rewrote binding generator in python

This commit is contained in:
Karroffel
2017-05-12 21:53:07 +02:00
parent 3969bcf078
commit cf30b0f39d
47 changed files with 650 additions and 812 deletions

View File

@@ -1,732 +0,0 @@
#ifndef GODOT_H
#define GODOT_H
#include <cstdlib>
#include <godot.h>
#include <godot_cpp/core/CoreTypes.hpp>
#include <godot_cpp/core/Variant.hpp>
#include <godot_cpp/Object.hpp>
namespace godot {
#if !defined(_WIN32)
#define GD_EXPORT
#else
#define GD_EXPORT __declspec(dllexport)
#endif
#define GODOT_NATIVE_INIT(arg) extern "C" void GD_EXPORT godot_native_init(arg)
#define GODOT_NATIVE_TERMINATE(arg) extern "C" void GD_EXPORT godot_native_terminate(arg)
#define GODOT_CLASS(Name, Base) \
public: inline static char *___get_type_name() { return (char *) #Name; } \
inline static char *___get_base_type_name() { return (char *) #Base; } \
Base *self; \
inline Name(godot_object *o) { self = (Base *) o; } \
private:
#define GODOT_SUBCLASS(Name, Base) \
public: inline static char *___get_type_name() { return (char *) #Name; } \
inline static char *___get_base_type_name() { return (char *) #Base; } \
inline Name(godot_object *o) : Base(o) {} \
private:
template<class T>
struct _ArgCast {
static T _arg_cast(Variant a)
{
return (T) a;
}
};
template<class T>
struct _ArgCast<T*> {
static T *_arg_cast(Variant a)
{
return (T *) ((Object *) a);
}
};
template<class T>
T *as(Object *obj)
{
return (T *) godot_native_get_userdata(obj);
}
// instance and destroy funcs
template<class T>
void *_godot_class_instance_func(godot_object *p, void *method_data)
{
T *d = new T(p);
d->_init();
return d;
}
template<class T>
void _godot_class_destroy_func(godot_object *p, void *method_data, void *data)
{
T *d = (T *) data;
delete d;
}
template<class T>
void register_class()
{
godot_instance_create_func create = {};
create.create_func = _godot_class_instance_func<T>;
godot_instance_destroy_func destroy = {};
destroy.destroy_func = _godot_class_destroy_func<T>;
godot_script_register_class(T::___get_type_name(), T::___get_base_type_name(), create, destroy);
T::_register_methods();
}
template<class T>
void register_tool_class()
{
godot_instance_create_func create = {};
create.create_func = _godot_class_instance_func<T>;
godot_instance_destroy_func destroy = {};
destroy.destroy_func = _godot_class_destroy_func<T>;
godot_script_register_tool_class(T::___get_type_name(), T::___get_base_type_name(), create, destroy);
T::_register_methods();
}
// method registering
typedef godot_variant (*__godot_wrapper_method)(godot_object *, void *, void *, int, godot_variant **);
template<class T, class R, class ...args>
char *___get_method_class_name(R (T::*p)(args... a))
{
return T::___get_type_name();
}
// wohooo, let the fun begin.
template<class T, class R>
struct _WrappedMethod0 {
R (T::*f)();
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod0<T, R> *method = (_WrappedMethod0<T, R>*) method_data;
Variant *var = (Variant *) &v;
*var = (obj->*(method->f))();
return v;
}
};
template<class T>
struct _WrappedMethod0<T, void> {
void (T::*f)();
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod0<T, void> *method = (_WrappedMethod0<T, void>*) method_data;
(obj->*(method->f))();
return v;
}
};
template<class T, class R>
void *___make_wrapper_function(R (T::*f)())
{
_WrappedMethod0<T, R> *p = (_WrappedMethod0<T, R> *) malloc(sizeof(_WrappedMethod0<T, R>));
p->f = f;
return (void *) p;
}
template<class T, class R>
__godot_wrapper_method ___get_wrapper_function(R (T::*f)())
{
return (__godot_wrapper_method) &_WrappedMethod0<T, R>::__wrapped_method;
}
template<class T, class R, class A0>
struct _WrappedMethod1 {
R (T::*f)(A0);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod1<T, R, A0> *method = (_WrappedMethod1<T, R, A0>*) method_data;
Variant *var = (Variant *) &v;
Variant **arg = (Variant **) args;
*var = (obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]));
return v;
}
};
template<class T, class A0>
struct _WrappedMethod1<T, void, A0> {
void (T::*f)(A0);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod1<T, void, A0> *method = (_WrappedMethod1<T, void, A0>*) method_data;
Variant **arg = (Variant **) args;
(obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]));
return v;
}
};
template<class T, class R, class A0>
void *___make_wrapper_function(R (T::*f)(A0))
{
_WrappedMethod1<T, R, A0> *p = (_WrappedMethod1<T, R, A0> *) malloc(sizeof(_WrappedMethod1<T, R, A0>));
p->f = f;
return (void *) p;
}
template<class T, class R, class A0>
__godot_wrapper_method ___get_wrapper_function(R (T::*f)(A0))
{
return (__godot_wrapper_method) &_WrappedMethod1<T, R, A0>::__wrapped_method;
}
template<class T, class R, class A0, class A1>
struct _WrappedMethod2 {
R (T::*f)(A0, A1);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod2<T, R, A0, A1> *method = (_WrappedMethod2<T, R, A0, A1>*) method_data;
Variant *var = (Variant *) &v;
Variant **arg = (Variant **) args;
*var = (obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]));
return v;
}
};
template<class T, class A0, class A1>
struct _WrappedMethod2<T, void, A0, A1> {
void (T::*f)(A0, A1);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod2<T, void, A0, A1> *method = (_WrappedMethod2<T, void, A0, A1>*) method_data;
Variant **arg = (Variant **) args;
(obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]));
return v;
}
};
template<class T, class R, class A0, class A1>
void *___make_wrapper_function(R (T::*f)(A0, A1))
{
_WrappedMethod2<T, R, A0, A1> *p = (_WrappedMethod2<T, R, A0, A1> *) malloc(sizeof(_WrappedMethod2<T, R, A0, A1>));
p->f = f;
return (void *) p;
}
template<class T, class R, class A0, class A1>
__godot_wrapper_method ___get_wrapper_function(R (T::*f)(A0, A1))
{
return (__godot_wrapper_method) &_WrappedMethod2<T, R, A0, A1>::__wrapped_method;
}
template<class T, class R, class A0, class A1, class A2>
struct _WrappedMethod3 {
R (T::*f)(A0, A1, A2);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod3<T, R, A0, A1, A2> *method = (_WrappedMethod3<T, R, A0, A1, A2>*) method_data;
Variant *var = (Variant *) &v;
Variant **arg = (Variant **) args;
*var = (obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]), _ArgCast<A2>::_arg_cast(*arg[2]));
return v;
}
};
template<class T, class A0, class A1, class A2>
struct _WrappedMethod3<T, void, A0, A1, A2> {
void (T::*f)(A0, A1, A2);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod3<T, void, A0, A1, A2> *method = (_WrappedMethod3<T, void, A0, A1, A2>*) method_data;
Variant **arg = (Variant **) args;
(obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]), _ArgCast<A2>::_arg_cast(*arg[2]));
return v;
}
};
template<class T, class R, class A0, class A1, class A2>
void *___make_wrapper_function(R (T::*f)(A0, A1, A2))
{
_WrappedMethod3<T, R, A0, A1, A2> *p = (_WrappedMethod3<T, R, A0, A1, A2> *) malloc(sizeof(_WrappedMethod3<T, R, A0, A1, A2>));
p->f = f;
return (void *) p;
}
template<class T, class R, class A0, class A1, class A2>
__godot_wrapper_method ___get_wrapper_function(R (T::*f)(A0, A1, A2))
{
return (__godot_wrapper_method) &_WrappedMethod3<T, R, A0, A1, A2>::__wrapped_method;
}
template<class T, class R, class A0, class A1, class A2, class A3>
struct _WrappedMethod4 {
R (T::*f)(A0, A1, A2, A3);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod4<T, R, A0, A1, A2, A3> *method = (_WrappedMethod4<T, R, A0, A1, A2, A3>*) method_data;
Variant *var = (Variant *) &v;
Variant **arg = (Variant **) args;
*var = (obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]), _ArgCast<A2>::_arg_cast(*arg[2]), _ArgCast<A3>::_arg_cast(*arg[3]));
return v;
}
};
template<class T, class A0, class A1, class A2, class A3>
struct _WrappedMethod4<T, void, A0, A1, A2, A3> {
void (T::*f)(A0, A1, A2, A3);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod4<T, void, A0, A1, A2, A3> *method = (_WrappedMethod4<T, void, A0, A1, A2, A3>*) method_data;
Variant **arg = (Variant **) args;
(obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]), _ArgCast<A2>::_arg_cast(*arg[2]), _ArgCast<A3>::_arg_cast(*arg[3]));
return v;
}
};
template<class T, class R, class A0, class A1, class A2, class A3>
void *___make_wrapper_function(R (T::*f)(A0, A1, A2, A3))
{
_WrappedMethod4<T, R, A0, A1, A2, A3> *p = (_WrappedMethod4<T, R, A0, A1, A2, A3> *) malloc(sizeof(_WrappedMethod4<T, R, A0, A1, A2, A3>));
p->f = f;
return (void *) p;
}
template<class T, class R, class A0, class A1, class A2, class A3>
__godot_wrapper_method ___get_wrapper_function(R (T::*f)(A0, A1, A2, A3))
{
return (__godot_wrapper_method) &_WrappedMethod4<T, R, A0, A1, A2, A3>::__wrapped_method;
}
template<class T, class R, class A0, class A1, class A2, class A3, class A4>
struct _WrappedMethod5 {
R (T::*f)(A0, A1, A2, A3, A4);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod5<T, R, A0, A1, A2, A3, A4> *method = (_WrappedMethod5<T, R, A0, A1, A2, A3, A4>*) method_data;
Variant *var = (Variant *) &v;
Variant **arg = (Variant **) args;
*var = (obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]), _ArgCast<A2>::_arg_cast(*arg[2]), _ArgCast<A3>::_arg_cast(*arg[3]), _ArgCast<A4>::_arg_cast(*arg[4]));
return v;
}
};
template<class T, class A0, class A1, class A2, class A3, class A4>
struct _WrappedMethod5<T, void, A0, A1, A2, A3, A4> {
void (T::*f)(A0, A1, A2, A3, A4);
static godot_variant __wrapped_method(godot_object *, void *method_data, void *user_data, int num_args, godot_variant **args)
{
godot_variant v;
godot_variant_new_nil(&v);
T *obj = (T *) user_data;
_WrappedMethod5<T, void, A0, A1, A2, A3, A4> *method = (_WrappedMethod5<T, void, A0, A1, A2, A3, A4>*) method_data;
Variant **arg = (Variant **) args;
(obj->*(method->f))(_ArgCast<A0>::_arg_cast(*arg[0]), _ArgCast<A1>::_arg_cast(*arg[1]), _ArgCast<A2>::_arg_cast(*arg[2]), _ArgCast<A3>::_arg_cast(*arg[3]), _ArgCast<A4>::_arg_cast(*arg[4]));
return v;
}
};
template<class T, class R, class A0, class A1, class A2, class A3, class A4>
void *___make_wrapper_function(R (T::*f)(A0, A1, A2, A3, A4))
{
_WrappedMethod5<T, R, A0, A1, A2, A3, A4> *p = (_WrappedMethod5<T, R, A0, A1, A2, A3, A4> *) malloc(sizeof(_WrappedMethod5<T, R, A0, A1, A2, A3, A4>));
p->f = f;
return (void *) p;
}
template<class T, class R, class A0, class A1, class A2, class A3, class A4>
__godot_wrapper_method ___get_wrapper_function(R (T::*f)(A0, A1, A2, A3, A4))
{
return (__godot_wrapper_method) &_WrappedMethod5<T, R, A0, A1, A2, A3, A4>::__wrapped_method;
}
template<class M>
void register_method(char *name, M method_ptr, godot_method_rpc_mode rpc_type = GODOT_METHOD_RPC_MODE_DISABLED)
{
godot_instance_method method = {};
method.method_data = ___make_wrapper_function(method_ptr);
method.free_func = free;
method.method = (__godot_wrapper_method) ___get_wrapper_function(method_ptr);
godot_method_attributes attr = {};
attr.rpc_type = rpc_type;
godot_script_register_method(___get_method_class_name(method_ptr), name, attr, method);
}
template<class T, class P>
struct _PropertySetFunc {
void (T::*f)(P);
static void _wrapped_setter(godot_object *object, void *method_data, void *user_data, godot_variant value)
{
_PropertySetFunc<T, P> *set_func = (_PropertySetFunc<T, P> *) method_data;
T *obj = (T *) user_data;
Variant *v = (Variant *) &value;
(obj->*(set_func->f))(_ArgCast<P>::_arg_cast(*v));
}
};
template<class T, class P>
struct _PropertyGetFunc {
P (T::*f)();
static godot_variant _wrapped_getter(godot_object *object, void *method_data, void *user_data)
{
_PropertyGetFunc<T, P> *get_func = (_PropertyGetFunc<T, P> *) method_data;
T *obj = (T *) user_data;
godot_variant var;
godot_variant_new_nil(&var);
Variant *v = (Variant *) &var;
*v = (obj->*(get_func->f))();
return var;
}
};
template<class T, class P>
struct _PropertyDefaultSetFunc {
P (T::*f);
static void _wrapped_setter(godot_object *object, void *method_data, void *user_data, godot_variant value)
{
_PropertyDefaultSetFunc<T, P> *set_func = (_PropertyDefaultSetFunc<T, P> *) method_data;
T *obj = (T *) user_data;
Variant *v = (Variant *) &value;
(obj->*(set_func->f)) = _ArgCast<P>::_arg_cast(*v);
}
};
template<class T, class P>
struct _PropertyDefaultGetFunc {
P (T::*f);
static godot_variant _wrapped_getter(godot_object *object, void *method_data, void *user_data)
{
_PropertyDefaultGetFunc<T, P> *get_func = (_PropertyDefaultGetFunc<T, P> *) method_data;
T *obj = (T *) user_data;
godot_variant var;
godot_variant_new_nil(&var);
Variant *v = (Variant *) &var;
*v = (obj->*(get_func->f));
return var;
}
};
template<class T, class P>
void register_property(char *name, P (T::*var), P default_value, godot_method_rpc_mode rpc_mode = GODOT_METHOD_RPC_MODE_DISABLED, godot_property_usage_flags usage = GODOT_PROPERTY_USAGE_DEFAULT, godot_property_hint hint = GODOT_PROPERTY_HINT_NONE, String hint_string = "")
{
Variant def_val = default_value;
usage = (godot_property_usage_flags) ((int) usage | GODOT_PROPERTY_USAGE_SCRIPT_VARIABLE);
if (def_val.get_type() == Variant::OBJECT) {
Object *o = def_val;
if (o && o->is_class("Resource")) {
hint = (godot_property_hint) ((int) hint | GODOT_PROPERTY_HINT_RESOURCE_TYPE);
hint_string = o->get_class();
}
}
godot_string *_hint_string = (godot_string*) &hint_string;
godot_property_attributes attr = {};
attr.type = def_val.get_type();
attr.default_value = *(godot_variant *) &def_val;
attr.hint = hint;
attr.rset_type = rpc_mode;
attr.usage = usage;
attr.hint_string = *_hint_string;
_PropertyDefaultSetFunc<T, P> *wrapped_set = (_PropertyDefaultSetFunc<T, P> *) malloc(sizeof(_PropertyDefaultSetFunc<T, P>));
wrapped_set->f = var;
_PropertyDefaultGetFunc<T, P> *wrapped_get = (_PropertyDefaultGetFunc<T, P> *) malloc(sizeof(_PropertyDefaultGetFunc<T, P>));
wrapped_get->f = var;
godot_property_set_func set_func = {};
set_func.method_data = (void *) wrapped_set;
set_func.free_func = free;
set_func.set_func = &_PropertyDefaultSetFunc<T, P>::_wrapped_setter;
godot_property_get_func get_func = {};
get_func.method_data = (void *) wrapped_get;
get_func.free_func = free;
get_func.get_func = &_PropertyDefaultGetFunc<T, P>::_wrapped_getter;
godot_script_register_property(T::___get_type_name(), name, &attr, set_func, get_func);
}
template<class T, class P>
void register_property(char *name, void (T::*setter)(P), P (T::*getter)(), P default_value, godot_method_rpc_mode rpc_mode = GODOT_METHOD_RPC_MODE_DISABLED, godot_property_usage_flags usage = GODOT_PROPERTY_USAGE_DEFAULT, godot_property_hint hint = GODOT_PROPERTY_HINT_NONE, String hint_string = "")
{
Variant def_val = default_value;
godot_property_attributes attr = {};
attr.type = def_val.get_type();
attr.default_value = *(godot_variant *) &def_val;
attr.hint = hint;
attr.rset_type = rpc_mode;
attr.usage = usage;
_PropertySetFunc<T, P> *wrapped_set = (_PropertySetFunc<T, P> *) malloc(sizeof(_PropertySetFunc<T, P>));
wrapped_set->f = setter;
_PropertyGetFunc<T, P> *wrapped_get = (_PropertyGetFunc<T, P> *) malloc(sizeof(_PropertyGetFunc<T, P>));
wrapped_get->f = getter;
godot_property_set_func set_func = {};
set_func.method_data = (void *) wrapped_set;
set_func.free_func = free;
set_func.set_func = &_PropertySetFunc<T, P>::_wrapped_setter;
godot_property_get_func get_func = {};
get_func.method_data = (void *) wrapped_get;
get_func.free_func = free;
get_func.get_func = &_PropertyGetFunc<T, P>::_wrapped_getter;
godot_script_register_property(T::___get_type_name(), name, &attr, set_func, get_func);
}
template<class T>
void register_signal(String name, Dictionary args = Dictionary())
{
godot_signal signal = {};
signal.name = *(godot_string *)&name;
signal.num_args = args.size();
signal.num_default_args = 0;
signal.args = (godot_signal_argument*) godot_alloc(sizeof(godot_signal_argument) * signal.num_args);
memset((void *) signal.args, 0, sizeof(godot_signal_argument) * signal.num_args);
for (int i = 0; i < signal.num_args; i++) {
// Array entry = args[i];
// String name = entry[0];
String name = args.keys()[i];
godot_string *_key = (godot_string *)&name;
godot_string_new(&signal.args[i].name);
godot_string_copy_string(&signal.args[i].name, _key);
// if (entry.size() > 1) {
// signal.args[i].type = entry[1];
// }
signal.args[i].type = args.values()[i];
}
godot_script_register_signal(T::___get_type_name(), &signal);
for (int i = 0; i < signal.num_args; i++) {
godot_string_destroy(&signal.args[i].name);
}
}
}
#endif // GODOT_H

View File

@@ -1,196 +0,0 @@
#include "Array.hpp"
#include <cstdlib>
#include <godot/godot_array.h>
#include "Variant.hpp"
namespace godot {
class Object;
Array::Array()
{
godot_array_new(&_godot_array);
}
Array::Array(const PoolByteArray& a)
{
godot_array_new_pool_byte_array(&_godot_array, (godot_pool_byte_array *) &a);
}
Array::Array(const PoolIntArray& a)
{
godot_array_new_pool_int_array(&_godot_array, (godot_pool_int_array *) &a);
}
Array::Array(const PoolRealArray& a)
{
godot_array_new_pool_real_array(&_godot_array, (godot_pool_real_array *) &a);
}
Array::Array(const PoolStringArray& a)
{
godot_array_new_pool_string_array(&_godot_array, (godot_pool_string_array *) &a);
}
Array::Array(const PoolVector2Array& a)
{
godot_array_new_pool_vector2_array(&_godot_array, (godot_pool_vector2_array *) &a);
}
Array::Array(const PoolVector3Array& a)
{
godot_array_new_pool_vector3_array(&_godot_array, (godot_pool_vector3_array *) &a);
}
Array::Array(const PoolColorArray& a)
{
godot_array_new_pool_color_array(&_godot_array, (godot_pool_color_array *) &a);
}
Variant& Array::operator [](const int idx)
{
godot_variant *v = godot_array_get(&_godot_array, idx);
return *(Variant *) v;
}
Variant Array::operator [](const int idx) const
{
// Yes, I'm casting away the const... you can hate me now.
// since the result is
godot_variant *v = godot_array_get((godot_array *) &_godot_array, idx);
return *(Variant *) v;
}
void Array::append(const Variant& v)
{
godot_array_append(&_godot_array, (godot_variant *) &v);
}
void Array::clear()
{
godot_array_clear(&_godot_array);
}
int Array::count(const Variant& v)
{
return godot_array_count(&_godot_array, (godot_variant *) &v);
}
bool Array::empty() const
{
return godot_array_empty(&_godot_array);
}
void Array::erase(const Variant& v)
{
godot_array_erase(&_godot_array, (godot_variant *) &v);
}
Variant Array::front() const
{
godot_variant v = godot_array_front(&_godot_array);
return *(Variant *) &v;
}
Variant Array::back() const
{
godot_variant v = godot_array_back(&_godot_array);
return *(Variant *) &v;
}
int Array::find(const Variant& what, const int from)
{
return godot_array_find(&_godot_array, (godot_variant *) &what, from);
}
int Array::find_last(const Variant& what)
{
return godot_array_find_last(&_godot_array, (godot_variant *) &what);
}
bool Array::has(const Variant& what) const
{
return godot_array_has(&_godot_array, (godot_variant *) &what);
}
uint32_t Array::hash() const
{
return godot_array_hash(&_godot_array);
}
void Array::insert(const int pos, const Variant& value)
{
godot_array_insert(&_godot_array, pos, (godot_variant *) &value);
}
void Array::invert()
{
godot_array_invert(&_godot_array);
}
bool Array::is_shared() const
{
return godot_array_is_shared(&_godot_array);
}
Variant Array::pop_back()
{
godot_variant v = godot_array_pop_back(&_godot_array);
return *(Variant *) &v;
}
Variant Array::pop_front()
{
godot_variant v = godot_array_pop_front(&_godot_array);
return *(Variant *) &v;
}
void Array::push_back(const Variant& v)
{
godot_array_push_back(&_godot_array, (godot_variant *) &v);
}
void Array::push_front(const Variant& v)
{
godot_array_push_front(&_godot_array, (godot_variant *) &v);
}
void Array::remove(const int idx)
{
godot_array_remove(&_godot_array, idx);
}
int Array::size() const
{
return godot_array_size(&_godot_array);
}
void Array::resize(const int size)
{
godot_array_resize(&_godot_array, size);
}
int Array::rfind(const Variant& what, const int from)
{
return godot_array_rfind(&_godot_array, (godot_variant *) &what, from);
}
void Array::sort()
{
godot_array_sort(&_godot_array);
}
void Array::sort_custom(Object *obj, const String& func)
{
godot_array_sort_custom(&_godot_array, (godot_object *) obj, (godot_string *) &func);
}
Array::~Array()
{
godot_array_destroy(&_godot_array);
}
}

View File

@@ -1,108 +0,0 @@
#ifndef ARRAY_H
#define ARRAY_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <godot/godot_array.h>
#include "String.hpp"
namespace godot {
class Variant;
class PoolByteArray;
class PoolIntArray;
class PoolRealArray;
class PoolStringArray;
class PoolVector2Array;
class PoolVector3Array;
class PoolColorArray;
class Object;
class GD_CPP_CORE_API Array {
godot_array _godot_array;
public:
Array();
Array(const PoolByteArray& a);
Array(const PoolIntArray& a);
Array(const PoolRealArray& a);
Array(const PoolStringArray& a);
Array(const PoolVector2Array& a);
Array(const PoolVector3Array& a);
Array(const PoolColorArray& a);
Variant& operator [](const int idx);
Variant operator [](const int idx) const;
void append(const Variant& v);
void clear();
int count(const Variant& v);
bool empty() const;
void erase(const Variant& v);
Variant front() const;
Variant back() const;
int find(const Variant& what, const int from = 0);
int find_last(const Variant& what);
bool has(const Variant& what) const;
uint32_t hash() const;
void insert(const int pos, const Variant& value);
void invert();
bool is_shared() const;
Variant pop_back();
Variant pop_front();
void push_back(const Variant& v);
void push_front(const Variant& v);
void remove(const int idx);
int size() const;
void resize(const int size);
int rfind(const Variant& what, const int from = -1);
void sort();
void sort_custom(Object *obj, const String& func);
~Array();
};
}
#endif // ARRAY_H

