godot-cpp/include/core/Vector3.hpp
George Marques cba90d6301
Update clang-format to version 11
This is taken from the Godot repository, so formatting is similar. This
updates the style rules as well.

Also fix style in files to conform with this version.
2021-02-28 16:57:34 -03:00

313 lines
5.9 KiB
C++

#ifndef VECTOR3_H
#define VECTOR3_H
#include <gdnative/vector3.h>
#include "Defs.hpp"
#include "String.hpp"
#include <Math.hpp>
namespace godot {
class Basis;
struct Vector3 {
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_COUNT
};
static const Vector3 ZERO;
static const Vector3 ONE;
static const Vector3 INF;
// Coordinate system of the 3D engine
static const Vector3 LEFT;
static const Vector3 RIGHT;
static const Vector3 UP;
static const Vector3 DOWN;
static const Vector3 FORWARD;
static const Vector3 BACK;
union {
struct {
real_t x;
real_t y;
real_t z;
};
real_t coord[3]; // Not for direct access, use [] operator instead
};
inline Vector3(real_t x, real_t y, real_t z) {
this->x = x;
this->y = y;
this->z = z;
}
inline Vector3() {
this->x = 0;
this->y = 0;
this->z = 0;
}
inline const real_t &operator[](int p_axis) const {
return coord[p_axis];
}
inline real_t &operator[](int p_axis) {
return coord[p_axis];
}
inline Vector3 &operator+=(const Vector3 &p_v) {
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
inline Vector3 operator+(const Vector3 &p_v) const {
Vector3 v = *this;
v += p_v;
return v;
}
inline Vector3 &operator-=(const Vector3 &p_v) {
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
inline Vector3 operator-(const Vector3 &p_v) const {
Vector3 v = *this;
v -= p_v;
return v;
}
inline Vector3 &operator*=(const Vector3 &p_v) {
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
inline Vector3 operator*(const Vector3 &p_v) const {
Vector3 v = *this;
v *= p_v;
return v;
}
inline Vector3 &operator/=(const Vector3 &p_v) {
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
inline Vector3 operator/(const Vector3 &p_v) const {
Vector3 v = *this;
v /= p_v;
return v;
}
inline Vector3 &operator*=(real_t p_scalar) {
*this *= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
inline Vector3 operator*(real_t p_scalar) const {
Vector3 v = *this;
v *= p_scalar;
return v;
}
inline Vector3 &operator/=(real_t p_scalar) {
*this /= Vector3(p_scalar, p_scalar, p_scalar);
return *this;
}
inline Vector3 operator/(real_t p_scalar) const {
Vector3 v = *this;
v /= p_scalar;
return v;
}
inline Vector3 operator-() const {
return Vector3(-x, -y, -z);
}
inline bool operator==(const Vector3 &p_v) const {
return (x == p_v.x && y == p_v.y && z == p_v.z);
}
inline bool operator!=(const Vector3 &p_v) const {
return (x != p_v.x || y != p_v.y || z != p_v.z);
}
bool operator<(const Vector3 &p_v) const;
bool operator<=(const Vector3 &p_v) const;
inline Vector3 abs() const {
return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
}
inline Vector3 ceil() const {
return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
}
inline Vector3 cross(const Vector3 &b) const {
Vector3 ret(
(y * b.z) - (z * b.y),
(z * b.x) - (x * b.z),
(x * b.y) - (y * b.x));
return ret;
}
inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
return Vector3(
x + (p_t * (p_b.x - x)),
y + (p_t * (p_b.y - y)),
z + (p_t * (p_b.z - z)));
}
inline Vector3 slerp(const Vector3 &p_b, real_t p_t) const {
real_t theta = angle_to(p_b);
return rotated(cross(p_b).normalized(), theta * p_t);
}
Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const {
Vector3 v = *this;
Vector3 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
Vector3 bounce(const Vector3 &p_normal) const {
return -reflect(p_normal);
}
inline real_t length() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return ::sqrt(x2 + y2 + z2);
}
inline real_t length_squared() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return x2 + y2 + z2;
}
inline real_t distance_squared_to(const Vector3 &b) const {
return (b - *this).length_squared();
}
inline real_t distance_to(const Vector3 &b) const {
return (b - *this).length();
}
inline real_t dot(const Vector3 &b) const {
return x * b.x + y * b.y + z * b.z;
}
inline Vector3 project(const Vector3 &p_b) const {
return p_b * (dot(p_b) / p_b.length_squared());
}
inline real_t angle_to(const Vector3 &b) const {
return std::atan2(cross(b).length(), dot(b));
}
inline Vector3 direction_to(const Vector3 &p_b) const {
Vector3 ret(p_b.x - x, p_b.y - y, p_b.z - z);
ret.normalize();
return ret;
}
inline Vector3 floor() const {
return Vector3(::floor(x), ::floor(y), ::floor(z));
}
inline Vector3 inverse() const {
return Vector3(1.f / x, 1.f / y, 1.f / z);
}
inline bool is_normalized() const {
return std::abs(length_squared() - 1.f) < 0.00001f;
}
Basis outer(const Vector3 &b) const;
int max_axis() const;
int min_axis() const;
inline void normalize() {
real_t l = length();
if (l == 0) {
x = y = z = 0;
} else {
x /= l;
y /= l;
z /= l;
}
}
inline Vector3 normalized() const {
Vector3 v = *this;
v.normalize();
return v;
}
inline Vector3 reflect(const Vector3 &p_normal) const {
return -(*this - p_normal * this->dot(p_normal) * 2.0);
}
inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
Vector3 v = *this;
v.rotate(axis, phi);
return v;
}
void rotate(const Vector3 &p_axis, real_t p_phi);
inline Vector3 slide(const Vector3 &by) const {
return *this - by * this->dot(by);
}
void snap(real_t p_val);
inline Vector3 snapped(const float by) {
Vector3 v = *this;
v.snap(by);
return v;
}
operator String() const;
};
inline Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
inline Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.cross(p_b);
}
} // namespace godot
#endif // VECTOR3_H