godot-cpp/include/core/Basis.hpp
Hugo Locurcio cf5428e103
Add license headers to all source and header files
This is consistent with the core Godot source code, and ensures the
license isn't detached from its original code when individual files
are distributed.
2021-08-02 18:34:58 +02:00

459 lines
12 KiB
C++

/*************************************************************************/
/* Basis.hpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef BASIS_H
#define BASIS_H
#include <gdnative/basis.h>
#include "Defs.hpp"
#include "Vector3.hpp"
namespace godot {
class Quat;
class Basis {
private:
static const Basis IDENTITY;
static const Basis FLIP_X;
static const Basis FLIP_Y;
static const Basis FLIP_Z;
// This helper template is for mimicking the behavior difference between the engine
// and script interfaces that logically script sees matrices as column major, while
// the engine stores them in row major to efficiently take advantage of SIMD
// instructions in case of matrix-vector multiplications.
// With this helper template native scripts see the data as if it was column major
// without actually transposing the basis matrix at the script-engine boundary.
template <int column>
class ColumnVector3 {
private:
template <int column1, int component>
class ColumnVectorComponent {
private:
Vector3 elements[3];
protected:
inline ColumnVectorComponent<column1, component> &operator=(const ColumnVectorComponent<column1, component> &p_value) {
return *this = real_t(p_value);
}
inline ColumnVectorComponent(const ColumnVectorComponent<column1, component> &p_value) {
*this = real_t(p_value);
}
inline ColumnVectorComponent<column1, component> &operator=(const real_t &p_value) {
elements[component][column1] = p_value;
return *this;
}
inline operator real_t() const {
return elements[component][column1];
}
};
public:
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
ColumnVectorComponent<column, 0> x;
ColumnVectorComponent<column, 1> y;
ColumnVectorComponent<column, 2> z;
Vector3 elements[3]; // Not for direct access, use [] operator instead
};
inline ColumnVector3<column> &operator=(const ColumnVector3<column> &p_value) {
return *this = Vector3(p_value);
}
inline ColumnVector3(const ColumnVector3<column> &p_value) {
*this = Vector3(p_value);
}
inline ColumnVector3<column> &operator=(const Vector3 &p_value) {
elements[0][column] = p_value.x;
elements[1][column] = p_value.y;
elements[2][column] = p_value.z;
return *this;
}
inline operator Vector3() const {
return Vector3(elements[0][column], elements[1][column], elements[2][column]);
}
// Unfortunately, we also need to replicate the other interfaces of Vector3 in
// order for being able to directly operate on these "meta-Vector3" objects without
// an explicit cast or an intermediate assignment to a real Vector3 object.
inline const real_t &operator[](int p_axis) const {
return elements[p_axis][column];
}
inline real_t &operator[](int p_axis) {
return elements[p_axis][column];
}
inline ColumnVector3<column> &operator+=(const Vector3 &p_v) {
return *this = *this + p_v;
}
inline Vector3 operator+(const Vector3 &p_v) const {
return Vector3(*this) + p_v;
}
inline ColumnVector3<column> &operator-=(const Vector3 &p_v) {
return *this = *this - p_v;
}
inline Vector3 operator-(const Vector3 &p_v) const {
return Vector3(*this) - p_v;
}
inline ColumnVector3<column> &operator*=(const Vector3 &p_v) {
return *this = *this * p_v;
}
inline Vector3 operator*(const Vector3 &p_v) const {
return Vector3(*this) * p_v;
}
inline ColumnVector3<column> &operator/=(const Vector3 &p_v) {
return *this = *this / p_v;
}
inline Vector3 operator/(const Vector3 &p_v) const {
return Vector3(*this) / p_v;
}
inline ColumnVector3<column> &operator*=(real_t p_scalar) {
return *this = *this * p_scalar;
}
inline Vector3 operator*(real_t p_scalar) const {
return Vector3(*this) * p_scalar;
}
inline ColumnVector3<column> &operator/=(real_t p_scalar) {
return *this = *this / p_scalar;
}
inline Vector3 operator/(real_t p_scalar) const {
return Vector3(*this) / p_scalar;
}
inline Vector3 operator-() const {
return -Vector3(*this);
}
inline bool operator==(const Vector3 &p_v) const {
return Vector3(*this) == p_v;
}
inline bool operator!=(const Vector3 &p_v) const {
return Vector3(*this) != p_v;
}
inline bool operator<(const Vector3 &p_v) const {
return Vector3(*this) < p_v;
}
inline bool operator<=(const Vector3 &p_v) const {
return Vector3(*this) <= p_v;
}
inline Vector3 abs() const {
return Vector3(*this).abs();
}
inline Vector3 ceil() const {
return Vector3(*this).ceil();
}
inline Vector3 cross(const Vector3 &b) const {
return Vector3(*this).cross(b);
}
inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
return Vector3(*this).linear_interpolate(p_b, p_t);
}
inline Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
return Vector3(*this).cubic_interpolate(b, pre_a, post_b, t);
}
inline Vector3 bounce(const Vector3 &p_normal) const {