View File

@@ -1,664 +0,0 @@
#include "Basis.hpp"
#include "Defs.hpp"
#include "Vector3.hpp"
#include "Quat.hpp"
#include <algorithm>
namespace godot {
Basis::Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2)
{
elements[0]=row0;
elements[1]=row1;
elements[2]=row2;
}
Basis::Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
}
Basis::Basis() {
elements[0][0]=1;
elements[0][1]=0;
elements[0][2]=0;
elements[1][0]=0;
elements[1][1]=1;
elements[1][2]=0;
elements[2][0]=0;
elements[2][1]=0;
elements[2][2]=1;
}
const Vector3& Basis::operator[](int axis) const {
return elements[axis];
}
Vector3&Basis:: operator[](int axis) {
return elements[axis];
}
#define cofac(row1,col1, row2, col2)\
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
void Basis::invert()
{
real_t co[3]={
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
real_t det = elements[0][0] * co[0]+
elements[0][1] * co[1]+
elements[0][2] * co[2];
ERR_FAIL_COND(det != 0);
real_t s = 1.0/det;
set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
}
#undef cofac
bool Basis::isequal_approx(const Basis& a, const Basis& b) const {
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if ((::fabs(a.elements[i][j]-b.elements[i][j]) < CMP_EPSILON) == false)
return false;
}
}
return true;
}
bool Basis::is_orthogonal() const
{
Basis id;
Basis m = (*this)*transposed();
return isequal_approx(id,m);
}
bool Basis::is_rotation() const
{
return ::fabs(determinant()-1) < CMP_EPSILON && is_orthogonal();
}
void Basis::transpose()
{
std::swap(elements[0][1],elements[1][0]);
std::swap(elements[0][2],elements[2][0]);
std::swap(elements[1][2],elements[2][1]);
}
Basis Basis::inverse() const
{
Basis b = *this;
b.invert();
return b;
}
Basis Basis::transposed() const
{
Basis b = *this;
b.transpose();
return b;
}
real_t Basis::determinant() const
{
return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) -
elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) +
elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]);
}
Vector3 Basis::get_axis(int p_axis) const {
// get actual basis axis (elements is transposed for performance)
return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] );
}
void Basis::set_axis(int p_axis, const Vector3& p_value) {
// get actual basis axis (elements is transposed for performance)
elements[0][p_axis]=p_value.x;
elements[1][p_axis]=p_value.y;
elements[2][p_axis]=p_value.z;
}
void Basis::rotate(const Vector3& p_axis, real_t p_phi)
{
*this = rotated(p_axis, p_phi);
}
Basis Basis::rotated(const Vector3& p_axis, real_t p_phi) const
{
return Basis(p_axis, p_phi) * (*this);
}
void Basis::scale( const Vector3& p_scale )
{
elements[0][0]*=p_scale.x;
elements[0][1]*=p_scale.x;
elements[0][2]*=p_scale.x;
elements[1][0]*=p_scale.y;
elements[1][1]*=p_scale.y;
elements[1][2]*=p_scale.y;
elements[2][0]*=p_scale.z;
elements[2][1]*=p_scale.z;
elements[2][2]*=p_scale.z;
}
Basis Basis::scaled( const Vector3& p_scale ) const
{
Basis b = *this;
b.scale(p_scale);
return b;
}
Vector3 Basis::get_scale() const
{
// We are assuming M = R.S, and performing a polar decomposition to extract R and S.
// FIXME: We eventually need a proper polar decomposition.
// As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1
// (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix.
// As such, it works in conjuction with get_rotation().
real_t det_sign = determinant() > 0 ? 1 : -1;
return det_sign*Vector3(
Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
);
}
Vector3 Basis::get_euler() const
{
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler;
if (is_rotation() == false)
return euler;
euler.y = ::asin(elements[0][2]);
if ( euler.y < Math_PI*0.5) {
if ( euler.y > -Math_PI*0.5) {
euler.x = ::atan2(-elements[1][2],elements[2][2]);
euler.z = ::atan2(-elements[0][1],elements[0][0]);
} else {
real_t r = ::atan2(elements[1][0],elements[1][1]);
euler.z = 0.0;
euler.x = euler.z - r;
}
} else {
real_t r = ::atan2(elements[0][1],elements[1][1]);
euler.z = 0;
euler.x = r - euler.z;
}
return euler;
}
void Basis::set_euler(const Vector3& p_euler)
{
real_t c, s;
c = ::cos(p_euler.x);
s = ::sin(p_euler.x);
Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
c = ::cos(p_euler.y);
s = ::sin(p_euler.y);
Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
c = ::cos(p_euler.z);
s = ::sin(p_euler.z);
Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
//optimizer will optimize away all this anyway
*this = xmat*(ymat*zmat);
}
// transposed dot products
real_t Basis::tdotx(const Vector3& v) const {
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
}
real_t Basis::tdoty(const Vector3& v) const {
return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
}
real_t Basis::tdotz(const Vector3& v) const {
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
}
bool Basis::operator==(const Basis& p_matrix) const
{
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if (elements[i][j] != p_matrix.elements[i][j])
return false;
}
}
return true;
}
bool Basis::operator!=(const Basis& p_matrix) const
{
return (!(*this==p_matrix));
}
Vector3 Basis::xform(const Vector3& p_vector) const {
return Vector3(
elements[0].dot(p_vector),
elements[1].dot(p_vector),
elements[2].dot(p_vector)
);
}
Vector3 Basis::xform_inv(const Vector3& p_vector) const {
return Vector3(
(elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ),
(elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ),
(elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z )
);
}
void Basis::operator*=(const Basis& p_matrix)
{
set(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
}
Basis Basis::operator*(const Basis& p_matrix) const
{
return Basis(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) );
}
void Basis::operator+=(const Basis& p_matrix) {
elements[0] += p_matrix.elements[0];
elements[1] += p_matrix.elements[1];
elements[2] += p_matrix.elements[2];
}
Basis Basis::operator+(const Basis& p_matrix) const {
Basis ret(*this);
ret += p_matrix;
return ret;
}
void Basis::operator-=(const Basis& p_matrix) {
elements[0] -= p_matrix.elements[0];
elements[1] -= p_matrix.elements[1];
elements[2] -= p_matrix.elements[2];
}
Basis Basis::operator-(const Basis& p_matrix) const {
Basis ret(*this);
ret -= p_matrix;
return ret;
}
void Basis::operator*=(real_t p_val) {
elements[0]*=p_val;
elements[1]*=p_val;
elements[2]*=p_val;
}
Basis Basis::operator*(real_t p_val) const {
Basis ret(*this);
ret *= p_val;
return ret;
}
Basis::operator String() const
{
String s;
// @Todo
return s;
}
/* create / set */
void Basis::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
elements[0][0]=xx;
elements[0][1]=xy;
elements[0][2]=xz;
elements[1][0]=yx;
elements[1][1]=yy;
elements[1][2]=yz;
elements[2][0]=zx;
elements[2][1]=zy;
elements[2][2]=zz;
}
Vector3 Basis::get_column(int i) const {
return Vector3(elements[0][i],elements[1][i],elements[2][i]);
}
Vector3 Basis::get_row(int i) const {
return Vector3(elements[i][0],elements[i][1],elements[i][2]);
}
Vector3 Basis::get_main_diagonal() const {
return Vector3(elements[0][0],elements[1][1],elements[2][2]);
}
void Basis::set_row(int i, const Vector3& p_row) {
elements[i][0]=p_row.x;
elements[i][1]=p_row.y;
elements[i][2]=p_row.z;
}
Basis Basis::transpose_xform(const Basis& m) const
{
return Basis(
elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
}
void Basis::orthonormalize()
{
ERR_FAIL_COND(determinant() != 0);
// Gram-Schmidt Process
Vector3 x=get_axis(0);
Vector3 y=get_axis(1);
Vector3 z=get_axis(2);
x.normalize();
y = (y-x*(x.dot(y)));
y.normalize();
z = (z-x*(x.dot(z))-y*(y.dot(z)));
z.normalize();
set_axis(0,x);
set_axis(1,y);
set_axis(2,z);
}
Basis Basis::orthonormalized() const
{
Basis b = *this;
b.orthonormalize();
return b;
}
bool Basis::is_symmetric() const
{
if (::fabs(elements[0][1] - elements[1][0]) > CMP_EPSILON)
return false;
if (::fabs(elements[0][2] - elements[2][0]) > CMP_EPSILON)
return false;
if (::fabs(elements[1][2] - elements[2][1]) > CMP_EPSILON)
return false;
return true;
}
Basis Basis::diagonalize()
{
// I love copy paste
if (!is_symmetric())
return Basis();
const int ite_max = 1024;
real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
int ite = 0;
Basis acc_rot;
while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) {
real_t el01_2 = elements[0][1] * elements[0][1];
real_t el02_2 = elements[0][2] * elements[0][2];
real_t el12_2 = elements[1][2] * elements[1][2];
// Find the pivot element
int i, j;
if (el01_2 > el02_2) {
if (el12_2 > el01_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 1;
}
} else {
if (el12_2 > el02_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 2;
}
}
// Compute the rotation angle
real_t angle;
if (::fabs(elements[j][j] - elements[i][i]) < CMP_EPSILON) {
angle = Math_PI / 4;
} else {
angle = 0.5 * ::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
}
// Compute the rotation matrix
Basis rot;
rot.elements[i][i] = rot.elements[j][j] = ::cos(angle);
rot.elements[i][j] = - (rot.elements[j][i] = ::sin(angle));
// Update the off matrix norm
off_matrix_norm_2 -= elements[i][j] * elements[i][j];
// Apply the rotation
*this = rot * *this * rot.transposed();
acc_rot = rot * acc_rot;
}
return acc_rot;
}
static const Basis _ortho_bases[24]={
Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
};
int Basis::get_orthogonal_index() const
{
//could be sped up if i come up with a way
Basis orth=*this;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
real_t v = orth[i][j];
if (v>0.5)
v=1.0;
else if (v<-0.5)
v=-1.0;
else
v=0;
orth[i][j]=v;
}
}
for(int i=0;i<24;i++) {
if (_ortho_bases[i]==orth)
return i;
}
return 0;
}
void Basis::set_orthogonal_index(int p_index){
//there only exist 24 orthogonal bases in r3
ERR_FAIL_COND(p_index >= 24);
*this=_ortho_bases[p_index];
}
Basis::Basis(const Vector3& p_euler) {
set_euler( p_euler );
}
}
#include "Quat.hpp"
namespace godot {
Basis::Basis(const Quat& p_quat) {
real_t d = p_quat.length_squared();
real_t s = 2.0 / d;
real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
set( 1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy)) ;
}
Basis::Basis(const Vector3& p_axis, real_t p_phi) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
real_t cosine= ::cos(p_phi);
real_t sine= ::sin(p_phi);
elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
}
Basis::operator Quat() const {
ERR_FAIL_COND_V(is_rotation() == false, Quat());
real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
real_t temp[4];
if (trace > 0.0)
{
real_t s = ::sqrt(trace + 1.0);
temp[3]=(s * 0.5);
s = 0.5 / s;
temp[0]=((elements[2][1] - elements[1][2]) * s);
temp[1]=((elements[0][2] - elements[2][0]) * s);
temp[2]=((elements[1][0] - elements[0][1]) * s);
}
else
{
int i = elements[0][0] < elements[1][1] ?
(elements[1][1] < elements[2][2] ? 2 : 1) :
(elements[0][0] < elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = ::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
temp[i] = s * 0.5;
s = 0.5 / s;
temp[3] = (elements[k][j] - elements[j][k]) * s;
temp[j] = (elements[j][i] + elements[i][j]) * s;
temp[k] = (elements[k][i] + elements[i][k]) * s;
}
return Quat(temp[0],temp[1],temp[2],temp[3]);
}
}

View File

@@ -1,146 +0,0 @@
#ifndef BASIS_H
#define BASIS_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Defs.hpp"
#include "Vector3.hpp"
namespace godot {
class Quat;
class GD_CPP_CORE_API Basis {
public:
Vector3 elements[3];
Basis(const Quat& p_quat); // euler
Basis(const Vector3& p_euler); // euler
Basis(const Vector3& p_axis, real_t p_phi);
Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2);
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
Basis();
const Vector3& operator[](int axis) const;
Vector3& operator[](int axis);
void invert();
bool isequal_approx(const Basis& a, const Basis& b) const;
bool is_orthogonal() const;
bool is_rotation() const;
void transpose();
Basis inverse() const;
Basis transposed() const;
real_t determinant() const;
Vector3 get_axis(int p_axis) const;
void set_axis(int p_axis, const Vector3& p_value);
void rotate(const Vector3& p_axis, real_t p_phi);
Basis rotated(const Vector3& p_axis, real_t p_phi) const;
void scale( const Vector3& p_scale );
Basis scaled( const Vector3& p_scale ) const;
Vector3 get_scale() const;
Vector3 get_euler() const;
void set_euler(const Vector3& p_euler);
// transposed dot products
real_t tdotx(const Vector3& v) const;
real_t tdoty(const Vector3& v) const;
real_t tdotz(const Vector3& v) const;
bool operator==(const Basis& p_matrix) const;
bool operator!=(const Basis& p_matrix) const;
Vector3 xform(const Vector3& p_vector) const;
Vector3 xform_inv(const Vector3& p_vector) const;
void operator*=(const Basis& p_matrix);
Basis operator*(const Basis& p_matrix) const;
void operator+=(const Basis& p_matrix);
Basis operator+(const Basis& p_matrix) const;
void operator-=(const Basis& p_matrix);
Basis operator-(const Basis& p_matrix) const;
void operator*=(real_t p_val);
Basis operator*(real_t p_val) const;
int get_orthogonal_index() const; // down below
void set_orthogonal_index(int p_index); // down below
operator String() const;
void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const;
/* create / set */
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
Vector3 get_column(int i) const;
Vector3 get_row(int i) const;
Vector3 get_main_diagonal() const;
void set_row(int i, const Vector3& p_row);
Basis transpose_xform(const Basis& m) const;
void orthonormalize();
Basis orthonormalized() const;
bool is_symmetric() const;
Basis diagonalize();
operator Quat() const;
};
}
#endif // BASIS_H

View File

@@ -1,413 +0,0 @@
#include "Color.hpp"
#include <godot/godot_color.h>
#include <cmath>
#include "Defs.hpp"
#include "String.hpp"
namespace godot {
#define MIN(a, b) (a < b ? a : b)
#define MAX(a, b) (a > b ? a : b)
static String _to_hex(float p_val);
static float _parse_col(const String& p_str, int p_ofs) {
int ig=0;
for(int i=0;i<2;i++) {
int c= (int) (wchar_t) p_str[i+p_ofs];
int v=0;
if (c>='0' && c<='9') {
v=c-'0';
} else if (c>='a' && c<='f') {
v=c-'a';
v+=10;
} else if (c>='A' && c<='F') {
v=c-'A';
v+=10;
} else {
return -1;
}
if (i==0)
ig+=v*16;
else
ig+=v;
}
return ig;
}
uint32_t Color::to_32() const
{
uint32_t c=(uint8_t)(a*255);
c<<=8;
c|=(uint8_t)(r*255);
c<<=8;
c|=(uint8_t)(g*255);
c<<=8;
c|=(uint8_t)(b*255);
return c;
}
uint32_t Color::to_ARGB32() const
{
uint32_t c=(uint8_t)(a*255);
c<<=8;
c|=(uint8_t)(r*255);
c<<=8;
c|=(uint8_t)(g*255);
c<<=8;
c|=(uint8_t)(b*255);
return c;
}
float Color::gray() const
{
return (r+g+b)/3.0;
}
float Color::get_h() const
{
float min = MIN( r, g );
min = MIN( min, b );
float max = MAX( r, g );
max = MAX( max, b );
float delta = max - min;
if( delta == 0 )
return 0;
float h;
if( r == max )
h = ( g - b ) / delta; // between yellow & magenta
else if( g == max )
h = 2 + ( b - r ) / delta; // between cyan & yellow
else
h = 4 + ( r - g ) / delta; // between magenta & cyan
h/=6.0;
if (h<0)
h+=1.0;
return h;
}
float Color::get_s() const
{
float min = MIN( r, g );
min = MIN( min, b );
float max = MAX( r, g );
max = MAX( max, b );
float delta = max - min;
return (max!=0) ? (delta / max) : 0;
}
float Color::get_v() const
{
float max = MAX( r, g );
max = MAX( max, b );
return max;
}
void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha)
{
int i;
float f, p, q, t;
a=p_alpha;
if( p_s == 0 ) {
// acp_hromatic (grey)
r = g = b = p_v;
return;
}
p_h *=6.0;
p_h = ::fmod(p_h,6);
i = ::floor( p_h );
f = p_h - i;
p = p_v * ( 1 - p_s );
q = p_v * ( 1 - p_s * f );
t = p_v * ( 1 - p_s * ( 1 - f ) );
switch( i ) {
case 0: // Red is the dominant color
r = p_v;
g = t;
b = p;
break;
case 1: // Green is the dominant color
r = q;
g = p_v;
b = p;
break;
case 2:
r = p;
g = p_v;
b = t;
break;
case 3: // Blue is the dominant color
r = p;
g = q;
b = p_v;
break;
case 4:
r = t;
g = p;
b = p_v;
break;
default: // (5) Red is the dominant color
r = p_v;
g = p;
b = q;
break;
}
}
void Color::invert()
{
r=1.0-r;
g=1.0-g;
b=1.0-b;
}
void Color::contrast()
{
r=::fmod(r+0.5,1.0);
g=::fmod(g+0.5,1.0);
b=::fmod(b+0.5,1.0);
}
Color Color::inverted() const
{
Color c=*this;
c.invert();
return c;
}
Color Color::contrasted() const
{
Color c=*this;
c.contrast();
return c;
}
Color Color::linear_interpolate(const Color& p_b, float p_t) const {
Color res=*this;
res.r+= (p_t * (p_b.r-r));
res.g+= (p_t * (p_b.g-g));
res.b+= (p_t * (p_b.b-b));
res.a+= (p_t * (p_b.a-a));
return res;
}
Color Color::blend(const Color& p_over) const {
Color res;
float sa = 1.0 - p_over.a;
res.a = a*sa+p_over.a;
if (res.a==0) {
return Color(0,0,0,0);
} else {
res.r = (r*a*sa + p_over.r * p_over.a)/res.a;
res.g = (g*a*sa + p_over.g * p_over.a)/res.a;
res.b = (b*a*sa + p_over.b * p_over.a)/res.a;
}
return res;
}
Color Color::to_linear() const {
return Color(
r<0.04045 ? r * (1.0 / 12.92) : ::pow((r + 0.055) * (1.0 / (1 + 0.055)), 2.4),
g<0.04045 ? g * (1.0 / 12.92) : ::pow((g + 0.055) * (1.0 / (1 + 0.055)), 2.4),
b<0.04045 ? b * (1.0 / 12.92) : ::pow((b + 0.055) * (1.0 / (1 + 0.055)), 2.4),
a
);
}
Color Color::hex(uint32_t p_hex)
{
float a = (p_hex&0xFF)/255.0;
p_hex>>=8;
float b = (p_hex&0xFF)/255.0;
p_hex>>=8;
float g = (p_hex&0xFF)/255.0;
p_hex>>=8;
float r = (p_hex&0xFF)/255.0;
return Color(r,g,b,a);
}
Color Color::html(const String& p_color)
{
String color = p_color;
if (color.length()==0)
return Color();
if (color[0]=='#')
color=color.substr(1,color.length()-1);
bool alpha=false;
if (color.length()==8) {
alpha=true;
} else if (color.length()==6) {
alpha=false;
} else {
ERR_PRINT(String("Invalid Color Code: ") + p_color);
ERR_FAIL_V(Color());
}
int a=255;
if (alpha) {
a=_parse_col(color,0);
if (a<0) {
ERR_PRINT("Invalid Color Code: "+p_color);
ERR_FAIL_V(Color());
}
}
int from=alpha?2:0;
int r=_parse_col(color,from+0);
if (r<0) {
ERR_PRINT("Invalid Color Code: "+p_color);
ERR_FAIL_V(Color());
}
int g=_parse_col(color,from+2);
if (g<0) {
ERR_PRINT("Invalid Color Code: "+p_color);
ERR_FAIL_V(Color());
}
int b=_parse_col(color,from+4);
if (b<0) {
ERR_PRINT("Invalid Color Code: "+p_color);
ERR_FAIL_V(Color());
}
return Color(r/255.0,g/255.0,b/255.0,a/255.0);
}
bool Color::html_is_valid(const String& p_color)
{
String color = p_color;
if (color.length()==0)
return false;
if (color[0]=='#')
color=color.substr(1,color.length()-1);
bool alpha=false;
if (color.length()==8) {
alpha=true;
} else if (color.length()==6) {
alpha=false;
} else {
return false;
}
int a=255;
if (alpha) {
a=_parse_col(color,0);
if (a<0) {
return false;
}
}
int from=alpha?2:0;
int r=_parse_col(color,from+0);
if (r<0) {
return false;
}
int g=_parse_col(color,from+2);
if (g<0) {
return false;
}
int b=_parse_col(color,from+4);
if (b<0) {
return false;
}
return true;
}
#ifndef CLAMP
#define CLAMP(m_a,m_min,m_max) (((m_a)<(m_min))?(m_min):(((m_a)>(m_max))?m_max:m_a))
#endif
static String _to_hex(float p_val) {
int v = p_val * 255;
v = CLAMP(v,0,255);
String ret;
for(int i=0;i<2;i++) {
wchar_t c[2]={0,0};
int lv = v&0xF;
if (lv<10)
c[0]='0'+lv;
else
c[0]='a'+lv-10;
v>>=4;
String cs=(const wchar_t*)c;
ret = cs + ret;
}
return ret;
}
String Color::to_html(bool p_alpha) const
{
String txt;
txt+=_to_hex(r);
txt+=_to_hex(g);
txt+=_to_hex(b);
if (p_alpha)
txt=_to_hex(a)+txt;
return txt;
}
Color::operator String() const
{
return String(); // @Todo
}
bool Color::operator<(const Color& p_color) const {
if (r==p_color.r) {
if (g==p_color.g) {
if(b==p_color.b) {
return (a<p_color.a);
} else
return (b<p_color.b);
} else
return g<p_color.g;
} else
return r<p_color.r;
}
}

View File

@@ -1,106 +0,0 @@
#ifndef COLOR_H
#define COLOR_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <godot/godot_color.h>
#include <cmath>
#include "String.hpp"
namespace godot {
struct GD_CPP_CORE_API Color {
private:
// static float _parse_col(const String& p_str, int p_ofs);
public:
union {
struct {
float r;
float g;
float b;
float a;
};
float components[4];
};
inline bool operator==(const Color &p_color) const { return (r==p_color.r && g==p_color.g && b==p_color.b && a==p_color.a ); }
inline bool operator!=(const Color &p_color) const { return (r!=p_color.r || g!=p_color.g || b!=p_color.b || a!=p_color.a ); }
uint32_t to_32() const;
uint32_t to_ARGB32() const;
float gray() const;
float get_h() const;
float get_s() const;
float get_v() const;
void set_hsv(float p_h, float p_s, float p_v, float p_alpha=1.0);
inline float& operator[](int idx) {
return components[idx];
}
inline const float& operator[](int idx) const {
return components[idx];
}
void invert();
void contrast();
Color inverted() const;
Color contrasted() const;
Color linear_interpolate(const Color& p_b, float p_t) const;
Color blend(const Color& p_over) const;
Color to_linear() const;
static Color hex(uint32_t p_hex);
static Color html(const String& p_color);
static bool html_is_valid(const String& p_color);
String to_html(bool p_alpha=true) const;
bool operator<(const Color& p_color) const; //used in set keys
operator String() const;
/**
* No construct parameters, r=0, g=0, b=0. a=255
*/
inline Color() {
r=0; g=0; b=0; a=1.0;
}
/**
* RGB / RGBA construct parameters. Alpha is optional, but defaults to 1.0
*/
inline Color(float p_r,float p_g,float p_b,float p_a=1.0) { r=p_r; g=p_g; b=p_b; a=p_a; }
};
}
#endif // COLOR_H

View File

@@ -1,27 +0,0 @@
#ifndef CORETYPES_H
#define CORETYPES_H
#include "Defs.hpp"
#include "Array.hpp"
#include "Basis.hpp"
#include "Color.hpp"
#include "Dictionary.hpp"
#include "Image.hpp"
#include "InputEvent.hpp"
#include "NodePath.hpp"
#include "Plane.hpp"
#include "PoolArrays.hpp"
#include "Quat.hpp"
#include "Rect2.hpp"
#include "Rect3.hpp"
#include "RID.hpp"
#include "String.hpp"
#include "Transform.hpp"
#include "Transform2D.hpp"
#include "Variant.hpp"
#include "Vector2.hpp"
#include "Vector3.hpp"
#endif // CORETYPES_H

