godot-cpp/include/core/Vector2.hpp
Hugo Locurcio cf5428e103
Add license headers to all source and header files
This is consistent with the core Godot source code, and ensures the
license isn't detached from its original code when individual files
are distributed.
2021-08-02 18:34:58 +02:00

307 lines
7.9 KiB
C++

/*************************************************************************/
/* Vector2.hpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef VECTOR2_H
#define VECTOR2_H
#include <gdnative/vector2.h>
#include "Defs.hpp"
#include <Math.hpp>
namespace godot {
class String;
struct Vector2 {
enum Axis {
AXIS_X = 0,
AXIS_Y,
AXIS_COUNT
};
static const Vector2 ZERO;
static const Vector2 ONE;
static const Vector2 INF;
// Coordinate system of the 2D engine
static const Vector2 LEFT;
static const Vector2 RIGHT;
static const Vector2 UP;
static const Vector2 DOWN;
union {
real_t x;
real_t width;
};
union {
real_t y;
real_t height;
};
inline Vector2(real_t p_x, real_t p_y) {
x = p_x;
y = p_y;
}
inline Vector2() {
x = 0;
y = 0;
}
inline real_t &operator[](int p_idx) {
return p_idx ? y : x;
}
inline const real_t &operator[](int p_idx) const {
return p_idx ? y : x;
}
inline Vector2 operator+(const Vector2 &p_v) const {
return Vector2(x + p_v.x, y + p_v.y);
}
inline void operator+=(const Vector2 &p_v) {
x += p_v.x;
y += p_v.y;
}
inline Vector2 operator-(const Vector2 &p_v) const {
return Vector2(x - p_v.x, y - p_v.y);
}
inline void operator-=(const Vector2 &p_v) {
x -= p_v.x;
y -= p_v.y;
}
inline Vector2 operator*(const Vector2 &p_v1) const {
return Vector2(x * p_v1.x, y * p_v1.y);
}
inline Vector2 operator*(const real_t &rvalue) const {
return Vector2(x * rvalue, y * rvalue);
}
inline void operator*=(const real_t &rvalue) {
x *= rvalue;
y *= rvalue;
}
inline void operator*=(const Vector2 &rvalue) {
*this = *this * rvalue;
}
inline Vector2 operator/(const Vector2 &p_v1) const {
return Vector2(x / p_v1.x, y / p_v1.y);
}
inline Vector2 operator/(const real_t &rvalue) const {
return Vector2(x / rvalue, y / rvalue);
}
inline void operator/=(const real_t &rvalue) {
x /= rvalue;
y /= rvalue;
}
inline Vector2 operator-() const {
return Vector2(-x, -y);
}
bool operator==(const Vector2 &p_vec2) const;
bool operator!=(const Vector2 &p_vec2) const;
inline bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); }
inline bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); }
inline void normalize() {
real_t l = x * x + y * y;
if (l != 0) {
l = sqrt(l);
x /= l;
y /= l;
}
}
inline Vector2 normalized() const {
Vector2 v = *this;
v.normalize();
return v;
}
inline real_t length() const {
return sqrt(x * x + y * y);
}
inline real_t length_squared() const {
return x * x + y * y;
}
inline real_t distance_to(const Vector2 &p_vector2) const {
return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
inline real_t distance_squared_to(const Vector2 &p_vector2) const {
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
inline real_t angle_to(const Vector2 &p_vector2) const {
return atan2(cross(p_vector2), dot(p_vector2));
}
inline real_t angle_to_point(const Vector2 &p_vector2) const {
return atan2(y - p_vector2.y, x - p_vector2.x);
}
inline Vector2 direction_to(const Vector2 &p_b) const {
Vector2 ret(p_b.x - x, p_b.y - y);
ret.normalize();
return ret;
}
inline real_t dot(const Vector2 &p_other) const {
return x * p_other.x + y * p_other.y;
}
inline real_t cross(const Vector2 &p_other) const {
return x * p_other.y - y * p_other.x;
}
inline Vector2 cross(real_t p_other) const {
return Vector2(p_other * y, -p_other * x);
}
Vector2 project(const Vector2 &p_vec) const;
Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
Vector2 clamped(real_t p_len) const;
static inline Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
Vector2 res = p_a;
res.x += (p_t * (p_b.x - p_a.x));
res.y += (p_t * (p_b.y - p_a.y));
return res;
}
inline Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const {
Vector2 res = *this;
res.x += (p_t * (p_b.x - x));
res.y += (p_t * (p_b.y - y));
return res;
}
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const;
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const {
Vector2 v = *this;
Vector2 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
inline Vector2 slide(const Vector2 &p_vec) const {
return p_vec - *this * this->dot(p_vec);
}
inline Vector2 bounce(const Vector2 &p_normal) const {
return -reflect(p_normal);
}
inline Vector2 reflect(const Vector2 &p_normal) const {
return -(*this - p_normal * this->dot(p_normal) * 2.0);
}
inline real_t angle() const {
return atan2(y, x);
}
inline void set_rotation(real_t p_radians) {
x = cosf(p_radians);
y = sinf(p_radians);
}
inline Vector2 abs() const {
return Vector2(fabs(x), fabs(y));
}
inline Vector2 rotated(real_t p_by) const {
Vector2 v;
v.set_rotation(angle() + p_by);
v *= length();
return v;
}
inline Vector2 tangent() const {
return Vector2(y, -x);
}
inline Vector2 floor() const {
return Vector2(Math::floor(x), Math::floor(y));
}
inline Vector2 snapped(const Vector2 &p_by) const {
return Vector2(
Math::stepify(x, p_by.x),
Math::stepify(y, p_by.y));
}
inline real_t aspect() const { return width / height; }
operator String() const;
};
inline Vector2 operator*(real_t p_scalar, const Vector2 &p_vec) {
return p_vec * p_scalar;
}
namespace Math {
// Convenience, since they exist in GDScript
inline Vector2 cartesian2polar(Vector2 v) {
return Vector2(Math::sqrt(v.x * v.x + v.y * v.y), Math::atan2(v.y, v.x));
}
inline Vector2 polar2cartesian(Vector2 v) {
// x == radius
// y == angle
return Vector2(v.x * Math::cos(v.y), v.x * Math::sin(v.y));
}
} // namespace Math
} // namespace godot
#endif // VECTOR2_H