return Vector3(*this).bounce(p_normal);
}
inline real_t length() const {
return Vector3(*this).length();
}
inline real_t length_squared() const {
return Vector3(*this).length_squared();
}
inline real_t distance_squared_to(const Vector3 &b) const {
return Vector3(*this).distance_squared_to(b);
}
inline real_t distance_to(const Vector3 &b) const {
return Vector3(*this).distance_to(b);
}
inline real_t dot(const Vector3 &b) const {
return Vector3(*this).dot(b);
}
inline real_t angle_to(const Vector3 &b) const {
return Vector3(*this).angle_to(b);
}
inline Vector3 floor() const {
return Vector3(*this).floor();
}
inline Vector3 inverse() const {
return Vector3(*this).inverse();
}
inline bool is_normalized() const {
return Vector3(*this).is_normalized();
}
inline Basis outer(const Vector3 &b) const {
return Vector3(*this).outer(b);
}
inline int max_axis() const {
return Vector3(*this).max_axis();
}
inline int min_axis() const {
return Vector3(*this).min_axis();
}
inline void normalize() {
Vector3 v = *this;
v.normalize();
*this = v;
}
inline Vector3 normalized() const {
return Vector3(*this).normalized();
}
inline Vector3 reflect(const Vector3 &by) const {
return Vector3(*this).reflect(by);
}
inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
return Vector3(*this).rotated(axis, phi);
}
inline void rotate(const Vector3 &p_axis, real_t p_phi) {
Vector3 v = *this;
v.rotate(p_axis, p_phi);
*this = v;
}
inline Vector3 slide(const Vector3 &by) const {
return Vector3(*this).slide(by);
}
inline void snap(real_t p_val) {
Vector3 v = *this;
v.snap(p_val);
*this = v;
}
inline Vector3 snapped(const float by) {
return Vector3(*this).snapped(by);
}
inline operator String() const {
return String(Vector3(*this));
}
};
public:
union {
ColumnVector3<0> x;
ColumnVector3<1> y;
ColumnVector3<2> z;
Vector3 elements[3]; // Not for direct access, use [] operator instead
};
inline Basis(const Basis &p_basis) {
elements[0] = p_basis.elements[0];
elements[1] = p_basis.elements[1];
elements[2] = p_basis.elements[2];
}
inline Basis &operator=(const Basis &p_basis) {
elements[0] = p_basis.elements[0];
elements[1] = p_basis.elements[1];
elements[2] = p_basis.elements[2];
return *this;
}
Basis(const Quat &p_quat); // euler
Basis(const Vector3 &p_euler); // euler
Basis(const Vector3 &p_axis, real_t p_phi);
Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2);
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
Basis();
const Vector3 operator[](int axis) const {
return get_axis(axis);
}
ColumnVector3<0> &operator[](int axis) {
// We need to do a little pointer magic to get this to work, because the
// ColumnVector3 template takes the axis as a template parameter.
// Don't touch this unless you're sure what you're doing!
return (reinterpret_cast<Basis *>(reinterpret_cast<real_t *>(this) + axis))->x;
}
void invert();
bool isequal_approx(const Basis &a, const Basis &b) const;
bool is_orthogonal() const;
bool is_rotation() const;
void transpose();
Basis inverse() const;
Basis transposed() const;
real_t determinant() const;
Vector3 get_axis(int p_axis) const;
void set_axis(int p_axis, const Vector3 &p_value);
void rotate(const Vector3 &p_axis, real_t p_phi);
Basis rotated(const Vector3 &p_axis, real_t p_phi) const;
void scale(const Vector3 &p_scale);
Basis scaled(const Vector3 &p_scale) const;
Vector3 get_scale() const;
Basis slerp(Basis b, float t) const;
Vector3 get_euler_xyz() const;
void set_euler_xyz(const Vector3 &p_euler);
Vector3 get_euler_yxz() const;
void set_euler_yxz(const Vector3 &p_euler);
inline Vector3 get_euler() const { return get_euler_yxz(); }
inline void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
// transposed dot products
real_t tdotx(const Vector3 &v) const;
real_t tdoty(const Vector3 &v) const;
real_t tdotz(const Vector3 &v) const;
bool operator==(const Basis &p_matrix) const;
bool operator!=(const Basis &p_matrix) const;
Vector3 xform(const Vector3 &p_vector) const;
Vector3 xform_inv(const Vector3 &p_vector) const;
void operator*=(const Basis &p_matrix);
Basis operator*(const Basis &p_matrix) const;
void operator+=(const Basis &p_matrix);
Basis operator+(const Basis &p_matrix) const;
void operator-=(const Basis &p_matrix);
Basis operator-(const Basis &p_matrix) const;
void operator*=(real_t p_val);
Basis operator*(real_t p_val) const;
int get_orthogonal_index() const; // down below
void set_orthogonal_index(int p_index); // down below
operator String() const;
void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const;
/* create / set */
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
Vector3 get_column(int i) const;
Vector3 get_row(int i) const;
Vector3 get_main_diagonal() const;
void set_row(int i, const Vector3 &p_row);
Basis transpose_xform(const Basis &m) const;
void orthonormalize();
Basis orthonormalized() const;
bool is_symmetric() const;
Basis diagonalize();
operator Quat() const;
};
} // namespace godot
#endif // BASIS_H