View File

@@ -1,103 +0,0 @@
#ifndef DEFS_H
#define DEFS_H
namespace godot {
enum Error {
OK,
FAILED, ///< Generic fail error
ERR_UNAVAILABLE, ///< What is requested is unsupported/unavailable
ERR_UNCONFIGURED, ///< The object being used hasnt been properly set up yet
ERR_UNAUTHORIZED, ///< Missing credentials for requested resource
ERR_PARAMETER_RANGE_ERROR, ///< Parameter given out of range (5)
ERR_OUT_OF_MEMORY, ///< Out of memory
ERR_FILE_NOT_FOUND,
ERR_FILE_BAD_DRIVE,
ERR_FILE_BAD_PATH,
ERR_FILE_NO_PERMISSION, // (10)
ERR_FILE_ALREADY_IN_USE,
ERR_FILE_CANT_OPEN,
ERR_FILE_CANT_WRITE,
ERR_FILE_CANT_READ,
ERR_FILE_UNRECOGNIZED, // (15)
ERR_FILE_CORRUPT,
ERR_FILE_MISSING_DEPENDENCIES,
ERR_FILE_EOF,
ERR_CANT_OPEN, ///< Can't open a resource/socket/file
ERR_CANT_CREATE, // (20)
ERR_QUERY_FAILED,
ERR_ALREADY_IN_USE,
ERR_LOCKED, ///< resource is locked
ERR_TIMEOUT,
ERR_CANT_CONNECT, // (25)
ERR_CANT_RESOLVE,
ERR_CONNECTION_ERROR,
ERR_CANT_AQUIRE_RESOURCE,
ERR_CANT_FORK,
ERR_INVALID_DATA, ///< Data passed is invalid (30)
ERR_INVALID_PARAMETER, ///< Parameter passed is invalid
ERR_ALREADY_EXISTS, ///< When adding, item already exists
ERR_DOES_NOT_EXIST, ///< When retrieving/erasing, it item does not exist
ERR_DATABASE_CANT_READ, ///< database is full
ERR_DATABASE_CANT_WRITE, ///< database is full (35)
ERR_COMPILATION_FAILED,
ERR_METHOD_NOT_FOUND,
ERR_LINK_FAILED,
ERR_SCRIPT_FAILED,
ERR_CYCLIC_LINK, // (40)
ERR_INVALID_DECLARATION,
ERR_DUPLICATE_SYMBOL,
ERR_PARSE_ERROR,
ERR_BUSY,
ERR_SKIP, // (45)
ERR_HELP, ///< user requested help!!
ERR_BUG, ///< a bug in the software certainly happened, due to a double check failing or unexpected behavior.
ERR_PRINTER_ON_FIRE, /// the parallel port printer is engulfed in flames
ERR_OMFG_THIS_IS_VERY_VERY_BAD, ///< shit happens, has never been used, though
ERR_WTF = ERR_OMFG_THIS_IS_VERY_VERY_BAD ///< short version of the above
};
}
#include <stdio.h>
typedef float real_t;
#define CMP_EPSILON 0.00001
#define CMP_EPSILON2 (CMP_EPSILON*CMP_EPSILON)
#define Math_PI 3.14159265358979323846
#define _PLANE_EQ_DOT_EPSILON 0.999
#define _PLANE_EQ_D_EPSILON 0.0001
#ifndef ERR_FAIL_COND_V
#define ERR_FAIL_COND_V(cond, ret) do { if (cond) { return ret; } } while(0)
#endif
#ifndef ERR_FAIL_V
#define ERR_FAIL_V(a) return a
#endif
#ifndef ERR_FAIL_INDEX
#define ERR_FAIL_INDEX(a, b)
#endif
#ifndef ERR_PRINT
#define ERR_PRINT(msg) fprintf(stderr, "ERROR: %ls\n", (msg).c_string())
#endif
#ifndef ERR_FAIL_INDEX_V
#define ERR_FAIL_INDEX_V(a, b, c)
#endif
#ifndef ERR_FAIL_COND
#define ERR_FAIL_COND(a) do { if (a) { fprintf(stderr, #a); return; } } while(0)
#endif
#endif // DEFS_H

View File

@@ -1,91 +0,0 @@
#include "Dictionary.hpp"
#include "Variant.hpp"
#include "Array.hpp"
#include <godot/godot_dictionary.h>
namespace godot {
Dictionary::Dictionary()
{
godot_dictionary_new(&_godot_dictionary);
}
void Dictionary::clear()
{
godot_dictionary_clear(&_godot_dictionary);
}
bool Dictionary::empty() const
{
return godot_dictionary_empty(&_godot_dictionary);
}
void Dictionary::erase(const Variant& key)
{
godot_dictionary_erase(&_godot_dictionary, (godot_variant *) &key);
}
bool Dictionary::has(const Variant& key) const
{
return godot_dictionary_has(&_godot_dictionary, (godot_variant *) &key);
}
bool Dictionary::has_all(const Array& keys) const
{
return godot_dictionary_has_all(&_godot_dictionary, (godot_array *) &keys);
}
uint32_t Dictionary::hash() const
{
return godot_dictionary_hash(&_godot_dictionary);
}
Array Dictionary::keys() const
{
godot_array a = godot_dictionary_keys(&_godot_dictionary);
return *(Array *) &a;
}
int Dictionary::parse_json(const String& json)
{
return godot_dictionary_parse_json(&_godot_dictionary, (godot_string *) &json);
}
Variant &Dictionary::operator [](const Variant& key)
{
return *(Variant *) godot_dictionary_operator_index(&_godot_dictionary, (godot_variant *) &key);
}
const Variant &Dictionary::operator [](const Variant& key) const
{
// oops I did it again
return *(Variant *) godot_dictionary_operator_index((godot_dictionary *) &_godot_dictionary, (godot_variant *) &key);
}
int Dictionary::size() const
{
return godot_dictionary_size(&_godot_dictionary);
}
String Dictionary::to_json() const
{
godot_string s = godot_dictionary_to_json(&_godot_dictionary);
return *(String *) &s;
}
Array Dictionary::values() const
{
godot_array a = godot_dictionary_values(&_godot_dictionary);
return *(Array *) &a;
}
Dictionary::~Dictionary()
{
godot_dictionary_destroy(&_godot_dictionary);
}
}

View File

@@ -1,59 +0,0 @@
#ifndef DICTIONARY_H
#define DICTIONARY_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Variant.hpp"
#include "Array.hpp"
#include <godot/godot_dictionary.h>
namespace godot {
class GD_CPP_CORE_API Dictionary {
godot_dictionary _godot_dictionary;
public:
Dictionary();
void clear();
bool empty() const;
void erase(const Variant& key);
bool has(const Variant& key) const;
bool has_all(const Array& keys) const;
uint32_t hash() const;
Array keys() const;
int parse_json(const String& json);
Variant &operator [](const Variant& key);
const Variant &operator [](const Variant& key) const;
int size() const;
String to_json() const;
Array values() const;
~Dictionary();
};
}
#endif // DICTIONARY_H

View File

@@ -1,130 +0,0 @@
#include "Image.hpp"
#include "Defs.hpp"
#include "Vector2.hpp"
#include "Rect2.hpp"
#include "Color.hpp"
#include "String.hpp"
#include "PoolArrays.hpp"
#include <godot/godot_image.h>
namespace godot {
Image::Image()
{
godot_image_new(&_godot_image);
}
Image::Image(const int width, const int height, const bool mipmaps, const Format format)
{
godot_image_new_with_size_format(&_godot_image, width, height, mipmaps, (godot_image_format) format);
}
void Image::blit_rect(const Image& src, const Rect2& src_rect, const Vector2& dest)
{
// @DLScript @Todo
}
void Image::brush_transfer(const Image& src, const Image& brush, const Vector2& pos)
{
// @DLScript @Todo
}
Image Image::brushed(const Image& src, const Image& brush, const Vector2& pos)
{
return *this; // @DLScript @Todo
}
Image Image::compressed(const Format format)
{
return *this; // @DLScript @Todo
}
Image Image::converted(const Format format)
{
return *this; // @DLScript @Todo
}
Image Image::decompressed()
{
return *this; // @DLScript @Todo
}
bool Image::empty() const
{
return true; // @DLScript @Todo
}
void Image::fix_alpha_edges()
{
// @DLScript @Todo
}
PoolByteArray Image::get_data()
{
// @Todo
return PoolByteArray();
}
Image::Format Image::get_format() const
{
return Format::FORMAT_RGBAH; // @DLScript @Todo
}
int Image::get_height() const
{
return godot_image_get_height(&_godot_image);
}
Color Image::get_pixel(const int x, const int y, const int mipmap_level)
{
return Color(); // @DLScript @Todo
}
Image Image::get_rect(const Rect2& area)
{
return *this; // @DLScript @Todo
}
Rect2 Image::get_used_rect() const
{
return Rect2(); // @DLScript @Todo
}
int Image::get_width() const
{
return godot_image_get_width(&_godot_image);
}
Error Image::load(const String& path)
{
return (Error) godot_image_load(&_godot_image, (godot_string *) &path);
}
void Image::put_pixel(const int x, const int y, const Color& color, int mipmap_level)
{
// @DLScript @Todo
}
Image Image::resized(const int x, const int y, const Interpolation interpolation)
{
return *this; // @DLScript @Todo
}
Error Image::save_png(const String& path)
{
return (Error) godot_image_save_png(&_godot_image, (godot_string *) &path); // @Todo Error enum
}
Image::~Image()
{
godot_image_destroy(&_godot_image);
}
}

View File

@@ -1,139 +0,0 @@
#ifndef IMAGE_H
#define IMAGE_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Defs.hpp"
#include "Vector2.hpp"
#include "Rect2.hpp"
#include "Color.hpp"
#include "String.hpp"
#include <godot/godot_image.h>
namespace godot {
class PoolByteArray;
class GD_CPP_CORE_API Image {
godot_image _godot_image;
public:
enum Format {
FORMAT_L8, //luminance
FORMAT_LA8, //luminance-alpha
FORMAT_R8,
FORMAT_RG8,
FORMAT_RGB8,
FORMAT_RGBA8,
FORMAT_RGB565, //16 bit
FORMAT_RGBA4444,
FORMAT_RGBA5551,
FORMAT_RF, //float
FORMAT_RGF,
FORMAT_RGBF,
FORMAT_RGBAF,
FORMAT_RH, //half float
FORMAT_RGH,
FORMAT_RGBH,
FORMAT_RGBAH,
FORMAT_DXT1, //s3tc bc1
FORMAT_DXT3, //bc2
FORMAT_DXT5, //bc3
FORMAT_ATI1, //bc4
FORMAT_ATI2, //bc5
FORMAT_BPTC_RGBA, //btpc bc6h
FORMAT_BPTC_RGBF, //float /
FORMAT_BPTC_RGBFU, //unsigned float
FORMAT_PVRTC2, //pvrtc
FORMAT_PVRTC2A,
FORMAT_PVRTC4,
FORMAT_PVRTC4A,
FORMAT_ETC, //etc1
FORMAT_ETC2_R11, //etc2
FORMAT_ETC2_R11S, //signed, NOT srgb.
FORMAT_ETC2_RG11,
FORMAT_ETC2_RG11S,
FORMAT_ETC2_RGB8,
FORMAT_ETC2_RGBA8,
FORMAT_ETC2_RGB8A1,
FORMAT_MAX
};
enum Interpolation {
INTERPOLATE_NEAREST,
INTERPOLATE_BILINEAR,
INTERPOLATE_CUBIC,
/* INTERPOLATE GAUSS */
};
enum CompressMode {
COMPRESS_16BIT,
COMPRESS_S3TC,
COMPRESS_PVRTC2,
COMPRESS_PVRTC4,
COMPRESS_ETC,
COMPRESS_ETC2
};
Image();
Image(const int width, const int height, const bool mipmaps, const Format format);
void blit_rect(const Image& src, const Rect2& src_rect, const Vector2& dest = Vector2(0, 0));
void brush_transfer(const Image& src, const Image& brush, const Vector2& pos = Vector2(0, 0));
Image brushed(const Image& src, const Image& brush, const Vector2& pos = Vector2(0, 0));
Image compressed(const Format format);
Image converted(const Format format);
Image decompressed();
bool empty() const;
void fix_alpha_edges();
PoolByteArray get_data();
Format get_format() const;
int get_height() const;
Color get_pixel(const int x, const int y, const int mipmap_level = 0);
Image get_rect(const Rect2& area = Rect2());
Rect2 get_used_rect() const;
int get_width() const;
Error load(const String& path);
void put_pixel(const int x, const int y, const Color& color, int mipmap_level = 0);
Image resized(const int x, const int y, const Interpolation interpolation = INTERPOLATE_NEAREST);
Error save_png(const String& path);
~Image();
};
}
#endif // IMAGE_H

View File

@@ -1,279 +0,0 @@
#include "InputEvent.hpp"
#include <cstdint>
#include <memory.h>
#include "Vector2.hpp"
#include "Transform2D.hpp"
#include <cmath>
#include "String.hpp"
namespace godot {
bool InputEvent::operator==(const InputEvent &p_event) const {
if (type != p_event.type){
return false;
}
switch(type) {
/** Current clang-format style doesn't play well with the aligned return values of that switch. */
/* clang-format off */
case NONE:
return true;
case KEY:
return key.unicode == p_event.key.unicode
&& key.scancode == p_event.key.scancode
&& key.echo == p_event.key.echo
&& key.pressed == p_event.key.pressed
&& key.mod == p_event.key.mod;
case MOUSE_MOTION:
return mouse_motion.x == p_event.mouse_motion.x
&& mouse_motion.y == p_event.mouse_motion.y
&& mouse_motion.relative_x == p_event.mouse_motion.relative_x
&& mouse_motion.relative_y == p_event.mouse_motion.relative_y
&& mouse_motion.button_mask == p_event.mouse_motion.button_mask
&& key.mod == p_event.key.mod;
case MOUSE_BUTTON:
return mouse_button.pressed == p_event.mouse_button.pressed
&& mouse_button.x == p_event.mouse_button.x
&& mouse_button.y == p_event.mouse_button.y
&& mouse_button.button_index == p_event.mouse_button.button_index
&& mouse_button.button_mask == p_event.mouse_button.button_mask
&& key.mod == p_event.key.mod;
case JOYPAD_MOTION:
return joy_motion.axis == p_event.joy_motion.axis
&& joy_motion.axis_value == p_event.joy_motion.axis_value;
case JOYPAD_BUTTON:
return joy_button.pressed == p_event.joy_button.pressed
&& joy_button.button_index == p_event.joy_button.button_index
&& joy_button.pressure == p_event.joy_button.pressure;
case SCREEN_TOUCH:
return screen_touch.pressed == p_event.screen_touch.pressed
&& screen_touch.index == p_event.screen_touch.index
&& screen_touch.x == p_event.screen_touch.x
&& screen_touch.y == p_event.screen_touch.y;
case SCREEN_DRAG:
return screen_drag.index == p_event.screen_drag.index
&& screen_drag.x == p_event.screen_drag.x
&& screen_drag.y == p_event.screen_drag.y;
case ACTION:
return action.action == p_event.action.action
&& action.pressed == p_event.action.pressed;
/* clang-format on */
default:
ERR_PRINT(String("No logic to compare InputEvents of this type, this shouldn't happen."));
}
return false;
}
InputEvent::operator String() const {
/*
String str ="Device "+itos(device)+" ID "+itos(ID)+" ";
switch(type) {
case NONE: {
return "Event: None";
} break;
case KEY: {
str+= "Event: Key ";
str=str+"Unicode: "+String::chr(key.unicode)+" Scan: "+itos( key.scancode )+" Echo: "+String(key.echo?"True":"False")+" Pressed"+String(key.pressed?"True":"False")+" Mod: ";
if (key.mod.shift)
str+="S";
if (key.mod.control)
str+="C";
if (key.mod.alt)
str+="A";
if (key.mod.meta)
str+="M";
return str;
} break;
case MOUSE_MOTION: {
str+= "Event: Motion ";
str=str+" Pos: " +itos(mouse_motion.x)+","+itos(mouse_motion.y)+" Rel: "+itos(mouse_motion.relative_x)+","+itos(mouse_motion.relative_y)+" Mask: ";
for (int i=0;i<8;i++) {
if ((1<<i)&mouse_motion.button_mask)
str+=itos(i+1);
}
str+=" Mod: ";
if (key.mod.shift)
str+="S";
if (key.mod.control)
str+="C";
if (key.mod.alt)
str+="A";
if (key.mod.meta)
str+="M";
return str;
} break;
case MOUSE_BUTTON: {
str+= "Event: Button ";
str=str+"Pressed: "+itos(mouse_button.pressed)+" Pos: " +itos(mouse_button.x)+","+itos(mouse_button.y)+" Button: "+itos(mouse_button.button_index)+" Mask: ";
for (int i=0;i<8;i++) {
if ((1<<i)&mouse_button.button_mask)
str+=itos(i+1);
}
str+=" Mod: ";
if (key.mod.shift)
str+="S";
if (key.mod.control)
str+="C";
if (key.mod.alt)
str+="A";
if (key.mod.meta)
str+="M";
str+=String(" DoubleClick: ")+(mouse_button.doubleclick?"Yes":"No");
return str;
} break;
case JOYPAD_MOTION: {
str+= "Event: JoypadMotion ";
str=str+"Axis: "+itos(joy_motion.axis)+" Value: " +rtos(joy_motion.axis_value);
return str;
} break;
case JOYPAD_BUTTON: {
str+= "Event: JoypadButton ";
str=str+"Pressed: "+itos(joy_button.pressed)+" Index: " +itos(joy_button.button_index)+" pressure "+rtos(joy_button.pressure);
return str;
} break;
case SCREEN_TOUCH: {
str+= "Event: ScreenTouch ";
str=str+"Pressed: "+itos(screen_touch.pressed)+" Index: " +itos(screen_touch.index)+" pos "+rtos(screen_touch.x)+","+rtos(screen_touch.y);
return str;
} break;
case SCREEN_DRAG: {
str+= "Event: ScreenDrag ";
str=str+" Index: " +itos(screen_drag.index)+" pos "+rtos(screen_drag.x)+","+rtos(screen_drag.y);
return str;
} break;
case ACTION: {
str+= "Event: Action: "+InputMap::get_singleton()->get_action_from_id(action.action)+" Pressed: "+itos(action.pressed);
return str;
} break;
}
*/
return "";
}
void InputEvent::set_as_action(const String& p_action, bool p_pressed) {
godot_input_event_set_as_action((godot_input_event *) this, (godot_string*) &p_action, p_pressed);
}
bool InputEvent::is_pressed() const {
switch(type) {
case KEY: return key.pressed;
case MOUSE_BUTTON: return mouse_button.pressed;
case JOYPAD_BUTTON: return joy_button.pressed;
case SCREEN_TOUCH: return screen_touch.pressed;
case JOYPAD_MOTION: return ::fabs(joy_motion.axis_value) > 0.5;
case ACTION: return action.pressed;
default: {}
}
return false;
}
bool InputEvent::is_echo() const {
return (type==KEY && key.echo);
}
bool InputEvent::is_action(const String& p_action) const {
return godot_input_event_is_action((godot_input_event *) this, (godot_string *) &p_action);
}
bool InputEvent::is_action_pressed(const String& p_action) const {
return is_action(p_action) && is_pressed() && !is_echo();
}
bool InputEvent::is_action_released(const String& p_action) const {
return is_action(p_action) && !is_pressed();
}
InputEvent InputEvent::xform_by(const Transform2D& p_xform) const {
InputEvent ev=*this;
switch(ev.type) {
case InputEvent::MOUSE_BUTTON: {
Vector2 g = p_xform.xform(Vector2(ev.mouse_button.global_x,ev.mouse_button.global_y));
Vector2 l = p_xform.xform(Vector2(ev.mouse_button.x,ev.mouse_button.y));
ev.mouse_button.x=l.x;
ev.mouse_button.y=l.y;
ev.mouse_button.global_x=g.x;
ev.mouse_button.global_y=g.y;
} break;
case InputEvent::MOUSE_MOTION: {
Vector2 g = p_xform.xform(Vector2(ev.mouse_motion.global_x,ev.mouse_motion.global_y));
Vector2 l = p_xform.xform(Vector2(ev.mouse_motion.x,ev.mouse_motion.y));
Vector2 r = p_xform.basis_xform(Vector2(ev.mouse_motion.relative_x,ev.mouse_motion.relative_y));
Vector2 s = p_xform.basis_xform(Vector2(ev.mouse_motion.speed_x,ev.mouse_motion.speed_y));
ev.mouse_motion.x=l.x;
ev.mouse_motion.y=l.y;
ev.mouse_motion.global_x=g.x;
ev.mouse_motion.global_y=g.y;
ev.mouse_motion.relative_x=r.x;
ev.mouse_motion.relative_y=r.y;
ev.mouse_motion.speed_x=s.x;
ev.mouse_motion.speed_y=s.y;
} break;
case InputEvent::SCREEN_TOUCH: {
Vector2 t = p_xform.xform(Vector2(ev.screen_touch.x,ev.screen_touch.y));
ev.screen_touch.x=t.x;
ev.screen_touch.y=t.y;
} break;
case InputEvent::SCREEN_DRAG: {
Vector2 t = p_xform.xform(Vector2(ev.screen_drag.x,ev.screen_drag.y));
Vector2 r = p_xform.basis_xform(Vector2(ev.screen_drag.relative_x,ev.screen_drag.relative_y));
Vector2 s = p_xform.basis_xform(Vector2(ev.screen_drag.speed_x,ev.screen_drag.speed_y));
ev.screen_drag.x=t.x;
ev.screen_drag.y=t.y;
ev.screen_drag.relative_x=r.x;
ev.screen_drag.relative_y=r.y;
ev.screen_drag.speed_x=s.x;
ev.screen_drag.speed_y=s.y;
} break;
}
return ev;
}
}

