Make Basis look column-major while retaining a row-major representation

Per https://github.com/godotengine/godot/issues/14553:
Godot stores Basis in row-major layout for more change for efficiently
taking advantage of SIMD instructions, but in scripts Basis looks like and
is accessible in a column-major format.

This change modifies the C++ binding so that from the script's perspective
Basis does look like if it was column-major while retaining a row-major
in-memory representation. This is achieved using a set of helper template
classes which allow accessing individual columns whose components are
non-continues in memory as if it was a Vector3 type. This ensures script
interface compatibility without needing to transpose the Basis every time
it is passed over the script-engine boundary.

Also made most of the Vector2 and Vector3 class interfaces inlined in the
process for increased performance.

While unrelated (but didn't want to file a separate PR for it), this change
adds the necessary flags to have debug symbol information under MSVC.

Fixes #241.
This commit is contained in:
Daniel Rakos
2019-04-07 16:03:20 +02:00
parent df04c4097f
commit abccf9a050
7 changed files with 616 additions and 466 deletions

View File

@@ -31,15 +31,6 @@ Basis::Basis() {
elements[2][2] = 1;
}
const Vector3 &Basis::operator[](int axis) const {
return elements[axis];
}
Vector3 &Basis::operator[](int axis) {
return elements[axis];
}
#define cofac(row1, col1, row2, col2) \
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])

View File

@@ -1,61 +1,11 @@
#include "Vector2.hpp"
#include <cmath>
#include <gdnative/vector2.h>
#include "String.hpp"
namespace godot {
Vector2 Vector2::operator+(const Vector2 &p_v) const {
return Vector2(x + p_v.x, y + p_v.y);
}
void Vector2::operator+=(const Vector2 &p_v) {
x += p_v.x;
y += p_v.y;
}
Vector2 Vector2::operator-(const Vector2 &p_v) const {
return Vector2(x - p_v.x, y - p_v.y);
}
void Vector2::operator-=(const Vector2 &p_v) {
x -= p_v.x;
y -= p_v.y;
}
Vector2 Vector2::operator*(const Vector2 &p_v1) const {
return Vector2(x * p_v1.x, y * p_v1.y);
}
Vector2 Vector2::operator*(const real_t &rvalue) const {
return Vector2(x * rvalue, y * rvalue);
}
void Vector2::operator*=(const real_t &rvalue) {
x *= rvalue;
y *= rvalue;
}
Vector2 Vector2::operator/(const Vector2 &p_v1) const {
return Vector2(x / p_v1.x, y / p_v1.y);
}
Vector2 Vector2::operator/(const real_t &rvalue) const {
return Vector2(x / rvalue, y / rvalue);
}
void Vector2::operator/=(const real_t &rvalue) {
x /= rvalue;
y /= rvalue;
}
Vector2 Vector2::operator-() const {
return Vector2(-x, -y);
}
bool Vector2::operator==(const Vector2 &p_vec2) const {
return x == p_vec2.x && y == p_vec2.y;
}
@@ -64,56 +14,6 @@ bool Vector2::operator!=(const Vector2 &p_vec2) const {
return x != p_vec2.x || y != p_vec2.y;
}
void Vector2::normalize() {
real_t l = x * x + y * y;
if (l != 0) {
l = sqrt(l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const {
Vector2 v = *this;
v.normalize();
return v;
}
real_t Vector2::length() const {
return sqrt(x * x + y * y);
}
real_t Vector2::length_squared() const {
return x * x + y * y;
}
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
return atan2(cross(p_vector2), dot(p_vector2));
}
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
return atan2(y - p_vector2.y, x - p_vector2.x);
}
real_t Vector2::dot(const Vector2 &p_other) const {
return x * p_other.x + y * p_other.y;
}
real_t Vector2::cross(const Vector2 &p_other) const {
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::cross(real_t p_other) const {
return Vector2(p_other * y, -p_other * x);
}
Vector2 Vector2::project(const Vector2 &p_vec) const {
Vector2 v1 = p_vec;
Vector2 v2 = *this;
@@ -134,19 +34,6 @@ Vector2 Vector2::clamped(real_t p_len) const {
return v;
}
Vector2 Vector2::linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
Vector2 res = p_a;
res.x += (p_t * (p_b.x - p_a.x));
res.y += (p_t * (p_b.y - p_a.y));
return res;
}
Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const {
Vector2 res = *this;
res.x += (p_t * (p_b.x - x));
res.y += (p_t * (p_b.y - y));
return res;
}
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
Vector2 p0 = p_pre_a;
Vector2 p1 = *this;
@@ -167,45 +54,6 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c
return out;
}
Vector2 Vector2::slide(const Vector2 &p_vec) const {
return p_vec - *this * this->dot(p_vec);
}
Vector2 Vector2::reflect(const Vector2 &p_vec) const {
return p_vec - *this * this->dot(p_vec) * 2.0;
}
real_t Vector2::angle() const {
return atan2(y, x);
}
void Vector2::set_rotation(real_t p_radians) {
x = cosf(p_radians);
y = sinf(p_radians);
}
Vector2 Vector2::abs() const {
return Vector2(fabs(x), fabs(y));
}
Vector2 Vector2::rotated(real_t p_by) const {
Vector2 v;
v.set_rotation(angle() + p_by);
v *= length();
return v;
}
Vector2 Vector2::tangent() const {
return Vector2(y, -x);
}
Vector2 Vector2::floor() const {
return Vector2(::floor(x), ::floor(y));
}
Vector2 Vector2::snapped(const Vector2 &p_by) const {
return Vector2(
p_by.x != 0 ? ::floor(x / p_by.x + 0.5) * p_by.x : x,

