_vec4);
_FORCE_INLINE_ void operator-=(const Vector4 &p_vec4);
_FORCE_INLINE_ void operator*=(const Vector4 &p_vec4);
_FORCE_INLINE_ void operator/=(const Vector4 &p_vec4);
_FORCE_INLINE_ void operator*=(const real_t &s);
_FORCE_INLINE_ void operator/=(const real_t &s);
_FORCE_INLINE_ Vector4 operator+(const Vector4 &p_vec4) const;
_FORCE_INLINE_ Vector4 operator-(const Vector4 &p_vec4) const;
_FORCE_INLINE_ Vector4 operator*(const Vector4 &p_vec4) const;
_FORCE_INLINE_ Vector4 operator/(const Vector4 &p_vec4) const;
_FORCE_INLINE_ Vector4 operator-() const;
_FORCE_INLINE_ Vector4 operator*(const real_t &s) const;
_FORCE_INLINE_ Vector4 operator/(const real_t &s) const;
_FORCE_INLINE_ bool operator==(const Vector4 &p_vec4) const;
_FORCE_INLINE_ bool operator!=(const Vector4 &p_vec4) const;
_FORCE_INLINE_ bool operator>(const Vector4 &p_vec4) const;
_FORCE_INLINE_ bool operator<(const Vector4 &p_vec4) const;
_FORCE_INLINE_ bool operator>=(const Vector4 &p_vec4) const;
_FORCE_INLINE_ bool operator<=(const Vector4 &p_vec4) const;
operator String() const;
_FORCE_INLINE_ Vector4() {}
_FORCE_INLINE_ Vector4(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
x(p_x),
y(p_y),
z(p_z),
w(p_w) {
}
Vector4(const Vector4 &p_vec4) :
x(p_vec4.x),
y(p_vec4.y),
z(p_vec4.z),
w(p_vec4.w) {
}
void operator=(const Vector4 &p_vec4) {
x = p_vec4.x;
y = p_vec4.y;
z = p_vec4.z;
w = p_vec4.w;
}
};
real_t Vector4::dot(const Vector4 &p_vec4) const {
return x * p_vec4.x + y * p_vec4.y + z * p_vec4.z + w * p_vec4.w;
}
real_t Vector4::length_squared() const {
return dot(*this);
}
void Vector4::operator+=(const Vector4 &p_vec4) {
x += p_vec4.x;
y += p_vec4.y;
z += p_vec4.z;
w += p_vec4.w;
}
void Vector4::operator-=(const Vector4 &p_vec4) {
x -= p_vec4.x;
y -= p_vec4.y;
z -= p_vec4.z;
w -= p_vec4.w;
}
void Vector4::operator*=(const Vector4 &p_vec4) {
x *= p_vec4.x;
y *= p_vec4.y;
z *= p_vec4.z;
w *= p_vec4.w;
}
void Vector4::operator/=(const Vector4 &p_vec4) {
x /= p_vec4.x;
y /= p_vec4.y;
z /= p_vec4.z;
w /= p_vec4.w;
}
void Vector4::operator*=(const real_t &s) {
x *= s;
y *= s;
z *= s;
w *= s;
}
void Vector4::operator/=(const real_t &s) {
*this *= 1.0f / s;
}
Vector4 Vector4::operator+(const Vector4 &p_vec4) const {
return Vector4(x + p_vec4.x, y + p_vec4.y, z + p_vec4.z, w + p_vec4.w);
}
Vector4 Vector4::operator-(const Vector4 &p_vec4) const {
return Vector4(x - p_vec4.x, y - p_vec4.y, z - p_vec4.z, w - p_vec4.w);
}
Vector4 Vector4::operator*(const Vector4 &p_vec4) const {
return Vector4(x * p_vec4.x, y * p_vec4.y, z * p_vec4.z, w * p_vec4.w);
}
Vector4 Vector4::operator/(const Vector4 &p_vec4) const {
return Vector4(x / p_vec4.x, y / p_vec4.y, z / p_vec4.z, w / p_vec4.w);
}
Vector4 Vector4::operator-() const {
return Vector4(x, y, z, w);
}
Vector4 Vector4::operator*(const real_t &s) const {
return Vector4(x * s, y * s, z * s, w * s);
}
Vector4 Vector4::operator/(const real_t &s) const {
return *this * (1.0f / s);
}
bool Vector4::operator==(const Vector4 &p_vec4) const {
return x == p_vec4.x && y == p_vec4.y && z == p_vec4.z && w == p_vec4.w;
}
bool Vector4::operator!=(const Vector4 &p_vec4) const {
return x != p_vec4.x || y != p_vec4.y || z != p_vec4.z || w != p_vec4.w;
}
bool Vector4::operator<(const Vector4 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w < p_v.w;
} else {
return z < p_v.z;
}
} else {
return y < p_v.y;
}
} else {
return x < p_v.x;
}
}
bool Vector4::operator>(const Vector4 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w > p_v.w;
} else {
return z > p_v.z;
}
} else {
return y > p_v.y;
}
} else {
return x > p_v.x;
}
}
bool Vector4::operator<=(const Vector4 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w <= p_v.w;
} else {
return z < p_v.z;
}
} else {
return y < p_v.y;
}
} else {
return x < p_v.x;
}
}
bool Vector4::operator>=(const Vector4 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w >= p_v.w;