View File

@@ -1,281 +0,0 @@
#ifndef INPUTEVENT_H
#define INPUTEVENT_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <cstdint>
#include <memory.h>
#include "String.hpp"
namespace godot {
enum {
BUTTON_LEFT=1,
BUTTON_RIGHT=2,
BUTTON_MIDDLE=3,
BUTTON_WHEEL_UP=4,
BUTTON_WHEEL_DOWN=5,
BUTTON_WHEEL_LEFT=6,
BUTTON_WHEEL_RIGHT=7,
BUTTON_MASK_LEFT=(1<<(BUTTON_LEFT-1)),
BUTTON_MASK_RIGHT=(1<<(BUTTON_RIGHT-1)),
BUTTON_MASK_MIDDLE=(1<<(BUTTON_MIDDLE-1)),
};
enum {
JOY_BUTTON_0 = 0,
JOY_BUTTON_1 = 1,
JOY_BUTTON_2 = 2,
JOY_BUTTON_3 = 3,
JOY_BUTTON_4 = 4,
JOY_BUTTON_5 = 5,
JOY_BUTTON_6 = 6,
JOY_BUTTON_7 = 7,
JOY_BUTTON_8 = 8,
JOY_BUTTON_9 = 9,
JOY_BUTTON_10 = 10,
JOY_BUTTON_11 = 11,
JOY_BUTTON_12 = 12,
JOY_BUTTON_13 = 13,
JOY_BUTTON_14 = 14,
JOY_BUTTON_15 = 15,
JOY_BUTTON_MAX = 16,
JOY_L = JOY_BUTTON_4,
JOY_R = JOY_BUTTON_5,
JOY_L2 = JOY_BUTTON_6,
JOY_R2 = JOY_BUTTON_7,
JOY_L3 = JOY_BUTTON_8,
JOY_R3 = JOY_BUTTON_9,
JOY_SELECT = JOY_BUTTON_10,
JOY_START = JOY_BUTTON_11,
JOY_DPAD_UP = JOY_BUTTON_12,
JOY_DPAD_DOWN = JOY_BUTTON_13,
JOY_DPAD_LEFT = JOY_BUTTON_14,
JOY_DPAD_RIGHT = JOY_BUTTON_15,
// a little history about game controllers (who copied who)
JOY_SNES_B = JOY_BUTTON_0,
JOY_SNES_A = JOY_BUTTON_1,
JOY_SNES_Y = JOY_BUTTON_2,
JOY_SNES_X = JOY_BUTTON_3,
JOY_SONY_CIRCLE=JOY_SNES_A,
JOY_SONY_X=JOY_SNES_B,
JOY_SONY_SQUARE=JOY_SNES_Y,
JOY_SONY_TRIANGLE=JOY_SNES_X,
JOY_SEGA_B=JOY_SNES_A,
JOY_SEGA_A=JOY_SNES_B,
JOY_SEGA_X=JOY_SNES_Y,
JOY_SEGA_Y=JOY_SNES_X,
JOY_XBOX_B=JOY_SEGA_B,
JOY_XBOX_A=JOY_SEGA_A,
JOY_XBOX_X=JOY_SEGA_X,
JOY_XBOX_Y=JOY_SEGA_Y,
JOY_DS_A = JOY_SNES_A,
JOY_DS_B = JOY_SNES_B,
JOY_DS_X = JOY_SNES_X,
JOY_DS_Y = JOY_SNES_Y,
JOY_WII_C = JOY_BUTTON_5,
JOY_WII_Z = JOY_BUTTON_6,
JOY_WII_MINUS = JOY_BUTTON_9,
JOY_WII_PLUS = JOY_BUTTON_10,
// end of history
JOY_AXIS_0=0,
JOY_AXIS_1=1,
JOY_AXIS_2=2,
JOY_AXIS_3=3,
JOY_AXIS_4=4,
JOY_AXIS_5=5,
JOY_AXIS_6=6,
JOY_AXIS_7=7,
JOY_AXIS_MAX=8,
JOY_ANALOG_0_X = JOY_AXIS_0,
JOY_ANALOG_0_Y = JOY_AXIS_1,
JOY_ANALOG_1_X = JOY_AXIS_2,
JOY_ANALOG_1_Y = JOY_AXIS_3,
JOY_ANALOG_2_X = JOY_AXIS_4,
JOY_ANALOG_2_Y = JOY_AXIS_5,
JOY_ANALOG_L2 = JOY_AXIS_6,
JOY_ANALOG_R2 = JOY_AXIS_7,
};
/**
* Input Modifier Status
* for keyboard/mouse events.
*/
struct GD_CPP_CORE_API InputModifierState {
bool shift;
bool alt;
#ifdef APPLE_STYLE_KEYS
union {
bool command;
bool meta; //< windows/mac key
};
bool control;
#else
union {
bool command; //< windows/mac key
bool control;
};
bool meta; //< windows/mac key
#endif
inline bool operator==(const InputModifierState& rvalue) const {
return ( (shift==rvalue.shift) && (alt==rvalue.alt) && (control==rvalue.control) && (meta==rvalue.meta));
}
};
struct InputEventKey {
InputModifierState mod;
bool pressed; /// otherwise release
uint32_t scancode; ///< check keyboard.h , KeyCode enum, without modifier masks
uint32_t unicode; ///unicode
bool echo; /// true if this is an echo key
};
struct InputEventMouse {
InputModifierState mod;
int button_mask;
float x,y;
float global_x,global_y;
int pointer_index;
};
struct InputEventMouseButton : public InputEventMouse {
int button_index;
bool pressed; //otherwise released
bool doubleclick; //last even less than doubleclick time
};
struct InputEventMouseMotion : public InputEventMouse {
float relative_x,relative_y;
float speed_x,speed_y;
};
struct InputEventJoypadMotion {
int axis; ///< Joypad axis
float axis_value; ///< -1 to 1
};
struct InputEventJoypadButton {
int button_index;
bool pressed;
float pressure; //0 to 1
};
struct InputEventScreenTouch {
int index;
float x,y;
bool pressed;
};
struct InputEventScreenDrag {
int index;
float x,y;
float relative_x,relative_y;
float speed_x,speed_y;
};
struct InputEventAction {
int action;
bool pressed;
};
class Transform2D;
struct GD_CPP_CORE_API InputEvent {
enum Type {
NONE,
KEY,
MOUSE_MOTION,
MOUSE_BUTTON,
JOYPAD_MOTION,
JOYPAD_BUTTON,
SCREEN_TOUCH,
SCREEN_DRAG,
ACTION,
TYPE_MAX
};
uint32_t ID;
int type;
int device;
union {
InputEventMouseMotion mouse_motion;
InputEventMouseButton mouse_button;
InputEventJoypadMotion joy_motion;
InputEventJoypadButton joy_button;
InputEventKey key;
InputEventScreenTouch screen_touch;
InputEventScreenDrag screen_drag;
InputEventAction action;
};
bool is_pressed() const;
bool is_action(const String& p_action) const;
bool is_action_pressed(const String& p_action) const;
bool is_action_released(const String& p_action) const;
bool is_echo() const;
void set_as_action(const String& p_action, bool p_pressed);
InputEvent xform_by(const Transform2D& p_xform) const;
bool operator==(const InputEvent &p_event) const;
operator String() const;
inline InputEvent() { memset(this,0,sizeof(InputEvent)); }
};
}
#endif // INPUTEVENT_H

View File

@@ -1,92 +0,0 @@
#include "NodePath.hpp"
#include "String.hpp"
#include <godot/godot_node_path.h>
namespace godot {
NodePath::NodePath()
{
String from = "";
godot_node_path_new(&_node_path, (godot_string *) &from);
}
NodePath::NodePath(const NodePath &other)
{
String from = other;
godot_node_path_new(&_node_path, (godot_string *) &from);
godot_node_path_copy(&_node_path, &other._node_path);
}
NodePath::NodePath(const String &from)
{
godot_node_path_new(&_node_path, (godot_string *) &from);
}
NodePath::NodePath(const char *contents)
{
String from = contents;
godot_node_path_new(&_node_path, (godot_string *) &from);
}
String NodePath::get_name(const int idx) const
{
godot_string str = godot_node_path_get_name(&_node_path, idx);
return *(String *) &str;
}
int NodePath::get_name_count() const
{
return godot_node_path_get_name_count(&_node_path);
}
String NodePath::get_property() const
{
godot_string str = godot_node_path_get_property(&_node_path);
return *(String *) &str;
}
String NodePath::get_subname(const int idx) const
{
godot_string str = godot_node_path_get_subname(&_node_path, idx);
return *(String *) &str;
}
int NodePath::get_subname_count() const
{
return godot_node_path_get_subname_count(&_node_path);
}
bool NodePath::is_absolute() const
{
return godot_node_path_is_absolute(&_node_path);
}
bool NodePath::is_empty() const
{
return godot_node_path_is_empty(&_node_path);
}
NodePath::operator String() const
{
godot_string str = godot_node_path_as_string(&_node_path);
return *(String *) &str;
}
void NodePath::operator =(const NodePath& other)
{
godot_node_path_copy(&_node_path, &other._node_path);
}
NodePath::~NodePath()
{
godot_node_path_destroy(&_node_path);
}
}

View File

@@ -1,58 +0,0 @@
#ifndef NODEPATH_H
#define NODEPATH_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "String.hpp"
#include <godot/godot_node_path.h>
namespace godot {
class GD_CPP_CORE_API NodePath
{
godot_node_path _node_path;
public:
NodePath();
NodePath(const NodePath &other);
NodePath(const String& from);
NodePath(const char *contents);
String get_name(const int idx) const;
int get_name_count() const;
String get_property() const;
String get_subname(const int idx) const;
int get_subname_count() const;
bool is_absolute() const;
bool is_empty() const;
operator String() const;
void operator =(const NodePath& other);
~NodePath();
};
}
#endif // NODEPATH_H

View File

@@ -1,210 +0,0 @@
#include "Plane.hpp"
#include "Vector3.hpp"
#include <cmath>
namespace godot {
void Plane::set_normal(const Vector3& p_normal)
{
this->normal = p_normal;
}
Vector3 Plane::project(const Vector3& p_point) const {
return p_point - normal * distance_to(p_point);
}
void Plane::normalize() {
real_t l = normal.length();
if (l==0) {
*this=Plane(0,0,0,0);
return;
}
normal/=l;
d/=l;
}
Plane Plane::normalized() const {
Plane p = *this;
p.normalize();
return p;
}
Vector3 Plane::get_any_point() const {
return get_normal()*d;
}
Vector3 Plane::get_any_perpendicular_normal() const {
static const Vector3 p1 = Vector3(1,0,0);
static const Vector3 p2 = Vector3(0,1,0);
Vector3 p;
if (::fabs(normal.dot(p1)) > 0.99) // if too similar to p1
p=p2; // use p2
else
p=p1; // use p1
p-=normal * normal.dot(p);
p.normalize();
return p;
}
/* intersections */
bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result) const {
const Plane &p_plane0=*this;
Vector3 normal0=p_plane0.normal;
Vector3 normal1=p_plane1.normal;
Vector3 normal2=p_plane2.normal;
real_t denom=vec3_cross(normal0,normal1).dot(normal2);
if (::fabs(denom)<=CMP_EPSILON)
return false;
if (r_result) {
*r_result = ( (vec3_cross(normal1, normal2) * p_plane0.d) +
(vec3_cross(normal2, normal0) * p_plane1.d) +
(vec3_cross(normal0, normal1) * p_plane2.d) )/denom;
}
return true;
}
bool Plane::intersects_ray(Vector3 p_from, Vector3 p_dir, Vector3* p_intersection) const {
Vector3 segment=p_dir;
real_t den=normal.dot( segment );
//printf("den is %i\n",den);
if (::fabs(den)<=CMP_EPSILON) {
return false;
}
real_t dist=(normal.dot( p_from ) - d) / den;
//printf("dist is %i\n",dist);
if (dist>CMP_EPSILON) { //this is a ray, before the emiting pos (p_from) doesnt exist
return false;
}
dist=-dist;
*p_intersection = p_from + segment * dist;
return true;
}
bool Plane::intersects_segment(Vector3 p_begin, Vector3 p_end, Vector3* p_intersection) const {
Vector3 segment= p_begin - p_end;
real_t den=normal.dot( segment );
//printf("den is %i\n",den);
if (::fabs(den)<=CMP_EPSILON) {
return false;
}
real_t dist=(normal.dot( p_begin ) - d) / den;
//printf("dist is %i\n",dist);
if (dist<-CMP_EPSILON || dist > (1.0 +CMP_EPSILON)) {
return false;
}
dist=-dist;
*p_intersection = p_begin + segment * dist;
return true;
}
/* misc */
bool Plane::is_almost_like(const Plane& p_plane) const {
return (normal.dot( p_plane.normal ) > _PLANE_EQ_DOT_EPSILON && ::fabs(d-p_plane.d) < _PLANE_EQ_D_EPSILON);
}
Plane::operator String() const {
// return normal.operator String() + ", " + rtos(d);
return String(); // @Todo
}
bool Plane::is_point_over(const Vector3 &p_point) const {
return (normal.dot(p_point) > d);
}
real_t Plane::distance_to(const Vector3 &p_point) const {
return (normal.dot(p_point)-d);
}
bool Plane::has_point(const Vector3 &p_point,real_t _epsilon) const {
real_t dist=normal.dot(p_point) - d;
dist=::fabs(dist);
return ( dist <= _epsilon);
}
Plane::Plane(const Vector3 &p_normal, real_t p_d) {
normal=p_normal;
d=p_d;
}
Plane::Plane(const Vector3 &p_point, const Vector3& p_normal) {
normal=p_normal;
d=p_normal.dot(p_point);
}
Plane::Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_point3,ClockDirection p_dir) {
if (p_dir == CLOCKWISE)
normal=(p_point1-p_point3).cross(p_point1-p_point2);
else
normal=(p_point1-p_point2).cross(p_point1-p_point3);
normal.normalize();
d = normal.dot(p_point1);
}
bool Plane::operator==(const Plane& p_plane) const {
return normal==p_plane.normal && d == p_plane.d;
}
bool Plane::operator!=(const Plane& p_plane) const {
return normal!=p_plane.normal || d != p_plane.d;
}
}

View File

@@ -1,79 +0,0 @@
#ifndef PLANE_H
#define PLANE_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Vector3.hpp"
#include <cmath>
namespace godot {
enum ClockDirection {
CLOCKWISE,
COUNTERCLOCKWISE
};
class GD_CPP_CORE_API Plane {
public:
Vector3 normal;
real_t d;
void set_normal(const Vector3& p_normal);
inline Vector3 get_normal() const { return normal; } ///Point is coplanar, CMP_EPSILON for precision
void normalize();
Plane normalized() const;
/* Plane-Point operations */
inline Vector3 center() const { return normal*d; }
Vector3 get_any_point() const;
Vector3 get_any_perpendicular_normal() const;
bool is_point_over(const Vector3 &p_point) const; ///< Point is over plane
real_t distance_to(const Vector3 &p_point) const;
bool has_point(const Vector3 &p_point,real_t _epsilon=CMP_EPSILON) const;
/* intersections */
bool intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result=0) const;
bool intersects_ray(Vector3 p_from, Vector3 p_dir, Vector3* p_intersection) const;
bool intersects_segment(Vector3 p_begin, Vector3 p_end, Vector3* p_intersection) const;
Vector3 project(const Vector3& p_point) const;
/* misc */
inline Plane operator-() const { return Plane(-normal,-d); }
bool is_almost_like(const Plane& p_plane) const;
bool operator==(const Plane& p_plane) const;
bool operator!=(const Plane& p_plane) const;
operator String() const;
inline Plane() { d=0; }
inline Plane(real_t p_a, real_t p_b, real_t p_c, real_t p_d) : normal(p_a,p_b,p_c), d(p_d) { }
Plane(const Vector3 &p_normal, real_t p_d);
Plane(const Vector3 &p_point, const Vector3& p_normal);
Plane(const Vector3 &p_point1, const Vector3 &p_point2,const Vector3 &p_point3,ClockDirection p_dir = CLOCKWISE);
};
}
#endif // PLANE_H

View File

@@ -1,498 +0,0 @@
#include "PoolArrays.hpp"
#include "Defs.hpp"
#include "String.hpp"
#include "Color.hpp"
#include "Vector2.hpp"
#include "Vector3.hpp"
#include <godot/godot_pool_arrays.h>
namespace godot {
PoolByteArray::PoolByteArray()
{
godot_pool_byte_array_new(&_godot_array);
}
PoolByteArray::PoolByteArray(const Array& array)
{
godot_pool_byte_array_new_with_array(&_godot_array, (godot_array *) &array);
}
void PoolByteArray::append(const uint8_t data)
{
godot_pool_byte_array_append(&_godot_array, data);
}
void PoolByteArray::append_array(const PoolByteArray& array)
{
godot_pool_byte_array_append_array(&_godot_array, &array._godot_array);
}
int PoolByteArray::insert(const int idx, const uint8_t data)
{
return godot_pool_byte_array_insert(&_godot_array, idx, data);
}
void PoolByteArray::invert()
{
godot_pool_byte_array_invert(&_godot_array);
}
void PoolByteArray::push_back(const uint8_t data)
{
godot_pool_byte_array_push_back(&_godot_array, data);
}
void PoolByteArray::remove(const int idx)
{
godot_pool_byte_array_remove(&_godot_array, idx);
}
void PoolByteArray::resize(const int size)
{
godot_pool_byte_array_resize(&_godot_array, size);
}
void PoolByteArray::set(const int idx, const uint8_t data)
{
godot_pool_byte_array_set(&_godot_array, idx, data);
}
uint8_t PoolByteArray::operator [](const int idx)
{
return godot_pool_byte_array_get(&_godot_array, idx);
}
int PoolByteArray::size()
{
return godot_pool_byte_array_size(&_godot_array);
}
PoolByteArray::~PoolByteArray()
{
godot_pool_byte_array_destroy(&_godot_array);
}
PoolIntArray::PoolIntArray()
{
godot_pool_int_array_new(&_godot_array);
}
PoolIntArray::PoolIntArray(const Array& array)
{
godot_pool_int_array_new_with_array(&_godot_array, (godot_array *) &array);
}
void PoolIntArray::append(const int data)
{
godot_pool_int_array_append(&_godot_array, data);
}
void PoolIntArray::append_array(const PoolIntArray& array)
{
godot_pool_int_array_append_array(&_godot_array, &array._godot_array);
}
int PoolIntArray::insert(const int idx, const int data)
{
return godot_pool_int_array_insert(&_godot_array, idx, data);
}
void PoolIntArray::invert()
{
godot_pool_int_array_invert(&_godot_array);
}
void PoolIntArray::push_back(const int data)
{
godot_pool_int_array_push_back(&_godot_array, data);
}
void PoolIntArray::remove(const int idx)
{
godot_pool_int_array_remove(&_godot_array, idx);
}
void PoolIntArray::resize(const int size)
{
godot_pool_int_array_resize(&_godot_array, size);
}
void PoolIntArray::set(const int idx, const int data)
{
godot_pool_int_array_set(&_godot_array, idx, data);
}
int PoolIntArray::operator [](const int idx)
{
return godot_pool_int_array_get(&_godot_array, idx);
}
int PoolIntArray::size()
{
return godot_pool_int_array_size(&_godot_array);
}
PoolIntArray::~PoolIntArray()
{
godot_pool_int_array_destroy(&_godot_array);
}
PoolRealArray::PoolRealArray()
{
godot_pool_real_array_new(&_godot_array);
}
PoolRealArray::PoolRealArray(const Array& array)
{
godot_pool_real_array_new_with_array(&_godot_array, (godot_array *) &array);
}
void PoolRealArray::append(const real_t data)
{
godot_pool_real_array_append(&_godot_array, data);
}
void PoolRealArray::append_array(const PoolRealArray& array)
{
godot_pool_real_array_append_array(&_godot_array, &array._godot_array);
}
int PoolRealArray::insert(const int idx, const real_t data)
{
return godot_pool_real_array_insert(&_godot_array, idx, data);
}
void PoolRealArray::invert()
{
godot_pool_real_array_invert(&_godot_array);
}
void PoolRealArray::push_back(const real_t data)
{
godot_pool_real_array_push_back(&_godot_array, data);
}
void PoolRealArray::remove(const int idx)
{
godot_pool_real_array_remove(&_godot_array, idx);
}
void PoolRealArray::resize(const int size)
{
godot_pool_real_array_resize(&_godot_array, size);
}
void PoolRealArray::set(const int idx, const real_t data)
{
godot_pool_real_array_set(&_godot_array, idx, data);
}
real_t PoolRealArray::operator [](const int idx)
{
return godot_pool_real_array_get(&_godot_array, idx);
}
int PoolRealArray::size()
{
return godot_pool_real_array_size(&_godot_array);
}
PoolRealArray::~PoolRealArray()
{
godot_pool_real_array_destroy(&_godot_array);
}
PoolStringArray::PoolStringArray()
{
godot_pool_string_array_new(&_godot_array);
}
PoolStringArray::PoolStringArray(const Array& array)
{
godot_pool_string_array_new_with_array(&_godot_array, (godot_array *) &array);
}
void PoolStringArray::append(const String& data)
{
godot_pool_string_array_append(&_godot_array, (godot_string *) &data);
}
void PoolStringArray::append_array(const PoolStringArray& array)
{
godot_pool_string_array_append_array(&_godot_array, &array._godot_array);
}
int PoolStringArray::insert(const int idx, const String& data)
{
return godot_pool_string_array_insert(&_godot_array, idx, (godot_string *) &data);
}
void PoolStringArray::invert()
{
godot_pool_string_array_invert(&_godot_array);
}
void PoolStringArray::push_back(const String& data)
{
godot_pool_string_array_push_back(&_godot_array, (godot_string *) &data);
}
void PoolStringArray::remove(const int idx)
{
godot_pool_string_array_remove(&_godot_array, idx);
}
void PoolStringArray::resize(const int size)
{
godot_pool_string_array_resize(&_godot_array, size);
}
void PoolStringArray::set(const int idx, const String& data)
{
godot_pool_string_array_set(&_godot_array, idx, (godot_string *) &data);
}
String PoolStringArray::operator [](const int idx)
{
String s;
godot_string str = godot_pool_string_array_get(&_godot_array, idx);
godot_string_copy_string((godot_string *) &s, &str);
godot_string_destroy(&str);
return s;
}
int PoolStringArray::size()
{
return godot_pool_string_array_size(&_godot_array);
}
PoolStringArray::~PoolStringArray()
{
godot_pool_string_array_destroy(&_godot_array);
}
PoolVector2Array::PoolVector2Array()
{
godot_pool_vector2_array_new(&_godot_array);
}
PoolVector2Array::PoolVector2Array(const Array& array)
{
godot_pool_vector2_array_new_with_array(&_godot_array, (godot_array *) &array);
}
void PoolVector2Array::append(const Vector2& data)
{
godot_pool_vector2_array_append(&_godot_array, (godot_vector2 *) &data);
}
void PoolVector2Array::append_array(const PoolVector2Array& array)
{
godot_pool_vector2_array_append_array(&_godot_array, &array._godot_array);
}
int PoolVector2Array::insert(const int idx, const Vector2& data)
{
return godot_pool_vector2_array_insert(&_godot_array, idx, (godot_vector2 *) &data);
}
void PoolVector2Array::invert()
{
godot_pool_vector2_array_invert(&_godot_array);
}
void PoolVector2Array::push_back(const Vector2& data)
{
godot_pool_vector2_array_push_back(&_godot_array, (godot_vector2 *) &data);
}
void PoolVector2Array::remove(const int idx)
{
godot_pool_vector2_array_remove(&_godot_array, idx);
}
void PoolVector2Array::resize(const int size)
{
godot_pool_vector2_array_resize(&_godot_array, size);
}
void PoolVector2Array::set(const int idx, const Vector2& data)
{
godot_pool_vector2_array_set(&_godot_array, idx, (godot_vector2 *) &data);
}
Vector2 PoolVector2Array::operator [](const int idx)
{
Vector2 v;
*(godot_vector2 *) &v = godot_pool_vector2_array_get(&_godot_array, idx);
return v;
}
int PoolVector2Array::size()
{
return godot_pool_vector2_array_size(&_godot_array);
}
PoolVector2Array::~PoolVector2Array()
{
godot_pool_vector2_array_destroy(&_godot_array);
}
PoolVector3Array::PoolVector3Array()
{
godot_pool_vector3_array_new(&_godot_array);
}
PoolVector3Array::PoolVector3Array(const Array& array)
{
godot_pool_vector3_array_new_with_array(&_godot_array, (godot_array *) &array);
}
void PoolVector3Array::append(const Vector3& data)
{
godot_pool_vector3_array_append(&_godot_array, (godot_vector3 *) &data);
}
void PoolVector3Array::append_array(const PoolVector3Array& array)
{
godot_pool_vector3_array_append_array(&_godot_array, &array._godot_array);
}
int PoolVector3Array::insert(const int idx, const Vector3& data)
{
return godot_pool_vector3_array_insert(&_godot_array, idx, (godot_vector3 *) &data);
}
void PoolVector3Array::invert()
{
godot_pool_vector3_array_invert(&_godot_array);
}
void PoolVector3Array::push_back(const Vector3& data)
{
godot_pool_vector3_array_push_back(&_godot_array, (godot_vector3 *) &data);
}
void PoolVector3Array::remove(const int idx)
{
godot_pool_vector3_array_remove(&_godot_array, idx);
}
void PoolVector3Array::resize(const int size)
{
godot_pool_vector3_array_resize(&_godot_array, size);
}
void PoolVector3Array::set(const int idx, const Vector3& data)
{
godot_pool_vector3_array_set(&_godot_array, idx, (godot_vector3 *) &data);
}
Vector3 PoolVector3Array::operator [](const int idx)
{
Vector3 v;
*(godot_vector3 *) &v = godot_pool_vector3_array_get(&_godot_array, idx);
return v;
}
int PoolVector3Array::size()
{
return godot_pool_vector3_array_size(&_godot_array);
}
PoolVector3Array::~PoolVector3Array()
{
godot_pool_vector3_array_destroy(&_godot_array);
}
PoolColorArray::PoolColorArray()
{
godot_pool_color_array_new(&_godot_array);
}
PoolColorArray::PoolColorArray(const Array& array)
{
godot_pool_color_array_new_with_array(&_godot_array, (godot_array *) &array);
}
void PoolColorArray::append(const Color& data)
{
godot_pool_color_array_append(&_godot_array, (godot_color *) &data);
}
void PoolColorArray::append_array(const PoolColorArray& array)
{
godot_pool_color_array_append_array(&_godot_array, &array._godot_array);
}
int PoolColorArray::insert(const int idx, const Color& data)
{
return godot_pool_color_array_insert(&_godot_array, idx, (godot_color *) &data);
}
void PoolColorArray::invert()
{
godot_pool_color_array_invert(&_godot_array);
}
void PoolColorArray::push_back(const Color& data)
{
godot_pool_color_array_push_back(&_godot_array, (godot_color *) &data);
}
void PoolColorArray::remove(const int idx)
{
godot_pool_color_array_remove(&_godot_array, idx);
}
void PoolColorArray::resize(const int size)
{
godot_pool_color_array_resize(&_godot_array, size);
}
void PoolColorArray::set(const int idx, const Color& data)
{
godot_pool_color_array_set(&_godot_array, idx, (godot_color *) &data);
}
Color PoolColorArray::operator [](const int idx)
{
Color v;
*(godot_color *) &v = godot_pool_color_array_get(&_godot_array, idx);
return v;
}
int PoolColorArray::size()
{
return godot_pool_color_array_size(&_godot_array);
}
PoolColorArray::~PoolColorArray()
{
godot_pool_color_array_destroy(&_godot_array);
}
}