View File

@@ -4,118 +4,10 @@
#include <stdlib.h>
#include <cmath>
#include "Basis.hpp"
namespace godot {
Vector3::Vector3(real_t x, real_t y, real_t z) {
this->x = x;
this->y = y;
this->z = z;
}
Vector3::Vector3() {
this->x = 0;
this->y = 0;
this->z = 0;
}
const real_t &Vector3::operator[](int p_axis) const {
return coord[p_axis];
}
real_t &Vector3::operator[](int p_axis) {
return coord[p_axis];
}
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3 &p_v) const {
Vector3 v = *this;
v += p_v;
return v;
}
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
Vector3 Vector3::operator-(const Vector3 &p_v) const {
Vector3 v = *this;
v -= p_v;
return v;
}
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
Vector3 Vector3::operator*(const Vector3 &p_v) const {
Vector3 v = *this;
v *= p_v;
return v;
}
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
Vector3 Vector3::operator/(const Vector3 &p_v) const {
Vector3 v = *this;
v /= p_v;
return v;
}
Vector3 &Vector3::operator*=(real_t p_scalar) {
*this *= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
Vector3 Vector3::operator*(real_t p_scalar) const {
Vector3 v = *this;
v *= p_scalar;
return v;
}
Vector3 &Vector3::operator/=(real_t p_scalar) {
*this /= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
Vector3 Vector3::operator/(real_t p_scalar) const {
Vector3 v = *this;
v /= p_scalar;
return v;
}
Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
bool Vector3::operator==(const Vector3 &p_v) const {
return (x == p_v.x && y == p_v.y && z == p_v.z);
}
bool Vector3::operator!=(const Vector3 &p_v) const {
return (x != p_v.x || y != p_v.y || z != p_v.z);
}
bool Vector3::operator<(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y)
@@ -138,30 +30,6 @@ bool Vector3::operator<=(const Vector3 &p_v) const {
}
}
Vector3 Vector3::abs() const {
return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
}
Vector3 Vector3::ceil() const {
return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
}
Vector3 Vector3::cross(const Vector3 &b) const {
Vector3 ret(
(y * b.z) - (z * b.y),
(z * b.x) - (x * b.z),
(x * b.y) - (y * b.x));
return ret;
}
Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const {
return Vector3(
x + (p_t * (p_b.x - x)),
y + (p_t * (p_b.y - y)),
z + (p_t * (p_b.z - z)));
}
Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
Vector3 p0 = pre_a;
Vector3 p1 = *this;
@@ -180,54 +48,6 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const
return out;
}
Vector3 Vector3::bounce(const Vector3 &p_normal) const {
return -reflect(p_normal);
}
real_t Vector3::length() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return ::sqrt(x2 + y2 + z2);
}
real_t Vector3::length_squared() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return x2 + y2 + z2;
}
real_t Vector3::distance_squared_to(const Vector3 &b) const {
return (b - *this).length_squared();
}
real_t Vector3::distance_to(const Vector3 &b) const {
return (b - *this).length();
}
real_t Vector3::dot(const Vector3 &b) const {
return x * b.x + y * b.y + z * b.z;
}
real_t Vector3::angle_to(const Vector3 &b) const {
return std::atan2(cross(b).length(), dot(b));
}
Vector3 Vector3::floor() const {
return Vector3(::floor(x), ::floor(y), ::floor(z));
}
Vector3 Vector3::inverse() const {
return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
}
bool Vector3::is_normalized() const {
return std::abs(length_squared() - 1.0) < 0.00001;
}
Basis Vector3::outer(const Vector3 &b) const {
Vector3 row0(x * b.x, x * b.y, x * b.z);
Vector3 row1(y * b.x, y * b.y, y * b.z);
@@ -243,41 +63,10 @@ int Vector3::min_axis() const {
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
}
void Vector3::normalize() {
real_t l = length();
if (l == 0) {
x = y = z = 0;
} else {
x /= l;
y /= l;
z /= l;
}
}
Vector3 Vector3::normalized() const {
Vector3 v = *this;
v.normalize();
return v;
}
Vector3 Vector3::reflect(const Vector3 &by) const {
return by - *this * this->dot(by) * 2.0;
}
Vector3 Vector3::rotated(const Vector3 &axis, const real_t phi) const {
Vector3 v = *this;
v.rotate(axis, phi);
return v;
}
void Vector3::rotate(const Vector3 &p_axis, real_t p_phi) {
*this = Basis(p_axis, p_phi).xform(*this);
}
Vector3 Vector3::slide(const Vector3 &by) const {
return by - *this * this->dot(by);
}
// this is ugly as well, but hey, I'm a simple man
#define _ugly_stepify(val, step) (step != 0 ? ::floor(val / step + 0.5) * step : val)
@@ -289,12 +78,6 @@ void Vector3::snap(real_t p_val) {
#undef _ugly_stepify
Vector3 Vector3::snapped(const float by) {
Vector3 v = *this;
v.snap(by);
return v;
}
Vector3::operator String() const {
return String::num(x) + ", " + String::num(y) + ", " + String::num(z);
}