} else {
return z > p_v.z;
}
} else {
return y > p_v.y;
}
} else {
return x > p_v.x;
}
}
_FORCE_INLINE_ Vector4 operator*(const float p_scalar, const Vector4 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector4 operator*(const double p_scalar, const Vector4 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector4 operator*(const int32_t p_scalar, const Vector4 &p_vec) {
return p_vec * p_scalar;
}
_FORCE_INLINE_ Vector4 operator*(const int64_t p_scalar, const Vector4 &p_vec) {
return p_vec * p_scalar;
}
} // namespace godot
#endif // GODOT_VECTOR3_HPP

View File

@@ -0,0 +1,345 @@
/*************************************************************************/
/* vector4i.hpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef GODOT_VECTOR4I_HPP
#define GODOT_VECTOR4I_HPP
#include <godot_cpp/core/error_macros.hpp>
#include <godot_cpp/core/math.hpp>
namespace godot {
class String;
class Vector4;
class Vector4i {
_FORCE_INLINE_ GDNativeTypePtr _native_ptr() const { return (void *)this; }
friend class Variant;
public:
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_W,
};
union {
struct {
int32_t x;
int32_t y;
int32_t z;
int32_t w;
};
int32_t coord[4] = { 0 };
};
_FORCE_INLINE_ const int32_t &operator[](const int p_axis) const {
return coord[p_axis];
}
_FORCE_INLINE_ int32_t &operator[](const int p_axis) {
return coord[p_axis];
}
void set_axis(const int p_axis, const int32_t p_value);
int32_t get_axis(const int p_axis) const;
Vector4i::Axis min_axis_index() const;
Vector4i::Axis max_axis_index() const;
_FORCE_INLINE_ int64_t length_squared() const;
_FORCE_INLINE_ double length() const;
_FORCE_INLINE_ void zero();
_FORCE_INLINE_ Vector4i abs() const;
_FORCE_INLINE_ Vector4i sign() const;
Vector4i clamp(const Vector4i &p_min, const Vector4i &p_max) const;
/* Operators */
_FORCE_INLINE_ Vector4i &operator+=(const Vector4i &p_v);
_FORCE_INLINE_ Vector4i operator+(const Vector4i &p_v) const;
_FORCE_INLINE_ Vector4i &operator-=(const Vector4i &p_v);
_FORCE_INLINE_ Vector4i operator-(const Vector4i &p_v) const;
_FORCE_INLINE_ Vector4i &operator*=(const Vector4i &p_v);
_FORCE_INLINE_ Vector4i operator*(const Vector4i &p_v) const;
_FORCE_INLINE_ Vector4i &operator/=(const Vector4i &p_v);
_FORCE_INLINE_ Vector4i operator/(const Vector4i &p_v) const;
_FORCE_INLINE_ Vector4i &operator%=(const Vector4i &p_v);
_FORCE_INLINE_ Vector4i operator%(const Vector4i &p_v) const;
_FORCE_INLINE_ Vector4i &operator*=(const int32_t p_scalar);
_FORCE_INLINE_ Vector4i operator*(const int32_t p_scalar) const;
_FORCE_INLINE_ Vector4i &operator/=(const int32_t p_scalar);
_FORCE_INLINE_ Vector4i operator/(const int32_t p_scalar) const;
_FORCE_INLINE_ Vector4i &operator%=(const int32_t p_scalar);
_FORCE_INLINE_ Vector4i operator%(const int32_t p_scalar) const;
_FORCE_INLINE_ Vector4i operator-() const;
_FORCE_INLINE_ bool operator==(const Vector4i &p_v) const;
_FORCE_INLINE_ bool operator!=(const Vector4i &p_v) const;
_FORCE_INLINE_ bool operator<(const Vector4i &p_v) const;
_FORCE_INLINE_ bool operator<=(const Vector4i &p_v) const;
_FORCE_INLINE_ bool operator>(const Vector4i &p_v) const;
_FORCE_INLINE_ bool operator>=(const Vector4i &p_v) const;
operator String() const;
operator Vector4() const;
_FORCE_INLINE_ Vector4i() {}
Vector4i(const Vector4 &p_vec4);
_FORCE_INLINE_ Vector4i(const int32_t p_x, const int32_t p_y, const int32_t p_z, const int32_t p_w) {
x = p_x;
y = p_y;
z = p_z;
w = p_w;
}
};
int64_t Vector4i::length_squared() const {
return x * (int64_t)x + y * (int64_t)y + z * (int64_t)z + w * (int64_t)w;
}
double Vector4i::length() const {
return Math::sqrt((double)length_squared());
}
Vector4i Vector4i::abs() const {
return Vector4i(ABS(x), ABS(y), ABS(z), ABS(w));
}
Vector4i Vector4i::sign() const {
return Vector4i(SIGN(x), SIGN(y), SIGN(z), SIGN(w));
}
/* Operators */