View File

@@ -1,249 +0,0 @@
#ifndef POOLARRAYS_H
#define POOLARRAYS_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Defs.hpp"
#include "String.hpp"
#include "Color.hpp"
#include "Vector2.hpp"
#include "Vector3.hpp"
#include <godot/godot_pool_arrays.h>
namespace godot {
class Array;
class GD_CPP_CORE_API PoolByteArray {
godot_pool_byte_array _godot_array;
public:
PoolByteArray();
PoolByteArray(const Array& array);
void append(const uint8_t data);
void append_array(const PoolByteArray& array);
int insert(const int idx, const uint8_t data);
void invert();
void push_back(const uint8_t data);
void remove(const int idx);
void resize(const int size);
void set(const int idx, const uint8_t data);
uint8_t operator [](const int idx);
int size();
~PoolByteArray();
};
class GD_CPP_CORE_API PoolIntArray {
godot_pool_int_array _godot_array;
public:
PoolIntArray();
PoolIntArray(const Array& array);
void append(const int data);
void append_array(const PoolIntArray& array);
int insert(const int idx, const int data);
void invert();
void push_back(const int data);
void remove(const int idx);
void resize(const int size);
void set(const int idx, const int data);
int operator [](const int idx);
int size();
~PoolIntArray();
};
class GD_CPP_CORE_API PoolRealArray {
godot_pool_real_array _godot_array;
public:
PoolRealArray();
PoolRealArray(const Array& array);
void append(const real_t data);
void append_array(const PoolRealArray& array);
int insert(const int idx, const real_t data);
void invert();
void push_back(const real_t data);
void remove(const int idx);
void resize(const int size);
void set(const int idx, const real_t data);
real_t operator [](const int idx);
int size();
~PoolRealArray();
};
class GD_CPP_CORE_API PoolStringArray {
godot_pool_string_array _godot_array;
public:
PoolStringArray();
PoolStringArray(const Array& array);
void append(const String& data);
void append_array(const PoolStringArray& array);
int insert(const int idx, const String& data);
void invert();
void push_back(const String& data);
void remove(const int idx);
void resize(const int size);
void set(const int idx, const String& data);
String operator [](const int idx);
int size();
~PoolStringArray();
};
class GD_CPP_CORE_API PoolVector2Array {
godot_pool_vector2_array _godot_array;
public:
PoolVector2Array();
PoolVector2Array(const Array& array);
void append(const Vector2& data);
void append_array(const PoolVector2Array& array);
int insert(const int idx, const Vector2& data);
void invert();
void push_back(const Vector2& data);
void remove(const int idx);
void resize(const int size);
void set(const int idx, const Vector2& data);
Vector2 operator [](const int idx);
int size();
~PoolVector2Array();
};
class GD_CPP_CORE_API PoolVector3Array {
godot_pool_vector3_array _godot_array;
public:
PoolVector3Array();
PoolVector3Array(const Array& array);
void append(const Vector3& data);
void append_array(const PoolVector3Array& array);
int insert(const int idx, const Vector3& data);
void invert();
void push_back(const Vector3& data);
void remove(const int idx);
void resize(const int size);
void set(const int idx, const Vector3& data);
Vector3 operator [](const int idx);
int size();
~PoolVector3Array();
};
class GD_CPP_CORE_API PoolColorArray {
godot_pool_color_array _godot_array;
public:
PoolColorArray();
PoolColorArray(const Array& array);
void append(const Color& data);
void append_array(const PoolColorArray& array);
int insert(const int idx, const Color& data);
void invert();
void push_back(const Color& data);
void remove(const int idx);
void resize(const int size);
void set(const int idx, const Color& data);
Color operator [](const int idx);
int size();
~PoolColorArray();
};
}
#endif // POOLARRAYS_H

View File

@@ -1,277 +0,0 @@
#include "Quat.hpp"
#include <cmath>
#include "Defs.hpp"
#include "Vector3.hpp"
#include "Basis.hpp"
namespace godot {
real_t Quat::length() const
{
return ::sqrt(length_squared());
}
void Quat::normalize()
{
*this /= length();
}
Quat Quat::normalized() const
{
return *this / length();
}
Quat Quat::inverse() const
{
return Quat( -x, -y, -z, w );
}
void Quat::set_euler(const Vector3& p_euler)
{
real_t half_a1 = p_euler.x * 0.5;
real_t half_a2 = p_euler.y * 0.5;
real_t half_a3 = p_euler.z * 0.5;
// R = X(a1).Y(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cos_a1 = ::cos(half_a1);
real_t sin_a1 = ::sin(half_a1);
real_t cos_a2 = ::cos(half_a2);
real_t sin_a2 = ::sin(half_a2);
real_t cos_a3 = ::cos(half_a3);
real_t sin_a3 = ::sin(half_a3);
set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1,
-sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3,
sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2,
-sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3);
}
Quat Quat::slerp(const Quat& q, const real_t& t) const {
Quat to1;
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = dot(q);
// adjust signs (if necessary)
if ( cosom <0.0 ) {
cosom = -cosom;
to1.x = - q.x;
to1.y = - q.y;
to1.z = - q.z;
to1.w = - q.w;
} else {
to1.x = q.x;
to1.y = q.y;
to1.z = q.z;
to1.w = q.w;
}
// calculate coefficients
if ( (1.0 - cosom) > CMP_EPSILON ) {
// standard case (slerp)
omega = ::acos(cosom);
sinom = ::sin(omega);
scale0 = ::sin((1.0 - t) * omega) / sinom;
scale1 = ::sin(t * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
return Quat(
scale0 * x + scale1 * to1.x,
scale0 * y + scale1 * to1.y,
scale0 * z + scale1 * to1.z,
scale0 * w + scale1 * to1.w
);
}
Quat Quat::slerpni(const Quat& q, const real_t& t) const {
const Quat &from = *this;
real_t dot = from.dot(q);
if (::fabs(dot) > 0.9999) return from;
real_t theta = ::acos(dot),
sinT = 1.0 / ::sin(theta),
newFactor = ::sin(t * theta) * sinT,
invFactor = ::sin((1.0 - t) * theta) * sinT;
return Quat(invFactor * from.x + newFactor * q.x,
invFactor * from.y + newFactor * q.y,
invFactor * from.z + newFactor * q.z,
invFactor * from.w + newFactor * q.w);
}
Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const
{
//the only way to do slerp :|
real_t t2 = (1.0-t)*t*2;
Quat sp = this->slerp(q,t);
Quat sq = prep.slerpni(postq,t);
return sp.slerpni(sq,t2);
}
void Quat::get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const {
r_angle = 2 * ::acos(w);
r_axis.x = x / ::sqrt(1-w*w);
r_axis.y = y / ::sqrt(1-w*w);
r_axis.z = z / ::sqrt(1-w*w);
}
Quat Quat::operator*(const Vector3& v) const
{
return Quat( w * v.x + y * v.z - z * v.y,
w * v.y + z * v.x - x * v.z,
w * v.z + x * v.y - y * v.x,
-x * v.x - y * v.y - z * v.z);
}
Vector3 Quat::xform(const Vector3& v) const {
Quat q = *this * v;
q *= this->inverse();
return Vector3(q.x,q.y,q.z);
}
Quat::operator String() const
{
return String(); // @Todo
}
Quat::Quat(const Vector3& axis, const real_t& angle)
{
real_t d = axis.length();
if (d==0)
set(0,0,0,0);
else {
real_t sin_angle = ::sin(angle * 0.5);
real_t cos_angle = ::cos(angle * 0.5);
real_t s = sin_angle / d;
set(axis.x * s, axis.y * s, axis.z * s,
cos_angle);
}
}
Quat::Quat(const Vector3& v0, const Vector3& v1) // shortest arc
{
Vector3 c = v0.cross(v1);
real_t d = v0.dot(v1);
if (d < -1.0 + CMP_EPSILON) {
x=0;
y=1;
z=0;
w=0;
} else {
real_t s = ::sqrt((1.0 + d) * 2.0);
real_t rs = 1.0 / s;
x=c.x*rs;
y=c.y*rs;
z=c.z*rs;
w=s * 0.5;
}
}
real_t Quat::dot(const Quat& q) const {
return x * q.x+y * q.y+z * q.z+w * q.w;
}
real_t Quat::length_squared() const {
return dot(*this);
}
void Quat::operator+=(const Quat& q) {
x += q.x; y += q.y; z += q.z; w += q.w;
}
void Quat::operator-=(const Quat& q) {
x -= q.x; y -= q.y; z -= q.z; w -= q.w;
}
void Quat::operator*=(const Quat& q) {
x *= q.x; y *= q.y; z *= q.z; w *= q.w;
}
void Quat::operator*=(const real_t& s) {
x *= s; y *= s; z *= s; w *= s;
}
void Quat::operator/=(const real_t& s) {
*this *= 1.0 / s;
}
Quat Quat::operator+(const Quat& q2) const {
const Quat& q1 = *this;
return Quat( q1.x+q2.x, q1.y+q2.y, q1.z+q2.z, q1.w+q2.w );
}
Quat Quat::operator-(const Quat& q2) const {
const Quat& q1 = *this;
return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w);
}
Quat Quat::operator*(const Quat& q2) const {
Quat q1 = *this;
q1 *= q2;
return q1;
}
Quat Quat::operator-() const {
const Quat& q2 = *this;
return Quat( -q2.x, -q2.y, -q2.z, -q2.w);
}
Quat Quat::operator*(const real_t& s) const {
return Quat(x * s, y * s, z * s, w * s);
}
Quat Quat::operator/(const real_t& s) const {
return *this * (1.0 / s);
}
bool Quat::operator==(const Quat& p_quat) const {
return x==p_quat.x && y==p_quat.y && z==p_quat.z && w==p_quat.w;
}
bool Quat::operator!=(const Quat& p_quat) const {
return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w;
}
Vector3 Quat::get_euler() const
{
Basis m(*this);
return m.get_euler();
}
}

View File

@@ -1,93 +0,0 @@
#ifndef QUAT_H
#define QUAT_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <cmath>
#include "Vector3.hpp"
// #include "Basis.h"
namespace godot {
class GD_CPP_CORE_API Quat{
public:
real_t x,y,z,w;
real_t length_squared() const;
real_t length() const;
void normalize();
Quat normalized() const;
Quat inverse() const;
void set_euler(const Vector3& p_euler);
real_t dot(const Quat& q) const;
Vector3 get_euler() const;
Quat slerp(const Quat& q, const real_t& t) const;
Quat slerpni(const Quat& q, const real_t& t) const;
Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const;
void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const;
void operator*=(const Quat& q);
Quat operator*(const Quat& q) const;
Quat operator*(const Vector3& v) const;
Vector3 xform(const Vector3& v) const;
void operator+=(const Quat& q);
void operator-=(const Quat& q);
void operator*=(const real_t& s);
void operator/=(const real_t& s);
Quat operator+(const Quat& q2) const;
Quat operator-(const Quat& q2) const;
Quat operator-() const;
Quat operator*(const real_t& s) const;
Quat operator/(const real_t& s) const;
bool operator==(const Quat& p_quat) const;
bool operator!=(const Quat& p_quat) const;
operator String() const;
inline void set( real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
x=p_x; y=p_y; z=p_z; w=p_w;
}
inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
x=p_x; y=p_y; z=p_z; w=p_w;
}
Quat(const Vector3& axis, const real_t& angle);
Quat(const Vector3& v0, const Vector3& v1) ;
inline Quat() {x=y=z=0; w=1; }
};
}
#endif // QUAT_H

View File

@@ -1,24 +0,0 @@
#include "RID.hpp"
#include <godot/godot_rid.h>
namespace godot {
RID::RID(Object *p)
{
godot_rid_new(&_godot_rid, p);
}
int32_t RID::get_rid() const
{
return godot_rid_get_rid(&_godot_rid);
}
RID::~RID()
{
godot_rid_destroy(&_godot_rid);
}
}

View File

@@ -1,35 +0,0 @@
#ifndef RID_H
#define RID_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <godot/godot_rid.h>
namespace godot {
class Object;
class GD_CPP_CORE_API RID {
godot_rid _godot_rid;
public:
inline RID() {}
RID(Object *p);
int32_t get_rid() const;
~RID();
};
}
#endif // RID_H

View File

@@ -1,303 +0,0 @@
#include "Rect2.hpp"
#include "Vector2.hpp"
#include "String.hpp"
#include <cmath>
#include "Transform2D.hpp"
namespace godot {
#ifndef MAX
#define MAX(a, b) (a > b ? a : b)
#endif
#ifndef MIN
#define MIN(a, b) (a < b ? a : b)
#endif
real_t Rect2::distance_to(const Vector2& p_point) const {
real_t dist = 1e20;
if (p_point.x < pos.x) {
dist=MIN(dist,pos.x-p_point.x);
}
if (p_point.y < pos.y) {
dist=MIN(dist,pos.y-p_point.y);
}
if (p_point.x >= (pos.x+size.x) ) {
dist=MIN(p_point.x-(pos.x+size.x),dist);
}
if (p_point.y >= (pos.y+size.y) ) {
dist=MIN(p_point.y-(pos.y+size.y),dist);
}
if (dist==1e20)
return 0;
else
return dist;
}
Rect2 Rect2::clip(const Rect2& p_rect) const { /// return a clipped rect
Rect2 new_rect=p_rect;
if (!intersects( new_rect ))
return Rect2();
new_rect.pos.x = MAX( p_rect.pos.x , pos.x );
new_rect.pos.y = MAX( p_rect.pos.y , pos.y );
Point2 p_rect_end=p_rect.pos+p_rect.size;
Point2 end=pos+size;
new_rect.size.x=MIN(p_rect_end.x,end.x) - new_rect.pos.x;
new_rect.size.y=MIN(p_rect_end.y,end.y) - new_rect.pos.y;
return new_rect;
}
Rect2 Rect2::merge(const Rect2& p_rect) const { ///< return a merged rect
Rect2 new_rect;
new_rect.pos.x=MIN( p_rect.pos.x , pos.x );
new_rect.pos.y=MIN( p_rect.pos.y , pos.y );
new_rect.size.x = MAX( p_rect.pos.x+p_rect.size.x , pos.x+size.x );
new_rect.size.y = MAX( p_rect.pos.y+p_rect.size.y , pos.y+size.y );
new_rect.size = new_rect.size - new_rect.pos; //make relative again
return new_rect;
}
Rect2::operator String() const
{
return String(pos)+", "+String(size);
}
bool Rect2::intersects_segment(const Point2& p_from, const Point2& p_to, Point2* r_pos,Point2* r_normal) const {
real_t min=0,max=1;
int axis=0;
real_t sign=0;
for(int i=0;i<2;i++) {
real_t seg_from=p_from[i];
real_t seg_to=p_to[i];
real_t box_begin=pos[i];
real_t box_end=box_begin+size[i];
real_t cmin,cmax;
real_t csign;
if (seg_from < seg_to) {
if (seg_from > box_end || seg_to < box_begin)
return false;
real_t length=seg_to-seg_from;
cmin = (seg_from < box_begin)?((box_begin - seg_from)/length):0;
cmax = (seg_to > box_end)?((box_end - seg_from)/length):1;
csign=-1.0;
} else {
if (seg_to > box_end || seg_from < box_begin)
return false;
real_t length=seg_to-seg_from;
cmin = (seg_from > box_end)?(box_end - seg_from)/length:0;
cmax = (seg_to < box_begin)?(box_begin - seg_from)/length:1;
csign=1.0;
}
if (cmin > min) {
min = cmin;
axis=i;
sign=csign;
}
if (cmax < max)
max = cmax;
if (max < min)
return false;
}
Vector2 rel=p_to-p_from;
if (r_normal) {
Vector2 normal;
normal[axis]=sign;
*r_normal=normal;
}
if (r_pos)
*r_pos=p_from+rel*min;
return true;
}
bool Rect2::intersects_transformed(const Transform2D& p_xform, const Rect2& p_rect) const {
//SAT intersection between local and transformed rect2
Vector2 xf_points[4]={
p_xform.xform(p_rect.pos),
p_xform.xform(Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y)),
p_xform.xform(Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y)),
p_xform.xform(Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y)),
};
real_t low_limit;
//base rect2 first (faster)
if (xf_points[0].y>pos.y)
goto next1;
if (xf_points[1].y>pos.y)
goto next1;
if (xf_points[2].y>pos.y)
goto next1;
if (xf_points[3].y>pos.y)
goto next1;
return false;
next1:
low_limit=pos.y+size.y;
if (xf_points[0].y<low_limit)
goto next2;
if (xf_points[1].y<low_limit)
goto next2;
if (xf_points[2].y<low_limit)
goto next2;
if (xf_points[3].y<low_limit)
goto next2;
return false;
next2:
if (xf_points[0].x>pos.x)
goto next3;
if (xf_points[1].x>pos.x)
goto next3;
if (xf_points[2].x>pos.x)
goto next3;
if (xf_points[3].x>pos.x)
goto next3;
return false;
next3:
low_limit=pos.x+size.x;
if (xf_points[0].x<low_limit)
goto next4;
if (xf_points[1].x<low_limit)
goto next4;
if (xf_points[2].x<low_limit)
goto next4;
if (xf_points[3].x<low_limit)
goto next4;
return false;
next4:
Vector2 xf_points2[4]={
pos,
Vector2(pos.x+size.x,pos.y),
Vector2(pos.x,pos.y+size.y),
Vector2(pos.x+size.x,pos.y+size.y),
};
real_t maxa=p_xform.elements[0].dot(xf_points2[0]);
real_t mina=maxa;
real_t dp = p_xform.elements[0].dot(xf_points2[1]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[0].dot(xf_points2[2]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[0].dot(xf_points2[3]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
real_t maxb=p_xform.elements[0].dot(xf_points[0]);
real_t minb=maxb;
dp = p_xform.elements[0].dot(xf_points[1]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[0].dot(xf_points[2]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[0].dot(xf_points[3]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
if ( mina > maxb )
return false;
if ( minb > maxa )
return false;
maxa=p_xform.elements[1].dot(xf_points2[0]);
mina=maxa;
dp = p_xform.elements[1].dot(xf_points2[1]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[1].dot(xf_points2[2]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[1].dot(xf_points2[3]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
maxb=p_xform.elements[1].dot(xf_points[0]);
minb=maxb;
dp = p_xform.elements[1].dot(xf_points[1]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[1].dot(xf_points[2]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[1].dot(xf_points[3]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
if ( mina > maxb )
return false;
if ( minb > maxa )
return false;
return true;
}
}

View File

@@ -1,143 +0,0 @@
#ifndef RECT2_H
#define RECT2_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Vector2.hpp"
#include <cmath>
#include <cstdlib>
namespace godot {
class String;
typedef Vector2 Size2;
typedef Vector2 Point2;
class Transform2D;
struct GD_CPP_CORE_API Rect2 {
Point2 pos;
Size2 size;
inline const Vector2& get_pos() const { return pos; }
inline void set_pos(const Vector2& p_pos) { pos=p_pos; }
inline const Vector2& get_size() const { return size; }
inline void set_size(const Vector2& p_size) { size=p_size; }
inline real_t get_area() const { return size.width*size.height; }
inline bool intersects(const Rect2& p_rect) const {
if ( pos.x >= (p_rect.pos.x + p_rect.size.width) )
return false;
if ( (pos.x+size.width) <= p_rect.pos.x )
return false;
if ( pos.y >= (p_rect.pos.y + p_rect.size.height) )
return false;
if ( (pos.y+size.height) <= p_rect.pos.y )
return false;
return true;
}
real_t distance_to(const Vector2& p_point) const;
bool intersects_transformed(const Transform2D& p_xform, const Rect2& p_rect) const;
bool intersects_segment(const Point2& p_from, const Point2& p_to, Point2* r_pos=NULL, Point2* r_normal=NULL) const;
inline bool encloses(const Rect2& p_rect) const {
return (p_rect.pos.x>=pos.x) && (p_rect.pos.y>=pos.y) &&
((p_rect.pos.x+p_rect.size.x)<(pos.x+size.x)) &&
((p_rect.pos.y+p_rect.size.y)<(pos.y+size.y));
}
inline bool has_no_area() const {
return (size.x<=0 || size.y<=0);
}
Rect2 clip(const Rect2& p_rect) const;
Rect2 merge(const Rect2& p_rect) const;
inline bool has_point(const Point2& p_point) const {
if (p_point.x < pos.x)
return false;
if (p_point.y < pos.y)
return false;
if (p_point.x >= (pos.x+size.x) )
return false;
if (p_point.y >= (pos.y+size.y) )
return false;
return true;
}
inline bool no_area() const { return (size.width<=0 || size.height<=0 ); }
inline bool operator==(const Rect2& p_rect) const { return pos==p_rect.pos && size==p_rect.size; }
inline bool operator!=(const Rect2& p_rect) const { return pos!=p_rect.pos || size!=p_rect.size; }
inline Rect2 grow(real_t p_by) const {
Rect2 g=*this;
g.pos.x-=p_by;
g.pos.y-=p_by;
g.size.width+=p_by*2;
g.size.height+=p_by*2;
return g;
}
inline Rect2 expand(const Vector2& p_vector) const {
Rect2 r = *this;
r.expand_to(p_vector);
return r;
}
inline void expand_to(const Vector2& p_vector) { //in place function for speed
Vector2 begin=pos;
Vector2 end=pos+size;
if (p_vector.x<begin.x)
begin.x=p_vector.x;
if (p_vector.y<begin.y)
begin.y=p_vector.y;
if (p_vector.x>end.x)
end.x=p_vector.x;
if (p_vector.y>end.y)
end.y=p_vector.y;
pos=begin;
size=end-begin;
}
operator String() const;
inline Rect2() {}
inline Rect2( real_t p_x, real_t p_y, real_t p_width, real_t p_height) { pos=Point2(p_x,p_y); size=Size2( p_width, p_height ); }
inline Rect2( const Point2& p_pos, const Size2& p_size ) { pos=p_pos; size=p_size; }
};
}
#endif // RECT2_H

