diff --git a/include/godot_cpp/core/math.hpp b/include/godot_cpp/core/math.hpp index e0d93db..6bc2344 100644 --- a/include/godot_cpp/core/math.hpp +++ b/include/godot_cpp/core/math.hpp @@ -28,8 +28,8 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ -#ifndef GODOT_MATH_H -#define GODOT_MATH_H +#ifndef GODOT_MATH_HPP +#define GODOT_MATH_HPP #include @@ -113,7 +113,7 @@ inline float fposmod(float p_x, float p_y) { if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { value += p_y; } - value += 0.0; + value += 0.0f; return value; } @@ -122,7 +122,7 @@ inline float fposmodp(float p_x, float p_y) { if (value < 0) { value += p_y; } - value += 0.0; + value += 0.0f; return value; } inline double fposmodp(double p_x, double p_y) { @@ -134,6 +134,14 @@ inline double fposmodp(double p_x, double p_y) { return value; } +inline int64_t posmod(int64_t p_x, int64_t p_y) { + int64_t value = p_x % p_y; + if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) { + value += p_y; + } + return value; +} + inline double floor(double p_x) { return ::floor(p_x); } @@ -280,17 +288,126 @@ inline float lerp_angle(float p_from, float p_to, float p_weight) { inline double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) { return 0.5 * - ((p_from * 2.0) + - (-p_pre + p_to) * p_weight + - (2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) + - (-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight)); + ((p_from * 2.0) + + (-p_pre + p_to) * p_weight + + (2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) + + (-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight)); } + inline float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) { return 0.5f * - ((p_from * 2.0f) + - (-p_pre + p_to) * p_weight + - (2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) + - (-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight)); + ((p_from * 2.0f) + + (-p_pre + p_to) * p_weight + + (2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) + + (-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight)); +} + +inline double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) { + double from_rot = fmod(p_from, Math_TAU); + + double pre_diff = fmod(p_pre - from_rot, Math_TAU); + double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff; + + double to_diff = fmod(p_to - from_rot, Math_TAU); + double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff; + + double post_diff = fmod(p_post - to_rot, Math_TAU); + double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff; + + return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight); +} + +inline float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) { + float from_rot = fmod(p_from, (float)Math_TAU); + + float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU); + float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff; + + float to_diff = fmod(p_to - from_rot, (float)Math_TAU); + float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff; + + float post_diff = fmod(p_post - to_rot, (float)Math_TAU); + float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff; + + return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight); +} + +inline double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight, + double p_to_t, double p_pre_t, double p_post_t) { + /* Barry-Goldman method */ + double t = Math::lerp(0.0, p_to_t, p_weight); + double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t); + double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t); + double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t)); + double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t)); + double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t); + return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t); +} + +inline float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight, + float p_to_t, float p_pre_t, float p_post_t) { + /* Barry-Goldman method */ + float t = Math::lerp(0.0f, p_to_t, p_weight); + float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t); + float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t); + float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t)); + float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t)); + float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t); + return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t); +} + +inline double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight, + double p_to_t, double p_pre_t, double p_post_t) { + double from_rot = fmod(p_from, Math_TAU); + + double pre_diff = fmod(p_pre - from_rot, Math_TAU); + double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff; + + double to_diff = fmod(p_to - from_rot, Math_TAU); + double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff; + + double post_diff = fmod(p_post - to_rot, Math_TAU); + double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff; + + return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t); +} + +inline float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight, + float p_to_t, float p_pre_t, float p_post_t) { + float from_rot = fmod(p_from, (float)Math_TAU); + + float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU); + float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff; + + float to_diff = fmod(p_to - from_rot, (float)Math_TAU); + float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff; + + float