Vector4i &Vector4i::operator+=(const Vector4i &p_v) {
x += p_v.x;
y += p_v.y;
z += p_v.z;
w += p_v.w;
return *this;
}
Vector4i Vector4i::operator+(const Vector4i &p_v) const {
return Vector4i(x + p_v.x, y + p_v.y, z + p_v.z, w + p_v.w);
}
Vector4i &Vector4i::operator-=(const Vector4i &p_v) {
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
w -= p_v.w;
return *this;
}
Vector4i Vector4i::operator-(const Vector4i &p_v) const {
return Vector4i(x - p_v.x, y - p_v.y, z - p_v.z, w - p_v.w);
}
Vector4i &Vector4i::operator*=(const Vector4i &p_v) {
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
w *= p_v.w;
return *this;
}
Vector4i Vector4i::operator*(const Vector4i &p_v) const {
return Vector4i(x * p_v.x, y * p_v.y, z * p_v.z, w * p_v.w);
}
Vector4i &Vector4i::operator/=(const Vector4i &p_v) {
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
w /= p_v.w;
return *this;
}
Vector4i Vector4i::operator/(const Vector4i &p_v) const {
return Vector4i(x / p_v.x, y / p_v.y, z / p_v.z, w / p_v.w);
}
Vector4i &Vector4i::operator%=(const Vector4i &p_v) {
x %= p_v.x;
y %= p_v.y;
z %= p_v.z;
w %= p_v.w;
return *this;
}
Vector4i Vector4i::operator%(const Vector4i &p_v) const {
return Vector4i(x % p_v.x, y % p_v.y, z % p_v.z, w % p_v.w);
}
Vector4i &Vector4i::operator*=(const int32_t p_scalar) {
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
w *= p_scalar;
return *this;
}
Vector4i Vector4i::operator*(const int32_t p_scalar) const {
return Vector4i(x * p_scalar, y * p_scalar, z * p_scalar, w * p_scalar);
}
// Multiplication operators required to workaround issues with LLVM using implicit conversion.
_FORCE_INLINE_ Vector4i operator*(const int32_t p_scalar, const Vector4i &p_vector) {
return p_vector * p_scalar;
}
_FORCE_INLINE_ Vector4i operator*(const int64_t p_scalar, const Vector4i &p_vector) {
return p_vector * p_scalar;
}
_FORCE_INLINE_ Vector4i operator*(const float p_scalar, const Vector4i &p_vector) {
return p_vector * p_scalar;
}
_FORCE_INLINE_ Vector4i operator*(const double p_scalar, const Vector4i &p_vector) {
return p_vector * p_scalar;
}
Vector4i &Vector4i::operator/=(const int32_t p_scalar) {
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
w /= p_scalar;
return *this;
}
Vector4i Vector4i::operator/(const int32_t p_scalar) const {
return Vector4i(x / p_scalar, y / p_scalar, z / p_scalar, w / p_scalar);
}
Vector4i &Vector4i::operator%=(const int32_t p_scalar) {
x %= p_scalar;
y %= p_scalar;
z %= p_scalar;
w %= p_scalar;
return *this;
}
Vector4i Vector4i::operator%(const int32_t p_scalar) const {
return Vector4i(x % p_scalar, y % p_scalar, z % p_scalar, w % p_scalar);
}
Vector4i Vector4i::operator-() const {
return Vector4i(-x, -y, -z, -w);
}
bool Vector4i::operator==(const Vector4i &p_v) const {
return (x == p_v.x && y == p_v.y && z == p_v.z && w == p_v.w);
}
bool Vector4i::operator!=(const Vector4i &p_v) const {
return (x != p_v.x || y != p_v.y || z != p_v.z || w != p_v.w);
}
bool Vector4i::operator<(const Vector4i &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w < p_v.w;
} else {
return z < p_v.z;
}
} else {
return y < p_v.y;
}
} else {
return x < p_v.x;
}
}
bool Vector4i::operator>(const Vector4i &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w > p_v.w;
} else {
return z > p_v.z;
}
} else {
return y > p_v.y;
}
} else {
return x > p_v.x;
}
}
bool Vector4i::operator<=(const Vector4i &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w <= p_v.w;
} else {
return z < p_v.z;
}
} else {
return y < p_v.y;
}
} else {
return x < p_v.x;
}
}
bool Vector4i::operator>=(const Vector4i &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
if (z == p_v.z) {
return w >= p_v.w;
} else {
return z > p_v.z;
}
} else {
return y > p_v.y;
}
} else {
return x > p_v.x;
}
}
void Vector4i::zero() {
x = y = z = w = 0;
}
} // namespace godot
#endif // GODOT_VECTOR4I_HPP