View File

@@ -1,642 +0,0 @@
#include "Rect3.hpp"
#include "Vector3.hpp"
#include "Plane.hpp"
#include <algorithm>
namespace godot {
bool Rect3::intersects(const Rect3& p_aabb) const {
if ( pos.x >= (p_aabb.pos.x + p_aabb.size.x) )
return false;
if ( (pos.x+size.x) <= p_aabb.pos.x )
return false;
if ( pos.y >= (p_aabb.pos.y + p_aabb.size.y) )
return false;
if ( (pos.y+size.y) <= p_aabb.pos.y )
return false;
if ( pos.z >= (p_aabb.pos.z + p_aabb.size.z) )
return false;
if ( (pos.z+size.z) <= p_aabb.pos.z )
return false;
return true;
}
bool Rect3::intersects_inclusive(const Rect3& p_aabb) const {
if ( pos.x > (p_aabb.pos.x + p_aabb.size.x) )
return false;
if ( (pos.x+size.x) < p_aabb.pos.x )
return false;
if ( pos.y > (p_aabb.pos.y + p_aabb.size.y) )
return false;
if ( (pos.y+size.y) < p_aabb.pos.y )
return false;
if ( pos.z > (p_aabb.pos.z + p_aabb.size.z) )
return false;
if ( (pos.z+size.z) < p_aabb.pos.z )
return false;
return true;
}
bool Rect3::encloses(const Rect3 & p_aabb) const {
Vector3 src_min=pos;
Vector3 src_max=pos+size;
Vector3 dst_min=p_aabb.pos;
Vector3 dst_max=p_aabb.pos+p_aabb.size;
return (
(src_min.x <= dst_min.x) &&
(src_max.x > dst_max.x) &&
(src_min.y <= dst_min.y) &&
(src_max.y > dst_max.y) &&
(src_min.z <= dst_min.z) &&
(src_max.z > dst_max.z) );
}
Vector3 Rect3::get_support(const Vector3& p_normal) const {
Vector3 half_extents = size * 0.5;
Vector3 ofs = pos + half_extents;
return Vector3(
(p_normal.x>0) ? -half_extents.x : half_extents.x,
(p_normal.y>0) ? -half_extents.y : half_extents.y,
(p_normal.z>0) ? -half_extents.z : half_extents.z
)+ofs;
}
Vector3 Rect3::get_endpoint(int p_point) const {
switch(p_point) {
case 0: return Vector3( pos.x , pos.y , pos.z );
case 1: return Vector3( pos.x , pos.y , pos.z+size.z );
case 2: return Vector3( pos.x , pos.y+size.y , pos.z );
case 3: return Vector3( pos.x , pos.y+size.y , pos.z+size.z );
case 4: return Vector3( pos.x+size.x , pos.y , pos.z );
case 5: return Vector3( pos.x+size.x , pos.y , pos.z+size.z );
case 6: return Vector3( pos.x+size.x , pos.y+size.y , pos.z );
case 7: return Vector3( pos.x+size.x , pos.y+size.y , pos.z+size.z );
};
ERR_FAIL_V(Vector3());
}
bool Rect3::intersects_convex_shape(const Plane *p_planes, int p_plane_count) const {
Vector3 half_extents = size * 0.5;
Vector3 ofs = pos + half_extents;
for(int i=0;i<p_plane_count;i++) {
const Plane &p=p_planes[i];
Vector3 point(
(p.normal.x>0) ? -half_extents.x : half_extents.x,
(p.normal.y>0) ? -half_extents.y : half_extents.y,
(p.normal.z>0) ? -half_extents.z : half_extents.z
);
point+=ofs;
if (p.is_point_over(point))
return false;
}
return true;
}
bool Rect3::has_point(const Vector3& p_point) const {
if (p_point.x<pos.x)
return false;
if (p_point.y<pos.y)
return false;
if (p_point.z<pos.z)
return false;
if (p_point.x>pos.x+size.x)
return false;
if (p_point.y>pos.y+size.y)
return false;
if (p_point.z>pos.z+size.z)
return false;
return true;
}
void Rect3::expand_to(const Vector3& p_vector) {
Vector3 begin=pos;
Vector3 end=pos+size;
if (p_vector.x<begin.x)
begin.x=p_vector.x;
if (p_vector.y<begin.y)
begin.y=p_vector.y;
if (p_vector.z<begin.z)
begin.z=p_vector.z;
if (p_vector.x>end.x)
end.x=p_vector.x;
if (p_vector.y>end.y)
end.y=p_vector.y;
if (p_vector.z>end.z)
end.z=p_vector.z;
pos=begin;
size=end-begin;
}
void Rect3::project_range_in_plane(const Plane& p_plane,real_t &r_min,real_t& r_max) const {
Vector3 half_extents( size.x * 0.5, size.y * 0.5, size.z * 0.5 );
Vector3 center( pos.x + half_extents.x, pos.y + half_extents.y, pos.z + half_extents.z );
real_t length = p_plane.normal.abs().dot(half_extents);
real_t distance = p_plane.distance_to( center );
r_min = distance - length;
r_max = distance + length;
}
real_t Rect3::get_longest_axis_size() const {
real_t max_size=size.x;
if (size.y > max_size ) {
max_size=size.y;
}
if (size.z > max_size ) {
max_size=size.z;
}
return max_size;
}
real_t Rect3::get_shortest_axis_size() const {
real_t max_size=size.x;
if (size.y < max_size ) {
max_size=size.y;
}
if (size.z < max_size ) {
max_size=size.z;
}
return max_size;
}
bool Rect3::smits_intersect_ray(const Vector3 &from,const Vector3& dir, real_t t0, real_t t1) const {
real_t divx=1.0/dir.x;
real_t divy=1.0/dir.y;
real_t divz=1.0/dir.z;
Vector3 upbound=pos+size;
real_t tmin, tmax, tymin, tymax, tzmin, tzmax;
if (dir.x >= 0) {
tmin = (pos.x - from.x) * divx;
tmax = (upbound.x - from.x) * divx;
}
else {
tmin = (upbound.x - from.x) * divx;
tmax = (pos.x - from.x) * divx;
}
if (dir.y >= 0) {
tymin = (pos.y - from.y) * divy;
tymax = (upbound.y - from.y) * divy;
}
else {
tymin = (upbound.y - from.y) * divy;
tymax = (pos.y - from.y) * divy;
}
if ( (tmin > tymax) || (tymin > tmax) )
return false;
if (tymin > tmin)
tmin = tymin;
if (tymax < tmax)
tmax = tymax;
if (dir.z >= 0) {
tzmin = (pos.z - from.z) * divz;
tzmax = (upbound.z - from.z) * divz;
}
else {
tzmin = (upbound.z - from.z) * divz;
tzmax = (pos.z - from.z) * divz;
}
if ( (tmin > tzmax) || (tzmin > tmax) )
return false;
if (tzmin > tmin)
tmin = tzmin;
if (tzmax < tmax)
tmax = tzmax;
return ( (tmin < t1) && (tmax > t0) );
}
void Rect3::grow_by(real_t p_amount) {
pos.x-=p_amount;
pos.y-=p_amount;
pos.z-=p_amount;
size.x+=2.0*p_amount;
size.y+=2.0*p_amount;
size.z+=2.0*p_amount;
}
real_t Rect3::get_area() const {
return size.x*size.y*size.z;
}
bool Rect3::operator==(const Rect3& p_rval) const {
return ((pos==p_rval.pos) && (size==p_rval.size));
}
bool Rect3::operator!=(const Rect3& p_rval) const {
return ((pos!=p_rval.pos) || (size!=p_rval.size));
}
void Rect3::merge_with(const Rect3& p_aabb) {
Vector3 beg_1,beg_2;
Vector3 end_1,end_2;
Vector3 min,max;
beg_1=pos;
beg_2=p_aabb.pos;
end_1=Vector3(size.x,size.y,size.z)+beg_1;
end_2=Vector3(p_aabb.size.x,p_aabb.size.y,p_aabb.size.z)+beg_2;
min.x=(beg_1.x<beg_2.x)?beg_1.x:beg_2.x;
min.y=(beg_1.y<beg_2.y)?beg_1.y:beg_2.y;
min.z=(beg_1.z<beg_2.z)?beg_1.z:beg_2.z;
max.x=(end_1.x>end_2.x)?end_1.x:end_2.x;
max.y=(end_1.y>end_2.y)?end_1.y:end_2.y;
max.z=(end_1.z>end_2.z)?end_1.z:end_2.z;
pos=min;
size=max-min;
}
Rect3 Rect3::intersection(const Rect3& p_aabb) const {
Vector3 src_min=pos;
Vector3 src_max=pos+size;
Vector3 dst_min=p_aabb.pos;
Vector3 dst_max=p_aabb.pos+p_aabb.size;
Vector3 min,max;
if (src_min.x > dst_max.x || src_max.x < dst_min.x )
return Rect3();
else {
min.x= ( src_min.x > dst_min.x ) ? src_min.x :dst_min.x;
max.x= ( src_max.x < dst_max.x ) ? src_max.x :dst_max.x;
}
if (src_min.y > dst_max.y || src_max.y < dst_min.y )
return Rect3();
else {
min.y= ( src_min.y > dst_min.y ) ? src_min.y :dst_min.y;
max.y= ( src_max.y < dst_max.y ) ? src_max.y :dst_max.y;
}
if (src_min.z > dst_max.z || src_max.z < dst_min.z )
return Rect3();
else {
min.z= ( src_min.z > dst_min.z ) ? src_min.z :dst_min.z;
max.z= ( src_max.z < dst_max.z ) ? src_max.z :dst_max.z;
}
return Rect3( min, max-min );
}
bool Rect3::intersects_ray(const Vector3& p_from, const Vector3& p_dir,Vector3* r_clip,Vector3* r_normal) const {
Vector3 c1, c2;
Vector3 end = pos+size;
real_t near=-1e20;
real_t far=1e20;
int axis=0;
for (int i=0;i<3;i++){
if (p_dir[i] == 0){
if ((p_from[i] < pos[i]) || (p_from[i] > end[i])) {
return false;
}
} else { // ray not parallel to planes in this direction
c1[i] = (pos[i] - p_from[i]) / p_dir[i];
c2[i] = (end[i] - p_from[i]) / p_dir[i];
if(c1[i] > c2[i]){
std::swap(c1,c2);
}
if (c1[i] > near){
near = c1[i];
axis=i;
}
if (c2[i] < far){
far = c2[i];
}
if( (near > far) || (far < 0) ){
return false;
}
}
}
if (r_clip)
*r_clip=c1;
if (r_normal) {
*r_normal=Vector3();
(*r_normal)[axis]=p_dir[axis]?-1:1;
}
return true;
}
bool Rect3::intersects_segment(const Vector3& p_from, const Vector3& p_to,Vector3* r_clip,Vector3* r_normal) const {
real_t min=0,max=1;
int axis=0;
real_t sign=0;
for(int i=0;i<3;i++) {
real_t seg_from=p_from[i];
real_t seg_to=p_to[i];
real_t box_begin=pos[i];
real_t box_end=box_begin+size[i];
real_t cmin,cmax;
real_t csign;
if (seg_from < seg_to) {
if (seg_from > box_end || seg_to < box_begin)
return false;
real_t length=seg_to-seg_from;
cmin = (seg_from < box_begin)?((box_begin - seg_from)/length):0;
cmax = (seg_to > box_end)?((box_end - seg_from)/length):1;
csign=-1.0;
} else {
if (seg_to > box_end || seg_from < box_begin)
return false;
real_t length=seg_to-seg_from;
cmin = (seg_from > box_end)?(box_end - seg_from)/length:0;
cmax = (seg_to < box_begin)?(box_begin - seg_from)/length:1;
csign=1.0;
}
if (cmin > min) {
min = cmin;
axis=i;
sign=csign;
}
if (cmax < max)
max = cmax;
if (max < min)
return false;
}
Vector3 rel=p_to-p_from;
if (r_normal) {
Vector3 normal;
normal[axis]=sign;
*r_normal=normal;
}
if (r_clip)
*r_clip=p_from+rel*min;
return true;
}
bool Rect3::intersects_plane(const Plane &p_plane) const {
Vector3 points[8] = {
Vector3( pos.x , pos.y , pos.z ),
Vector3( pos.x , pos.y , pos.z+size.z ),
Vector3( pos.x , pos.y+size.y , pos.z ),
Vector3( pos.x , pos.y+size.y , pos.z+size.z ),
Vector3( pos.x+size.x , pos.y , pos.z ),
Vector3( pos.x+size.x , pos.y , pos.z+size.z ),
Vector3( pos.x+size.x , pos.y+size.y , pos.z ),
Vector3( pos.x+size.x , pos.y+size.y , pos.z+size.z ),
};
bool over=false;
bool under=false;
for (int i=0;i<8;i++) {
if (p_plane.distance_to(points[i])>0)
over=true;
else
under=true;
}
return under && over;
}
Vector3 Rect3::get_longest_axis() const {
Vector3 axis(1,0,0);
real_t max_size=size.x;
if (size.y > max_size ) {
axis=Vector3(0,1,0);
max_size=size.y;
}
if (size.z > max_size ) {
axis=Vector3(0,0,1);
max_size=size.z;
}
return axis;
}
int Rect3::get_longest_axis_index() const {
int axis=0;
real_t max_size=size.x;
if (size.y > max_size ) {
axis=1;
max_size=size.y;
}
if (size.z > max_size ) {
axis=2;
max_size=size.z;
}
return axis;
}
Vector3 Rect3::get_shortest_axis() const {
Vector3 axis(1,0,0);
real_t max_size=size.x;
if (size.y < max_size ) {
axis=Vector3(0,1,0);
max_size=size.y;
}
if (size.z < max_size ) {
axis=Vector3(0,0,1);
max_size=size.z;
}
return axis;
}
int Rect3::get_shortest_axis_index() const {
int axis=0;
real_t max_size=size.x;
if (size.y < max_size ) {
axis=1;
max_size=size.y;
}
if (size.z < max_size ) {
axis=2;
max_size=size.z;
}
return axis;
}
Rect3 Rect3::merge(const Rect3& p_with) const {
Rect3 aabb=*this;
aabb.merge_with(p_with);
return aabb;
}
Rect3 Rect3::expand(const Vector3& p_vector) const {
Rect3 aabb=*this;
aabb.expand_to(p_vector);
return aabb;
}
Rect3 Rect3::grow(real_t p_by) const {
Rect3 aabb=*this;
aabb.grow_by(p_by);
return aabb;
}
void Rect3::get_edge(int p_edge,Vector3& r_from,Vector3& r_to) const {
ERR_FAIL_INDEX(p_edge,12);
switch(p_edge) {
case 0:{
r_from=Vector3( pos.x+size.x , pos.y , pos.z );
r_to=Vector3( pos.x , pos.y , pos.z );
} break;
case 1:{
r_from=Vector3( pos.x+size.x , pos.y , pos.z+size.z );
r_to=Vector3( pos.x+size.x , pos.y , pos.z );
} break;
case 2:{
r_from=Vector3( pos.x , pos.y , pos.z+size.z );
r_to=Vector3( pos.x+size.x , pos.y , pos.z+size.z );
} break;
case 3:{
r_from=Vector3( pos.x , pos.y , pos.z );
r_to=Vector3( pos.x , pos.y , pos.z+size.z );
} break;
case 4:{
r_from=Vector3( pos.x , pos.y+size.y , pos.z );
r_to=Vector3( pos.x+size.x , pos.y+size.y , pos.z );
} break;
case 5:{
r_from=Vector3( pos.x+size.x , pos.y+size.y , pos.z );
r_to=Vector3( pos.x+size.x , pos.y+size.y , pos.z+size.z );
} break;
case 6:{
r_from=Vector3( pos.x+size.x , pos.y+size.y , pos.z+size.z );
r_to=Vector3( pos.x , pos.y+size.y , pos.z+size.z );
} break;
case 7:{
r_from=Vector3( pos.x , pos.y+size.y , pos.z+size.z );
r_to=Vector3( pos.x , pos.y+size.y , pos.z );
} break;
case 8:{
r_from=Vector3( pos.x , pos.y , pos.z+size.z );
r_to=Vector3( pos.x , pos.y+size.y , pos.z+size.z );
} break;
case 9:{
r_from=Vector3( pos.x , pos.y , pos.z );
r_to=Vector3( pos.x , pos.y+size.y , pos.z );
} break;
case 10:{
r_from=Vector3( pos.x+size.x , pos.y , pos.z );
r_to=Vector3( pos.x+size.x , pos.y+size.y , pos.z );
} break;
case 11:{
r_from=Vector3( pos.x+size.x , pos.y , pos.z+size.z );
r_to=Vector3( pos.x+size.x , pos.y+size.y , pos.z+size.z );
} break;
}
}
Rect3::operator String() const {
//return String()+pos +" - "+ size;
return String(); // @Todo
}
}

View File

@@ -1,93 +0,0 @@
#ifndef RECT3_H
#define RECT3_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Vector3.hpp"
#include "Plane.hpp"
#include <cstdlib>
namespace godot {
class GD_CPP_CORE_API Rect3 {
public:
Vector3 pos;
Vector3 size;
real_t get_area() const; /// get area
inline bool has_no_area() const {
return (size.x<=CMP_EPSILON || size.y<=CMP_EPSILON || size.z<=CMP_EPSILON);
}
inline bool has_no_surface() const {
return (size.x<=CMP_EPSILON && size.y<=CMP_EPSILON && size.z<=CMP_EPSILON);
}
inline const Vector3& get_pos() const { return pos; }
inline void set_pos(const Vector3& p_pos) { pos=p_pos; }
inline const Vector3& get_size() const { return size; }
inline void set_size(const Vector3& p_size) { size=p_size; }
bool operator==(const Rect3& p_rval) const;
bool operator!=(const Rect3& p_rval) const;
bool intersects(const Rect3& p_aabb) const; /// Both AABBs overlap
bool intersects_inclusive(const Rect3& p_aabb) const; /// Both AABBs (or their faces) overlap
bool encloses(const Rect3 & p_aabb) const; /// p_aabb is completely inside this
Rect3 merge(const Rect3& p_with) const;
void merge_with(const Rect3& p_aabb); ///merge with another AABB
Rect3 intersection(const Rect3& p_aabb) const; ///get box where two intersect, empty if no intersection occurs
bool intersects_segment(const Vector3& p_from, const Vector3& p_to,Vector3* r_clip=NULL,Vector3* r_normal=NULL) const;
bool intersects_ray(const Vector3& p_from, const Vector3& p_dir,Vector3* r_clip=NULL,Vector3* r_normal=NULL) const;
bool smits_intersect_ray(const Vector3 &from,const Vector3& p_dir, real_t t0, real_t t1) const;
bool intersects_convex_shape(const Plane *p_plane, int p_plane_count) const;
bool intersects_plane(const Plane &p_plane) const;
bool has_point(const Vector3& p_point) const;
Vector3 get_support(const Vector3& p_normal) const;
Vector3 get_longest_axis() const;
int get_longest_axis_index() const;
real_t get_longest_axis_size() const;
Vector3 get_shortest_axis() const;
int get_shortest_axis_index() const;
real_t get_shortest_axis_size() const;
Rect3 grow(real_t p_by) const;
void grow_by(real_t p_amount);
void get_edge(int p_edge,Vector3& r_from,Vector3& r_to) const;
Vector3 get_endpoint(int p_point) const;
Rect3 expand(const Vector3& p_vector) const;
void project_range_in_plane(const Plane& p_plane,real_t &r_min,real_t& r_max) const;
void expand_to(const Vector3& p_vector); /** expand to contain a point if necesary */
operator String() const;
inline Rect3() {}
inline Rect3(const Vector3 &p_pos,const Vector3& p_size) { pos=p_pos; size=p_size; }
};
}
#endif // RECT3_H

View File

@@ -1,140 +0,0 @@
#include "String.hpp"
#include "NodePath.hpp"
#include <godot/godot_string.h>
#include <string.h>
namespace godot {
godot::String::String()
{
godot_string_new(&_godot_string);
}
String::String(const char *contents)
{
godot_string_new_data(&_godot_string, contents, strlen(contents));
}
String::String(const wchar_t *contents)
{
// @Todo
// godot_string_new_data(&_godot_string, contents, strlen(contents));
godot_string_new(&_godot_string);
}
String::String(const wchar_t c)
{
// @Todo
godot_string_new(&_godot_string);
}
String::String(const String& other)
{
godot_string_new(&_godot_string);
godot_string_copy_string(&_godot_string, &other._godot_string);
}
String::~String()
{
godot_string_destroy(&_godot_string);
}
String String::substr(int p_from,int p_chars) const
{
return String(); // @Todo
}
wchar_t &String::operator [](const int idx)
{
return *godot_string_operator_index(&_godot_string, idx);
}
wchar_t String::operator [](const int idx) const
{
return *godot_string_operator_index((godot_string *) &_godot_string, idx);
}
int String::length() const
{
int len = 0;
godot_string_get_data(&_godot_string, nullptr, &len);
return len;
}
void String::operator =(const String &s)
{
godot_string_copy_string(&_godot_string, &s._godot_string);
}
bool String::operator ==(const String &s)
{
return godot_string_operator_equal(&_godot_string, &s._godot_string);
}
bool String::operator !=(const String &s)
{
return !(*this == s);
}
String String::operator +(const String &s)
{
String new_string;
godot_string_operator_plus(&new_string._godot_string, &_godot_string, &s._godot_string);
return new_string;
}
void String::operator +=(const String &s)
{
godot_string_operator_plus(&_godot_string, &_godot_string, &s._godot_string);
}
void String::operator +=(const wchar_t c)
{
// @Todo
}
bool String::operator <(const String &s)
{
return godot_string_operator_less(&_godot_string, &s._godot_string);
}
bool String::operator <=(const String &s)
{
return godot_string_operator_less(&_godot_string, &s._godot_string) || (*this == s);
}
bool String::operator >(const String &s)
{
return !(*this <= s);
}
bool String::operator >=(const String &s)
{
return !(*this < s);
}
String::operator NodePath() const
{
return NodePath(*this);
}
const char *String::c_string() const
{
return godot_string_c_str(&_godot_string);
}
String operator +(const char *a, const String& b)
{
return String(a) + b;
}
}

View File

@@ -1,79 +0,0 @@
#ifndef STRING_H
#define STRING_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <godot/godot_string.h>
namespace godot {
class NodePath;
class GD_CPP_CORE_API String
{
godot_string _godot_string;
public:
String();
String(const char *contents);
String(const wchar_t *contents);
String(const wchar_t c);
String(const String& other);
~String();
String substr(int p_from,int p_chars) const;
wchar_t &operator [](const int idx);
wchar_t operator [](const int idx) const;
int length() const;
void operator =(const String &s);
bool operator ==(const String &s);
bool operator !=(const String &s);
String operator +(const String &s);
void operator +=(const String &s);
void operator +=(const wchar_t c);
bool operator <(const String &s);
bool operator <=(const String &s);
bool operator >(const String &s);
bool operator >=(const String &s);
operator NodePath() const;
const char *c_string() const;
};
String operator +(const char *a, const String& b);
}
#endif // STRING_H

View File

@@ -1,319 +0,0 @@
#include "Transform.hpp"
#include "Basis.hpp"
#include "Plane.hpp"
#include "Rect3.hpp"
#include "Quat.hpp"
namespace godot {
Transform Transform::inverse_xform(const Transform& t) const {
Vector3 v = t.origin - origin;
return Transform(basis.transpose_xform(t.basis),
basis.xform(v));
}
void Transform::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz,real_t tx, real_t ty, real_t tz) {
basis.elements[0][0]=xx;
basis.elements[0][1]=xy;
basis.elements[0][2]=xz;
basis.elements[1][0]=yx;
basis.elements[1][1]=yy;
basis.elements[1][2]=yz;
basis.elements[2][0]=zx;
basis.elements[2][1]=zy;
basis.elements[2][2]=zz;
origin.x=tx;
origin.y=ty;
origin.z=tz;
}
Vector3 Transform::xform(const Vector3& p_vector) const {
return Vector3(
basis[0].dot(p_vector)+origin.x,
basis[1].dot(p_vector)+origin.y,
basis[2].dot(p_vector)+origin.z
);
}
Vector3 Transform::xform_inv(const Vector3& p_vector) const {
Vector3 v = p_vector - origin;
return Vector3(
(basis.elements[0][0]*v.x ) + ( basis.elements[1][0]*v.y ) + ( basis.elements[2][0]*v.z ),
(basis.elements[0][1]*v.x ) + ( basis.elements[1][1]*v.y ) + ( basis.elements[2][1]*v.z ),
(basis.elements[0][2]*v.x ) + ( basis.elements[1][2]*v.y ) + ( basis.elements[2][2]*v.z )
);
}
Plane Transform::xform(const Plane& p_plane) const {
Vector3 point=p_plane.normal*p_plane.d;
Vector3 point_dir=point+p_plane.normal;
point=xform(point);
point_dir=xform(point_dir);
Vector3 normal=point_dir-point;
normal.normalize();
real_t d=normal.dot(point);
return Plane(normal,d);
}
Plane Transform::xform_inv(const Plane& p_plane) const {
Vector3 point=p_plane.normal*p_plane.d;
Vector3 point_dir=point+p_plane.normal;
xform_inv(point);
xform_inv(point_dir);
Vector3 normal=point_dir-point;
normal.normalize();
real_t d=normal.dot(point);
return Plane(normal,d);
}
Rect3 Transform::xform(const Rect3& p_aabb) const {
/* define vertices */
Vector3 x=basis.get_axis(0)*p_aabb.size.x;
Vector3 y=basis.get_axis(1)*p_aabb.size.y;
Vector3 z=basis.get_axis(2)*p_aabb.size.z;
Vector3 pos = xform( p_aabb.pos );
//could be even further optimized
Rect3 new_aabb;
new_aabb.pos=pos;
new_aabb.expand_to( pos+x );
new_aabb.expand_to( pos+y );
new_aabb.expand_to( pos+z );
new_aabb.expand_to( pos+x+y );
new_aabb.expand_to( pos+x+z );
new_aabb.expand_to( pos+y+z );
new_aabb.expand_to( pos+x+y+z );
return new_aabb;
}
Rect3 Transform::xform_inv(const Rect3& p_aabb) const {
/* define vertices */
Vector3 vertices[8]={
Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z),
Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z),
Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z)
};
Rect3 ret;
ret.pos=xform_inv(vertices[0]);
for (int i=1;i<8;i++) {
ret.expand_to( xform_inv(vertices[i]) );
}
return ret;
}
void Transform::affine_invert() {
basis.invert();
origin = basis.xform(-origin);
}
Transform Transform::affine_inverse() const {
Transform ret=*this;
ret.affine_invert();
return ret;
}
void Transform::invert() {
basis.transpose();
origin = basis.xform(-origin);
}
Transform Transform::inverse() const {
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
Transform ret=*this;
ret.invert();
return ret;
}
void Transform::rotate(const Vector3& p_axis,real_t p_phi) {
*this = rotated(p_axis, p_phi);
}
Transform Transform::rotated(const Vector3& p_axis,real_t p_phi) const{
return Transform(Basis( p_axis, p_phi ), Vector3()) * (*this);
}
void Transform::rotate_basis(const Vector3& p_axis,real_t p_phi) {
basis.rotate(p_axis,p_phi);
}
Transform Transform::looking_at( const Vector3& p_target, const Vector3& p_up ) const {
Transform t = *this;
t.set_look_at(origin,p_target,p_up);
return t;
}
void Transform::set_look_at( const Vector3& p_eye, const Vector3& p_target, const Vector3& p_up ) {
// Reference: MESA source code
Vector3 v_x, v_y, v_z;
/* Make rotation matrix */
/* Z vector */
v_z = p_eye - p_target;
v_z.normalize();
v_y = p_up;
v_x=v_y.cross(v_z);
/* Recompute Y = Z cross X */
v_y=v_z.cross(v_x);
v_x.normalize();
v_y.normalize();
basis.set_axis(0,v_x);
basis.set_axis(1,v_y);
basis.set_axis(2,v_z);
origin=p_eye;
}
Transform Transform::interpolate_with(const Transform& p_transform, real_t p_c) const {
/* not sure if very "efficient" but good enough? */
Vector3 src_scale = basis.get_scale();
Quat src_rot = basis;
Vector3 src_loc = origin;
Vector3 dst_scale = p_transform.basis.get_scale();
Quat dst_rot = p_transform.basis;
Vector3 dst_loc = p_transform.origin;
Transform dst;
dst.basis=src_rot.slerp(dst_rot,p_c);
dst.basis.scale(src_scale.linear_interpolate(dst_scale,p_c));
dst.origin=src_loc.linear_interpolate(dst_loc,p_c);
return dst;
}
void Transform::scale(const Vector3& p_scale) {
basis.scale(p_scale);
origin*=p_scale;
}
Transform Transform::scaled(const Vector3& p_scale) const {
Transform t = *this;
t.scale(p_scale);
return t;
}
void Transform::scale_basis(const Vector3& p_scale) {
basis.scale(p_scale);
}
void Transform::translate( real_t p_tx, real_t p_ty, real_t p_tz) {
translate( Vector3(p_tx,p_ty,p_tz) );
}
void Transform::translate( const Vector3& p_translation ) {
for( int i = 0; i < 3; i++ ) {
origin[i] += basis[i].dot(p_translation);
}
}
Transform Transform::translated( const Vector3& p_translation ) const {
Transform t=*this;
t.translate(p_translation);
return t;
}
void Transform::orthonormalize() {
basis.orthonormalize();
}
Transform Transform::orthonormalized() const {
Transform _copy = *this;
_copy.orthonormalize();
return _copy;
}
bool Transform::operator==(const Transform& p_transform) const {
return (basis==p_transform.basis && origin==p_transform.origin);
}
bool Transform::operator!=(const Transform& p_transform) const {
return (basis!=p_transform.basis || origin!=p_transform.origin);
}
void Transform::operator*=(const Transform& p_transform) {
origin=xform(p_transform.origin);
basis*=p_transform.basis;
}
Transform Transform::operator*(const Transform& p_transform) const {
Transform t=*this;
t*=p_transform;
return t;
}
Transform::operator String() const {
return basis.operator String() + " - " + origin.operator String();
}
Transform::Transform(const Basis& p_basis, const Vector3& p_origin) {
basis=p_basis;
origin=p_origin;
}
}