post_diff = fmod(p_post - to_rot, (float)Math_TAU); + float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff; + + return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t); +} + +inline double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) { + /* Formula from Wikipedia article on Bezier curves. */ + double omt = (1.0 - p_t); + double omt2 = omt * omt; + double omt3 = omt2 * omt; + double t2 = p_t * p_t; + double t3 = t2 * p_t; + + return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3; +} + +inline float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) { + /* Formula from Wikipedia article on Bezier curves. */ + float omt = (1.0f - p_t); + float omt2 = omt * omt; + float omt3 = omt2 * omt; + float t2 = p_t * p_t; + float t3 = t2 * p_t; + + return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3; } template @@ -345,10 +462,10 @@ inline float inverse_lerp(float p_from, float p_to, float p_value) { return (p_value - p_from) / (p_to - p_from); } -inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { +inline double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); } -inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { +inline float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); } @@ -368,30 +485,56 @@ inline bool is_inf(double p_val) { return std::isinf(p_val); } -inline bool is_equal_approx(real_t a, real_t b) { +inline bool is_equal_approx(float a, float b) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. - real_t tolerance = CMP_EPSILON * std::abs(a); + float tolerance = (float)CMP_EPSILON * abs(a); + if (tolerance < (float)CMP_EPSILON) { + tolerance = (float)CMP_EPSILON; + } + return abs(a - b) < tolerance; +} + +inline bool is_equal_approx(float a, float b, float tolerance) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + return abs(a - b) < tolerance; +} + +inline bool is_zero_approx(float s) { + return abs(s) < (float)CMP_EPSILON; +} + +inline bool is_equal_approx(double a, double b) { + // Check for exact equality first, required to handle "infinity" values. + if (a == b) { + return true; + } + // Then check for approximate equality. + double tolerance = CMP_EPSILON * abs(a); if (tolerance < CMP_EPSILON) { tolerance = CMP_EPSILON; } - return std::abs(a - b) < tolerance; + return abs(a - b) < tolerance; } -inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) { +inline bool is_equal_approx(double a, double b, double tolerance) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. - return std::abs(a - b) < tolerance; + return abs(a - b) < tolerance; } -inline bool is_zero_approx(real_t s) { - return std::abs(s) < CMP_EPSILON; +inline bool is_zero_approx(double s) { + return abs(s) < CMP_EPSILON; } inline double smoothstep(double p_from, double p_to, double p_weight) { @@ -448,17 +591,20 @@ inline float wrapf(real_t value, real_t min, real_t max) { return is_zero_approx(range) ? min : value - (range * floor((value - min) / range)); } -inline float stepify(float p_value, float p_step) { - if (p_step != 0) { - p_value = floor(p_value / p_step + 0.5f) * p_step; - } - return p_value; +inline float fract(float value) { + return value - floor(value); } -inline double stepify(double p_value, double p_step) { - if (p_step != 0) { - p_value = floor(p_value / p_step + 0.5) * p_step; - } - return p_value; + +inline double fract(double value) { + return value - floor(value); +} + +inline float pingpong(float value, float length) { + return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f; +} + +inline double pingpong(double value, double length) { + return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0; } inline unsigned int next_power_of_2(unsigned int x) { @@ -506,7 +652,25 @@ inline double snapped(double p_value, double p_step) { return p_value; } +inline float snap_scalar(float p_offset, float p_step, float p_target) { + return p_step != 0 ? Math::snapped(p_target - p_offset, p_step) + p_offset : p_target; +} + +inline float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) { + if (p_step != 0) { + float a = Math::snapped(p_target - p_offset, p_step + p_separation) + p_offset; + float b = a; + if (p_target >= 0) { + b -= p_separation; + } else { + b += p_step; + } + return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b; + } + return p_target; +} + } // namespace Math } // namespace godot -#endif // GODOT_MATH_H +#endif // GODOT_MATH_HPP diff --git a/src/variant/basis.cpp b/src/variant/basis.cpp index c0c79d8..0684dca 100644 --- a/src/variant/basis.cpp +++ b/src/variant/basis.cpp @@ -110,7 +110,7 @@ bool Basis::is_diagonal() const { } bool Basis::is_rotation() const { - return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal(); + return Math::is_equal_approx(determinant(), (real_t)1, (real_t)UNIT_EPSILON) && is_orthogonal(); } #ifdef MATH_CHECKS diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp index 7d242f9..7a06cda 100644 --- a/src/variant/quaternion.cpp +++ b/src/variant/quaternion.cpp @@ -86,7 +86,7 @@ Quaternion Quaternion::normalized() const { } bool Quaternion::is_normalized() const { - return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon + return Math::is_equal_approx(length_squared(), (real_t)1.0, (real_t)UNIT_EPSILON); //use less epsilon } Quaternion Quaternion::inverse() const {