View File

@@ -1,91 +0,0 @@
#ifndef TRANSFORM_H
#define TRANSFORM_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Basis.hpp"
#include "Plane.hpp"
#include "Rect3.hpp"
namespace godot {
class GD_CPP_CORE_API Transform {
public:
Basis basis;
Vector3 origin;
void invert();
Transform inverse() const;
void affine_invert();
Transform affine_inverse() const;
Transform rotated(const Vector3& p_axis,real_t p_phi) const;
void rotate(const Vector3& p_axis,real_t p_phi);
void rotate_basis(const Vector3& p_axis,real_t p_phi);
void set_look_at( const Vector3& p_eye, const Vector3& p_target, const Vector3& p_up );
Transform looking_at( const Vector3& p_target, const Vector3& p_up ) const;
void scale(const Vector3& p_scale);
Transform scaled(const Vector3& p_scale) const;
void scale_basis(const Vector3& p_scale);
void translate( real_t p_tx, real_t p_ty, real_t p_tz );
void translate( const Vector3& p_translation );
Transform translated( const Vector3& p_translation ) const;
inline const Basis& get_basis() const { return basis; }
inline void set_basis(const Basis& p_basis) { basis=p_basis; }
inline const Vector3& get_origin() const { return origin; }
inline void set_origin(const Vector3& p_origin) { origin=p_origin; }
void orthonormalize();
Transform orthonormalized() const;
bool operator==(const Transform& p_transform) const;
bool operator!=(const Transform& p_transform) const;
Vector3 xform(const Vector3& p_vector) const;
Vector3 xform_inv(const Vector3& p_vector) const;
Plane xform(const Plane& p_plane) const;
Plane xform_inv(const Plane& p_plane) const;
Rect3 xform(const Rect3& p_aabb) const;
Rect3 xform_inv(const Rect3& p_aabb) const;
void operator*=(const Transform& p_transform);
Transform operator*(const Transform& p_transform) const;
Transform interpolate_with(const Transform& p_transform, real_t p_c) const;
Transform inverse_xform(const Transform& t) const;
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz,real_t tx, real_t ty, real_t tz);
operator String() const;
inline Transform(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz,real_t tx, real_t ty, real_t tz) {
set(xx, xy, xz, yx, yy, yz, zx, zy, zz,tx, ty, tz);
}
Transform(const Basis& p_basis, const Vector3& p_origin=Vector3());
inline Transform() {}
};
}
#endif // TRANSFORM_H

View File

@@ -1,350 +0,0 @@
#include "Transform2D.hpp"
#include "Vector2.hpp"
#include "String.hpp"
#include "Rect2.hpp"
#include <algorithm>
namespace godot {
Transform2D::Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) {
elements[0][0] = xx;
elements[0][1] = xy;
elements[1][0] = yx;
elements[1][1] = yy;
elements[2][0] = ox;
elements[2][1] = oy;
}
Vector2 Transform2D::basis_xform(const Vector2& v) const {
return Vector2(
tdotx(v),
tdoty(v)
);
}
Vector2 Transform2D::basis_xform_inv(const Vector2& v) const{
return Vector2(
elements[0].dot(v),
elements[1].dot(v)
);
}
Vector2 Transform2D::xform(const Vector2& v) const {
return Vector2(
tdotx(v),
tdoty(v)
) + elements[2];
}
Vector2 Transform2D::xform_inv(const Vector2& p_vec) const {
Vector2 v = p_vec - elements[2];
return Vector2(
elements[0].dot(v),
elements[1].dot(v)
);
}
Rect2 Transform2D::xform(const Rect2& p_rect) const {
Vector2 x=elements[0]*p_rect.size.x;
Vector2 y=elements[1]*p_rect.size.y;
Vector2 pos = xform( p_rect.pos );
Rect2 new_rect;
new_rect.pos=pos;
new_rect.expand_to( pos+x );
new_rect.expand_to( pos+y );
new_rect.expand_to( pos+x+y );
return new_rect;
}
void Transform2D::set_rotation_and_scale(real_t p_rot,const Size2& p_scale) {
elements[0][0]=::cos(p_rot)*p_scale.x;
elements[1][1]=::cos(p_rot)*p_scale.y;
elements[1][0]=-::sin(p_rot)*p_scale.y;
elements[0][1]=::sin(p_rot)*p_scale.x;
}
Rect2 Transform2D::xform_inv(const Rect2& p_rect) const {
Vector2 ends[4]={
xform_inv( p_rect.pos ),
xform_inv( Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y ) ),
xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y ) ),
xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y ) )
};
Rect2 new_rect;
new_rect.pos=ends[0];
new_rect.expand_to(ends[1]);
new_rect.expand_to(ends[2]);
new_rect.expand_to(ends[3]);
return new_rect;
}
void Transform2D::invert() {
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
// Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
std::swap(elements[0][1],elements[1][0]);
elements[2] = basis_xform(-elements[2]);
}
Transform2D Transform2D::inverse() const {
Transform2D inv=*this;
inv.invert();
return inv;
}
void Transform2D::affine_invert() {
real_t det = basis_determinant();
ERR_FAIL_COND(det==0);
real_t idet = 1.0 / det;
std::swap( elements[0][0],elements[1][1] );
elements[0]*=Vector2(idet,-idet);
elements[1]*=Vector2(-idet,idet);
elements[2] = basis_xform(-elements[2]);
}
Transform2D Transform2D::affine_inverse() const {
Transform2D inv=*this;
inv.affine_invert();
return inv;
}
void Transform2D::rotate(real_t p_phi) {
*this = Transform2D(p_phi,Vector2()) * (*this);
}
real_t Transform2D::get_rotation() const {
real_t det = basis_determinant();
Transform2D m = orthonormalized();
if (det < 0) {
m.scale_basis(Size2(-1,-1));
}
return ::atan2(m[0].y,m[0].x);
}
void Transform2D::set_rotation(real_t p_rot) {
real_t cr = ::cos(p_rot);
real_t sr = ::sin(p_rot);
elements[0][0]=cr;
elements[0][1]=sr;
elements[1][0]=-sr;
elements[1][1]=cr;
}
Transform2D::Transform2D(real_t p_rot, const Vector2& p_pos) {
real_t cr = ::cos(p_rot);
real_t sr = ::sin(p_rot);
elements[0][0]=cr;
elements[0][1]=sr;
elements[1][0]=-sr;
elements[1][1]=cr;
elements[2]=p_pos;
}
Size2 Transform2D::get_scale() const {
real_t det_sign = basis_determinant() > 0 ? 1 : -1;
return det_sign * Size2( elements[0].length(), elements[1].length() );
}
void Transform2D::scale(const Size2& p_scale) {
scale_basis(p_scale);
elements[2]*=p_scale;
}
void Transform2D::scale_basis(const Size2& p_scale) {
elements[0][0]*=p_scale.x;
elements[0][1]*=p_scale.y;
elements[1][0]*=p_scale.x;
elements[1][1]*=p_scale.y;
}
void Transform2D::translate( real_t p_tx, real_t p_ty) {
translate(Vector2(p_tx,p_ty));
}
void Transform2D::translate( const Vector2& p_translation ) {
elements[2]+=basis_xform(p_translation);
}
void Transform2D::orthonormalize() {
// Gram-Schmidt Process
Vector2 x=elements[0];
Vector2 y=elements[1];
x.normalize();
y = (y-x*(x.dot(y)));
y.normalize();
elements[0]=x;
elements[1]=y;
}
Transform2D Transform2D::orthonormalized() const {
Transform2D on=*this;
on.orthonormalize();
return on;
}
bool Transform2D::operator==(const Transform2D& p_transform) const {
for(int i=0;i<3;i++) {
if (elements[i]!=p_transform.elements[i])
return false;
}
return true;
}
bool Transform2D::operator!=(const Transform2D& p_transform) const {
for(int i=0;i<3;i++) {
if (elements[i]!=p_transform.elements[i])
return true;
}
return false;
}
void Transform2D::operator*=(const Transform2D& p_transform) {
elements[2] = xform(p_transform.elements[2]);
real_t x0,x1,y0,y1;
x0 = tdotx(p_transform.elements[0]);
x1 = tdoty(p_transform.elements[0]);
y0 = tdotx(p_transform.elements[1]);
y1 = tdoty(p_transform.elements[1]);
elements[0][0]=x0;
elements[0][1]=x1;
elements[1][0]=y0;
elements[1][1]=y1;
}
Transform2D Transform2D::operator*(const Transform2D& p_transform) const {
Transform2D t = *this;
t*=p_transform;
return t;
}
Transform2D Transform2D::scaled(const Size2& p_scale) const {
Transform2D copy=*this;
copy.scale(p_scale);
return copy;
}
Transform2D Transform2D::basis_scaled(const Size2& p_scale) const {
Transform2D copy=*this;
copy.scale_basis(p_scale);
return copy;
}
Transform2D Transform2D::untranslated() const {
Transform2D copy=*this;
copy.elements[2]=Vector2();
return copy;
}
Transform2D Transform2D::translated(const Vector2& p_offset) const {
Transform2D copy=*this;
copy.translate(p_offset);
return copy;
}
Transform2D Transform2D::rotated(real_t p_phi) const {
Transform2D copy=*this;
copy.rotate(p_phi);
return copy;
}
real_t Transform2D::basis_determinant() const {
return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
}
Transform2D Transform2D::interpolate_with(const Transform2D& p_transform, real_t p_c) const {
//extract parameters
Vector2 p1 = get_origin();
Vector2 p2 = p_transform.get_origin();
real_t r1 = get_rotation();
real_t r2 = p_transform.get_rotation();
Size2 s1 = get_scale();
Size2 s2 = p_transform.get_scale();
//slerp rotation
Vector2 v1(::cos(r1), ::sin(r1));
Vector2 v2(::cos(r2), ::sin(r2));
real_t dot = v1.dot(v2);
dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
Vector2 v;
if (dot > 0.9995) {
v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
} else {
real_t angle = p_c*::acos(dot);
Vector2 v3 = (v2 - v1*dot).normalized();
v = v1*::cos(angle) + v3*::sin(angle);
}
//construct matrix
Transform2D res(::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
return res;
}
Transform2D::operator String() const {
//return String(String()+elements[0]+", "+elements[1]+", "+elements[2]);
return String(); // @Todo
}
}

View File

@@ -1,104 +0,0 @@
#ifndef TRANSFORM2D_H
#define TRANSFORM2D_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Vector2.hpp"
namespace godot {
typedef Vector2 Size2;
class Rect2;
struct GD_CPP_CORE_API Transform2D {
// Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper":
// M = (elements[0][0] elements[1][0])
// (elements[0][1] elements[1][1])
// This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i].
// Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here.
// This requires additional care when working with explicit indices.
// See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading.
// Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down,
// and angle is measure from +X to +Y in a clockwise-fashion.
Vector2 elements[3];
inline real_t tdotx(const Vector2& v) const { return elements[0][0] * v.x + elements[1][0] * v.y; }
inline real_t tdoty(const Vector2& v) const { return elements[0][1] * v.x + elements[1][1] * v.y; }
inline const Vector2& operator[](int p_idx) const { return elements[p_idx]; }
inline Vector2& operator[](int p_idx) { return elements[p_idx]; }
inline Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis,3,Vector2()); return elements[p_axis]; }
inline void set_axis(int p_axis,const Vector2& p_vec) { ERR_FAIL_INDEX(p_axis,3); elements[p_axis]=p_vec; }
void invert();
Transform2D inverse() const;
void affine_invert();
Transform2D affine_inverse() const;
void set_rotation(real_t p_phi);
real_t get_rotation() const;
void set_rotation_and_scale(real_t p_phi,const Size2& p_scale);
void rotate(real_t p_phi);
void scale(const Size2& p_scale);
void scale_basis(const Size2& p_scale);
void translate( real_t p_tx, real_t p_ty);
void translate( const Vector2& p_translation );
real_t basis_determinant() const;
Size2 get_scale() const;
inline const Vector2& get_origin() const { return elements[2]; }
inline void set_origin(const Vector2& p_origin) { elements[2]=p_origin; }
Transform2D scaled(const Size2& p_scale) const;
Transform2D basis_scaled(const Size2& p_scale) const;
Transform2D translated(const Vector2& p_offset) const;
Transform2D rotated(real_t p_phi) const;
Transform2D untranslated() const;
void orthonormalize();
Transform2D orthonormalized() const;
bool operator==(const Transform2D& p_transform) const;
bool operator!=(const Transform2D& p_transform) const;
void operator*=(const Transform2D& p_transform);
Transform2D operator*(const Transform2D& p_transform) const;
Transform2D interpolate_with(const Transform2D& p_transform, real_t p_c) const;
Vector2 basis_xform(const Vector2& p_vec) const;
Vector2 basis_xform_inv(const Vector2& p_vec) const;
Vector2 xform(const Vector2& p_vec) const;
Vector2 xform_inv(const Vector2& p_vec) const;
Rect2 xform(const Rect2& p_vec) const;
Rect2 xform_inv(const Rect2& p_vec) const;
operator String() const;
Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy);
Transform2D(real_t p_rot, const Vector2& p_pos);
inline Transform2D() { elements[0][0]=1.0; elements[1][1]=1.0; }
};
}
#endif // TRANSFORM2D_H

View File

@@ -1,459 +0,0 @@
#include "Variant.hpp"
#include <godot/godot_variant.h>
#include "Defs.hpp"
#include "CoreTypes.hpp"
#include <iostream>
namespace godot {
Variant::Variant()
{
godot_variant_new_nil(&_godot_variant);
}
Variant::Variant(const Variant& v)
{
godot_variant_copy(&_godot_variant, &v._godot_variant);
}
Variant::Variant(bool p_bool)
{
godot_variant_new_bool(&_godot_variant, p_bool);
}
Variant::Variant(signed int p_int) // real one
{
godot_variant_new_int(&_godot_variant, p_int);
}
Variant::Variant(unsigned int p_int)
{
godot_variant_new_uint(&_godot_variant, p_int);
}
Variant::Variant(signed short p_short) // real one
{
godot_variant_new_int(&_godot_variant, (int) p_short);
}
Variant::Variant(int64_t p_char) // real one
{
godot_variant_new_int(&_godot_variant, p_char);
}
Variant::Variant(uint64_t p_char)
{
godot_variant_new_uint(&_godot_variant, p_char);
}
Variant::Variant(float p_float)
{
godot_variant_new_real(&_godot_variant, p_float);
}
Variant::Variant(double p_double)
{
godot_variant_new_real(&_godot_variant, p_double);
}
Variant::Variant(const String& p_string)
{
godot_variant_new_string(&_godot_variant, (godot_string *) &p_string);
}
Variant::Variant(const char * const p_cstring)
{
String s = String(p_cstring);
godot_variant_new_string(&_godot_variant, (godot_string *) &s);
}
Variant::Variant(const wchar_t * p_wstring)
{
String s = p_wstring;
godot_variant_new_string(&_godot_variant, (godot_string *) &s);
}
Variant::Variant(const Vector2& p_vector2)
{
godot_variant_new_vector2(&_godot_variant, (godot_vector2 *) &p_vector2);
}
Variant::Variant(const Rect2& p_rect2)
{
godot_variant_new_rect2(&_godot_variant, (godot_rect2 *) &p_rect2);
}
Variant::Variant(const Vector3& p_vector3)
{
godot_variant_new_vector3(&_godot_variant, (godot_vector3 *) &p_vector3);
}
Variant::Variant(const Plane& p_plane)
{
godot_variant_new_plane(&_godot_variant, (godot_plane *) &p_plane);
}
Variant::Variant(const Rect3& p_aabb)
{
godot_variant_new_rect3(&_godot_variant, (godot_rect3 *) &p_aabb);
}
Variant::Variant(const Quat& p_quat)
{
godot_variant_new_quat(&_godot_variant, (godot_quat *) &p_quat);
}
Variant::Variant(const Basis& p_transform)
{
godot_variant_new_basis(&_godot_variant, (godot_basis *) &p_transform);
}
Variant::Variant(const Transform2D& p_transform)
{
godot_variant_new_transform2d(&_godot_variant, (godot_transform2d *) &p_transform);
}
Variant::Variant(const Transform& p_transform)
{
godot_variant_new_transform(&_godot_variant, (godot_transform *) &p_transform);
}
Variant::Variant(const Color& p_color)
{
godot_variant_new_color(&_godot_variant, (godot_color *) &p_color);
}
Variant::Variant(const Image& p_image)
{
godot_variant_new_image(&_godot_variant, (godot_image *) &p_image);
}
Variant::Variant(const NodePath& p_path)
{
godot_variant_new_node_path(&_godot_variant, (godot_node_path *) &p_path);
}
Variant::Variant(const RID& p_rid)
{
godot_variant_new_rid(&_godot_variant, (godot_rid *) &p_rid);
}
Variant::Variant(const Object* p_object)
{
godot_variant_new_object(&_godot_variant, (godot_object *) p_object);
}
Variant::Variant(const InputEvent& p_input_event)
{
godot_variant_new_input_event(&_godot_variant, (godot_input_event *) &p_input_event);
}
Variant::Variant(const Dictionary& p_dictionary)
{
godot_variant_new_dictionary(&_godot_variant, (godot_dictionary *) &p_dictionary);
}
Variant::Variant(const Array& p_array)
{
godot_variant_new_array(&_godot_variant, (godot_array *) &p_array);
}
Variant::Variant(const PoolByteArray& p_raw_array)
{
godot_variant_new_pool_byte_array(&_godot_variant, (godot_pool_byte_array *) &p_raw_array);
}
Variant::Variant(const PoolIntArray& p_int_array)
{
godot_variant_new_pool_int_array(&_godot_variant, (godot_pool_int_array *) &p_int_array);
}
Variant::Variant(const PoolRealArray& p_real_array)
{
godot_variant_new_pool_real_array(&_godot_variant, (godot_pool_real_array *) &p_real_array);
}
Variant::Variant(const PoolStringArray& p_string_array)
{
godot_variant_new_pool_string_array(&_godot_variant, (godot_pool_string_array *) &p_string_array);
}
Variant::Variant(const PoolVector2Array& p_vector2_array)
{
godot_variant_new_pool_vector2_array(&_godot_variant, (godot_pool_vector2_array *) &p_vector2_array);
}
Variant::Variant(const PoolVector3Array& p_vector3_array)
{
godot_variant_new_pool_vector3_array(&_godot_variant, (godot_pool_vector3_array *) &p_vector3_array);
}
Variant::Variant(const PoolColorArray& p_color_array)
{
godot_variant_new_pool_color_array(&_godot_variant, (godot_pool_color_array *) &p_color_array);
}
Variant &Variant::operator =(const Variant& v)
{
godot_variant_copy(&_godot_variant, &v._godot_variant);
return *this;
}
Variant::operator bool() const
{
bool valid = false;
bool result = booleanize(valid);
return valid && result;
}
Variant::operator signed int() const
{
return godot_variant_as_int(&_godot_variant);
}
Variant::operator unsigned int() const // this is the real one
{
return godot_variant_as_uint(&_godot_variant);
}
Variant::operator signed short() const
{
return godot_variant_as_int(&_godot_variant);
}
Variant::operator unsigned short() const
{
return godot_variant_as_uint(&_godot_variant);
}
Variant::operator signed char() const
{
return godot_variant_as_int(&_godot_variant);
}
Variant::operator unsigned char() const
{
return godot_variant_as_uint(&_godot_variant);
}
Variant::operator int64_t() const
{
return godot_variant_as_int(&_godot_variant);
}
Variant::operator uint64_t() const
{
return godot_variant_as_uint(&_godot_variant);
}
Variant::operator wchar_t() const
{
return godot_variant_as_int(&_godot_variant);
}
Variant::operator float() const
{
return godot_variant_as_real(&_godot_variant);
}
Variant::operator double() const
{
return godot_variant_as_real(&_godot_variant);
}
Variant::operator String() const
{
godot_string s = godot_variant_as_string(&_godot_variant);
return *(String *) &s;
}
Variant::operator Vector2() const
{
godot_vector2 s = godot_variant_as_vector2(&_godot_variant);
return *(Vector2 *) &s;
}
Variant::operator Rect2() const
{
godot_rect2 s = godot_variant_as_rect2(&_godot_variant);
return *(Rect2 *) &s;
}
Variant::operator Vector3() const
{
godot_vector3 s = godot_variant_as_vector3(&_godot_variant);
return *(Vector3 *) &s;
}
Variant::operator Plane() const
{
godot_plane s = godot_variant_as_plane(&_godot_variant);
return *(Plane *) &s;
}
Variant::operator Rect3() const
{
godot_rect3 s = godot_variant_as_rect3(&_godot_variant);
return *(Rect3 *) &s;
}
Variant::operator Quat() const
{
godot_quat s = godot_variant_as_quat(&_godot_variant);
return *(Quat *) &s;
}
Variant::operator Basis() const
{
godot_basis s = godot_variant_as_basis(&_godot_variant);
return *(Basis *) &s;
}
Variant::operator Transform() const
{
godot_transform s = godot_variant_as_transform(&_godot_variant);
return *(Transform *) &s;
}
Variant::operator Transform2D() const
{
godot_transform2d s = godot_variant_as_transform2d(&_godot_variant);
return *(Transform2D *) &s;
}
Variant::operator Color() const
{
godot_color s = godot_variant_as_color(&_godot_variant);
return *(Color *) &s;
}
Variant::operator Image() const
{
godot_image s = godot_variant_as_image(&_godot_variant);
return *(Image *) &s;
}
Variant::operator NodePath() const
{
godot_node_path s = godot_variant_as_node_path(&_godot_variant);
return *(NodePath *) &s;
}
Variant::operator RID() const
{
godot_rid s = godot_variant_as_rid(&_godot_variant);
return *(RID *) &s;
}
Variant::operator InputEvent() const
{
godot_input_event s = godot_variant_as_input_event(&_godot_variant);
return *(InputEvent *) &s;
}
Variant::operator Dictionary() const
{
godot_dictionary d = godot_variant_as_dictionary(&_godot_variant);
return *(Dictionary *) &d;
}
Variant::operator Array() const
{
godot_array s = godot_variant_as_array(&_godot_variant);
return *(Array *) &s;
}
Variant::operator PoolByteArray() const
{
godot_pool_byte_array s = godot_variant_as_pool_byte_array(&_godot_variant);
return *(PoolByteArray *) &s;
}
Variant::operator PoolIntArray() const
{
godot_pool_int_array s = godot_variant_as_pool_int_array(&_godot_variant);
return *(PoolIntArray *) &s;
}
Variant::operator PoolRealArray() const
{
godot_pool_real_array s = godot_variant_as_pool_real_array(&_godot_variant);
return *(PoolRealArray *) &s;
}
Variant::operator PoolStringArray() const
{
godot_pool_string_array s = godot_variant_as_pool_string_array(&_godot_variant);
return *(PoolStringArray *) &s;
}
Variant::operator PoolVector2Array() const
{
godot_pool_vector2_array s = godot_variant_as_pool_vector2_array(&_godot_variant);
return *(PoolVector2Array *) &s;
}
Variant::operator PoolVector3Array() const
{
godot_pool_vector3_array s = godot_variant_as_pool_vector3_array(&_godot_variant);
return *(PoolVector3Array *) &s;
}
Variant::operator PoolColorArray() const
{
godot_pool_color_array s = godot_variant_as_pool_color_array(&_godot_variant);
return *(PoolColorArray *) &s;
}
Variant::operator Object*() const {
godot_object *o = godot_variant_as_object(&_godot_variant);
return (Object *) o;
}
Variant::Type Variant::get_type() const
{
return (Type) godot_variant_get_type(&_godot_variant);
}
Variant Variant::call(const String& method, const Variant **args, const int arg_count)
{
Variant v;
*(godot_variant *) &v = godot_variant_call(&_godot_variant, (godot_string *) &method, (const godot_variant **)args, arg_count);
return v;
}
bool Variant::has_method(const String& method)
{
return godot_variant_has_method(&_godot_variant, (godot_string *) &method);
}
bool Variant::operator ==(const Variant& b) const
{
return godot_variant_operator_equal(&_godot_variant, &b._godot_variant);
}
bool Variant::operator !=(const Variant& b) const
{
return !(*this == b);
}
bool Variant::operator <(const Variant& b) const
{
return godot_variant_operator_less(&_godot_variant, &b._godot_variant);
}
bool Variant::operator <=(const Variant& b) const
{
return (*this < b) || (*this == b);
}
bool Variant::operator >(const Variant& b) const
{
return !(*this <= b);
}
bool Variant::operator >=(const Variant& b) const
{
return !(*this < b);
}
bool Variant::hash_compare(const Variant& b) const
{
return godot_variant_hash_compare(&_godot_variant, &b._godot_variant);
}
bool Variant::booleanize(bool &valid) const
{
return godot_variant_booleanize(&_godot_variant, &valid);
}
Variant::~Variant()
{
godot_variant_destroy(&_godot_variant);
}
}

View File

@@ -1,251 +0,0 @@
#ifndef VARIANT_H
#define VARIANT_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <godot/godot_variant.h>
#include "Defs.hpp"
#include "Basis.hpp"
#include "Color.hpp"
#include "Image.hpp"
#include "InputEvent.hpp"
#include "NodePath.hpp"
#include "Plane.hpp"
#include "PoolArrays.hpp"
#include "Quat.hpp"
#include "Rect2.hpp"
#include "Rect3.hpp"
#include "RID.hpp"
#include "String.hpp"
#include "Transform.hpp"
#include "Transform2D.hpp"
#include "Vector2.hpp"
#include "Vector3.hpp"
#include <iostream>
namespace godot {
class Dictionary;
class Array;
class GD_CPP_CORE_API Variant {
godot_variant _godot_variant;
public:
enum Type {
NIL,
// atomic types
BOOL,
INT,
REAL,
STRING,
// math types
VECTOR2, // 5
RECT2,
VECTOR3,
TRANSFORM2D,
PLANE,
QUAT, // 10
RECT3, //sorry naming convention fail :( not like it's used often
BASIS,
TRANSFORM,
// misc types
COLOR,
IMAGE, // 15
NODE_PATH,
_RID,
OBJECT,
INPUT_EVENT,
DICTIONARY, // 20
ARRAY,
// arrays
POOL_BYTE_ARRAY,
POOL_INT_ARRAY,
POOL_REAL_ARRAY,
POOL_STRING_ARRAY, // 25
POOL_VECTOR2_ARRAY,
POOL_VECTOR3_ARRAY,
POOL_COLOR_ARRAY,
VARIANT_MAX
};
Variant();
Variant(const Variant& v);
Variant(bool p_bool);
Variant(signed int p_int);
Variant(unsigned int p_int);
Variant(signed short p_short);
inline Variant(unsigned short p_short) : Variant((unsigned int) p_short) {}
inline Variant(signed char p_char) : Variant((signed int) p_char) {}
inline Variant(unsigned char p_char) : Variant((unsigned int) p_char) {}
Variant(int64_t p_char);
Variant(uint64_t p_char);
Variant(float p_float);
Variant(double p_double);
Variant(const String& p_string);
Variant(const char * const p_cstring);
Variant(const wchar_t * p_wstring);
Variant(const Vector2& p_vector2);
Variant(const Rect2& p_rect2);
Variant(const Vector3& p_vector3);
Variant(const Plane& p_plane);
Variant(const Rect3& p_aabb);
Variant(const Quat& p_quat);
Variant(const Basis& p_transform);
Variant(const Transform2D& p_transform);
Variant(const Transform& p_transform);
Variant(const Color& p_color);
Variant(const Image& p_image);
Variant(const NodePath& p_path);
Variant(const RID& p_rid);
Variant(const Object* p_object);
Variant(const InputEvent& p_input_event);
Variant(const Dictionary& p_dictionary);
Variant(const Array& p_array);
Variant(const PoolByteArray& p_raw_array);
Variant(const PoolIntArray& p_int_array);
Variant(const PoolRealArray& p_real_array);
Variant(const PoolStringArray& p_string_array);
Variant(const PoolVector2Array& p_vector2_array);
Variant(const PoolVector3Array& p_vector3_array);
Variant(const PoolColorArray& p_color_array);
Variant &operator =(const Variant& v);
operator bool() const;
operator signed int() const;
operator unsigned int() const ;
operator signed short() const;
operator unsigned short() const;
operator signed char() const;
operator unsigned char() const;
operator int64_t() const;
operator uint64_t() const;
operator wchar_t() const;
operator float() const;
operator double() const;
operator String() const;
operator Vector2() const;
operator Rect2() const;
operator Vector3() const;
operator Plane() const;
operator Rect3() const;
operator Quat() const;
operator Basis() const;
operator Transform() const;
operator Transform2D() const;
operator Color() const;
operator Image() const;
operator NodePath() const;
operator RID() const;
operator InputEvent() const;
operator Object*() const;
operator Dictionary() const;
operator Array() const;
operator PoolByteArray() const;
operator PoolIntArray() const;
operator PoolRealArray() const;
operator PoolStringArray() const;
operator PoolVector2Array() const;
operator PoolVector3Array() const;
operator PoolColorArray() const;
Type get_type() const;
Variant call(const String& method, const Variant **args, const int arg_count);
bool has_method(const String& method);
bool operator ==(const Variant& b) const;
bool operator !=(const Variant& b) const;
bool operator <(const Variant& b) const;
bool operator <=(const Variant& b) const;
bool operator >(const Variant& b) const;
bool operator >=(const Variant& b) const;
bool hash_compare(const Variant& b) const;
bool booleanize(bool &valid) const;
~Variant();
};
}
#endif // VARIANT_H

View File

@@ -1,259 +0,0 @@
#include "Vector2.hpp"
#include <cmath>
#include <godot/godot_vector2.h>
#include "String.hpp"
namespace godot {
Vector2 Vector2::operator+(const Vector2& p_v) const
{
return Vector2(x + p_v.x, y + p_v.y);
}
void Vector2::operator+=(const Vector2& p_v)
{
x += p_v.x;
y += p_v.y;
}
Vector2 Vector2::operator-(const Vector2& p_v) const
{
return Vector2(x - p_v.x, y - p_v.y);
}
void Vector2::operator-=(const Vector2& p_v)
{
x -= p_v.x;
y -= p_v.y;
}
Vector2 Vector2::operator*(const Vector2 &p_v1) const
{
return Vector2(x * p_v1.x, y * p_v1.y);
}
Vector2 Vector2::operator*(const real_t &rvalue) const
{
return Vector2(x * rvalue, y * rvalue);
}
void Vector2::operator*=(const real_t &rvalue)
{
x *= rvalue;
y *= rvalue;
}
Vector2 Vector2::operator/(const Vector2 &p_v1) const
{
return Vector2(x / p_v1.x, y / p_v1.y);
}
Vector2 Vector2::operator/(const real_t &rvalue) const
{
return Vector2(x / rvalue, y / rvalue);
}
void Vector2::operator/=(const real_t &rvalue)
{
x /= rvalue;
y /= rvalue;
}
Vector2 Vector2::operator-() const
{
return Vector2(-x, -y);
}
bool Vector2::operator==(const Vector2& p_vec2) const
{
return x == p_vec2.x && y == p_vec2.y;
}
bool Vector2::operator!=(const Vector2& p_vec2) const
{
return x != p_vec2.x || y != p_vec2.y;
}
void Vector2::normalize()
{
real_t l = x*x + y*y;
if (l != 0) {
l = (l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const
{
Vector2 v = *this;
v.normalize();
return v;
}
real_t Vector2::length() const
{
return sqrt(x*x + y*y);
}
real_t Vector2::length_squared() const
{
return x*x + y*y;
}
real_t Vector2::distance_to(const Vector2& p_vector2) const
{
return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
real_t Vector2::distance_squared_to(const Vector2& p_vector2) const
{
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
real_t Vector2::angle_to(const Vector2& p_vector2) const
{
return atan2(cross(p_vector2), dot(p_vector2));
}
real_t Vector2::angle_to_point(const Vector2& p_vector2) const
{
return atan2(y - p_vector2.y, x-p_vector2.x);
}
real_t Vector2::dot(const Vector2& p_other) const
{
return x * p_other.x + y * p_other.y;
}
real_t Vector2::cross(const Vector2& p_other) const
{
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::cross(real_t p_other) const
{
return Vector2(p_other * y, -p_other * x);
}
Vector2 Vector2::project(const Vector2& p_vec) const
{
Vector2 v1 = p_vec;
Vector2 v2 = *this;
return v2 * (v1.dot(v2) / v2.dot(v2));
}
Vector2 Vector2::plane_project(real_t p_d, const Vector2& p_vec) const
{
return p_vec - *this * ( dot(p_vec) -p_d);
}
Vector2 Vector2::clamped(real_t p_len) const
{
real_t l = length();
Vector2 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector2 Vector2::linear_interpolate(const Vector2& p_a, const Vector2& p_b,real_t p_t)
{
Vector2 res=p_a;
res.x+= (p_t * (p_b.x-p_a.x));
res.y+= (p_t * (p_b.y-p_a.y));
return res;
}
Vector2 Vector2::linear_interpolate(const Vector2& p_b,real_t p_t) const
{
Vector2 res=*this;
res.x+= (p_t * (p_b.x-x));
res.y+= (p_t * (p_b.y-y));
return res;
}
Vector2 Vector2::cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,real_t p_t) const
{
Vector2 p0=p_pre_a;
Vector2 p1=*this;
Vector2 p2=p_b;
Vector2 p3=p_post_b;
real_t t = p_t;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector2 out;
out = ( ( p1 * 2.0) +
( -p0 + p2 ) * t +
( p0 * 2.0 - p1 * 5.0 + p2 * 4 - p3 ) * t2 +
( -p0 + p1 * 3.0 - p2 * 3.0 + p3 ) * t3 ) * 0.5;
return out;
}
Vector2 Vector2::slide(const Vector2& p_vec) const
{
return p_vec - *this * this->dot(p_vec);
}
Vector2 Vector2::reflect(const Vector2& p_vec) const
{
return p_vec - *this * this->dot(p_vec) * 2.0;
}
real_t Vector2::angle() const
{
return atan2(y, x);
}
void Vector2::set_rotation(real_t p_radians) {
x = cosf(p_radians);
y = sinf(p_radians);
}
Vector2 Vector2::abs() const {
return Vector2( fabs(x), fabs(y) );
}
Vector2 Vector2::rotated(real_t p_by) const
{
Vector2 v;
v.set_rotation(angle() + p_by);
v *= length();
return v;
}
Vector2 Vector2::tangent() const {
return Vector2(y,-x);
}
Vector2 Vector2::floor() const
{
return Vector2(::floor(x), ::floor(y));
}
Vector2 Vector2::snapped(const Vector2& p_by) const
{
return Vector2(
p_by.x != 0 ? ::floor(x / p_by.x + 0.5) * p_by.x : x,
p_by.y != 0 ? ::floor(y / p_by.y + 0.5) * p_by.y : y
);
}
Vector2::operator String() const
{
return String(); /* @Todo String::num() */
}
}

View File

@@ -1,139 +0,0 @@
#ifndef VECTOR2_H
#define VECTOR2_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include <godot/godot_vector2.h>
#include "Defs.hpp"
namespace godot {
class String;
struct GD_CPP_CORE_API Vector2 {
union {
real_t x;
real_t width;
};
union {
real_t y;
real_t height;
};
inline real_t& operator[](int p_idx) {
return p_idx?y:x;
}
inline const real_t& operator[](int p_idx) const {
return p_idx?y:x;
}
Vector2 operator+(const Vector2& p_v) const;
void operator+=(const Vector2& p_v);
Vector2 operator-(const Vector2& p_v) const;
void operator-=(const Vector2& p_v);
Vector2 operator*(const Vector2 &p_v1) const;
Vector2 operator*(const real_t &rvalue) const;
void operator*=(const real_t &rvalue);
inline void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
Vector2 operator/(const Vector2 &p_v1) const;
Vector2 operator/(const real_t &rvalue) const;
void operator/=(const real_t &rvalue);
Vector2 operator-() const;
bool operator==(const Vector2& p_vec2) const;
bool operator!=(const Vector2& p_vec2) const;
inline bool operator<(const Vector2& p_vec2) const { return (x==p_vec2.x)?(y<p_vec2.y):(x<p_vec2.x); }
inline bool operator<=(const Vector2& p_vec2) const { return (x==p_vec2.x)?(y<=p_vec2.y):(x<=p_vec2.x); }
void normalize();
Vector2 normalized() const;
real_t length() const;
real_t length_squared() const;
real_t distance_to(const Vector2& p_vector2) const;
real_t distance_squared_to(const Vector2& p_vector2) const;
real_t angle_to(const Vector2& p_vector2) const;
real_t angle_to_point(const Vector2& p_vector2) const;
real_t dot(const Vector2& p_other) const;
real_t cross(const Vector2& p_other) const;
Vector2 cross(real_t p_other) const;
Vector2 project(const Vector2& p_vec) const;
Vector2 plane_project(real_t p_d, const Vector2& p_vec) const;
Vector2 clamped(real_t p_len) const;
static Vector2 linear_interpolate(const Vector2& p_a, const Vector2& p_b,real_t p_t);
Vector2 linear_interpolate(const Vector2& p_b,real_t p_t) const;
Vector2 cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,real_t p_t) const;
Vector2 slide(const Vector2& p_vec) const;
Vector2 reflect(const Vector2& p_vec) const;
real_t angle() const;
void set_rotation(real_t p_radians);
Vector2 abs() const;
Vector2 rotated(real_t p_by) const;
Vector2 tangent() const;
Vector2 floor() const;
Vector2 snapped(const Vector2& p_by) const;
inline real_t aspect() const { return width/height; }
operator String() const;
inline Vector2(real_t p_x,real_t p_y) { x=p_x; y=p_y; }
inline Vector2() { x=0; y=0; }
};
inline Vector2 operator*(real_t p_scalar, const Vector2& p_vec)
{
return p_vec*p_scalar;
}
}
#endif // VECTOR2_H

View File

@@ -1,343 +0,0 @@
#include "Vector3.hpp"
#include "String.hpp"
#include <stdlib.h>
#include <cmath>
#include "Basis.hpp"
namespace godot {
Vector3::Vector3(real_t x, real_t y, real_t z)
{
this->x = x;
this->y = y;
this->z = z;
}
Vector3::Vector3()
{
this->x = 0;
this->y = 0;
this->z = 0;
}
Vector3::Vector3(const Vector3& b)
{
this->x = b.x;
this->y = b.y;
this->z = b.z;
}
const real_t& Vector3::operator[](int p_axis) const
{
return coord[p_axis];
}
real_t& Vector3::operator[](int p_axis)
{
return coord[p_axis];
}
Vector3& Vector3::operator+=(const Vector3& p_v)
{
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3& p_v) const
{
Vector3 v = *this;
v += p_v;
return v;
}
Vector3& Vector3::operator-=(const Vector3& p_v)
{
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
Vector3 Vector3::operator-(const Vector3& p_v) const
{
Vector3 v = *this;
v -= p_v;
return v;
}
Vector3& Vector3::operator*=(const Vector3& p_v)
{
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
Vector3 Vector3::operator*(const Vector3& p_v) const
{
Vector3 v = *this;
v *= p_v;
return v;
}
Vector3& Vector3::operator/=(const Vector3& p_v)
{
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
Vector3 Vector3::operator/(const Vector3& p_v) const
{
Vector3 v = *this;
v /= p_v;
return v;
}
Vector3& Vector3::operator*=(real_t p_scalar)
{
*this *= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
Vector3 Vector3::operator*(real_t p_scalar) const
{
Vector3 v = *this;
v *= p_scalar;
return v;
}
Vector3& Vector3::operator/=(real_t p_scalar)
{
*this /= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
Vector3 Vector3::operator/(real_t p_scalar) const
{
Vector3 v = *this;
v /= p_scalar;
return v;
}
Vector3 Vector3::operator-() const
{
return Vector3(-x, -y, -z);
}
bool Vector3::operator==(const Vector3& p_v) const
{
return (x==p_v.x && y==p_v.y && z==p_v.z);
}
bool Vector3::operator!=(const Vector3& p_v) const
{
return (x!=p_v.x || y!=p_v.y || z!=p_v.z);
}
bool Vector3::operator<(const Vector3& p_v) const
{
if (x==p_v.x) {
if (y==p_v.y)
return z<p_v.z;
else
return y<p_v.y;
} else {
return x<p_v.x;
}
}
bool Vector3::operator<=(const Vector3& p_v) const
{
if (x==p_v.x) {
if (y==p_v.y)
return z<=p_v.z;
else
return y<p_v.y;
} else {
return x<p_v.x;
}
}
Vector3 Vector3::abs() const
{
return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
}
Vector3 Vector3::ceil() const
{
return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
}
Vector3 Vector3::cross(const Vector3& b) const
{
Vector3 ret (
(y * b.z) - (z * b.y),
(z * b.x) - (x * b.z),
(x * b.y) - (y * b.x)
);
return ret;
}
Vector3 Vector3::linear_interpolate(const Vector3& p_b,real_t p_t) const
{
return Vector3(
x+(p_t * (p_b.x-x)),
y+(p_t * (p_b.y-y)),
z+(p_t * (p_b.z-z))
);
}
Vector3 Vector3::cubic_interpolate(const Vector3& b, const Vector3& pre_a, const Vector3& post_b, const real_t t) const
{
Vector3 p0=pre_a;
Vector3 p1=*this;
Vector3 p2=b;
Vector3 p3=post_b;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector3 out;
out = ( ( p1 * 2.0) +
( -p0 + p2 ) * t +
( p0 * 2.0 - p1 * 5.0 + p2 * 4 - p3 ) * t2 +
( -p0 + p1 * 3.0 - p2 * 3.0 + p3 ) * t3 ) * 0.5;
return out;
}
real_t Vector3::length() const
{
real_t x2=x*x;
real_t y2=y*y;
real_t z2=z*z;
return ::sqrt(x2+y2+z2);
}
real_t Vector3::length_squared() const
{
real_t x2=x*x;
real_t y2=y*y;
real_t z2=z*z;
return x2+y2+z2;
}
real_t Vector3::distance_squared_to(const Vector3& b) const
{
return (b-*this).length();
}
real_t Vector3::distance_to(const Vector3& b) const
{
return (b-*this).length_squared();
}
real_t Vector3::dot(const Vector3& b) const
{
return x*b.x + y*b.y + z*b.z;
}
Vector3 Vector3::floor() const
{
return Vector3(::floor(x), ::floor(y), ::floor(z));
}
Vector3 Vector3::inverse() const
{
return Vector3( 1.0/x, 1.0/y, 1.0/z );
}
int Vector3::max_axis() const
{
return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0);
}
int Vector3::min_axis() const
{
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
}
void Vector3::normalize()
{
real_t l=length();
if (l==0) {
x=y=z=0;
} else {
x/=l;
y/=l;
z/=l;
}
}
Vector3 Vector3::normalized() const
{
Vector3 v = *this;
v.normalize();
return v;
}
Vector3 Vector3::reflect(const Vector3& by) const
{
return by - *this * this->dot(by) * 2.0;
}
Vector3 Vector3::rotated(const Vector3& axis, const real_t phi) const
{
Vector3 v = *this;
v.rotate(axis, phi);
return v;
}
void Vector3::rotate(const Vector3& p_axis,real_t p_phi)
{
*this=Basis(p_axis,p_phi).xform(*this);
}
Vector3 Vector3::slide(const Vector3& by) const
{
return by - *this * this->dot(by);
}
// this is ugly as well, but hey, I'm a simple man
#define _ugly_stepify(val, step) (step != 0 ? ::floor(val / step + 0.5) * step : val)
void Vector3::snap(real_t p_val)
{
x = _ugly_stepify(x,p_val);
y = _ugly_stepify(y,p_val);
z = _ugly_stepify(z,p_val);
}
#undef _ugly_stepify
Vector3 Vector3::snapped(const float by)
{
Vector3 v = *this;
v.snap(by);
return v;
}
Vector3::operator String() const
{
return String(); // @Todo
}
}

View File

@@ -1,146 +0,0 @@
#ifndef VECTOR3_H
#define VECTOR3_H
#if defined(_WIN32)
# ifdef _GD_CPP_CORE_API_IMPL
# define GD_CPP_CORE_API __declspec(dllexport)
# else
# define GD_CPP_CORE_API __declspec(dllimport)
# endif
#else
# define GD_CPP_CORE_API
#endif
#include "Defs.hpp"
#include "String.hpp"
namespace godot {
struct GD_CPP_CORE_API Vector3 {
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
struct {
real_t x;
real_t y;
real_t z;
};
real_t coord[3];
};
Vector3(real_t x, real_t y, real_t z);
Vector3();
Vector3(const Vector3& b);
const real_t& operator[](int p_axis) const;
real_t& operator[](int p_axis);
Vector3& operator+=(const Vector3& p_v);
Vector3 operator+(const Vector3& p_v) const;
Vector3& operator-=(const Vector3& p_v);
Vector3 operator-(const Vector3& p_v) const;
Vector3& operator*=(const Vector3& p_v);
Vector3 operator*(const Vector3& p_v) const;
Vector3& operator/=(const Vector3& p_v);
Vector3 operator/(const Vector3& p_v) const;
Vector3& operator*=(real_t p_scalar);
Vector3 operator*(real_t p_scalar) const;
Vector3& operator/=(real_t p_scalar);
Vector3 operator/(real_t p_scalar) const;
Vector3 operator-() const;
bool operator==(const Vector3& p_v) const;
bool operator!=(const Vector3& p_v) const;
bool operator<(const Vector3& p_v) const;
bool operator<=(const Vector3& p_v) const;
Vector3 abs() const;
Vector3 ceil() const;
Vector3 cross(const Vector3& b) const;
Vector3 linear_interpolate(const Vector3& p_b,real_t p_t) const;
Vector3 cubic_interpolate(const Vector3& b, const Vector3& pre_a, const Vector3& post_b, const real_t t) const;
real_t length() const;
real_t length_squared() const;
real_t distance_squared_to(const Vector3& b) const;
real_t distance_to(const Vector3& b) const;
real_t dot(const Vector3& b) const;
Vector3 floor() const;
Vector3 inverse() const;
int max_axis() const;
int min_axis() const;
void normalize();
Vector3 normalized() const;
Vector3 reflect(const Vector3& by) const;
Vector3 rotated(const Vector3& axis, const real_t phi) const;
void rotate(const Vector3& p_axis,real_t p_phi);
Vector3 slide(const Vector3& by) const;
void snap(real_t p_val);
Vector3 snapped(const float by);
operator String() const;
};
inline Vector3 operator*(real_t p_scalar, const Vector3& p_vec)
{
return p_vec * p_scalar;
}
inline Vector3 vec3_cross(const Vector3& p_a, const Vector3& p_b) {
return p_a.cross(p_b);
}
}
#endif // VECTOR3_H